sqlite/test/fuzzcheck.c
drh c1042cd133 Include percentile() and merge() in the fuzzcheck test utility.
FossilOrigin-Name: d1d0942a947803d45a1fd9068f3518cf412178b6b9bafcb82db44c52d5820c11
2024-08-31 19:24:17 +00:00

2591 lines
81 KiB
C

/*
** 2015-05-25
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This is a utility program designed to aid running regressions tests on
** the SQLite library using data from external fuzzers.
**
** This program reads content from an SQLite database file with the following
** schema:
**
** CREATE TABLE db(
** dbid INTEGER PRIMARY KEY, -- database id
** dbcontent BLOB -- database disk file image
** );
** CREATE TABLE xsql(
** sqlid INTEGER PRIMARY KEY, -- SQL script id
** sqltext TEXT -- Text of SQL statements to run
** );
** CREATE TABLE IF NOT EXISTS readme(
** msg TEXT -- Human-readable description of this test collection
** );
**
** For each database file in the DB table, the SQL text in the XSQL table
** is run against that database. All README.MSG values are printed prior
** to the start of the test (unless the --quiet option is used). If the
** DB table is empty, then all entries in XSQL are run against an empty
** in-memory database.
**
** This program is looking for crashes, assertion faults, and/or memory leaks.
** No attempt is made to verify the output. The assumption is that either all
** of the database files or all of the SQL statements are malformed inputs,
** generated by a fuzzer, that need to be checked to make sure they do not
** present a security risk.
**
** This program also includes some command-line options to help with
** creation and maintenance of the source content database. The command
**
** ./fuzzcheck database.db --load-sql FILE...
**
** Loads all FILE... arguments into the XSQL table. The --load-db option
** works the same but loads the files into the DB table. The -m option can
** be used to initialize the README table. The "database.db" file is created
** if it does not previously exist. Example:
**
** ./fuzzcheck new.db --load-sql *.sql
** ./fuzzcheck new.db --load-db *.db
** ./fuzzcheck new.db -m 'New test cases'
**
** The three commands above will create the "new.db" file and initialize all
** tables. Then do "./fuzzcheck new.db" to run the tests.
**
** DEBUGGING HINTS:
**
** If fuzzcheck does crash, it can be run in the debugger and the content
** of the global variable g.zTextName[] will identify the specific XSQL and
** DB values that were running when the crash occurred.
**
** DBSQLFUZZ: (Added 2020-02-25)
**
** The dbsqlfuzz fuzzer includes both a database file and SQL to run against
** that database in its input. This utility can now process dbsqlfuzz
** input files. Load such files using the "--load-dbsql FILE ..." command-line
** option.
**
** Dbsqlfuzz inputs are ordinary text. The first part of the file is text
** that describes the content of the database (using a lot of hexadecimal),
** then there is a divider line followed by the SQL to run against the
** database. Because they are ordinary text, dbsqlfuzz inputs are stored
** in the XSQL table, as if they were ordinary SQL inputs. The isDbSql()
** function can look at a text string and determine whether or not it is
** a valid dbsqlfuzz input.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <ctype.h>
#include <assert.h>
#include "sqlite3.h"
#include "sqlite3recover.h"
#define ISSPACE(X) isspace((unsigned char)(X))
#define ISDIGIT(X) isdigit((unsigned char)(X))
#ifdef __unix__
# include <signal.h>
# include <unistd.h>
#endif
#include <stddef.h>
#if !defined(_MSC_VER)
# include <stdint.h>
#endif
#if defined(_MSC_VER)
typedef unsigned char uint8_t;
#endif
/*
** Files in the virtual file system.
*/
typedef struct VFile VFile;
struct VFile {
char *zFilename; /* Filename. NULL for delete-on-close. From malloc() */
int sz; /* Size of the file in bytes */
int nRef; /* Number of references to this file */
unsigned char *a; /* Content of the file. From malloc() */
};
typedef struct VHandle VHandle;
struct VHandle {
sqlite3_file base; /* Base class. Must be first */
VFile *pVFile; /* The underlying file */
};
/*
** The value of a database file template, or of an SQL script
*/
typedef struct Blob Blob;
struct Blob {
Blob *pNext; /* Next in a list */
int id; /* Id of this Blob */
int seq; /* Sequence number */
int sz; /* Size of this Blob in bytes */
unsigned char a[1]; /* Blob content. Extra space allocated as needed. */
};
/*
** Maximum number of files in the in-memory virtual filesystem.
*/
#define MX_FILE 10
/*
** Maximum allowed file size
*/
#define MX_FILE_SZ 10000000
/*
** All global variables are gathered into the "g" singleton.
*/
static struct GlobalVars {
const char *zArgv0; /* Name of program */
const char *zDbFile; /* Name of database file */
VFile aFile[MX_FILE]; /* The virtual filesystem */
int nDb; /* Number of template databases */
Blob *pFirstDb; /* Content of first template database */
int nSql; /* Number of SQL scripts */
Blob *pFirstSql; /* First SQL script */
unsigned int uRandom; /* Seed for the SQLite PRNG */
unsigned int nInvariant; /* Number of invariant checks run */
char zTestName[100]; /* Name of current test */
} g;
/*
** Include various extensions.
*/
extern int sqlite3_vt02_init(sqlite3*,char**,const sqlite3_api_routines*);
extern int sqlite3_randomjson_init(sqlite3*,char**,const sqlite3_api_routines*);
extern int sqlite3_percentile_init(sqlite3*,char**,const sqlite3_api_routines*);
/*
** Print an error message and quit.
*/
static void fatalError(const char *zFormat, ...){
va_list ap;
fprintf(stderr, "%s", g.zArgv0);
if( g.zDbFile ) fprintf(stderr, " %s", g.zDbFile);
if( g.zTestName[0] ) fprintf(stderr, " (%s)", g.zTestName);
fprintf(stderr, ": ");
va_start(ap, zFormat);
vfprintf(stderr, zFormat, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
/*
** signal handler
*/
#ifdef __unix__
static void signalHandler(int signum){
const char *zSig;
if( signum==SIGABRT ){
zSig = "abort";
}else if( signum==SIGALRM ){
zSig = "timeout";
}else if( signum==SIGSEGV ){
zSig = "segfault";
}else{
zSig = "signal";
}
fatalError(zSig);
}
#endif
/*
** Set the an alarm to go off after N seconds. Disable the alarm
** if N==0
*/
static void setAlarm(int N){
#ifdef __unix__
alarm(N);
#else
(void)N;
#endif
}
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/*
** This an SQL progress handler. After an SQL statement has run for
** many steps, we want to interrupt it. This guards against infinite
** loops from recursive common table expressions.
**
** *pVdbeLimitFlag is true if the --limit-vdbe command-line option is used.
** In that case, hitting the progress handler is a fatal error.
*/
static int progressHandler(void *pVdbeLimitFlag){
if( *(int*)pVdbeLimitFlag ) fatalError("too many VDBE cycles");
return 1;
}
#endif
/*
** Reallocate memory. Show an error and quit if unable.
*/
static void *safe_realloc(void *pOld, int szNew){
void *pNew = realloc(pOld, szNew<=0 ? 1 : szNew);
if( pNew==0 ) fatalError("unable to realloc for %d bytes", szNew);
return pNew;
}
/*
** Initialize the virtual file system.
*/
static void formatVfs(void){
int i;
for(i=0; i<MX_FILE; i++){
g.aFile[i].sz = -1;
g.aFile[i].zFilename = 0;
g.aFile[i].a = 0;
g.aFile[i].nRef = 0;
}
}
/*
** Erase all information in the virtual file system.
*/
static void reformatVfs(void){
int i;
for(i=0; i<MX_FILE; i++){
if( g.aFile[i].sz<0 ) continue;
if( g.aFile[i].zFilename ){
free(g.aFile[i].zFilename);
g.aFile[i].zFilename = 0;
}
if( g.aFile[i].nRef>0 ){
fatalError("file %d still open. nRef=%d", i, g.aFile[i].nRef);
}
g.aFile[i].sz = -1;
free(g.aFile[i].a);
g.aFile[i].a = 0;
g.aFile[i].nRef = 0;
}
}
/*
** Find a VFile by name
*/
static VFile *findVFile(const char *zName){
int i;
if( zName==0 ) return 0;
for(i=0; i<MX_FILE; i++){
if( g.aFile[i].zFilename==0 ) continue;
if( strcmp(g.aFile[i].zFilename, zName)==0 ) return &g.aFile[i];
}
return 0;
}
/*
** Find a VFile by name. Create it if it does not already exist and
** initialize it to the size and content given.
**
** Return NULL only if the filesystem is full.
*/
static VFile *createVFile(const char *zName, int sz, unsigned char *pData){
VFile *pNew = findVFile(zName);
int i;
if( pNew ) return pNew;
for(i=0; i<MX_FILE && g.aFile[i].sz>=0; i++){}
if( i>=MX_FILE ) return 0;
pNew = &g.aFile[i];
if( zName ){
int nName = (int)strlen(zName)+1;
pNew->zFilename = safe_realloc(0, nName);
memcpy(pNew->zFilename, zName, nName);
}else{
pNew->zFilename = 0;
}
pNew->nRef = 0;
pNew->sz = sz;
pNew->a = safe_realloc(0, sz);
if( sz>0 ) memcpy(pNew->a, pData, sz);
return pNew;
}
/* Return true if the line is all zeros */
static int allZero(unsigned char *aLine){
int i;
for(i=0; i<16 && aLine[i]==0; i++){}
return i==16;
}
/*
** Render a database and query as text that can be input into
** the CLI.
*/
static void renderDbSqlForCLI(
FILE *out, /* Write to this file */
const char *zFile, /* Name of the database file */
unsigned char *aDb, /* Database content */
int nDb, /* Number of bytes in aDb[] */
unsigned char *zSql, /* SQL content */
int nSql /* Bytes of SQL */
){
fprintf(out, ".print ******* %s *******\n", zFile);
if( nDb>100 ){
int i, j; /* Loop counters */
int pgsz; /* Size of each page */
int lastPage = 0; /* Last page number shown */
int iPage; /* Current page number */
unsigned char *aLine; /* Single line to display */
unsigned char buf[16]; /* Fake line */
unsigned char bShow[256]; /* Characters ok to display */
memset(bShow, '.', sizeof(bShow));
for(i=' '; i<='~'; i++){
if( i!='{' && i!='}' && i!='"' && i!='\\' ) bShow[i] = i;
}
pgsz = (aDb[16]<<8) | aDb[17];
if( pgsz==0 ) pgsz = 65536;
if( pgsz<512 || (pgsz&(pgsz-1))!=0 ) pgsz = 4096;
fprintf(out,".open --hexdb\n");
fprintf(out,"| size %d pagesize %d filename %s\n",nDb,pgsz,zFile);
for(i=0; i<nDb; i += 16){
if( i+16>nDb ){
memset(buf, 0, sizeof(buf));
memcpy(buf, aDb+i, nDb-i);
aLine = buf;
}else{
aLine = aDb + i;
}
if( allZero(aLine) ) continue;
iPage = i/pgsz + 1;
if( lastPage!=iPage ){
fprintf(out,"| page %d offset %d\n", iPage, (iPage-1)*pgsz);
lastPage = iPage;
}
fprintf(out,"| %5d:", i-(iPage-1)*pgsz);
for(j=0; j<16; j++) fprintf(out," %02x", aLine[j]);
fprintf(out," ");
for(j=0; j<16; j++){
unsigned char c = (unsigned char)aLine[j];
fputc( bShow[c], stdout);
}
fputc('\n', stdout);
}
fprintf(out,"| end %s\n", zFile);
}else{
fprintf(out,".open :memory:\n");
}
fprintf(out,".testctrl prng_seed 1 db\n");
fprintf(out,".testctrl internal_functions\n");
fprintf(out,"%.*s", nSql, zSql);
if( nSql>0 && zSql[nSql-1]!='\n' ) fprintf(out, "\n");
}
/*
** Read the complete content of a file into memory. Add a 0x00 terminator
** and return a pointer to the result.
**
** The file content is held in memory obtained from sqlite_malloc64() which
** should be freed by the caller.
*/
static char *readFile(const char *zFilename, long *sz){
FILE *in;
long nIn;
unsigned char *pBuf;
*sz = 0;
if( zFilename==0 ) return 0;
in = fopen(zFilename, "rb");
if( in==0 ) return 0;
fseek(in, 0, SEEK_END);
*sz = nIn = ftell(in);
rewind(in);
pBuf = sqlite3_malloc64( nIn+1 );
if( pBuf && 1==fread(pBuf, nIn, 1, in) ){
pBuf[nIn] = 0;
fclose(in);
return (char*)pBuf;
}
sqlite3_free(pBuf);
*sz = 0;
fclose(in);
return 0;
}
/*
** Implementation of the "readfile(X)" SQL function. The entire content
** of the file named X is read and returned as a BLOB. NULL is returned
** if the file does not exist or is unreadable.
*/
static void readfileFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
long nIn;
void *pBuf;
const char *zName = (const char*)sqlite3_value_text(argv[0]);
if( zName==0 ) return;
pBuf = readFile(zName, &nIn);
if( pBuf ){
sqlite3_result_blob(context, pBuf, nIn, sqlite3_free);
}
}
/*
** Implementation of the "readtextfile(X)" SQL function. The text content
** of the file named X through the end of the file or to the first \000
** character, whichever comes first, is read and returned as TEXT. NULL
** is returned if the file does not exist or is unreadable.
*/
static void readtextfileFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zName;
FILE *in;
long nIn;
char *pBuf;
zName = (const char*)sqlite3_value_text(argv[0]);
if( zName==0 ) return;
in = fopen(zName, "rb");
if( in==0 ) return;
fseek(in, 0, SEEK_END);
nIn = ftell(in);
rewind(in);
pBuf = sqlite3_malloc64( nIn+1 );
if( pBuf && 1==fread(pBuf, nIn, 1, in) ){
pBuf[nIn] = 0;
sqlite3_result_text(context, pBuf, -1, sqlite3_free);
}else{
sqlite3_free(pBuf);
}
fclose(in);
}
/*
** Implementation of the "writefile(X,Y)" SQL function. The argument Y
** is written into file X. The number of bytes written is returned. Or
** NULL is returned if something goes wrong, such as being unable to open
** file X for writing.
*/
static void writefileFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
FILE *out;
const char *z;
sqlite3_int64 rc;
const char *zFile;
(void)argc;
zFile = (const char*)sqlite3_value_text(argv[0]);
if( zFile==0 ) return;
out = fopen(zFile, "wb");
if( out==0 ) return;
z = (const char*)sqlite3_value_blob(argv[1]);
if( z==0 ){
rc = 0;
}else{
rc = fwrite(z, 1, sqlite3_value_bytes(argv[1]), out);
}
fclose(out);
sqlite3_result_int64(context, rc);
}
/*
** Load a list of Blob objects from the database
*/
static void blobListLoadFromDb(
sqlite3 *db, /* Read from this database */
const char *zSql, /* Query used to extract the blobs */
int onlyId, /* Only load where id is this value */
int *pN, /* OUT: Write number of blobs loaded here */
Blob **ppList /* OUT: Write the head of the blob list here */
){
Blob head;
Blob *p;
sqlite3_stmt *pStmt;
int n = 0;
int rc;
char *z2;
if( onlyId>0 ){
z2 = sqlite3_mprintf("%s WHERE rowid=%d", zSql, onlyId);
}else{
z2 = sqlite3_mprintf("%s", zSql);
}
rc = sqlite3_prepare_v2(db, z2, -1, &pStmt, 0);
sqlite3_free(z2);
if( rc ) fatalError("%s", sqlite3_errmsg(db));
head.pNext = 0;
p = &head;
while( SQLITE_ROW==sqlite3_step(pStmt) ){
int sz = sqlite3_column_bytes(pStmt, 1);
Blob *pNew = safe_realloc(0, sizeof(*pNew)+sz );
pNew->id = sqlite3_column_int(pStmt, 0);
pNew->sz = sz;
pNew->seq = n++;
pNew->pNext = 0;
memcpy(pNew->a, sqlite3_column_blob(pStmt,1), sz);
pNew->a[sz] = 0;
p->pNext = pNew;
p = pNew;
}
sqlite3_finalize(pStmt);
*pN = n;
*ppList = head.pNext;
}
/*
** Free a list of Blob objects
*/
static void blobListFree(Blob *p){
Blob *pNext;
while( p ){
pNext = p->pNext;
free(p);
p = pNext;
}
}
/* Return the current wall-clock time
**
** The number of milliseconds since the julian epoch.
** 1907-01-01 00:00:00 -> 210866716800000
** 2021-01-01 00:00:00 -> 212476176000000
*/
static sqlite3_int64 timeOfDay(void){
static sqlite3_vfs *clockVfs = 0;
sqlite3_int64 t;
if( clockVfs==0 ){
clockVfs = sqlite3_vfs_find(0);
if( clockVfs==0 ) return 0;
}
if( clockVfs->iVersion>=1 && clockVfs->xCurrentTimeInt64!=0 ){
clockVfs->xCurrentTimeInt64(clockVfs, &t);
}else{
double r;
clockVfs->xCurrentTime(clockVfs, &r);
t = (sqlite3_int64)(r*86400000.0);
}
return t;
}
/***************************************************************************
** Code to process combined database+SQL scripts generated by the
** dbsqlfuzz fuzzer.
*/
/* An instance of the following object is passed by pointer as the
** client data to various callbacks.
*/
typedef struct FuzzCtx {
sqlite3 *db; /* The database connection */
sqlite3_int64 iCutoffTime; /* Stop processing at this time. */
sqlite3_int64 iLastCb; /* Time recorded for previous progress callback */
sqlite3_int64 mxInterval; /* Longest interval between two progress calls */
unsigned nCb; /* Number of progress callbacks */
unsigned mxCb; /* Maximum number of progress callbacks allowed */
unsigned execCnt; /* Number of calls to the sqlite3_exec callback */
int timeoutHit; /* True when reaching a timeout */
} FuzzCtx;
/* Verbosity level for the dbsqlfuzz test runner */
static int eVerbosity = 0;
/* True to activate PRAGMA vdbe_debug=on */
static int bVdbeDebug = 0;
/* Timeout for each fuzzing attempt, in milliseconds */
static int giTimeout = 10000; /* Defaults to 10 seconds */
/* Maximum number of progress handler callbacks */
static unsigned int mxProgressCb = 2000;
/* Maximum string length in SQLite */
static int lengthLimit = 1000000;
/* Maximum expression depth */
static int depthLimit = 500;
/* Limit on the amount of heap memory that can be used */
static sqlite3_int64 heapLimit = 100000000;
/* Maximum byte-code program length in SQLite */
static int vdbeOpLimit = 25000;
/* Maximum size of the in-memory database */
static sqlite3_int64 maxDbSize = 104857600;
/* OOM simulation parameters */
static unsigned int oomCounter = 0; /* Simulate OOM when equals 1 */
static unsigned int oomRepeat = 0; /* Number of OOMs in a row */
static void*(*defaultMalloc)(int) = 0; /* The low-level malloc routine */
/* Enable recovery */
static int bNoRecover = 0;
/* This routine is called when a simulated OOM occurs. It is broken
** out as a separate routine to make it easy to set a breakpoint on
** the OOM
*/
void oomFault(void){
if( eVerbosity ){
printf("Simulated OOM fault\n");
}
if( oomRepeat>0 ){
oomRepeat--;
}else{
oomCounter--;
}
}
/* This routine is a replacement malloc() that is used to simulate
** Out-Of-Memory (OOM) errors for testing purposes.
*/
static void *oomMalloc(int nByte){
if( oomCounter ){
if( oomCounter==1 ){
oomFault();
return 0;
}else{
oomCounter--;
}
}
return defaultMalloc(nByte);
}
/* Register the OOM simulator. This must occur before any memory
** allocations */
static void registerOomSimulator(void){
sqlite3_mem_methods mem;
sqlite3_shutdown();
sqlite3_config(SQLITE_CONFIG_GETMALLOC, &mem);
defaultMalloc = mem.xMalloc;
mem.xMalloc = oomMalloc;
sqlite3_config(SQLITE_CONFIG_MALLOC, &mem);
}
/* Turn off any pending OOM simulation */
static void disableOom(void){
oomCounter = 0;
oomRepeat = 0;
}
/*
** Translate a single byte of Hex into an integer.
** This routine only works if h really is a valid hexadecimal
** character: 0..9a..fA..F
*/
static unsigned char hexToInt(unsigned int h){
#ifdef SQLITE_EBCDIC
h += 9*(1&~(h>>4)); /* EBCDIC */
#else
h += 9*(1&(h>>6)); /* ASCII */
#endif
return h & 0xf;
}
/*
** The first character of buffer zIn[0..nIn-1] is a '['. This routine
** checked to see if the buffer holds "[NNNN]" or "[+NNNN]" and if it
** does it makes corresponding changes to the *pK value and *pI value
** and returns true. If the input buffer does not match the patterns,
** no changes are made to either *pK or *pI and this routine returns false.
*/
static int isOffset(
const unsigned char *zIn, /* Text input */
int nIn, /* Bytes of input */
unsigned int *pK, /* half-byte cursor to adjust */
unsigned int *pI /* Input index to adjust */
){
int i;
unsigned int k = 0;
unsigned char c;
for(i=1; i<nIn && (c = zIn[i])!=']'; i++){
if( !isxdigit(c) ) return 0;
k = k*16 + hexToInt(c);
}
if( i==nIn ) return 0;
*pK = 2*k;
*pI += i;
return 1;
}
/*
** Decode the text starting at zIn into a binary database file.
** The maximum length of zIn is nIn bytes. Store the binary database
** file in space obtained from sqlite3_malloc().
**
** Return the number of bytes of zIn consumed. Or return -1 if there
** is an error. One potential error is that the recipe specifies a
** database file larger than MX_FILE_SZ bytes.
**
** Abort on an OOM.
*/
static int decodeDatabase(
const unsigned char *zIn, /* Input text to be decoded */
int nIn, /* Bytes of input text */
unsigned char **paDecode, /* OUT: decoded database file */
int *pnDecode /* OUT: Size of decoded database */
){
unsigned char *a, *aNew; /* Database under construction */
int mx = 0; /* Current size of the database */
sqlite3_uint64 nAlloc = 4096; /* Space allocated in a[] */
unsigned int i; /* Next byte of zIn[] to read */
unsigned int j; /* Temporary integer */
unsigned int k; /* half-byte cursor index for output */
unsigned int n; /* Number of bytes of input */
unsigned char b = 0;
if( nIn<4 ) return -1;
n = (unsigned int)nIn;
a = sqlite3_malloc64( nAlloc );
if( a==0 ){
fprintf(stderr, "Out of memory!\n");
exit(1);
}
memset(a, 0, (size_t)nAlloc);
for(i=k=0; i<n; i++){
unsigned char c = (unsigned char)zIn[i];
if( isxdigit(c) ){
k++;
if( k & 1 ){
b = hexToInt(c)*16;
}else{
b += hexToInt(c);
j = k/2 - 1;
if( j>=nAlloc ){
sqlite3_uint64 newSize;
if( nAlloc==MX_FILE_SZ || j>=MX_FILE_SZ ){
if( eVerbosity ){
fprintf(stderr, "Input database too big: max %d bytes\n",
MX_FILE_SZ);
}
sqlite3_free(a);
return -1;
}
newSize = nAlloc*2;
if( newSize<=j ){
newSize = (j+4096)&~4095;
}
if( newSize>MX_FILE_SZ ){
if( j>=MX_FILE_SZ ){
sqlite3_free(a);
return -1;
}
newSize = MX_FILE_SZ;
}
aNew = sqlite3_realloc64( a, newSize );
if( aNew==0 ){
sqlite3_free(a);
return -1;
}
a = aNew;
assert( newSize > nAlloc );
memset(a+nAlloc, 0, (size_t)(newSize - nAlloc));
nAlloc = newSize;
}
if( j>=(unsigned)mx ){
mx = (j + 4095)&~4095;
if( mx>MX_FILE_SZ ) mx = MX_FILE_SZ;
}
assert( j<nAlloc );
a[j] = b;
}
}else if( zIn[i]=='[' && i<n-3 && isOffset(zIn+i, nIn-i, &k, &i) ){
continue;
}else if( zIn[i]=='\n' && i<n-4 && memcmp(zIn+i,"\n--\n",4)==0 ){
i += 4;
break;
}
}
*pnDecode = mx;
*paDecode = a;
return i;
}
/*
** Progress handler callback.
**
** The argument is the cutoff-time after which all processing should
** stop. So return non-zero if the cut-off time is exceeded.
*/
static int progress_handler(void *pClientData) {
FuzzCtx *p = (FuzzCtx*)pClientData;
sqlite3_int64 iNow = timeOfDay();
int rc = iNow>=p->iCutoffTime;
sqlite3_int64 iDiff = iNow - p->iLastCb;
/* printf("time-remaining: %lld\n", p->iCutoffTime - iNow); */
if( iDiff > p->mxInterval ) p->mxInterval = iDiff;
p->nCb++;
if( rc==0 && p->mxCb>0 && p->mxCb<=p->nCb ) rc = 1;
if( rc && !p->timeoutHit && eVerbosity>=2 ){
printf("Timeout on progress callback %d\n", p->nCb);
fflush(stdout);
p->timeoutHit = 1;
}
return rc;
}
/*
** Flag bits set by block_troublesome_sql()
*/
#define BTS_SELECT 0x000001
#define BTS_NONSELECT 0x000002
#define BTS_BADFUNC 0x000004
#define BTS_BADPRAGMA 0x000008 /* Sticky for rest of the script */
/*
** Disallow debugging pragmas such as "PRAGMA vdbe_debug" and
** "PRAGMA parser_trace" since they can dramatically increase the
** amount of output without actually testing anything useful.
**
** Also block ATTACH if attaching a file from the filesystem.
*/
static int block_troublesome_sql(
void *pClientData,
int eCode,
const char *zArg1,
const char *zArg2,
const char *zArg3,
const char *zArg4
){
unsigned int *pBtsFlags = (unsigned int*)pClientData;
(void)zArg3;
(void)zArg4;
switch( eCode ){
case SQLITE_PRAGMA: {
if( sqlite3_stricmp("busy_timeout",zArg1)==0
&& (zArg2==0 || strtoll(zArg2,0,0)>100 || strtoll(zArg2,0,10)>100)
){
return SQLITE_DENY;
}else if( sqlite3_stricmp("hard_heap_limit", zArg1)==0
|| sqlite3_stricmp("reverse_unordered_selects", zArg1)==0
){
/* BTS_BADPRAGMA is sticky. A hard_heap_limit or
** revert_unordered_selects should inhibit all future attempts
** at verifying query invariants */
*pBtsFlags |= BTS_BADPRAGMA;
}else if( eVerbosity==0 ){
if( sqlite3_strnicmp("vdbe_", zArg1, 5)==0
|| sqlite3_stricmp("parser_trace", zArg1)==0
|| sqlite3_stricmp("temp_store_directory", zArg1)==0
){
return SQLITE_DENY;
}
}else if( sqlite3_stricmp("oom",zArg1)==0
&& zArg2!=0 && zArg2[0]!=0 ){
oomCounter = atoi(zArg2);
}
*pBtsFlags |= BTS_NONSELECT;
break;
}
case SQLITE_ATTACH: {
/* Deny the ATTACH if it is attaching anything other than an in-memory
** database. */
*pBtsFlags |= BTS_NONSELECT;
if( zArg1==0 ) return SQLITE_DENY;
if( strcmp(zArg1,":memory:")==0 ) return SQLITE_OK;
if( sqlite3_strglob("file:*[?]vfs=memdb", zArg1)==0
&& sqlite3_strglob("file:*[^/a-zA-Z0-9_.]*[?]vfs=memdb", zArg1)!=0
){
return SQLITE_OK;
}
return SQLITE_DENY;
}
case SQLITE_SELECT: {
*pBtsFlags |= BTS_SELECT;
break;
}
case SQLITE_FUNCTION: {
static const char *azBadFuncs[] = {
"avg",
"count",
"cume_dist",
"current_date",
"current_time",
"current_timestamp",
"date",
"datetime",
"decimal_sum",
"dense_rank",
"first_value",
"geopoly_group_bbox",
"group_concat",
"implies_nonnull_row",
"json_group_array",
"json_group_object",
"julianday",
"lag",
"last_value",
"lead",
"max",
"min",
"nth_value",
"ntile",
"percent_rank",
"random",
"randomblob",
"rank",
"row_number",
"sqlite_offset",
"strftime",
"sum",
"time",
"total",
"unixepoch",
};
int first, last;
first = 0;
last = sizeof(azBadFuncs)/sizeof(azBadFuncs[0]) - 1;
do{
int mid = (first+last)/2;
int c = sqlite3_stricmp(azBadFuncs[mid], zArg2);
if( c<0 ){
first = mid+1;
}else if( c>0 ){
last = mid-1;
}else{
*pBtsFlags |= BTS_BADFUNC;
break;
}
}while( first<=last );
break;
}
case SQLITE_READ: {
/* Benign */
break;
}
default: {
*pBtsFlags |= BTS_NONSELECT;
}
}
return SQLITE_OK;
}
/* Implementation found in fuzzinvariant.c */
extern int fuzz_invariant(
sqlite3 *db, /* The database connection */
sqlite3_stmt *pStmt, /* Test statement stopped on an SQLITE_ROW */
int iCnt, /* Invariant sequence number, starting at 0 */
int iRow, /* The row number for pStmt */
int nRow, /* Total number of output rows */
int *pbCorrupt, /* IN/OUT: Flag indicating a corrupt database file */
int eVerbosity, /* How much debugging output */
unsigned int dbOpt /* Default optimization flags */
);
/* Implementation of sqlite_dbdata and sqlite_dbptr */
extern int sqlite3_dbdata_init(sqlite3*,const char**,void*);
/*
** This function is used as a callback by the recover extension. Simply
** print the supplied SQL statement to stdout.
*/
static int recoverSqlCb(void *pCtx, const char *zSql){
if( eVerbosity>=2 ){
printf("%s\n", zSql);
}
return SQLITE_OK;
}
/*
** This function is called to recover data from the database.
*/
static int recoverDatabase(sqlite3 *db){
int rc; /* Return code from this routine */
const char *zRecoveryDb = ""; /* Name of "recovery" database */
const char *zLAF = "lost_and_found"; /* Name of "lost_and_found" table */
int bFreelist = 1; /* True to scan the freelist */
int bRowids = 1; /* True to restore ROWID values */
sqlite3_recover *p = 0; /* The recovery object */
p = sqlite3_recover_init_sql(db, "main", recoverSqlCb, 0);
sqlite3_recover_config(p, 789, (void*)zRecoveryDb);
sqlite3_recover_config(p, SQLITE_RECOVER_LOST_AND_FOUND, (void*)zLAF);
sqlite3_recover_config(p, SQLITE_RECOVER_ROWIDS, (void*)&bRowids);
sqlite3_recover_config(p, SQLITE_RECOVER_FREELIST_CORRUPT,(void*)&bFreelist);
sqlite3_recover_run(p);
if( sqlite3_recover_errcode(p)!=SQLITE_OK ){
const char *zErr = sqlite3_recover_errmsg(p);
int errCode = sqlite3_recover_errcode(p);
if( eVerbosity>0 ){
printf("recovery error: %s (%d)\n", zErr, errCode);
}
}
rc = sqlite3_recover_finish(p);
if( eVerbosity>0 && rc ){
printf("recovery returns error code %d\n", rc);
}
return rc;
}
/*
** Special parameter binding, for testing and debugging purposes.
**
** $int_NNN -> integer value NNN
** $text_TTTT -> floating point value TTT with destructor
*/
static void bindDebugParameters(sqlite3_stmt *pStmt){
int nVar = sqlite3_bind_parameter_count(pStmt);
int i;
for(i=0; i<nVar; i++){
const char *zVar = sqlite3_bind_parameter_name(pStmt, i+1);
if( zVar==0 ) continue;
if( strncmp(zVar, "$int_", 5)==0 ){
sqlite3_bind_int(pStmt, i+1, atoi(&zVar[5]));
}else
if( strncmp(zVar, "$text_", 6)==0 ){
char *zBuf = sqlite3_malloc64( strlen(zVar)-5 );
if( zBuf ){
memcpy(zBuf, &zVar[6], strlen(zVar)-5);
sqlite3_bind_text64(pStmt, i+1, zBuf, -1, sqlite3_free, SQLITE_UTF8);
}
}
}
}
/*
** Run the SQL text
*/
static int runDbSql(
sqlite3 *db, /* Run SQL on this database connection */
const char *zSql, /* The SQL to be run */
unsigned int *pBtsFlags,
unsigned int dbOpt /* Default optimization flags */
){
int rc;
sqlite3_stmt *pStmt;
int bCorrupt = 0;
while( isspace(zSql[0]&0x7f) ) zSql++;
if( zSql[0]==0 ) return SQLITE_OK;
if( eVerbosity>=4 ){
printf("RUNNING-SQL: [%s]\n", zSql);
fflush(stdout);
}
(*pBtsFlags) &= BTS_BADPRAGMA;
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
if( rc==SQLITE_OK ){
int nRow = 0;
bindDebugParameters(pStmt);
while( (rc = sqlite3_step(pStmt))==SQLITE_ROW ){
nRow++;
if( eVerbosity>=4 ){
int j;
for(j=0; j<sqlite3_column_count(pStmt); j++){
if( j ) printf(",");
switch( sqlite3_column_type(pStmt, j) ){
case SQLITE_NULL: {
printf("NULL");
break;
}
case SQLITE_INTEGER:
case SQLITE_FLOAT: {
printf("%s", sqlite3_column_text(pStmt, j));
break;
}
case SQLITE_BLOB: {
int n = sqlite3_column_bytes(pStmt, j);
int i;
const unsigned char *a;
a = (const unsigned char*)sqlite3_column_blob(pStmt, j);
printf("x'");
for(i=0; i<n; i++){
printf("%02x", a[i]);
}
printf("'");
break;
}
case SQLITE_TEXT: {
int n = sqlite3_column_bytes(pStmt, j);
int i;
const unsigned char *a;
a = (const unsigned char*)sqlite3_column_blob(pStmt, j);
printf("'");
for(i=0; i<n; i++){
if( a[i]=='\'' ){
printf("''");
}else{
putchar(a[i]);
}
}
printf("'");
break;
}
} /* End switch() */
} /* End for() */
printf("\n");
fflush(stdout);
} /* End if( eVerbosity>=5 ) */
} /* End while( SQLITE_ROW */
if( rc==SQLITE_DONE ){
if( (*pBtsFlags)==BTS_SELECT
&& !sqlite3_stmt_isexplain(pStmt)
&& nRow>0
){
int iRow = 0;
sqlite3_reset(pStmt);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
int iCnt = 0;
iRow++;
for(iCnt=0; iCnt<99999; iCnt++){
rc = fuzz_invariant(db, pStmt, iCnt, iRow, nRow,
&bCorrupt, eVerbosity, dbOpt);
if( rc==SQLITE_DONE ) break;
if( rc!=SQLITE_ERROR ) g.nInvariant++;
if( eVerbosity>0 ){
if( rc==SQLITE_OK ){
printf("invariant-check: ok\n");
}else if( rc==SQLITE_CORRUPT ){
printf("invariant-check: failed due to database corruption\n");
}
}
}
}
}
}else if( eVerbosity>=4 ){
printf("SQL-ERROR: (%d) %s\n", rc, sqlite3_errmsg(db));
fflush(stdout);
}
}else if( eVerbosity>=4 ){
printf("SQL-ERROR (%d): %s\n", rc, sqlite3_errmsg(db));
fflush(stdout);
} /* End if( SQLITE_OK ) */
return sqlite3_finalize(pStmt);
}
/* Mappings into dbconfig settings for bits taken from bytes 72..75 of
** the input database.
**
** This should be the same as in dbsqlfuzz.c. Make sure those codes stay
** in sync.
*/
static const struct {
unsigned int mask;
int iSetting;
char *zName;
} aDbConfigSettings[] = {
{ 0x0001, SQLITE_DBCONFIG_ENABLE_FKEY, "enable_fkey" },
{ 0x0002, SQLITE_DBCONFIG_ENABLE_TRIGGER, "enable_trigger" },
{ 0x0004, SQLITE_DBCONFIG_ENABLE_VIEW, "enable_view" },
{ 0x0008, SQLITE_DBCONFIG_ENABLE_QPSG, "enable_qpsg" },
{ 0x0010, SQLITE_DBCONFIG_TRIGGER_EQP, "trigger_eqp" },
{ 0x0020, SQLITE_DBCONFIG_DEFENSIVE, "defensive" },
{ 0x0040, SQLITE_DBCONFIG_WRITABLE_SCHEMA, "writable_schema" },
{ 0x0080, SQLITE_DBCONFIG_LEGACY_ALTER_TABLE, "legacy_alter_table" },
{ 0x0100, SQLITE_DBCONFIG_STMT_SCANSTATUS, "stmt_scanstatus" },
{ 0x0200, SQLITE_DBCONFIG_REVERSE_SCANORDER, "reverse_scanorder" },
#ifdef SQLITE_DBCONFIG_STRICT_AGGREGATE
{ 0x0400, SQLITE_DBCONFIG_STRICT_AGGREGATE, "strict_aggregate" },
#endif
{ 0x0800, SQLITE_DBCONFIG_DQS_DML, "dqs_dml" },
{ 0x1000, SQLITE_DBCONFIG_DQS_DDL, "dqs_ddl" },
{ 0x2000, SQLITE_DBCONFIG_TRUSTED_SCHEMA, "trusted_schema" },
};
/* Toggle a dbconfig setting
*/
static void toggleDbConfig(sqlite3 *db, int iSetting){
int v = 0;
sqlite3_db_config(db, iSetting, -1, &v);
v = !v;
sqlite3_db_config(db, iSetting, v, 0);
}
/* Invoke this routine to run a single test case */
int runCombinedDbSqlInput(
const uint8_t *aData, /* Combined DB+SQL content */
size_t nByte, /* Size of aData in bytes */
int iTimeout, /* Use this timeout */
int bScript, /* If true, just render CLI output */
int iSqlId /* SQL identifier */
){
int rc; /* SQLite API return value */
int iSql; /* Index in aData[] of start of SQL */
unsigned char *aDb = 0; /* Decoded database content */
int nDb = 0; /* Size of the decoded database */
int i; /* Loop counter */
int j; /* Start of current SQL statement */
char *zSql = 0; /* SQL text to run */
int nSql; /* Bytes of SQL text */
FuzzCtx cx; /* Fuzzing context */
unsigned int btsFlags = 0; /* Parsing flags */
unsigned int dbFlags = 0; /* Flag values from db offset 72..75 */
unsigned int dbOpt = 0; /* Flag values from db offset 76..79 */
if( nByte<10 ) return 0;
if( sqlite3_initialize() ) return 0;
if( sqlite3_memory_used()!=0 ){
int nAlloc = 0;
int nNotUsed = 0;
sqlite3_status(SQLITE_STATUS_MALLOC_COUNT, &nAlloc, &nNotUsed, 0);
fprintf(stderr,"memory leak prior to test start:"
" %lld bytes in %d allocations\n",
sqlite3_memory_used(), nAlloc);
exit(1);
}
memset(&cx, 0, sizeof(cx));
iSql = decodeDatabase((unsigned char*)aData, (int)nByte, &aDb, &nDb);
if( iSql<0 ) return 0;
if( nDb>=75 ){
dbFlags = ((unsigned int)aDb[72]<<24) + ((unsigned int)aDb[73]<<16) +
((unsigned int)aDb[74]<<8) + (unsigned int)aDb[75];
}
if( nDb>=79 ){
dbOpt = ((unsigned int)aDb[76]<<24) + ((unsigned int)aDb[77]<<16) +
((unsigned int)aDb[78]<<8) + (unsigned int)aDb[79];
}
nSql = (int)(nByte - iSql);
if( bScript ){
char zName[100];
sqlite3_snprintf(sizeof(zName),zName,"dbsql%06d.db",iSqlId);
renderDbSqlForCLI(stdout, zName, aDb, nDb,
(unsigned char*)(aData+iSql), nSql);
sqlite3_free(aDb);
return 0;
}
if( eVerbosity>=3 ){
printf(
"****** %d-byte input, %d-byte database, %d-byte script "
"******\n", (int)nByte, nDb, nSql);
fflush(stdout);
}
rc = sqlite3_open(0, &cx.db);
if( rc ){
sqlite3_free(aDb);
return 1;
}
sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, cx.db, dbOpt);
for(i=0; i<sizeof(aDbConfigSettings)/sizeof(aDbConfigSettings[0]); i++){
if( dbFlags & aDbConfigSettings[i].mask ){
toggleDbConfig(cx.db, aDbConfigSettings[i].iSetting);
}
}
if( bVdbeDebug ){
sqlite3_exec(cx.db, "PRAGMA vdbe_debug=ON", 0, 0, 0);
}
/* Invoke the progress handler frequently to check to see if we
** are taking too long. The progress handler will return true
** (which will block further processing) if more than giTimeout seconds have
** elapsed since the start of the test.
*/
cx.iLastCb = timeOfDay();
cx.iCutoffTime = cx.iLastCb + (iTimeout<giTimeout ? iTimeout : giTimeout);
cx.mxCb = mxProgressCb;
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
sqlite3_progress_handler(cx.db, 10, progress_handler, (void*)&cx);
#endif
/* Set a limit on the maximum size of a prepared statement, and the
** maximum length of a string or blob */
if( vdbeOpLimit>0 ){
sqlite3_limit(cx.db, SQLITE_LIMIT_VDBE_OP, vdbeOpLimit);
}
if( lengthLimit>0 ){
sqlite3_limit(cx.db, SQLITE_LIMIT_LENGTH, lengthLimit);
}
if( depthLimit>0 ){
sqlite3_limit(cx.db, SQLITE_LIMIT_EXPR_DEPTH, depthLimit);
}
sqlite3_limit(cx.db, SQLITE_LIMIT_LIKE_PATTERN_LENGTH, 100);
sqlite3_hard_heap_limit64(heapLimit);
rc = 1;
sqlite3_test_control(SQLITE_TESTCTRL_JSON_SELFCHECK, &rc);
if( nDb>=20 && aDb[18]==2 && aDb[19]==2 ){
aDb[18] = aDb[19] = 1;
}
rc = sqlite3_deserialize(cx.db, "main", aDb, nDb, nDb,
SQLITE_DESERIALIZE_RESIZEABLE |
SQLITE_DESERIALIZE_FREEONCLOSE);
if( rc ){
fprintf(stderr, "sqlite3_deserialize() failed with %d\n", rc);
goto testrun_finished;
}
if( maxDbSize>0 ){
sqlite3_int64 x = maxDbSize;
sqlite3_file_control(cx.db, "main", SQLITE_FCNTL_SIZE_LIMIT, &x);
}
/* For high debugging levels, turn on debug mode */
if( eVerbosity>=5 ){
sqlite3_exec(cx.db, "PRAGMA vdbe_debug=ON;", 0, 0, 0);
}
/* Block debug pragmas and ATTACH/DETACH. But wait until after
** deserialize to do this because deserialize depends on ATTACH */
sqlite3_set_authorizer(cx.db, block_troublesome_sql, &btsFlags);
/* Add the vt02 virtual table */
sqlite3_vt02_init(cx.db, 0, 0);
/* Activate extensions */
sqlite3_percentile_init(cx.db, 0, 0);
sqlite3_randomjson_init(cx.db, 0, 0);
/* Add support for sqlite_dbdata and sqlite_dbptr virtual tables used
** by the recovery API */
sqlite3_dbdata_init(cx.db, 0, 0);
/* Consistent PRNG seed */
#ifdef SQLITE_TESTCTRL_PRNG_SEED
sqlite3_table_column_metadata(cx.db, 0, "x", 0, 0, 0, 0, 0, 0);
sqlite3_test_control(SQLITE_TESTCTRL_PRNG_SEED, 1, cx.db);
#else
sqlite3_randomness(0,0);
#endif
/* Run recovery on the initial database, just to make sure recovery
** works. */
if( !bNoRecover ){
recoverDatabase(cx.db);
}
zSql = sqlite3_malloc( nSql + 1 );
if( zSql==0 ){
fprintf(stderr, "Out of memory!\n");
}else{
memcpy(zSql, aData+iSql, nSql);
zSql[nSql] = 0;
for(i=j=0; zSql[i]; i++){
if( zSql[i]==';' ){
char cSaved = zSql[i+1];
zSql[i+1] = 0;
if( sqlite3_complete(zSql+j) ){
rc = runDbSql(cx.db, zSql+j, &btsFlags, dbOpt);
j = i+1;
}
zSql[i+1] = cSaved;
if( rc==SQLITE_INTERRUPT || progress_handler(&cx) ){
goto testrun_finished;
}
}
}
if( j<i ){
runDbSql(cx.db, zSql+j, &btsFlags, dbOpt);
}
}
testrun_finished:
sqlite3_free(zSql);
rc = sqlite3_close(cx.db);
if( rc!=SQLITE_OK ){
fprintf(stdout, "sqlite3_close() returns %d\n", rc);
}
if( eVerbosity>=2 && !bScript ){
fprintf(stdout, "Peak memory usages: %f MB\n",
sqlite3_memory_highwater(1) / 1000000.0);
}
if( sqlite3_memory_used()!=0 ){
int nAlloc = 0;
int nNotUsed = 0;
sqlite3_status(SQLITE_STATUS_MALLOC_COUNT, &nAlloc, &nNotUsed, 0);
fprintf(stderr,"Memory leak: %lld bytes in %d allocations\n",
sqlite3_memory_used(), nAlloc);
exit(1);
}
sqlite3_hard_heap_limit64(0);
sqlite3_soft_heap_limit64(0);
return 0;
}
/*
** END of the dbsqlfuzz code
***************************************************************************/
/* Look at a SQL text and try to determine if it begins with a database
** description, such as would be found in a dbsqlfuzz test case. Return
** true if this does appear to be a dbsqlfuzz test case and false otherwise.
*/
static int isDbSql(unsigned char *a, int n){
unsigned char buf[12];
int i;
if( n>4 && memcmp(a,"\n--\n",4)==0 ) return 1;
while( n>0 && isspace(a[0]) ){ a++; n--; }
for(i=0; n>0 && i<8; n--, a++){
if( isxdigit(a[0]) ) buf[i++] = a[0];
}
if( i==8 && memcmp(buf,"53514c69",8)==0 ) return 1;
return 0;
}
/* Implementation of the isdbsql(TEXT) SQL function.
*/
static void isDbSqlFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
int n = sqlite3_value_bytes(argv[0]);
unsigned char *a = (unsigned char*)sqlite3_value_blob(argv[0]);
sqlite3_result_int(context, a!=0 && n>0 && isDbSql(a,n));
}
/* Methods for the VHandle object
*/
static int inmemClose(sqlite3_file *pFile){
VHandle *p = (VHandle*)pFile;
VFile *pVFile = p->pVFile;
pVFile->nRef--;
if( pVFile->nRef==0 && pVFile->zFilename==0 ){
pVFile->sz = -1;
free(pVFile->a);
pVFile->a = 0;
}
return SQLITE_OK;
}
static int inmemRead(
sqlite3_file *pFile, /* Read from this open file */
void *pData, /* Store content in this buffer */
int iAmt, /* Bytes of content */
sqlite3_int64 iOfst /* Start reading here */
){
VHandle *pHandle = (VHandle*)pFile;
VFile *pVFile = pHandle->pVFile;
if( iOfst<0 || iOfst>=pVFile->sz ){
memset(pData, 0, iAmt);
return SQLITE_IOERR_SHORT_READ;
}
if( iOfst+iAmt>pVFile->sz ){
memset(pData, 0, iAmt);
iAmt = (int)(pVFile->sz - iOfst);
memcpy(pData, pVFile->a + iOfst, iAmt);
return SQLITE_IOERR_SHORT_READ;
}
memcpy(pData, pVFile->a + iOfst, iAmt);
return SQLITE_OK;
}
static int inmemWrite(
sqlite3_file *pFile, /* Write to this file */
const void *pData, /* Content to write */
int iAmt, /* bytes to write */
sqlite3_int64 iOfst /* Start writing here */
){
VHandle *pHandle = (VHandle*)pFile;
VFile *pVFile = pHandle->pVFile;
if( iOfst+iAmt > pVFile->sz ){
if( iOfst+iAmt >= MX_FILE_SZ ){
return SQLITE_FULL;
}
pVFile->a = safe_realloc(pVFile->a, (int)(iOfst+iAmt));
if( iOfst > pVFile->sz ){
memset(pVFile->a + pVFile->sz, 0, (int)(iOfst - pVFile->sz));
}
pVFile->sz = (int)(iOfst + iAmt);
}
memcpy(pVFile->a + iOfst, pData, iAmt);
return SQLITE_OK;
}
static int inmemTruncate(sqlite3_file *pFile, sqlite3_int64 iSize){
VHandle *pHandle = (VHandle*)pFile;
VFile *pVFile = pHandle->pVFile;
if( pVFile->sz>iSize && iSize>=0 ) pVFile->sz = (int)iSize;
return SQLITE_OK;
}
static int inmemSync(sqlite3_file *pFile, int flags){
return SQLITE_OK;
}
static int inmemFileSize(sqlite3_file *pFile, sqlite3_int64 *pSize){
*pSize = ((VHandle*)pFile)->pVFile->sz;
return SQLITE_OK;
}
static int inmemLock(sqlite3_file *pFile, int type){
return SQLITE_OK;
}
static int inmemUnlock(sqlite3_file *pFile, int type){
return SQLITE_OK;
}
static int inmemCheckReservedLock(sqlite3_file *pFile, int *pOut){
*pOut = 0;
return SQLITE_OK;
}
static int inmemFileControl(sqlite3_file *pFile, int op, void *pArg){
return SQLITE_NOTFOUND;
}
static int inmemSectorSize(sqlite3_file *pFile){
return 512;
}
static int inmemDeviceCharacteristics(sqlite3_file *pFile){
return
SQLITE_IOCAP_SAFE_APPEND |
SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN |
SQLITE_IOCAP_POWERSAFE_OVERWRITE;
}
/* Method table for VHandle
*/
static sqlite3_io_methods VHandleMethods = {
/* iVersion */ 1,
/* xClose */ inmemClose,
/* xRead */ inmemRead,
/* xWrite */ inmemWrite,
/* xTruncate */ inmemTruncate,
/* xSync */ inmemSync,
/* xFileSize */ inmemFileSize,
/* xLock */ inmemLock,
/* xUnlock */ inmemUnlock,
/* xCheck... */ inmemCheckReservedLock,
/* xFileCtrl */ inmemFileControl,
/* xSectorSz */ inmemSectorSize,
/* xDevchar */ inmemDeviceCharacteristics,
/* xShmMap */ 0,
/* xShmLock */ 0,
/* xShmBarrier */ 0,
/* xShmUnmap */ 0,
/* xFetch */ 0,
/* xUnfetch */ 0
};
/*
** Open a new file in the inmem VFS. All files are anonymous and are
** delete-on-close.
*/
static int inmemOpen(
sqlite3_vfs *pVfs,
const char *zFilename,
sqlite3_file *pFile,
int openFlags,
int *pOutFlags
){
VFile *pVFile = createVFile(zFilename, 0, (unsigned char*)"");
VHandle *pHandle = (VHandle*)pFile;
if( pVFile==0 ){
return SQLITE_FULL;
}
pHandle->pVFile = pVFile;
pVFile->nRef++;
pFile->pMethods = &VHandleMethods;
if( pOutFlags ) *pOutFlags = openFlags;
return SQLITE_OK;
}
/*
** Delete a file by name
*/
static int inmemDelete(
sqlite3_vfs *pVfs,
const char *zFilename,
int syncdir
){
VFile *pVFile = findVFile(zFilename);
if( pVFile==0 ) return SQLITE_OK;
if( pVFile->nRef==0 ){
free(pVFile->zFilename);
pVFile->zFilename = 0;
pVFile->sz = -1;
free(pVFile->a);
pVFile->a = 0;
return SQLITE_OK;
}
return SQLITE_IOERR_DELETE;
}
/* Check for the existance of a file
*/
static int inmemAccess(
sqlite3_vfs *pVfs,
const char *zFilename,
int flags,
int *pResOut
){
VFile *pVFile = findVFile(zFilename);
*pResOut = pVFile!=0;
return SQLITE_OK;
}
/* Get the canonical pathname for a file
*/
static int inmemFullPathname(
sqlite3_vfs *pVfs,
const char *zFilename,
int nOut,
char *zOut
){
sqlite3_snprintf(nOut, zOut, "%s", zFilename);
return SQLITE_OK;
}
/* Always use the same random see, for repeatability.
*/
static int inmemRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
memset(zBuf, 0, nBuf);
memcpy(zBuf, &g.uRandom, nBuf<sizeof(g.uRandom) ? nBuf : sizeof(g.uRandom));
return nBuf;
}
/*
** Register the VFS that reads from the g.aFile[] set of files.
*/
static void inmemVfsRegister(int makeDefault){
static sqlite3_vfs inmemVfs;
sqlite3_vfs *pDefault = sqlite3_vfs_find(0);
inmemVfs.iVersion = 3;
inmemVfs.szOsFile = sizeof(VHandle);
inmemVfs.mxPathname = 200;
inmemVfs.zName = "inmem";
inmemVfs.xOpen = inmemOpen;
inmemVfs.xDelete = inmemDelete;
inmemVfs.xAccess = inmemAccess;
inmemVfs.xFullPathname = inmemFullPathname;
inmemVfs.xRandomness = inmemRandomness;
inmemVfs.xSleep = pDefault->xSleep;
inmemVfs.xCurrentTimeInt64 = pDefault->xCurrentTimeInt64;
sqlite3_vfs_register(&inmemVfs, makeDefault);
};
/*
** Allowed values for the runFlags parameter to runSql()
*/
#define SQL_TRACE 0x0001 /* Print each SQL statement as it is prepared */
#define SQL_OUTPUT 0x0002 /* Show the SQL output */
/*
** Run multiple commands of SQL. Similar to sqlite3_exec(), but does not
** stop if an error is encountered.
*/
static void runSql(sqlite3 *db, const char *zSql, unsigned runFlags){
const char *zMore;
sqlite3_stmt *pStmt;
while( zSql && zSql[0] ){
zMore = 0;
pStmt = 0;
sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zMore);
if( zMore==zSql ) break;
if( runFlags & SQL_TRACE ){
const char *z = zSql;
int n;
while( z<zMore && ISSPACE(z[0]) ) z++;
n = (int)(zMore - z);
while( n>0 && ISSPACE(z[n-1]) ) n--;
if( n==0 ) break;
if( pStmt==0 ){
printf("TRACE: %.*s (error: %s)\n", n, z, sqlite3_errmsg(db));
}else{
printf("TRACE: %.*s\n", n, z);
}
}
zSql = zMore;
if( pStmt ){
if( (runFlags & SQL_OUTPUT)==0 ){
while( SQLITE_ROW==sqlite3_step(pStmt) ){}
}else{
int nCol = -1;
while( SQLITE_ROW==sqlite3_step(pStmt) ){
int i;
if( nCol<0 ){
nCol = sqlite3_column_count(pStmt);
}else if( nCol>0 ){
printf("--------------------------------------------\n");
}
for(i=0; i<nCol; i++){
int eType = sqlite3_column_type(pStmt,i);
printf("%s = ", sqlite3_column_name(pStmt,i));
switch( eType ){
case SQLITE_NULL: {
printf("NULL\n");
break;
}
case SQLITE_INTEGER: {
printf("INT %s\n", sqlite3_column_text(pStmt,i));
break;
}
case SQLITE_FLOAT: {
printf("FLOAT %s\n", sqlite3_column_text(pStmt,i));
break;
}
case SQLITE_TEXT: {
printf("TEXT [%s]\n", sqlite3_column_text(pStmt,i));
break;
}
case SQLITE_BLOB: {
printf("BLOB (%d bytes)\n", sqlite3_column_bytes(pStmt,i));
break;
}
}
}
}
}
sqlite3_finalize(pStmt);
}
}
}
/*
** Rebuild the database file.
**
** (1) Remove duplicate entries
** (2) Put all entries in order
** (3) Vacuum
*/
static void rebuild_database(sqlite3 *db, int dbSqlOnly){
int rc;
char *zSql;
zSql = sqlite3_mprintf(
"BEGIN;\n"
"CREATE TEMP TABLE dbx AS SELECT DISTINCT dbcontent FROM db;\n"
"DELETE FROM db;\n"
"INSERT INTO db(dbid, dbcontent) "
" SELECT NULL, dbcontent FROM dbx ORDER BY 2;\n"
"DROP TABLE dbx;\n"
"CREATE TEMP TABLE sx AS SELECT DISTINCT sqltext FROM xsql %s;\n"
"DELETE FROM xsql;\n"
"INSERT INTO xsql(sqlid,sqltext) "
" SELECT NULL, sqltext FROM sx ORDER BY 2;\n"
"DROP TABLE sx;\n"
"COMMIT;\n"
"PRAGMA page_size=1024;\n"
"VACUUM;\n",
dbSqlOnly ? " WHERE isdbsql(sqltext)" : ""
);
rc = sqlite3_exec(db, zSql, 0, 0, 0);
sqlite3_free(zSql);
if( rc ) fatalError("cannot rebuild: %s", sqlite3_errmsg(db));
}
/*
** Return the value of a hexadecimal digit. Return -1 if the input
** is not a hex digit.
*/
static int hexDigitValue(char c){
if( c>='0' && c<='9' ) return c - '0';
if( c>='a' && c<='f' ) return c - 'a' + 10;
if( c>='A' && c<='F' ) return c - 'A' + 10;
return -1;
}
/*
** Interpret zArg as an integer value, possibly with suffixes.
*/
static int integerValue(const char *zArg){
sqlite3_int64 v = 0;
static const struct { char *zSuffix; int iMult; } aMult[] = {
{ "KiB", 1024 },
{ "MiB", 1024*1024 },
{ "GiB", 1024*1024*1024 },
{ "KB", 1000 },
{ "MB", 1000000 },
{ "GB", 1000000000 },
{ "K", 1000 },
{ "M", 1000000 },
{ "G", 1000000000 },
};
int i;
int isNeg = 0;
if( zArg[0]=='-' ){
isNeg = 1;
zArg++;
}else if( zArg[0]=='+' ){
zArg++;
}
if( zArg[0]=='0' && zArg[1]=='x' ){
int x;
zArg += 2;
while( (x = hexDigitValue(zArg[0]))>=0 ){
v = (v<<4) + x;
zArg++;
}
}else{
while( ISDIGIT(zArg[0]) ){
v = v*10 + zArg[0] - '0';
zArg++;
}
}
for(i=0; i<sizeof(aMult)/sizeof(aMult[0]); i++){
if( sqlite3_stricmp(aMult[i].zSuffix, zArg)==0 ){
v *= aMult[i].iMult;
break;
}
}
if( v>0x7fffffff ) fatalError("parameter too large - max 2147483648");
return (int)(isNeg? -v : v);
}
/*
** Return the number of "v" characters in a string. Return 0 if there
** are any characters in the string other than "v".
*/
static int numberOfVChar(const char *z){
int N = 0;
while( z[0] && z[0]=='v' ){
z++;
N++;
}
return z[0]==0 ? N : 0;
}
/*
** Print sketchy documentation for this utility program
*/
static void showHelp(void){
printf("Usage: %s [options] SOURCE-DB ?ARGS...?\n", g.zArgv0);
printf(
"Read databases and SQL scripts from SOURCE-DB and execute each script against\n"
"each database, checking for crashes and memory leaks.\n"
"Options:\n"
" --cell-size-check Set the PRAGMA cell_size_check=ON\n"
" --dbid N Use only the database where dbid=N\n"
" --export-db DIR Write databases to files(s) in DIR. Works with --dbid\n"
" --export-sql DIR Write SQL to file(s) in DIR. Also works with --sqlid\n"
" --help Show this help text\n"
" --info Show information about SOURCE-DB w/o running tests\n"
" --limit-depth N Limit expression depth to N. Default: 500\n"
" --limit-heap N Limit heap memory to N. Default: 100M\n"
" --limit-mem N Limit memory used by test SQLite instance to N bytes\n"
" --limit-vdbe Panic if any test runs for more than 100,000 cycles\n"
" --load-sql FILE.. Load SQL scripts fron files into SOURCE-DB\n"
" --load-db FILE.. Load template databases from files into SOURCE_DB\n"
" --load-dbsql FILE.. Load dbsqlfuzz outputs into the xsql table\n"
" ^^^^------ Use \"-\" for FILE to read filenames from stdin\n"
" -m TEXT Add a description to the database\n"
" --native-vfs Use the native VFS for initially empty database files\n"
" --native-malloc Turn off MEMSYS3/5 and Lookaside\n"
" --no-recover Do not run recovery on dbsqlfuzz databases\n"
" --oss-fuzz Enable OSS-FUZZ testing\n"
" --prng-seed N Seed value for the PRGN inside of SQLite\n"
" -q|--quiet Reduced output\n"
" --rebuild Rebuild and vacuum the database file\n"
" --result-trace Show the results of each SQL command\n"
" --script Output CLI script instead of running tests\n"
" --skip N Skip the first N test cases\n"
" --spinner Use a spinner to show progress\n"
" --sqlid N Use only SQL where sqlid=N\n"
" --timeout N Maximum time for any one test in N millseconds\n"
" -v|--verbose Increased output. Repeat for more output.\n"
" --vdbe-debug Activate VDBE debugging.\n"
" --wait N Wait N seconds before continuing - useful for\n"
" attaching an MSVC debugging.\n"
);
}
int main(int argc, char **argv){
sqlite3_int64 iBegin; /* Start time of this program */
int quietFlag = 0; /* True if --quiet or -q */
int verboseFlag = 0; /* True if --verbose or -v */
char *zInsSql = 0; /* SQL statement for --load-db or --load-sql */
int iFirstInsArg = 0; /* First argv[] for --load-db or --load-sql */
sqlite3 *db = 0; /* The open database connection */
sqlite3_stmt *pStmt; /* A prepared statement */
int rc; /* Result code from SQLite interface calls */
Blob *pSql; /* For looping over SQL scripts */
Blob *pDb; /* For looping over template databases */
int i; /* Loop index for the argv[] loop */
int dbSqlOnly = 0; /* Only use scripts that are dbsqlfuzz */
int onlySqlid = -1; /* --sqlid */
int onlyDbid = -1; /* --dbid */
int nativeFlag = 0; /* --native-vfs */
int rebuildFlag = 0; /* --rebuild */
int vdbeLimitFlag = 0; /* --limit-vdbe */
int infoFlag = 0; /* --info */
int nSkip = 0; /* --skip */
int bScript = 0; /* --script */
int bSpinner = 0; /* True for --spinner */
int timeoutTest = 0; /* undocumented --timeout-test flag */
int runFlags = 0; /* Flags sent to runSql() */
char *zMsg = 0; /* Add this message */
int nSrcDb = 0; /* Number of source databases */
char **azSrcDb = 0; /* Array of source database names */
int iSrcDb; /* Loop over all source databases */
int nTest = 0; /* Total number of tests performed */
char *zDbName = ""; /* Appreviated name of a source database */
const char *zFailCode = 0; /* Value of the TEST_FAILURE env variable */
int cellSzCkFlag = 0; /* --cell-size-check */
int sqlFuzz = 0; /* True for SQL fuzz. False for DB fuzz */
int iTimeout = 120000; /* Default 120-second timeout */
int nMem = 0; /* Memory limit override */
int nMemThisDb = 0; /* Memory limit set by the CONFIG table */
char *zExpDb = 0; /* Write Databases to files in this directory */
char *zExpSql = 0; /* Write SQL to files in this directory */
void *pHeap = 0; /* Heap for use by SQLite */
int ossFuzz = 0; /* enable OSS-FUZZ testing */
int ossFuzzThisDb = 0; /* ossFuzz value for this particular database */
int nativeMalloc = 0; /* Turn off MEMSYS3/5 and lookaside if true */
sqlite3_vfs *pDfltVfs; /* The default VFS */
int openFlags4Data; /* Flags for sqlite3_open_v2() */
int bTimer = 0; /* Show elapse time for each test */
int nV; /* How much to increase verbosity with -vvvv */
sqlite3_int64 tmStart; /* Start of each test */
sqlite3_config(SQLITE_CONFIG_URI,1);
registerOomSimulator();
sqlite3_initialize();
iBegin = timeOfDay();
#ifdef __unix__
signal(SIGALRM, signalHandler);
signal(SIGSEGV, signalHandler);
signal(SIGABRT, signalHandler);
#endif
g.zArgv0 = argv[0];
openFlags4Data = SQLITE_OPEN_READONLY;
zFailCode = getenv("TEST_FAILURE");
pDfltVfs = sqlite3_vfs_find(0);
inmemVfsRegister(1);
for(i=1; i<argc; i++){
const char *z = argv[i];
if( z[0]=='-' ){
z++;
if( z[0]=='-' ) z++;
if( strcmp(z,"cell-size-check")==0 ){
cellSzCkFlag = 1;
}else
if( strcmp(z,"dbid")==0 ){
if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
onlyDbid = integerValue(argv[++i]);
}else
if( strcmp(z,"export-db")==0 ){
if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
zExpDb = argv[++i];
}else
if( strcmp(z,"export-sql")==0 || strcmp(z,"export-dbsql")==0 ){
if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
zExpSql = argv[++i];
}else
if( strcmp(z,"help")==0 ){
showHelp();
return 0;
}else
if( strcmp(z,"info")==0 ){
infoFlag = 1;
}else
if( strcmp(z,"limit-depth")==0 ){
if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
depthLimit = integerValue(argv[++i]);
}else
if( strcmp(z,"limit-heap")==0 ){
if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
heapLimit = integerValue(argv[++i]);
}else
if( strcmp(z,"limit-mem")==0 ){
if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
nMem = integerValue(argv[++i]);
}else
if( strcmp(z,"limit-vdbe")==0 ){
vdbeLimitFlag = 1;
}else
if( strcmp(z,"load-sql")==0 ){
zInsSql = "INSERT INTO xsql(sqltext)"
"VALUES(CAST(readtextfile(?1) AS text))";
iFirstInsArg = i+1;
openFlags4Data = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
break;
}else
if( strcmp(z,"load-db")==0 ){
zInsSql = "INSERT INTO db(dbcontent) VALUES(readfile(?1))";
iFirstInsArg = i+1;
openFlags4Data = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
break;
}else
if( strcmp(z,"load-dbsql")==0 ){
zInsSql = "INSERT INTO xsql(sqltext)"
"VALUES(readfile(?1))";
iFirstInsArg = i+1;
openFlags4Data = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
dbSqlOnly = 1;
break;
}else
if( strcmp(z,"m")==0 ){
if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
zMsg = argv[++i];
openFlags4Data = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
}else
if( strcmp(z,"native-malloc")==0 ){
nativeMalloc = 1;
}else
if( strcmp(z,"native-vfs")==0 ){
nativeFlag = 1;
}else
if( strcmp(z,"no-recover")==0 ){
bNoRecover = 1;
}else
if( strcmp(z,"oss-fuzz")==0 ){
ossFuzz = 1;
}else
if( strcmp(z,"prng-seed")==0 ){
if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
g.uRandom = atoi(argv[++i]);
}else
if( strcmp(z,"quiet")==0 || strcmp(z,"q")==0 ){
quietFlag = 1;
verboseFlag = 0;
eVerbosity = 0;
}else
if( strcmp(z,"rebuild")==0 ){
rebuildFlag = 1;
openFlags4Data = SQLITE_OPEN_READWRITE;
}else
if( strcmp(z,"result-trace")==0 ){
runFlags |= SQL_OUTPUT;
}else
if( strcmp(z,"script")==0 ){
bScript = 1;
}else
if( strcmp(z,"skip")==0 ){
if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
nSkip = atoi(argv[++i]);
}else
if( strcmp(z,"spinner")==0 ){
bSpinner = 1;
}else
if( strcmp(z,"timer")==0 ){
bTimer = 1;
}else
if( strcmp(z,"sqlid")==0 ){
if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
onlySqlid = integerValue(argv[++i]);
}else
if( strcmp(z,"timeout")==0 ){
if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
iTimeout = integerValue(argv[++i]);
}else
if( strcmp(z,"timeout-test")==0 ){
timeoutTest = 1;
#ifndef __unix__
fatalError("timeout is not available on non-unix systems");
#endif
}else
if( strcmp(z,"vdbe-debug")==0 ){
bVdbeDebug = 1;
}else
if( strcmp(z,"verbose")==0 ){
quietFlag = 0;
verboseFlag++;
eVerbosity++;
if( verboseFlag>2 ) runFlags |= SQL_TRACE;
}else
if( (nV = numberOfVChar(z))>=1 ){
quietFlag = 0;
verboseFlag += nV;
eVerbosity += nV;
if( verboseFlag>2 ) runFlags |= SQL_TRACE;
}else
if( strcmp(z,"version")==0 ){
int ii;
const char *zz;
printf("SQLite %s %s (%d-bit)\n",
sqlite3_libversion(), sqlite3_sourceid(),
8*(int)sizeof(char*));
for(ii=0; (zz = sqlite3_compileoption_get(ii))!=0; ii++){
printf("%s\n", zz);
}
return 0;
}else
if( strcmp(z,"wait")==0 ){
int iDelay;
if( i>=argc-1 ) fatalError("missing arguments on %s", argv[i]);
iDelay = integerValue(argv[++i]);
printf("Waiting %d seconds:", iDelay);
fflush(stdout);
while( 1 /*exit-by-break*/ ){
sqlite3_sleep(1000);
iDelay--;
if( iDelay<=0 ) break;
printf(" %d", iDelay);
fflush(stdout);
}
printf("\n");
fflush(stdout);
}else
if( strcmp(z,"is-dbsql")==0 ){
i++;
for(i++; i<argc; i++){
long nData;
char *aData = readFile(argv[i], &nData);
printf("%d %s\n", isDbSql((unsigned char*)aData,nData), argv[i]);
sqlite3_free(aData);
}
exit(0);
}else
{
fatalError("unknown option: %s", argv[i]);
}
}else{
nSrcDb++;
azSrcDb = safe_realloc(azSrcDb, nSrcDb*sizeof(azSrcDb[0]));
azSrcDb[nSrcDb-1] = argv[i];
}
}
if( nSrcDb==0 ) fatalError("no source database specified");
if( nSrcDb>1 ){
if( zMsg ){
fatalError("cannot change the description of more than one database");
}
if( zInsSql ){
fatalError("cannot import into more than one database");
}
}
/* Process each source database separately */
for(iSrcDb=0; iSrcDb<nSrcDb; iSrcDb++){
char *zRawData = 0;
long nRawData = 0;
g.zDbFile = azSrcDb[iSrcDb];
rc = sqlite3_open_v2(azSrcDb[iSrcDb], &db,
openFlags4Data, pDfltVfs->zName);
if( rc==SQLITE_OK ){
rc = sqlite3_exec(db, "SELECT count(*) FROM sqlite_schema", 0, 0, 0);
}
if( rc ){
sqlite3_close(db);
zRawData = readFile(azSrcDb[iSrcDb], &nRawData);
if( zRawData==0 ){
fatalError("input file \"%s\" is not recognized\n", azSrcDb[iSrcDb]);
}
sqlite3_open(":memory:", &db);
}
/* Print the description, if there is one */
if( infoFlag ){
int n;
zDbName = azSrcDb[iSrcDb];
i = (int)strlen(zDbName) - 1;
while( i>0 && zDbName[i-1]!='/' && zDbName[i-1]!='\\' ){ i--; }
zDbName += i;
sqlite3_prepare_v2(db, "SELECT msg FROM readme", -1, &pStmt, 0);
if( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
printf("%s: %s", zDbName, sqlite3_column_text(pStmt,0));
}else{
printf("%s: (empty \"readme\")", zDbName);
}
sqlite3_finalize(pStmt);
sqlite3_prepare_v2(db, "SELECT count(*) FROM db", -1, &pStmt, 0);
if( pStmt
&& sqlite3_step(pStmt)==SQLITE_ROW
&& (n = sqlite3_column_int(pStmt,0))>0
){
printf(" - %d DBs", n);
}
sqlite3_finalize(pStmt);
sqlite3_prepare_v2(db, "SELECT count(*) FROM xsql", -1, &pStmt, 0);
if( pStmt
&& sqlite3_step(pStmt)==SQLITE_ROW
&& (n = sqlite3_column_int(pStmt,0))>0
){
printf(" - %d scripts", n);
}
sqlite3_finalize(pStmt);
printf("\n");
sqlite3_close(db);
sqlite3_free(zRawData);
continue;
}
rc = sqlite3_exec(db,
"CREATE TABLE IF NOT EXISTS db(\n"
" dbid INTEGER PRIMARY KEY, -- database id\n"
" dbcontent BLOB -- database disk file image\n"
");\n"
"CREATE TABLE IF NOT EXISTS xsql(\n"
" sqlid INTEGER PRIMARY KEY, -- SQL script id\n"
" sqltext TEXT -- Text of SQL statements to run\n"
");"
"CREATE TABLE IF NOT EXISTS readme(\n"
" msg TEXT -- Human-readable description of this file\n"
");", 0, 0, 0);
if( rc ) fatalError("cannot create schema: %s", sqlite3_errmsg(db));
if( zMsg ){
char *zSql;
zSql = sqlite3_mprintf(
"DELETE FROM readme; INSERT INTO readme(msg) VALUES(%Q)", zMsg);
rc = sqlite3_exec(db, zSql, 0, 0, 0);
sqlite3_free(zSql);
if( rc ) fatalError("cannot change description: %s", sqlite3_errmsg(db));
}
if( zRawData ){
zInsSql = "INSERT INTO xsql(sqltext) VALUES(?1)";
rc = sqlite3_prepare_v2(db, zInsSql, -1, &pStmt, 0);
if( rc ) fatalError("cannot prepare statement [%s]: %s",
zInsSql, sqlite3_errmsg(db));
sqlite3_bind_text(pStmt, 1, zRawData, nRawData, SQLITE_STATIC);
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
if( rc ) fatalError("insert failed for %s", argv[i]);
sqlite3_finalize(pStmt);
rebuild_database(db, dbSqlOnly);
zInsSql = 0;
sqlite3_free(zRawData);
zRawData = 0;
}
ossFuzzThisDb = ossFuzz;
/* If the CONFIG(name,value) table exists, read db-specific settings
** from that table */
if( sqlite3_table_column_metadata(db,0,"config",0,0,0,0,0,0)==SQLITE_OK ){
rc = sqlite3_prepare_v2(db, "SELECT name, value FROM config",
-1, &pStmt, 0);
if( rc ) fatalError("cannot prepare query of CONFIG table: %s",
sqlite3_errmsg(db));
while( SQLITE_ROW==sqlite3_step(pStmt) ){
const char *zName = (const char *)sqlite3_column_text(pStmt,0);
if( zName==0 ) continue;
if( strcmp(zName, "oss-fuzz")==0 ){
ossFuzzThisDb = sqlite3_column_int(pStmt,1);
if( verboseFlag>1 ) printf("Config: oss-fuzz=%d\n", ossFuzzThisDb);
}
if( strcmp(zName, "limit-mem")==0 ){
nMemThisDb = sqlite3_column_int(pStmt,1);
if( verboseFlag>1 ) printf("Config: limit-mem=%d\n", nMemThisDb);
}
}
sqlite3_finalize(pStmt);
}
if( zInsSql ){
sqlite3_create_function(db, "readfile", 1, SQLITE_UTF8, 0,
readfileFunc, 0, 0);
sqlite3_create_function(db, "readtextfile", 1, SQLITE_UTF8, 0,
readtextfileFunc, 0, 0);
sqlite3_create_function(db, "isdbsql", 1, SQLITE_UTF8, 0,
isDbSqlFunc, 0, 0);
rc = sqlite3_prepare_v2(db, zInsSql, -1, &pStmt, 0);
if( rc ) fatalError("cannot prepare statement [%s]: %s",
zInsSql, sqlite3_errmsg(db));
rc = sqlite3_exec(db, "BEGIN", 0, 0, 0);
if( rc ) fatalError("cannot start a transaction");
for(i=iFirstInsArg; i<argc; i++){
if( strcmp(argv[i],"-")==0 ){
/* A filename of "-" means read multiple filenames from stdin */
char zLine[2000];
while( rc==0 && fgets(zLine,sizeof(zLine),stdin)!=0 ){
size_t kk = strlen(zLine);
while( kk>0 && zLine[kk-1]<=' ' ) kk--;
sqlite3_bind_text(pStmt, 1, zLine, (int)kk, SQLITE_STATIC);
if( verboseFlag>1 ) printf("loading %.*s\n", (int)kk, zLine);
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
if( rc ) fatalError("insert failed for %s", zLine);
}
}else{
sqlite3_bind_text(pStmt, 1, argv[i], -1, SQLITE_STATIC);
if( verboseFlag>1 ) printf("loading %s\n", argv[i]);
sqlite3_step(pStmt);
rc = sqlite3_reset(pStmt);
if( rc ) fatalError("insert failed for %s", argv[i]);
}
}
sqlite3_finalize(pStmt);
rc = sqlite3_exec(db, "COMMIT", 0, 0, 0);
if( rc ) fatalError("cannot commit the transaction: %s",
sqlite3_errmsg(db));
rebuild_database(db, dbSqlOnly);
sqlite3_close(db);
return 0;
}
rc = sqlite3_exec(db, "PRAGMA query_only=1;", 0, 0, 0);
if( rc ) fatalError("cannot set database to query-only");
if( zExpDb!=0 || zExpSql!=0 ){
sqlite3_create_function(db, "writefile", 2, SQLITE_UTF8, 0,
writefileFunc, 0, 0);
if( zExpDb!=0 ){
const char *zExDb =
"SELECT writefile(printf('%s/db%06d.db',?1,dbid),dbcontent),"
" dbid, printf('%s/db%06d.db',?1,dbid), length(dbcontent)"
" FROM db WHERE ?2<0 OR dbid=?2;";
rc = sqlite3_prepare_v2(db, zExDb, -1, &pStmt, 0);
if( rc ) fatalError("cannot prepare statement [%s]: %s",
zExDb, sqlite3_errmsg(db));
sqlite3_bind_text64(pStmt, 1, zExpDb, strlen(zExpDb),
SQLITE_STATIC, SQLITE_UTF8);
sqlite3_bind_int(pStmt, 2, onlyDbid);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
printf("write db-%d (%d bytes) into %s\n",
sqlite3_column_int(pStmt,1),
sqlite3_column_int(pStmt,3),
sqlite3_column_text(pStmt,2));
}
sqlite3_finalize(pStmt);
}
if( zExpSql!=0 ){
const char *zExSql =
"SELECT writefile(printf('%s/sql%06d.txt',?1,sqlid),sqltext),"
" sqlid, printf('%s/sql%06d.txt',?1,sqlid), length(sqltext)"
" FROM xsql WHERE ?2<0 OR sqlid=?2;";
rc = sqlite3_prepare_v2(db, zExSql, -1, &pStmt, 0);
if( rc ) fatalError("cannot prepare statement [%s]: %s",
zExSql, sqlite3_errmsg(db));
sqlite3_bind_text64(pStmt, 1, zExpSql, strlen(zExpSql),
SQLITE_STATIC, SQLITE_UTF8);
sqlite3_bind_int(pStmt, 2, onlySqlid);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
printf("write sql-%d (%d bytes) into %s\n",
sqlite3_column_int(pStmt,1),
sqlite3_column_int(pStmt,3),
sqlite3_column_text(pStmt,2));
}
sqlite3_finalize(pStmt);
}
sqlite3_close(db);
return 0;
}
/* Load all SQL script content and all initial database images from the
** source db
*/
blobListLoadFromDb(db, "SELECT sqlid, sqltext FROM xsql", onlySqlid,
&g.nSql, &g.pFirstSql);
if( g.nSql==0 ) fatalError("need at least one SQL script");
blobListLoadFromDb(db, "SELECT dbid, dbcontent FROM db", onlyDbid,
&g.nDb, &g.pFirstDb);
if( g.nDb==0 ){
g.pFirstDb = safe_realloc(0, sizeof(Blob));
memset(g.pFirstDb, 0, sizeof(Blob));
g.pFirstDb->id = 1;
g.pFirstDb->seq = 0;
g.nDb = 1;
sqlFuzz = 1;
}
/* Print the description, if there is one */
if( !quietFlag && !bScript ){
zDbName = azSrcDb[iSrcDb];
i = (int)strlen(zDbName) - 1;
while( i>0 && zDbName[i-1]!='/' && zDbName[i-1]!='\\' ){ i--; }
zDbName += i;
if( verboseFlag ){
sqlite3_prepare_v2(db, "SELECT msg FROM readme", -1, &pStmt, 0);
if( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
printf("%s: %s\n", zDbName, sqlite3_column_text(pStmt,0));
}
sqlite3_finalize(pStmt);
}
}
/* Rebuild the database, if requested */
if( rebuildFlag ){
if( !quietFlag ){
printf("%s: rebuilding... ", zDbName);
fflush(stdout);
}
rebuild_database(db, 0);
if( !quietFlag ) printf("done\n");
}
/* Close the source database. Verify that no SQLite memory allocations are
** outstanding.
*/
sqlite3_close(db);
if( sqlite3_memory_used()>0 ){
fatalError("SQLite has memory in use before the start of testing");
}
/* Limit available memory, if requested */
sqlite3_shutdown();
if( nMemThisDb>0 && nMem==0 ){
if( !nativeMalloc ){
pHeap = realloc(pHeap, nMemThisDb);
if( pHeap==0 ){
fatalError("failed to allocate %d bytes of heap memory", nMem);
}
sqlite3_config(SQLITE_CONFIG_HEAP, pHeap, nMemThisDb, 128);
}else{
sqlite3_hard_heap_limit64((sqlite3_int64)nMemThisDb);
}
}else{
sqlite3_hard_heap_limit64(0);
}
/* Disable lookaside with the --native-malloc option */
if( nativeMalloc ){
sqlite3_config(SQLITE_CONFIG_LOOKASIDE, 0, 0);
}
/* Reset the in-memory virtual filesystem */
formatVfs();
/* Run a test using each SQL script against each database.
*/
if( verboseFlag<2 && !quietFlag && !bSpinner && !bScript ){
printf("%s:", zDbName);
}
for(pSql=g.pFirstSql; pSql; pSql=pSql->pNext){
tmStart = timeOfDay();
if( isDbSql(pSql->a, pSql->sz) ){
sqlite3_snprintf(sizeof(g.zTestName), g.zTestName, "sqlid=%d",pSql->id);
if( bScript ){
/* No progress output */
}else if( bSpinner ){
int nTotal =g.nSql;
int idx = pSql->seq;
printf("\r%s: %d/%d ", zDbName, idx, nTotal);
fflush(stdout);
}else if( verboseFlag>1 ){
printf("%s\n", g.zTestName);
fflush(stdout);
}else if( !quietFlag ){
static int prevAmt = -1;
int idx = pSql->seq;
int amt = idx*10/(g.nSql);
if( amt!=prevAmt ){
printf(" %d%%", amt*10);
fflush(stdout);
prevAmt = amt;
}
}
if( nSkip>0 ){
nSkip--;
}else{
runCombinedDbSqlInput(pSql->a, pSql->sz, iTimeout, bScript, pSql->id);
}
nTest++;
if( bTimer && !bScript ){
sqlite3_int64 tmEnd = timeOfDay();
printf("%lld %s\n", tmEnd - tmStart, g.zTestName);
}
g.zTestName[0] = 0;
disableOom();
continue;
}
for(pDb=g.pFirstDb; pDb; pDb=pDb->pNext){
int openFlags;
const char *zVfs = "inmem";
sqlite3_snprintf(sizeof(g.zTestName), g.zTestName, "sqlid=%d,dbid=%d",
pSql->id, pDb->id);
if( bScript ){
/* No progress output */
}else if( bSpinner ){
int nTotal = g.nDb*g.nSql;
int idx = pSql->seq*g.nDb + pDb->id - 1;
printf("\r%s: %d/%d ", zDbName, idx, nTotal);
fflush(stdout);
}else if( verboseFlag>1 ){
printf("%s\n", g.zTestName);
fflush(stdout);
}else if( !quietFlag ){
static int prevAmt = -1;
int idx = pSql->seq*g.nDb + pDb->id - 1;
int amt = idx*10/(g.nDb*g.nSql);
if( amt!=prevAmt ){
printf(" %d%%", amt*10);
fflush(stdout);
prevAmt = amt;
}
}
if( nSkip>0 ){
nSkip--;
continue;
}
if( bScript ){
char zName[100];
sqlite3_snprintf(sizeof(zName), zName, "db%06d.db",
pDb->id>1 ? pDb->id : pSql->id);
renderDbSqlForCLI(stdout, zName,
pDb->a, pDb->sz, pSql->a, pSql->sz);
continue;
}
createVFile("main.db", pDb->sz, pDb->a);
sqlite3_randomness(0,0);
if( ossFuzzThisDb ){
#ifndef SQLITE_OSS_FUZZ
fatalError("--oss-fuzz not supported: recompile"
" with -DSQLITE_OSS_FUZZ");
#else
extern int LLVMFuzzerTestOneInput(const uint8_t*, size_t);
LLVMFuzzerTestOneInput((const uint8_t*)pSql->a, (size_t)pSql->sz);
#endif
}else{
openFlags = SQLITE_OPEN_CREATE | SQLITE_OPEN_READWRITE;
if( nativeFlag && pDb->sz==0 ){
openFlags |= SQLITE_OPEN_MEMORY;
zVfs = 0;
}
rc = sqlite3_open_v2("main.db", &db, openFlags, zVfs);
if( rc ) fatalError("cannot open inmem database");
sqlite3_limit(db, SQLITE_LIMIT_LENGTH, 100000000);
sqlite3_limit(db, SQLITE_LIMIT_LIKE_PATTERN_LENGTH, 50);
if( cellSzCkFlag ) runSql(db, "PRAGMA cell_size_check=ON", runFlags);
setAlarm((iTimeout+999)/1000);
/* Enable test functions */
sqlite3_test_control(SQLITE_TESTCTRL_INTERNAL_FUNCTIONS, db);
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
if( sqlFuzz || vdbeLimitFlag ){
sqlite3_progress_handler(db, 100000, progressHandler,
&vdbeLimitFlag);
}
#endif
#ifdef SQLITE_TESTCTRL_PRNG_SEED
sqlite3_test_control(SQLITE_TESTCTRL_PRNG_SEED, 1, db);
#endif
if( bVdbeDebug ){
sqlite3_exec(db, "PRAGMA vdbe_debug=ON", 0, 0, 0);
}
do{
runSql(db, (char*)pSql->a, runFlags);
}while( timeoutTest );
setAlarm(0);
sqlite3_exec(db, "PRAGMA temp_store_directory=''", 0, 0, 0);
sqlite3_close(db);
}
if( sqlite3_memory_used()>0 ){
fatalError("memory leak: %lld bytes outstanding",
sqlite3_memory_used());
}
reformatVfs();
nTest++;
if( bTimer ){
sqlite3_int64 tmEnd = timeOfDay();
printf("%lld %s\n", tmEnd - tmStart, g.zTestName);
}
g.zTestName[0] = 0;
/* Simulate an error if the TEST_FAILURE environment variable is "5".
** This is used to verify that automated test script really do spot
** errors that occur in this test program.
*/
if( zFailCode ){
if( zFailCode[0]=='5' && zFailCode[1]==0 ){
fatalError("simulated failure");
}else if( zFailCode[0]!=0 ){
/* If TEST_FAILURE is something other than 5, just exit the test
** early */
printf("\nExit early due to TEST_FAILURE being set\n");
iSrcDb = nSrcDb-1;
goto sourcedb_cleanup;
}
}
}
}
if( bScript ){
/* No progress output */
}else if( bSpinner ){
int nTotal = g.nDb*g.nSql;
printf("\r%s: %d/%d \n", zDbName, nTotal, nTotal);
}else if( !quietFlag && verboseFlag<2 ){
printf(" 100%% - %d tests\n", g.nDb*g.nSql);
}
/* Clean up at the end of processing a single source database
*/
sourcedb_cleanup:
blobListFree(g.pFirstSql);
blobListFree(g.pFirstDb);
reformatVfs();
} /* End loop over all source databases */
if( !quietFlag && !bScript ){
sqlite3_int64 iElapse = timeOfDay() - iBegin;
if( g.nInvariant ){
printf("fuzzcheck: %u query invariants checked\n", g.nInvariant);
}
printf("fuzzcheck: 0 errors out of %d tests in %d.%03d seconds\n"
"SQLite %s %s (%d-bit)\n",
nTest, (int)(iElapse/1000), (int)(iElapse%1000),
sqlite3_libversion(), sqlite3_sourceid(),
8*(int)sizeof(char*));
}
free(azSrcDb);
free(pHeap);
return 0;
}