376d1e5c4f
FossilOrigin-Name: 7a3813138d1a5c5d99f4756c79998831d779774f
3199 lines
104 KiB
C
3199 lines
104 KiB
C
/*
|
|
** 2009 Oct 23
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file is part of the SQLite FTS3 extension module. Specifically,
|
|
** this file contains code to insert, update and delete rows from FTS3
|
|
** tables. It also contains code to merge FTS3 b-tree segments. Some
|
|
** of the sub-routines used to merge segments are also used by the query
|
|
** code in fts3.c.
|
|
*/
|
|
|
|
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
|
|
|
#include "fts3Int.h"
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
|
|
/*
|
|
** When full-text index nodes are loaded from disk, the buffer that they
|
|
** are loaded into has the following number of bytes of padding at the end
|
|
** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
|
|
** of 920 bytes is allocated for it.
|
|
**
|
|
** This means that if we have a pointer into a buffer containing node data,
|
|
** it is always safe to read up to two varints from it without risking an
|
|
** overread, even if the node data is corrupted.
|
|
*/
|
|
#define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
|
|
|
|
/*
|
|
** Under certain circumstances, b-tree nodes (doclists) can be loaded into
|
|
** memory incrementally instead of all at once. This can be a big performance
|
|
** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
|
|
** method before retrieving all query results (as may happen, for example,
|
|
** if a query has a LIMIT clause).
|
|
**
|
|
** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD
|
|
** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
|
|
** The code is written so that the hard lower-limit for each of these values
|
|
** is 1. Clearly such small values would be inefficient, but can be useful
|
|
** for testing purposes.
|
|
**
|
|
** If this module is built with SQLITE_TEST defined, these constants may
|
|
** be overridden at runtime for testing purposes. File fts3_test.c contains
|
|
** a Tcl interface to read and write the values.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
int test_fts3_node_chunksize = (4*1024);
|
|
int test_fts3_node_chunk_threshold = (4*1024)*4;
|
|
# define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize
|
|
# define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
|
|
#else
|
|
# define FTS3_NODE_CHUNKSIZE (4*1024)
|
|
# define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
|
|
#endif
|
|
|
|
typedef struct PendingList PendingList;
|
|
typedef struct SegmentNode SegmentNode;
|
|
typedef struct SegmentWriter SegmentWriter;
|
|
|
|
/*
|
|
** An instance of the following data structure is used to build doclists
|
|
** incrementally. See function fts3PendingListAppend() for details.
|
|
*/
|
|
struct PendingList {
|
|
int nData;
|
|
char *aData;
|
|
int nSpace;
|
|
sqlite3_int64 iLastDocid;
|
|
sqlite3_int64 iLastCol;
|
|
sqlite3_int64 iLastPos;
|
|
};
|
|
|
|
|
|
/*
|
|
** Each cursor has a (possibly empty) linked list of the following objects.
|
|
*/
|
|
struct Fts3DeferredToken {
|
|
Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */
|
|
int iCol; /* Column token must occur in */
|
|
Fts3DeferredToken *pNext; /* Next in list of deferred tokens */
|
|
PendingList *pList; /* Doclist is assembled here */
|
|
};
|
|
|
|
/*
|
|
** An instance of this structure is used to iterate through the terms on
|
|
** a contiguous set of segment b-tree leaf nodes. Although the details of
|
|
** this structure are only manipulated by code in this file, opaque handles
|
|
** of type Fts3SegReader* are also used by code in fts3.c to iterate through
|
|
** terms when querying the full-text index. See functions:
|
|
**
|
|
** sqlite3Fts3SegReaderNew()
|
|
** sqlite3Fts3SegReaderFree()
|
|
** sqlite3Fts3SegReaderIterate()
|
|
**
|
|
** Methods used to manipulate Fts3SegReader structures:
|
|
**
|
|
** fts3SegReaderNext()
|
|
** fts3SegReaderFirstDocid()
|
|
** fts3SegReaderNextDocid()
|
|
*/
|
|
struct Fts3SegReader {
|
|
int iIdx; /* Index within level, or 0x7FFFFFFF for PT */
|
|
|
|
sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */
|
|
sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */
|
|
sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */
|
|
sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */
|
|
|
|
char *aNode; /* Pointer to node data (or NULL) */
|
|
int nNode; /* Size of buffer at aNode (or 0) */
|
|
int nPopulate; /* If >0, bytes of buffer aNode[] loaded */
|
|
sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */
|
|
|
|
Fts3HashElem **ppNextElem;
|
|
|
|
/* Variables set by fts3SegReaderNext(). These may be read directly
|
|
** by the caller. They are valid from the time SegmentReaderNew() returns
|
|
** until SegmentReaderNext() returns something other than SQLITE_OK
|
|
** (i.e. SQLITE_DONE).
|
|
*/
|
|
int nTerm; /* Number of bytes in current term */
|
|
char *zTerm; /* Pointer to current term */
|
|
int nTermAlloc; /* Allocated size of zTerm buffer */
|
|
char *aDoclist; /* Pointer to doclist of current entry */
|
|
int nDoclist; /* Size of doclist in current entry */
|
|
|
|
/* The following variables are used by fts3SegReaderNextDocid() to iterate
|
|
** through the current doclist (aDoclist/nDoclist).
|
|
*/
|
|
char *pOffsetList;
|
|
int nOffsetList; /* For descending pending seg-readers only */
|
|
sqlite3_int64 iDocid;
|
|
};
|
|
|
|
#define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
|
|
#define fts3SegReaderIsRootOnly(p) ((p)->aNode==(char *)&(p)[1])
|
|
|
|
/*
|
|
** An instance of this structure is used to create a segment b-tree in the
|
|
** database. The internal details of this type are only accessed by the
|
|
** following functions:
|
|
**
|
|
** fts3SegWriterAdd()
|
|
** fts3SegWriterFlush()
|
|
** fts3SegWriterFree()
|
|
*/
|
|
struct SegmentWriter {
|
|
SegmentNode *pTree; /* Pointer to interior tree structure */
|
|
sqlite3_int64 iFirst; /* First slot in %_segments written */
|
|
sqlite3_int64 iFree; /* Next free slot in %_segments */
|
|
char *zTerm; /* Pointer to previous term buffer */
|
|
int nTerm; /* Number of bytes in zTerm */
|
|
int nMalloc; /* Size of malloc'd buffer at zMalloc */
|
|
char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
|
|
int nSize; /* Size of allocation at aData */
|
|
int nData; /* Bytes of data in aData */
|
|
char *aData; /* Pointer to block from malloc() */
|
|
};
|
|
|
|
/*
|
|
** Type SegmentNode is used by the following three functions to create
|
|
** the interior part of the segment b+-tree structures (everything except
|
|
** the leaf nodes). These functions and type are only ever used by code
|
|
** within the fts3SegWriterXXX() family of functions described above.
|
|
**
|
|
** fts3NodeAddTerm()
|
|
** fts3NodeWrite()
|
|
** fts3NodeFree()
|
|
**
|
|
** When a b+tree is written to the database (either as a result of a merge
|
|
** or the pending-terms table being flushed), leaves are written into the
|
|
** database file as soon as they are completely populated. The interior of
|
|
** the tree is assembled in memory and written out only once all leaves have
|
|
** been populated and stored. This is Ok, as the b+-tree fanout is usually
|
|
** very large, meaning that the interior of the tree consumes relatively
|
|
** little memory.
|
|
*/
|
|
struct SegmentNode {
|
|
SegmentNode *pParent; /* Parent node (or NULL for root node) */
|
|
SegmentNode *pRight; /* Pointer to right-sibling */
|
|
SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */
|
|
int nEntry; /* Number of terms written to node so far */
|
|
char *zTerm; /* Pointer to previous term buffer */
|
|
int nTerm; /* Number of bytes in zTerm */
|
|
int nMalloc; /* Size of malloc'd buffer at zMalloc */
|
|
char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
|
|
int nData; /* Bytes of valid data so far */
|
|
char *aData; /* Node data */
|
|
};
|
|
|
|
/*
|
|
** Valid values for the second argument to fts3SqlStmt().
|
|
*/
|
|
#define SQL_DELETE_CONTENT 0
|
|
#define SQL_IS_EMPTY 1
|
|
#define SQL_DELETE_ALL_CONTENT 2
|
|
#define SQL_DELETE_ALL_SEGMENTS 3
|
|
#define SQL_DELETE_ALL_SEGDIR 4
|
|
#define SQL_DELETE_ALL_DOCSIZE 5
|
|
#define SQL_DELETE_ALL_STAT 6
|
|
#define SQL_SELECT_CONTENT_BY_ROWID 7
|
|
#define SQL_NEXT_SEGMENT_INDEX 8
|
|
#define SQL_INSERT_SEGMENTS 9
|
|
#define SQL_NEXT_SEGMENTS_ID 10
|
|
#define SQL_INSERT_SEGDIR 11
|
|
#define SQL_SELECT_LEVEL 12
|
|
#define SQL_SELECT_LEVEL_RANGE 13
|
|
#define SQL_SELECT_LEVEL_COUNT 14
|
|
#define SQL_SELECT_SEGDIR_MAX_LEVEL 15
|
|
#define SQL_DELETE_SEGDIR_LEVEL 16
|
|
#define SQL_DELETE_SEGMENTS_RANGE 17
|
|
#define SQL_CONTENT_INSERT 18
|
|
#define SQL_DELETE_DOCSIZE 19
|
|
#define SQL_REPLACE_DOCSIZE 20
|
|
#define SQL_SELECT_DOCSIZE 21
|
|
#define SQL_SELECT_DOCTOTAL 22
|
|
#define SQL_REPLACE_DOCTOTAL 23
|
|
|
|
#define SQL_SELECT_ALL_PREFIX_LEVEL 24
|
|
#define SQL_DELETE_ALL_TERMS_SEGDIR 25
|
|
|
|
#define SQL_DELETE_SEGDIR_RANGE 26
|
|
|
|
/*
|
|
** This function is used to obtain an SQLite prepared statement handle
|
|
** for the statement identified by the second argument. If successful,
|
|
** *pp is set to the requested statement handle and SQLITE_OK returned.
|
|
** Otherwise, an SQLite error code is returned and *pp is set to 0.
|
|
**
|
|
** If argument apVal is not NULL, then it must point to an array with
|
|
** at least as many entries as the requested statement has bound
|
|
** parameters. The values are bound to the statements parameters before
|
|
** returning.
|
|
*/
|
|
static int fts3SqlStmt(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
int eStmt, /* One of the SQL_XXX constants above */
|
|
sqlite3_stmt **pp, /* OUT: Statement handle */
|
|
sqlite3_value **apVal /* Values to bind to statement */
|
|
){
|
|
const char *azSql[] = {
|
|
/* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
|
|
/* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
|
|
/* 2 */ "DELETE FROM %Q.'%q_content'",
|
|
/* 3 */ "DELETE FROM %Q.'%q_segments'",
|
|
/* 4 */ "DELETE FROM %Q.'%q_segdir'",
|
|
/* 5 */ "DELETE FROM %Q.'%q_docsize'",
|
|
/* 6 */ "DELETE FROM %Q.'%q_stat'",
|
|
/* 7 */ "SELECT %s FROM %Q.'%q_content' AS x WHERE rowid=?",
|
|
/* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
|
|
/* 9 */ "INSERT INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
|
|
/* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
|
|
/* 11 */ "INSERT INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
|
|
|
|
/* Return segments in order from oldest to newest.*/
|
|
/* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
|
|
"FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
|
|
/* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
|
|
"FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
|
|
"ORDER BY level DESC, idx ASC",
|
|
|
|
/* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
|
|
/* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
|
|
|
|
/* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
|
|
/* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
|
|
/* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
|
|
/* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
|
|
/* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
|
|
/* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
|
|
/* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=0",
|
|
/* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(0,?)",
|
|
/* 24 */ "",
|
|
/* 25 */ "",
|
|
|
|
/* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
|
|
|
|
};
|
|
int rc = SQLITE_OK;
|
|
sqlite3_stmt *pStmt;
|
|
|
|
assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
|
|
assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
|
|
|
|
pStmt = p->aStmt[eStmt];
|
|
if( !pStmt ){
|
|
char *zSql;
|
|
if( eStmt==SQL_CONTENT_INSERT ){
|
|
zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
|
|
}else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
|
|
zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist, p->zDb, p->zName);
|
|
}else{
|
|
zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
|
|
}
|
|
if( !zSql ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL);
|
|
sqlite3_free(zSql);
|
|
assert( rc==SQLITE_OK || pStmt==0 );
|
|
p->aStmt[eStmt] = pStmt;
|
|
}
|
|
}
|
|
if( apVal ){
|
|
int i;
|
|
int nParam = sqlite3_bind_parameter_count(pStmt);
|
|
for(i=0; rc==SQLITE_OK && i<nParam; i++){
|
|
rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
|
|
}
|
|
}
|
|
*pp = pStmt;
|
|
return rc;
|
|
}
|
|
|
|
static int fts3SelectDocsize(
|
|
Fts3Table *pTab, /* FTS3 table handle */
|
|
int eStmt, /* Either SQL_SELECT_DOCSIZE or DOCTOTAL */
|
|
sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */
|
|
sqlite3_stmt **ppStmt /* OUT: Statement handle */
|
|
){
|
|
sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */
|
|
int rc; /* Return code */
|
|
|
|
assert( eStmt==SQL_SELECT_DOCSIZE || eStmt==SQL_SELECT_DOCTOTAL );
|
|
|
|
rc = fts3SqlStmt(pTab, eStmt, &pStmt, 0);
|
|
if( rc==SQLITE_OK ){
|
|
if( eStmt==SQL_SELECT_DOCSIZE ){
|
|
sqlite3_bind_int64(pStmt, 1, iDocid);
|
|
}
|
|
rc = sqlite3_step(pStmt);
|
|
if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
|
|
rc = sqlite3_reset(pStmt);
|
|
if( rc==SQLITE_OK ) rc = SQLITE_CORRUPT_VTAB;
|
|
pStmt = 0;
|
|
}else{
|
|
rc = SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
*ppStmt = pStmt;
|
|
return rc;
|
|
}
|
|
|
|
int sqlite3Fts3SelectDoctotal(
|
|
Fts3Table *pTab, /* Fts3 table handle */
|
|
sqlite3_stmt **ppStmt /* OUT: Statement handle */
|
|
){
|
|
return fts3SelectDocsize(pTab, SQL_SELECT_DOCTOTAL, 0, ppStmt);
|
|
}
|
|
|
|
int sqlite3Fts3SelectDocsize(
|
|
Fts3Table *pTab, /* Fts3 table handle */
|
|
sqlite3_int64 iDocid, /* Docid to read size data for */
|
|
sqlite3_stmt **ppStmt /* OUT: Statement handle */
|
|
){
|
|
return fts3SelectDocsize(pTab, SQL_SELECT_DOCSIZE, iDocid, ppStmt);
|
|
}
|
|
|
|
/*
|
|
** Similar to fts3SqlStmt(). Except, after binding the parameters in
|
|
** array apVal[] to the SQL statement identified by eStmt, the statement
|
|
** is executed.
|
|
**
|
|
** Returns SQLITE_OK if the statement is successfully executed, or an
|
|
** SQLite error code otherwise.
|
|
*/
|
|
static void fts3SqlExec(
|
|
int *pRC, /* Result code */
|
|
Fts3Table *p, /* The FTS3 table */
|
|
int eStmt, /* Index of statement to evaluate */
|
|
sqlite3_value **apVal /* Parameters to bind */
|
|
){
|
|
sqlite3_stmt *pStmt;
|
|
int rc;
|
|
if( *pRC ) return;
|
|
rc = fts3SqlStmt(p, eStmt, &pStmt, apVal);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_step(pStmt);
|
|
rc = sqlite3_reset(pStmt);
|
|
}
|
|
*pRC = rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** This function ensures that the caller has obtained a shared-cache
|
|
** table-lock on the %_content table. This is required before reading
|
|
** data from the fts3 table. If this lock is not acquired first, then
|
|
** the caller may end up holding read-locks on the %_segments and %_segdir
|
|
** tables, but no read-lock on the %_content table. If this happens
|
|
** a second connection will be able to write to the fts3 table, but
|
|
** attempting to commit those writes might return SQLITE_LOCKED or
|
|
** SQLITE_LOCKED_SHAREDCACHE (because the commit attempts to obtain
|
|
** write-locks on the %_segments and %_segdir ** tables).
|
|
**
|
|
** We try to avoid this because if FTS3 returns any error when committing
|
|
** a transaction, the whole transaction will be rolled back. And this is
|
|
** not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. It can
|
|
** still happen if the user reads data directly from the %_segments or
|
|
** %_segdir tables instead of going through FTS3 though.
|
|
*/
|
|
int sqlite3Fts3ReadLock(Fts3Table *p){
|
|
int rc; /* Return code */
|
|
sqlite3_stmt *pStmt; /* Statement used to obtain lock */
|
|
|
|
rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pStmt, 0);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_null(pStmt, 1);
|
|
sqlite3_step(pStmt);
|
|
rc = sqlite3_reset(pStmt);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Set *ppStmt to a statement handle that may be used to iterate through
|
|
** all rows in the %_segdir table, from oldest to newest. If successful,
|
|
** return SQLITE_OK. If an error occurs while preparing the statement,
|
|
** return an SQLite error code.
|
|
**
|
|
** There is only ever one instance of this SQL statement compiled for
|
|
** each FTS3 table.
|
|
**
|
|
** The statement returns the following columns from the %_segdir table:
|
|
**
|
|
** 0: idx
|
|
** 1: start_block
|
|
** 2: leaves_end_block
|
|
** 3: end_block
|
|
** 4: root
|
|
*/
|
|
int sqlite3Fts3AllSegdirs(
|
|
Fts3Table *p, /* FTS3 table */
|
|
int iIndex, /* Index for p->aIndex[] */
|
|
int iLevel, /* Level to select */
|
|
sqlite3_stmt **ppStmt /* OUT: Compiled statement */
|
|
){
|
|
int rc;
|
|
sqlite3_stmt *pStmt = 0;
|
|
|
|
assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
|
|
assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
|
|
assert( iIndex>=0 && iIndex<p->nIndex );
|
|
|
|
if( iLevel<0 ){
|
|
/* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
|
|
rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_int(pStmt, 1, iIndex*FTS3_SEGDIR_MAXLEVEL);
|
|
sqlite3_bind_int(pStmt, 2, (iIndex+1)*FTS3_SEGDIR_MAXLEVEL-1);
|
|
}
|
|
}else{
|
|
/* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
|
|
rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_int(pStmt, 1, iLevel+iIndex*FTS3_SEGDIR_MAXLEVEL);
|
|
}
|
|
}
|
|
*ppStmt = pStmt;
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Append a single varint to a PendingList buffer. SQLITE_OK is returned
|
|
** if successful, or an SQLite error code otherwise.
|
|
**
|
|
** This function also serves to allocate the PendingList structure itself.
|
|
** For example, to create a new PendingList structure containing two
|
|
** varints:
|
|
**
|
|
** PendingList *p = 0;
|
|
** fts3PendingListAppendVarint(&p, 1);
|
|
** fts3PendingListAppendVarint(&p, 2);
|
|
*/
|
|
static int fts3PendingListAppendVarint(
|
|
PendingList **pp, /* IN/OUT: Pointer to PendingList struct */
|
|
sqlite3_int64 i /* Value to append to data */
|
|
){
|
|
PendingList *p = *pp;
|
|
|
|
/* Allocate or grow the PendingList as required. */
|
|
if( !p ){
|
|
p = sqlite3_malloc(sizeof(*p) + 100);
|
|
if( !p ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
p->nSpace = 100;
|
|
p->aData = (char *)&p[1];
|
|
p->nData = 0;
|
|
}
|
|
else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
|
|
int nNew = p->nSpace * 2;
|
|
p = sqlite3_realloc(p, sizeof(*p) + nNew);
|
|
if( !p ){
|
|
sqlite3_free(*pp);
|
|
*pp = 0;
|
|
return SQLITE_NOMEM;
|
|
}
|
|
p->nSpace = nNew;
|
|
p->aData = (char *)&p[1];
|
|
}
|
|
|
|
/* Append the new serialized varint to the end of the list. */
|
|
p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
|
|
p->aData[p->nData] = '\0';
|
|
*pp = p;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Add a docid/column/position entry to a PendingList structure. Non-zero
|
|
** is returned if the structure is sqlite3_realloced as part of adding
|
|
** the entry. Otherwise, zero.
|
|
**
|
|
** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
|
|
** Zero is always returned in this case. Otherwise, if no OOM error occurs,
|
|
** it is set to SQLITE_OK.
|
|
*/
|
|
static int fts3PendingListAppend(
|
|
PendingList **pp, /* IN/OUT: PendingList structure */
|
|
sqlite3_int64 iDocid, /* Docid for entry to add */
|
|
sqlite3_int64 iCol, /* Column for entry to add */
|
|
sqlite3_int64 iPos, /* Position of term for entry to add */
|
|
int *pRc /* OUT: Return code */
|
|
){
|
|
PendingList *p = *pp;
|
|
int rc = SQLITE_OK;
|
|
|
|
assert( !p || p->iLastDocid<=iDocid );
|
|
|
|
if( !p || p->iLastDocid!=iDocid ){
|
|
sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0);
|
|
if( p ){
|
|
assert( p->nData<p->nSpace );
|
|
assert( p->aData[p->nData]==0 );
|
|
p->nData++;
|
|
}
|
|
if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
|
|
goto pendinglistappend_out;
|
|
}
|
|
p->iLastCol = -1;
|
|
p->iLastPos = 0;
|
|
p->iLastDocid = iDocid;
|
|
}
|
|
if( iCol>0 && p->iLastCol!=iCol ){
|
|
if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
|
|
|| SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
|
|
){
|
|
goto pendinglistappend_out;
|
|
}
|
|
p->iLastCol = iCol;
|
|
p->iLastPos = 0;
|
|
}
|
|
if( iCol>=0 ){
|
|
assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
|
|
rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
|
|
if( rc==SQLITE_OK ){
|
|
p->iLastPos = iPos;
|
|
}
|
|
}
|
|
|
|
pendinglistappend_out:
|
|
*pRc = rc;
|
|
if( p!=*pp ){
|
|
*pp = p;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Free a PendingList object allocated by fts3PendingListAppend().
|
|
*/
|
|
static void fts3PendingListDelete(PendingList *pList){
|
|
sqlite3_free(pList);
|
|
}
|
|
|
|
/*
|
|
** Add an entry to one of the pending-terms hash tables.
|
|
*/
|
|
static int fts3PendingTermsAddOne(
|
|
Fts3Table *p,
|
|
int iCol,
|
|
int iPos,
|
|
Fts3Hash *pHash, /* Pending terms hash table to add entry to */
|
|
const char *zToken,
|
|
int nToken
|
|
){
|
|
PendingList *pList;
|
|
int rc = SQLITE_OK;
|
|
|
|
pList = (PendingList *)fts3HashFind(pHash, zToken, nToken);
|
|
if( pList ){
|
|
p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
|
|
}
|
|
if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
|
|
if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){
|
|
/* Malloc failed while inserting the new entry. This can only
|
|
** happen if there was no previous entry for this token.
|
|
*/
|
|
assert( 0==fts3HashFind(pHash, zToken, nToken) );
|
|
sqlite3_free(pList);
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Tokenize the nul-terminated string zText and add all tokens to the
|
|
** pending-terms hash-table. The docid used is that currently stored in
|
|
** p->iPrevDocid, and the column is specified by argument iCol.
|
|
**
|
|
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
|
|
*/
|
|
static int fts3PendingTermsAdd(
|
|
Fts3Table *p, /* Table into which text will be inserted */
|
|
const char *zText, /* Text of document to be inserted */
|
|
int iCol, /* Column into which text is being inserted */
|
|
u32 *pnWord /* OUT: Number of tokens inserted */
|
|
){
|
|
int rc;
|
|
int iStart;
|
|
int iEnd;
|
|
int iPos;
|
|
int nWord = 0;
|
|
|
|
char const *zToken;
|
|
int nToken;
|
|
|
|
sqlite3_tokenizer *pTokenizer = p->pTokenizer;
|
|
sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
|
|
sqlite3_tokenizer_cursor *pCsr;
|
|
int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
|
|
const char**,int*,int*,int*,int*);
|
|
|
|
assert( pTokenizer && pModule );
|
|
|
|
/* If the user has inserted a NULL value, this function may be called with
|
|
** zText==0. In this case, add zero token entries to the hash table and
|
|
** return early. */
|
|
if( zText==0 ){
|
|
*pnWord = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
rc = pModule->xOpen(pTokenizer, zText, -1, &pCsr);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
pCsr->pTokenizer = pTokenizer;
|
|
|
|
xNext = pModule->xNext;
|
|
while( SQLITE_OK==rc
|
|
&& SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
|
|
){
|
|
int i;
|
|
if( iPos>=nWord ) nWord = iPos+1;
|
|
|
|
/* Positions cannot be negative; we use -1 as a terminator internally.
|
|
** Tokens must have a non-zero length.
|
|
*/
|
|
if( iPos<0 || !zToken || nToken<=0 ){
|
|
rc = SQLITE_ERROR;
|
|
break;
|
|
}
|
|
|
|
/* Add the term to the terms index */
|
|
rc = fts3PendingTermsAddOne(
|
|
p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken
|
|
);
|
|
|
|
/* Add the term to each of the prefix indexes that it is not too
|
|
** short for. */
|
|
for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){
|
|
struct Fts3Index *pIndex = &p->aIndex[i];
|
|
if( nToken<pIndex->nPrefix ) continue;
|
|
rc = fts3PendingTermsAddOne(
|
|
p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix
|
|
);
|
|
}
|
|
}
|
|
|
|
pModule->xClose(pCsr);
|
|
*pnWord = nWord;
|
|
return (rc==SQLITE_DONE ? SQLITE_OK : rc);
|
|
}
|
|
|
|
/*
|
|
** Calling this function indicates that subsequent calls to
|
|
** fts3PendingTermsAdd() are to add term/position-list pairs for the
|
|
** contents of the document with docid iDocid.
|
|
*/
|
|
static int fts3PendingTermsDocid(Fts3Table *p, sqlite_int64 iDocid){
|
|
/* TODO(shess) Explore whether partially flushing the buffer on
|
|
** forced-flush would provide better performance. I suspect that if
|
|
** we ordered the doclists by size and flushed the largest until the
|
|
** buffer was half empty, that would let the less frequent terms
|
|
** generate longer doclists.
|
|
*/
|
|
if( iDocid<=p->iPrevDocid || p->nPendingData>p->nMaxPendingData ){
|
|
int rc = sqlite3Fts3PendingTermsFlush(p);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
p->iPrevDocid = iDocid;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Discard the contents of the pending-terms hash tables.
|
|
*/
|
|
void sqlite3Fts3PendingTermsClear(Fts3Table *p){
|
|
int i;
|
|
for(i=0; i<p->nIndex; i++){
|
|
Fts3HashElem *pElem;
|
|
Fts3Hash *pHash = &p->aIndex[i].hPending;
|
|
for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){
|
|
PendingList *pList = (PendingList *)fts3HashData(pElem);
|
|
fts3PendingListDelete(pList);
|
|
}
|
|
fts3HashClear(pHash);
|
|
}
|
|
p->nPendingData = 0;
|
|
}
|
|
|
|
/*
|
|
** This function is called by the xUpdate() method as part of an INSERT
|
|
** operation. It adds entries for each term in the new record to the
|
|
** pendingTerms hash table.
|
|
**
|
|
** Argument apVal is the same as the similarly named argument passed to
|
|
** fts3InsertData(). Parameter iDocid is the docid of the new row.
|
|
*/
|
|
static int fts3InsertTerms(Fts3Table *p, sqlite3_value **apVal, u32 *aSz){
|
|
int i; /* Iterator variable */
|
|
for(i=2; i<p->nColumn+2; i++){
|
|
const char *zText = (const char *)sqlite3_value_text(apVal[i]);
|
|
int rc = fts3PendingTermsAdd(p, zText, i-2, &aSz[i-2]);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This function is called by the xUpdate() method for an INSERT operation.
|
|
** The apVal parameter is passed a copy of the apVal argument passed by
|
|
** SQLite to the xUpdate() method. i.e:
|
|
**
|
|
** apVal[0] Not used for INSERT.
|
|
** apVal[1] rowid
|
|
** apVal[2] Left-most user-defined column
|
|
** ...
|
|
** apVal[p->nColumn+1] Right-most user-defined column
|
|
** apVal[p->nColumn+2] Hidden column with same name as table
|
|
** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
|
|
*/
|
|
static int fts3InsertData(
|
|
Fts3Table *p, /* Full-text table */
|
|
sqlite3_value **apVal, /* Array of values to insert */
|
|
sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */
|
|
){
|
|
int rc; /* Return code */
|
|
sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */
|
|
|
|
/* Locate the statement handle used to insert data into the %_content
|
|
** table. The SQL for this statement is:
|
|
**
|
|
** INSERT INTO %_content VALUES(?, ?, ?, ...)
|
|
**
|
|
** The statement features N '?' variables, where N is the number of user
|
|
** defined columns in the FTS3 table, plus one for the docid field.
|
|
*/
|
|
rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* There is a quirk here. The users INSERT statement may have specified
|
|
** a value for the "rowid" field, for the "docid" field, or for both.
|
|
** Which is a problem, since "rowid" and "docid" are aliases for the
|
|
** same value. For example:
|
|
**
|
|
** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
|
|
**
|
|
** In FTS3, this is an error. It is an error to specify non-NULL values
|
|
** for both docid and some other rowid alias.
|
|
*/
|
|
if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
|
|
if( SQLITE_NULL==sqlite3_value_type(apVal[0])
|
|
&& SQLITE_NULL!=sqlite3_value_type(apVal[1])
|
|
){
|
|
/* A rowid/docid conflict. */
|
|
return SQLITE_ERROR;
|
|
}
|
|
rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
|
|
/* Execute the statement to insert the record. Set *piDocid to the
|
|
** new docid value.
|
|
*/
|
|
sqlite3_step(pContentInsert);
|
|
rc = sqlite3_reset(pContentInsert);
|
|
|
|
*piDocid = sqlite3_last_insert_rowid(p->db);
|
|
return rc;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** Remove all data from the FTS3 table. Clear the hash table containing
|
|
** pending terms.
|
|
*/
|
|
static int fts3DeleteAll(Fts3Table *p){
|
|
int rc = SQLITE_OK; /* Return code */
|
|
|
|
/* Discard the contents of the pending-terms hash table. */
|
|
sqlite3Fts3PendingTermsClear(p);
|
|
|
|
/* Delete everything from the %_content, %_segments and %_segdir tables. */
|
|
fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0);
|
|
fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0);
|
|
fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
|
|
if( p->bHasDocsize ){
|
|
fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0);
|
|
}
|
|
if( p->bHasStat ){
|
|
fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The first element in the apVal[] array is assumed to contain the docid
|
|
** (an integer) of a row about to be deleted. Remove all terms from the
|
|
** full-text index.
|
|
*/
|
|
static void fts3DeleteTerms(
|
|
int *pRC, /* Result code */
|
|
Fts3Table *p, /* The FTS table to delete from */
|
|
sqlite3_value *pRowid, /* The docid to be deleted */
|
|
u32 *aSz /* Sizes of deleted document written here */
|
|
){
|
|
int rc;
|
|
sqlite3_stmt *pSelect;
|
|
|
|
if( *pRC ) return;
|
|
rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
|
|
if( rc==SQLITE_OK ){
|
|
if( SQLITE_ROW==sqlite3_step(pSelect) ){
|
|
int i;
|
|
for(i=1; i<=p->nColumn; i++){
|
|
const char *zText = (const char *)sqlite3_column_text(pSelect, i);
|
|
rc = fts3PendingTermsAdd(p, zText, -1, &aSz[i-1]);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_reset(pSelect);
|
|
*pRC = rc;
|
|
return;
|
|
}
|
|
aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
|
|
}
|
|
}
|
|
rc = sqlite3_reset(pSelect);
|
|
}else{
|
|
sqlite3_reset(pSelect);
|
|
}
|
|
*pRC = rc;
|
|
}
|
|
|
|
/*
|
|
** Forward declaration to account for the circular dependency between
|
|
** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
|
|
*/
|
|
static int fts3SegmentMerge(Fts3Table *, int, int);
|
|
|
|
/*
|
|
** This function allocates a new level iLevel index in the segdir table.
|
|
** Usually, indexes are allocated within a level sequentially starting
|
|
** with 0, so the allocated index is one greater than the value returned
|
|
** by:
|
|
**
|
|
** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
|
|
**
|
|
** However, if there are already FTS3_MERGE_COUNT indexes at the requested
|
|
** level, they are merged into a single level (iLevel+1) segment and the
|
|
** allocated index is 0.
|
|
**
|
|
** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
|
|
** returned. Otherwise, an SQLite error code is returned.
|
|
*/
|
|
static int fts3AllocateSegdirIdx(
|
|
Fts3Table *p,
|
|
int iIndex, /* Index for p->aIndex */
|
|
int iLevel,
|
|
int *piIdx
|
|
){
|
|
int rc; /* Return Code */
|
|
sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */
|
|
int iNext = 0; /* Result of query pNextIdx */
|
|
|
|
/* Set variable iNext to the next available segdir index at level iLevel. */
|
|
rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_int(pNextIdx, 1, iIndex*FTS3_SEGDIR_MAXLEVEL + iLevel);
|
|
if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
|
|
iNext = sqlite3_column_int(pNextIdx, 0);
|
|
}
|
|
rc = sqlite3_reset(pNextIdx);
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
/* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
|
|
** full, merge all segments in level iLevel into a single iLevel+1
|
|
** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
|
|
** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
|
|
*/
|
|
if( iNext>=FTS3_MERGE_COUNT ){
|
|
rc = fts3SegmentMerge(p, iIndex, iLevel);
|
|
*piIdx = 0;
|
|
}else{
|
|
*piIdx = iNext;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The %_segments table is declared as follows:
|
|
**
|
|
** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
|
|
**
|
|
** This function reads data from a single row of the %_segments table. The
|
|
** specific row is identified by the iBlockid parameter. If paBlob is not
|
|
** NULL, then a buffer is allocated using sqlite3_malloc() and populated
|
|
** with the contents of the blob stored in the "block" column of the
|
|
** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
|
|
** to the size of the blob in bytes before returning.
|
|
**
|
|
** If an error occurs, or the table does not contain the specified row,
|
|
** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
|
|
** paBlob is non-NULL, then it is the responsibility of the caller to
|
|
** eventually free the returned buffer.
|
|
**
|
|
** This function may leave an open sqlite3_blob* handle in the
|
|
** Fts3Table.pSegments variable. This handle is reused by subsequent calls
|
|
** to this function. The handle may be closed by calling the
|
|
** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
|
|
** performance improvement, but the blob handle should always be closed
|
|
** before control is returned to the user (to prevent a lock being held
|
|
** on the database file for longer than necessary). Thus, any virtual table
|
|
** method (xFilter etc.) that may directly or indirectly call this function
|
|
** must call sqlite3Fts3SegmentsClose() before returning.
|
|
*/
|
|
int sqlite3Fts3ReadBlock(
|
|
Fts3Table *p, /* FTS3 table handle */
|
|
sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */
|
|
char **paBlob, /* OUT: Blob data in malloc'd buffer */
|
|
int *pnBlob, /* OUT: Size of blob data */
|
|
int *pnLoad /* OUT: Bytes actually loaded */
|
|
){
|
|
int rc; /* Return code */
|
|
|
|
/* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
|
|
assert( pnBlob);
|
|
|
|
if( p->pSegments ){
|
|
rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
|
|
}else{
|
|
if( 0==p->zSegmentsTbl ){
|
|
p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
|
|
if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
|
|
}
|
|
rc = sqlite3_blob_open(
|
|
p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
|
|
);
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
int nByte = sqlite3_blob_bytes(p->pSegments);
|
|
*pnBlob = nByte;
|
|
if( paBlob ){
|
|
char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING);
|
|
if( !aByte ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
|
|
nByte = FTS3_NODE_CHUNKSIZE;
|
|
*pnLoad = nByte;
|
|
}
|
|
rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
|
|
memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_free(aByte);
|
|
aByte = 0;
|
|
}
|
|
}
|
|
*paBlob = aByte;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Close the blob handle at p->pSegments, if it is open. See comments above
|
|
** the sqlite3Fts3ReadBlock() function for details.
|
|
*/
|
|
void sqlite3Fts3SegmentsClose(Fts3Table *p){
|
|
sqlite3_blob_close(p->pSegments);
|
|
p->pSegments = 0;
|
|
}
|
|
|
|
static int fts3SegReaderIncrRead(Fts3SegReader *pReader){
|
|
int nRead; /* Number of bytes to read */
|
|
int rc; /* Return code */
|
|
|
|
nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE);
|
|
rc = sqlite3_blob_read(
|
|
pReader->pBlob,
|
|
&pReader->aNode[pReader->nPopulate],
|
|
nRead,
|
|
pReader->nPopulate
|
|
);
|
|
|
|
if( rc==SQLITE_OK ){
|
|
pReader->nPopulate += nRead;
|
|
memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING);
|
|
if( pReader->nPopulate==pReader->nNode ){
|
|
sqlite3_blob_close(pReader->pBlob);
|
|
pReader->pBlob = 0;
|
|
pReader->nPopulate = 0;
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){
|
|
int rc = SQLITE_OK;
|
|
assert( !pReader->pBlob
|
|
|| (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode])
|
|
);
|
|
while( pReader->pBlob && rc==SQLITE_OK
|
|
&& (pFrom - pReader->aNode + nByte)>pReader->nPopulate
|
|
){
|
|
rc = fts3SegReaderIncrRead(pReader);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Move the iterator passed as the first argument to the next term in the
|
|
** segment. If successful, SQLITE_OK is returned. If there is no next term,
|
|
** SQLITE_DONE. Otherwise, an SQLite error code.
|
|
*/
|
|
static int fts3SegReaderNext(
|
|
Fts3Table *p,
|
|
Fts3SegReader *pReader,
|
|
int bIncr
|
|
){
|
|
int rc; /* Return code of various sub-routines */
|
|
char *pNext; /* Cursor variable */
|
|
int nPrefix; /* Number of bytes in term prefix */
|
|
int nSuffix; /* Number of bytes in term suffix */
|
|
|
|
if( !pReader->aDoclist ){
|
|
pNext = pReader->aNode;
|
|
}else{
|
|
pNext = &pReader->aDoclist[pReader->nDoclist];
|
|
}
|
|
|
|
if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
|
|
|
|
if( fts3SegReaderIsPending(pReader) ){
|
|
Fts3HashElem *pElem = *(pReader->ppNextElem);
|
|
if( pElem==0 ){
|
|
pReader->aNode = 0;
|
|
}else{
|
|
PendingList *pList = (PendingList *)fts3HashData(pElem);
|
|
pReader->zTerm = (char *)fts3HashKey(pElem);
|
|
pReader->nTerm = fts3HashKeysize(pElem);
|
|
pReader->nNode = pReader->nDoclist = pList->nData + 1;
|
|
pReader->aNode = pReader->aDoclist = pList->aData;
|
|
pReader->ppNextElem++;
|
|
assert( pReader->aNode );
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
if( !fts3SegReaderIsRootOnly(pReader) ){
|
|
sqlite3_free(pReader->aNode);
|
|
sqlite3_blob_close(pReader->pBlob);
|
|
pReader->pBlob = 0;
|
|
}
|
|
pReader->aNode = 0;
|
|
|
|
/* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
|
|
** blocks have already been traversed. */
|
|
assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );
|
|
if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
rc = sqlite3Fts3ReadBlock(
|
|
p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode,
|
|
(bIncr ? &pReader->nPopulate : 0)
|
|
);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
assert( pReader->pBlob==0 );
|
|
if( bIncr && pReader->nPopulate<pReader->nNode ){
|
|
pReader->pBlob = p->pSegments;
|
|
p->pSegments = 0;
|
|
}
|
|
pNext = pReader->aNode;
|
|
}
|
|
|
|
assert( !fts3SegReaderIsPending(pReader) );
|
|
|
|
rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* Because of the FTS3_NODE_PADDING bytes of padding, the following is
|
|
** safe (no risk of overread) even if the node data is corrupted. */
|
|
pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix);
|
|
pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix);
|
|
if( nPrefix<0 || nSuffix<=0
|
|
|| &pNext[nSuffix]>&pReader->aNode[pReader->nNode]
|
|
){
|
|
return SQLITE_CORRUPT_VTAB;
|
|
}
|
|
|
|
if( nPrefix+nSuffix>pReader->nTermAlloc ){
|
|
int nNew = (nPrefix+nSuffix)*2;
|
|
char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
|
|
if( !zNew ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pReader->zTerm = zNew;
|
|
pReader->nTermAlloc = nNew;
|
|
}
|
|
|
|
rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
|
|
pReader->nTerm = nPrefix+nSuffix;
|
|
pNext += nSuffix;
|
|
pNext += sqlite3Fts3GetVarint32(pNext, &pReader->nDoclist);
|
|
pReader->aDoclist = pNext;
|
|
pReader->pOffsetList = 0;
|
|
|
|
/* Check that the doclist does not appear to extend past the end of the
|
|
** b-tree node. And that the final byte of the doclist is 0x00. If either
|
|
** of these statements is untrue, then the data structure is corrupt.
|
|
*/
|
|
if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode]
|
|
|| (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
|
|
){
|
|
return SQLITE_CORRUPT_VTAB;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Set the SegReader to point to the first docid in the doclist associated
|
|
** with the current term.
|
|
*/
|
|
static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){
|
|
int rc = SQLITE_OK;
|
|
assert( pReader->aDoclist );
|
|
assert( !pReader->pOffsetList );
|
|
if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
|
|
u8 bEof = 0;
|
|
pReader->iDocid = 0;
|
|
pReader->nOffsetList = 0;
|
|
sqlite3Fts3DoclistPrev(0,
|
|
pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList,
|
|
&pReader->iDocid, &pReader->nOffsetList, &bEof
|
|
);
|
|
}else{
|
|
rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX);
|
|
if( rc==SQLITE_OK ){
|
|
int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
|
|
pReader->pOffsetList = &pReader->aDoclist[n];
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Advance the SegReader to point to the next docid in the doclist
|
|
** associated with the current term.
|
|
**
|
|
** If arguments ppOffsetList and pnOffsetList are not NULL, then
|
|
** *ppOffsetList is set to point to the first column-offset list
|
|
** in the doclist entry (i.e. immediately past the docid varint).
|
|
** *pnOffsetList is set to the length of the set of column-offset
|
|
** lists, not including the nul-terminator byte. For example:
|
|
*/
|
|
static int fts3SegReaderNextDocid(
|
|
Fts3Table *pTab,
|
|
Fts3SegReader *pReader, /* Reader to advance to next docid */
|
|
char **ppOffsetList, /* OUT: Pointer to current position-list */
|
|
int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
char *p = pReader->pOffsetList;
|
|
char c = 0;
|
|
|
|
assert( p );
|
|
|
|
if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
|
|
/* A pending-terms seg-reader for an FTS4 table that uses order=desc.
|
|
** Pending-terms doclists are always built up in ascending order, so
|
|
** we have to iterate through them backwards here. */
|
|
u8 bEof = 0;
|
|
if( ppOffsetList ){
|
|
*ppOffsetList = pReader->pOffsetList;
|
|
*pnOffsetList = pReader->nOffsetList - 1;
|
|
}
|
|
sqlite3Fts3DoclistPrev(0,
|
|
pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid,
|
|
&pReader->nOffsetList, &bEof
|
|
);
|
|
if( bEof ){
|
|
pReader->pOffsetList = 0;
|
|
}else{
|
|
pReader->pOffsetList = p;
|
|
}
|
|
}else{
|
|
|
|
/* Pointer p currently points at the first byte of an offset list. The
|
|
** following block advances it to point one byte past the end of
|
|
** the same offset list. */
|
|
while( 1 ){
|
|
|
|
/* The following line of code (and the "p++" below the while() loop) is
|
|
** normally all that is required to move pointer p to the desired
|
|
** position. The exception is if this node is being loaded from disk
|
|
** incrementally and pointer "p" now points to the first byte passed
|
|
** the populated part of pReader->aNode[].
|
|
*/
|
|
while( *p | c ) c = *p++ & 0x80;
|
|
assert( *p==0 );
|
|
|
|
if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
|
|
rc = fts3SegReaderIncrRead(pReader);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
p++;
|
|
|
|
/* If required, populate the output variables with a pointer to and the
|
|
** size of the previous offset-list.
|
|
*/
|
|
if( ppOffsetList ){
|
|
*ppOffsetList = pReader->pOffsetList;
|
|
*pnOffsetList = (int)(p - pReader->pOffsetList - 1);
|
|
}
|
|
|
|
/* If there are no more entries in the doclist, set pOffsetList to
|
|
** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
|
|
** Fts3SegReader.pOffsetList to point to the next offset list before
|
|
** returning.
|
|
*/
|
|
if( p>=&pReader->aDoclist[pReader->nDoclist] ){
|
|
pReader->pOffsetList = 0;
|
|
}else{
|
|
rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_int64 iDelta;
|
|
pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta);
|
|
if( pTab->bDescIdx ){
|
|
pReader->iDocid -= iDelta;
|
|
}else{
|
|
pReader->iDocid += iDelta;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
|
|
int sqlite3Fts3MsrOvfl(
|
|
Fts3Cursor *pCsr,
|
|
Fts3MultiSegReader *pMsr,
|
|
int *pnOvfl
|
|
){
|
|
Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
|
|
int nOvfl = 0;
|
|
int ii;
|
|
int rc = SQLITE_OK;
|
|
int pgsz = p->nPgsz;
|
|
|
|
assert( p->bHasStat );
|
|
assert( pgsz>0 );
|
|
|
|
for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){
|
|
Fts3SegReader *pReader = pMsr->apSegment[ii];
|
|
if( !fts3SegReaderIsPending(pReader)
|
|
&& !fts3SegReaderIsRootOnly(pReader)
|
|
){
|
|
int jj;
|
|
for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){
|
|
int nBlob;
|
|
rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0);
|
|
if( rc!=SQLITE_OK ) break;
|
|
if( (nBlob+35)>pgsz ){
|
|
nOvfl += (nBlob + 34)/pgsz;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
*pnOvfl = nOvfl;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Free all allocations associated with the iterator passed as the
|
|
** second argument.
|
|
*/
|
|
void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
|
|
if( pReader && !fts3SegReaderIsPending(pReader) ){
|
|
sqlite3_free(pReader->zTerm);
|
|
if( !fts3SegReaderIsRootOnly(pReader) ){
|
|
sqlite3_free(pReader->aNode);
|
|
sqlite3_blob_close(pReader->pBlob);
|
|
}
|
|
}
|
|
sqlite3_free(pReader);
|
|
}
|
|
|
|
/*
|
|
** Allocate a new SegReader object.
|
|
*/
|
|
int sqlite3Fts3SegReaderNew(
|
|
int iAge, /* Segment "age". */
|
|
sqlite3_int64 iStartLeaf, /* First leaf to traverse */
|
|
sqlite3_int64 iEndLeaf, /* Final leaf to traverse */
|
|
sqlite3_int64 iEndBlock, /* Final block of segment */
|
|
const char *zRoot, /* Buffer containing root node */
|
|
int nRoot, /* Size of buffer containing root node */
|
|
Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */
|
|
){
|
|
int rc = SQLITE_OK; /* Return code */
|
|
Fts3SegReader *pReader; /* Newly allocated SegReader object */
|
|
int nExtra = 0; /* Bytes to allocate segment root node */
|
|
|
|
assert( iStartLeaf<=iEndLeaf );
|
|
if( iStartLeaf==0 ){
|
|
nExtra = nRoot + FTS3_NODE_PADDING;
|
|
}
|
|
|
|
pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
|
|
if( !pReader ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(pReader, 0, sizeof(Fts3SegReader));
|
|
pReader->iIdx = iAge;
|
|
pReader->iStartBlock = iStartLeaf;
|
|
pReader->iLeafEndBlock = iEndLeaf;
|
|
pReader->iEndBlock = iEndBlock;
|
|
|
|
if( nExtra ){
|
|
/* The entire segment is stored in the root node. */
|
|
pReader->aNode = (char *)&pReader[1];
|
|
pReader->nNode = nRoot;
|
|
memcpy(pReader->aNode, zRoot, nRoot);
|
|
memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
|
|
}else{
|
|
pReader->iCurrentBlock = iStartLeaf-1;
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
*ppReader = pReader;
|
|
}else{
|
|
sqlite3Fts3SegReaderFree(pReader);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This is a comparison function used as a qsort() callback when sorting
|
|
** an array of pending terms by term. This occurs as part of flushing
|
|
** the contents of the pending-terms hash table to the database.
|
|
*/
|
|
static int fts3CompareElemByTerm(const void *lhs, const void *rhs){
|
|
char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
|
|
char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
|
|
int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
|
|
int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);
|
|
|
|
int n = (n1<n2 ? n1 : n2);
|
|
int c = memcmp(z1, z2, n);
|
|
if( c==0 ){
|
|
c = n1 - n2;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/*
|
|
** This function is used to allocate an Fts3SegReader that iterates through
|
|
** a subset of the terms stored in the Fts3Table.pendingTerms array.
|
|
**
|
|
** If the isPrefixIter parameter is zero, then the returned SegReader iterates
|
|
** through each term in the pending-terms table. Or, if isPrefixIter is
|
|
** non-zero, it iterates through each term and its prefixes. For example, if
|
|
** the pending terms hash table contains the terms "sqlite", "mysql" and
|
|
** "firebird", then the iterator visits the following 'terms' (in the order
|
|
** shown):
|
|
**
|
|
** f fi fir fire fireb firebi firebir firebird
|
|
** m my mys mysq mysql
|
|
** s sq sql sqli sqlit sqlite
|
|
**
|
|
** Whereas if isPrefixIter is zero, the terms visited are:
|
|
**
|
|
** firebird mysql sqlite
|
|
*/
|
|
int sqlite3Fts3SegReaderPending(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
int iIndex, /* Index for p->aIndex */
|
|
const char *zTerm, /* Term to search for */
|
|
int nTerm, /* Size of buffer zTerm */
|
|
int bPrefix, /* True for a prefix iterator */
|
|
Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */
|
|
){
|
|
Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */
|
|
Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */
|
|
int nElem = 0; /* Size of array at aElem */
|
|
int rc = SQLITE_OK; /* Return Code */
|
|
Fts3Hash *pHash;
|
|
|
|
pHash = &p->aIndex[iIndex].hPending;
|
|
if( bPrefix ){
|
|
int nAlloc = 0; /* Size of allocated array at aElem */
|
|
Fts3HashElem *pE = 0; /* Iterator variable */
|
|
|
|
for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
|
|
char *zKey = (char *)fts3HashKey(pE);
|
|
int nKey = fts3HashKeysize(pE);
|
|
if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
|
|
if( nElem==nAlloc ){
|
|
Fts3HashElem **aElem2;
|
|
nAlloc += 16;
|
|
aElem2 = (Fts3HashElem **)sqlite3_realloc(
|
|
aElem, nAlloc*sizeof(Fts3HashElem *)
|
|
);
|
|
if( !aElem2 ){
|
|
rc = SQLITE_NOMEM;
|
|
nElem = 0;
|
|
break;
|
|
}
|
|
aElem = aElem2;
|
|
}
|
|
|
|
aElem[nElem++] = pE;
|
|
}
|
|
}
|
|
|
|
/* If more than one term matches the prefix, sort the Fts3HashElem
|
|
** objects in term order using qsort(). This uses the same comparison
|
|
** callback as is used when flushing terms to disk.
|
|
*/
|
|
if( nElem>1 ){
|
|
qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
|
|
}
|
|
|
|
}else{
|
|
/* The query is a simple term lookup that matches at most one term in
|
|
** the index. All that is required is a straight hash-lookup. */
|
|
Fts3HashElem *pE = fts3HashFindElem(pHash, zTerm, nTerm);
|
|
if( pE ){
|
|
aElem = &pE;
|
|
nElem = 1;
|
|
}
|
|
}
|
|
|
|
if( nElem>0 ){
|
|
int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
|
|
pReader = (Fts3SegReader *)sqlite3_malloc(nByte);
|
|
if( !pReader ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
memset(pReader, 0, nByte);
|
|
pReader->iIdx = 0x7FFFFFFF;
|
|
pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
|
|
memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
|
|
}
|
|
}
|
|
|
|
if( bPrefix ){
|
|
sqlite3_free(aElem);
|
|
}
|
|
*ppReader = pReader;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Compare the entries pointed to by two Fts3SegReader structures.
|
|
** Comparison is as follows:
|
|
**
|
|
** 1) EOF is greater than not EOF.
|
|
**
|
|
** 2) The current terms (if any) are compared using memcmp(). If one
|
|
** term is a prefix of another, the longer term is considered the
|
|
** larger.
|
|
**
|
|
** 3) By segment age. An older segment is considered larger.
|
|
*/
|
|
static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
|
|
int rc;
|
|
if( pLhs->aNode && pRhs->aNode ){
|
|
int rc2 = pLhs->nTerm - pRhs->nTerm;
|
|
if( rc2<0 ){
|
|
rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
|
|
}else{
|
|
rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
|
|
}
|
|
if( rc==0 ){
|
|
rc = rc2;
|
|
}
|
|
}else{
|
|
rc = (pLhs->aNode==0) - (pRhs->aNode==0);
|
|
}
|
|
if( rc==0 ){
|
|
rc = pRhs->iIdx - pLhs->iIdx;
|
|
}
|
|
assert( rc!=0 );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** A different comparison function for SegReader structures. In this
|
|
** version, it is assumed that each SegReader points to an entry in
|
|
** a doclist for identical terms. Comparison is made as follows:
|
|
**
|
|
** 1) EOF (end of doclist in this case) is greater than not EOF.
|
|
**
|
|
** 2) By current docid.
|
|
**
|
|
** 3) By segment age. An older segment is considered larger.
|
|
*/
|
|
static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
|
|
int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
|
|
if( rc==0 ){
|
|
if( pLhs->iDocid==pRhs->iDocid ){
|
|
rc = pRhs->iIdx - pLhs->iIdx;
|
|
}else{
|
|
rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
|
|
}
|
|
}
|
|
assert( pLhs->aNode && pRhs->aNode );
|
|
return rc;
|
|
}
|
|
static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
|
|
int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
|
|
if( rc==0 ){
|
|
if( pLhs->iDocid==pRhs->iDocid ){
|
|
rc = pRhs->iIdx - pLhs->iIdx;
|
|
}else{
|
|
rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1;
|
|
}
|
|
}
|
|
assert( pLhs->aNode && pRhs->aNode );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Compare the term that the Fts3SegReader object passed as the first argument
|
|
** points to with the term specified by arguments zTerm and nTerm.
|
|
**
|
|
** If the pSeg iterator is already at EOF, return 0. Otherwise, return
|
|
** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
|
|
** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
|
|
*/
|
|
static int fts3SegReaderTermCmp(
|
|
Fts3SegReader *pSeg, /* Segment reader object */
|
|
const char *zTerm, /* Term to compare to */
|
|
int nTerm /* Size of term zTerm in bytes */
|
|
){
|
|
int res = 0;
|
|
if( pSeg->aNode ){
|
|
if( pSeg->nTerm>nTerm ){
|
|
res = memcmp(pSeg->zTerm, zTerm, nTerm);
|
|
}else{
|
|
res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
|
|
}
|
|
if( res==0 ){
|
|
res = pSeg->nTerm-nTerm;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
** Argument apSegment is an array of nSegment elements. It is known that
|
|
** the final (nSegment-nSuspect) members are already in sorted order
|
|
** (according to the comparison function provided). This function shuffles
|
|
** the array around until all entries are in sorted order.
|
|
*/
|
|
static void fts3SegReaderSort(
|
|
Fts3SegReader **apSegment, /* Array to sort entries of */
|
|
int nSegment, /* Size of apSegment array */
|
|
int nSuspect, /* Unsorted entry count */
|
|
int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */
|
|
){
|
|
int i; /* Iterator variable */
|
|
|
|
assert( nSuspect<=nSegment );
|
|
|
|
if( nSuspect==nSegment ) nSuspect--;
|
|
for(i=nSuspect-1; i>=0; i--){
|
|
int j;
|
|
for(j=i; j<(nSegment-1); j++){
|
|
Fts3SegReader *pTmp;
|
|
if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
|
|
pTmp = apSegment[j+1];
|
|
apSegment[j+1] = apSegment[j];
|
|
apSegment[j] = pTmp;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/* Check that the list really is sorted now. */
|
|
for(i=0; i<(nSuspect-1); i++){
|
|
assert( xCmp(apSegment[i], apSegment[i+1])<0 );
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Insert a record into the %_segments table.
|
|
*/
|
|
static int fts3WriteSegment(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
sqlite3_int64 iBlock, /* Block id for new block */
|
|
char *z, /* Pointer to buffer containing block data */
|
|
int n /* Size of buffer z in bytes */
|
|
){
|
|
sqlite3_stmt *pStmt;
|
|
int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_int64(pStmt, 1, iBlock);
|
|
sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
|
|
sqlite3_step(pStmt);
|
|
rc = sqlite3_reset(pStmt);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Insert a record into the %_segdir table.
|
|
*/
|
|
static int fts3WriteSegdir(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
int iLevel, /* Value for "level" field */
|
|
int iIdx, /* Value for "idx" field */
|
|
sqlite3_int64 iStartBlock, /* Value for "start_block" field */
|
|
sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */
|
|
sqlite3_int64 iEndBlock, /* Value for "end_block" field */
|
|
char *zRoot, /* Blob value for "root" field */
|
|
int nRoot /* Number of bytes in buffer zRoot */
|
|
){
|
|
sqlite3_stmt *pStmt;
|
|
int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_int(pStmt, 1, iLevel);
|
|
sqlite3_bind_int(pStmt, 2, iIdx);
|
|
sqlite3_bind_int64(pStmt, 3, iStartBlock);
|
|
sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
|
|
sqlite3_bind_int64(pStmt, 5, iEndBlock);
|
|
sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
|
|
sqlite3_step(pStmt);
|
|
rc = sqlite3_reset(pStmt);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the size of the common prefix (if any) shared by zPrev and
|
|
** zNext, in bytes. For example,
|
|
**
|
|
** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
|
|
** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
|
|
** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
|
|
*/
|
|
static int fts3PrefixCompress(
|
|
const char *zPrev, /* Buffer containing previous term */
|
|
int nPrev, /* Size of buffer zPrev in bytes */
|
|
const char *zNext, /* Buffer containing next term */
|
|
int nNext /* Size of buffer zNext in bytes */
|
|
){
|
|
int n;
|
|
UNUSED_PARAMETER(nNext);
|
|
for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
|
|
** (according to memcmp) than the previous term.
|
|
*/
|
|
static int fts3NodeAddTerm(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */
|
|
int isCopyTerm, /* True if zTerm/nTerm is transient */
|
|
const char *zTerm, /* Pointer to buffer containing term */
|
|
int nTerm /* Size of term in bytes */
|
|
){
|
|
SegmentNode *pTree = *ppTree;
|
|
int rc;
|
|
SegmentNode *pNew;
|
|
|
|
/* First try to append the term to the current node. Return early if
|
|
** this is possible.
|
|
*/
|
|
if( pTree ){
|
|
int nData = pTree->nData; /* Current size of node in bytes */
|
|
int nReq = nData; /* Required space after adding zTerm */
|
|
int nPrefix; /* Number of bytes of prefix compression */
|
|
int nSuffix; /* Suffix length */
|
|
|
|
nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
|
|
nSuffix = nTerm-nPrefix;
|
|
|
|
nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
|
|
if( nReq<=p->nNodeSize || !pTree->zTerm ){
|
|
|
|
if( nReq>p->nNodeSize ){
|
|
/* An unusual case: this is the first term to be added to the node
|
|
** and the static node buffer (p->nNodeSize bytes) is not large
|
|
** enough. Use a separately malloced buffer instead This wastes
|
|
** p->nNodeSize bytes, but since this scenario only comes about when
|
|
** the database contain two terms that share a prefix of almost 2KB,
|
|
** this is not expected to be a serious problem.
|
|
*/
|
|
assert( pTree->aData==(char *)&pTree[1] );
|
|
pTree->aData = (char *)sqlite3_malloc(nReq);
|
|
if( !pTree->aData ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
}
|
|
|
|
if( pTree->zTerm ){
|
|
/* There is no prefix-length field for first term in a node */
|
|
nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
|
|
}
|
|
|
|
nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
|
|
memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
|
|
pTree->nData = nData + nSuffix;
|
|
pTree->nEntry++;
|
|
|
|
if( isCopyTerm ){
|
|
if( pTree->nMalloc<nTerm ){
|
|
char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2);
|
|
if( !zNew ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pTree->nMalloc = nTerm*2;
|
|
pTree->zMalloc = zNew;
|
|
}
|
|
pTree->zTerm = pTree->zMalloc;
|
|
memcpy(pTree->zTerm, zTerm, nTerm);
|
|
pTree->nTerm = nTerm;
|
|
}else{
|
|
pTree->zTerm = (char *)zTerm;
|
|
pTree->nTerm = nTerm;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
/* If control flows to here, it was not possible to append zTerm to the
|
|
** current node. Create a new node (a right-sibling of the current node).
|
|
** If this is the first node in the tree, the term is added to it.
|
|
**
|
|
** Otherwise, the term is not added to the new node, it is left empty for
|
|
** now. Instead, the term is inserted into the parent of pTree. If pTree
|
|
** has no parent, one is created here.
|
|
*/
|
|
pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize);
|
|
if( !pNew ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(pNew, 0, sizeof(SegmentNode));
|
|
pNew->nData = 1 + FTS3_VARINT_MAX;
|
|
pNew->aData = (char *)&pNew[1];
|
|
|
|
if( pTree ){
|
|
SegmentNode *pParent = pTree->pParent;
|
|
rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
|
|
if( pTree->pParent==0 ){
|
|
pTree->pParent = pParent;
|
|
}
|
|
pTree->pRight = pNew;
|
|
pNew->pLeftmost = pTree->pLeftmost;
|
|
pNew->pParent = pParent;
|
|
pNew->zMalloc = pTree->zMalloc;
|
|
pNew->nMalloc = pTree->nMalloc;
|
|
pTree->zMalloc = 0;
|
|
}else{
|
|
pNew->pLeftmost = pNew;
|
|
rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm);
|
|
}
|
|
|
|
*ppTree = pNew;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Helper function for fts3NodeWrite().
|
|
*/
|
|
static int fts3TreeFinishNode(
|
|
SegmentNode *pTree,
|
|
int iHeight,
|
|
sqlite3_int64 iLeftChild
|
|
){
|
|
int nStart;
|
|
assert( iHeight>=1 && iHeight<128 );
|
|
nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
|
|
pTree->aData[nStart] = (char)iHeight;
|
|
sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
|
|
return nStart;
|
|
}
|
|
|
|
/*
|
|
** Write the buffer for the segment node pTree and all of its peers to the
|
|
** database. Then call this function recursively to write the parent of
|
|
** pTree and its peers to the database.
|
|
**
|
|
** Except, if pTree is a root node, do not write it to the database. Instead,
|
|
** set output variables *paRoot and *pnRoot to contain the root node.
|
|
**
|
|
** If successful, SQLITE_OK is returned and output variable *piLast is
|
|
** set to the largest blockid written to the database (or zero if no
|
|
** blocks were written to the db). Otherwise, an SQLite error code is
|
|
** returned.
|
|
*/
|
|
static int fts3NodeWrite(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
SegmentNode *pTree, /* SegmentNode handle */
|
|
int iHeight, /* Height of this node in tree */
|
|
sqlite3_int64 iLeaf, /* Block id of first leaf node */
|
|
sqlite3_int64 iFree, /* Block id of next free slot in %_segments */
|
|
sqlite3_int64 *piLast, /* OUT: Block id of last entry written */
|
|
char **paRoot, /* OUT: Data for root node */
|
|
int *pnRoot /* OUT: Size of root node in bytes */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
|
|
if( !pTree->pParent ){
|
|
/* Root node of the tree. */
|
|
int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
|
|
*piLast = iFree-1;
|
|
*pnRoot = pTree->nData - nStart;
|
|
*paRoot = &pTree->aData[nStart];
|
|
}else{
|
|
SegmentNode *pIter;
|
|
sqlite3_int64 iNextFree = iFree;
|
|
sqlite3_int64 iNextLeaf = iLeaf;
|
|
for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
|
|
int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
|
|
int nWrite = pIter->nData - nStart;
|
|
|
|
rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
|
|
iNextFree++;
|
|
iNextLeaf += (pIter->nEntry+1);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
assert( iNextLeaf==iFree );
|
|
rc = fts3NodeWrite(
|
|
p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
|
|
);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Free all memory allocations associated with the tree pTree.
|
|
*/
|
|
static void fts3NodeFree(SegmentNode *pTree){
|
|
if( pTree ){
|
|
SegmentNode *p = pTree->pLeftmost;
|
|
fts3NodeFree(p->pParent);
|
|
while( p ){
|
|
SegmentNode *pRight = p->pRight;
|
|
if( p->aData!=(char *)&p[1] ){
|
|
sqlite3_free(p->aData);
|
|
}
|
|
assert( pRight==0 || p->zMalloc==0 );
|
|
sqlite3_free(p->zMalloc);
|
|
sqlite3_free(p);
|
|
p = pRight;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add a term to the segment being constructed by the SegmentWriter object
|
|
** *ppWriter. When adding the first term to a segment, *ppWriter should
|
|
** be passed NULL. This function will allocate a new SegmentWriter object
|
|
** and return it via the input/output variable *ppWriter in this case.
|
|
**
|
|
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
|
|
*/
|
|
static int fts3SegWriterAdd(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */
|
|
int isCopyTerm, /* True if buffer zTerm must be copied */
|
|
const char *zTerm, /* Pointer to buffer containing term */
|
|
int nTerm, /* Size of term in bytes */
|
|
const char *aDoclist, /* Pointer to buffer containing doclist */
|
|
int nDoclist /* Size of doclist in bytes */
|
|
){
|
|
int nPrefix; /* Size of term prefix in bytes */
|
|
int nSuffix; /* Size of term suffix in bytes */
|
|
int nReq; /* Number of bytes required on leaf page */
|
|
int nData;
|
|
SegmentWriter *pWriter = *ppWriter;
|
|
|
|
if( !pWriter ){
|
|
int rc;
|
|
sqlite3_stmt *pStmt;
|
|
|
|
/* Allocate the SegmentWriter structure */
|
|
pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter));
|
|
if( !pWriter ) return SQLITE_NOMEM;
|
|
memset(pWriter, 0, sizeof(SegmentWriter));
|
|
*ppWriter = pWriter;
|
|
|
|
/* Allocate a buffer in which to accumulate data */
|
|
pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize);
|
|
if( !pWriter->aData ) return SQLITE_NOMEM;
|
|
pWriter->nSize = p->nNodeSize;
|
|
|
|
/* Find the next free blockid in the %_segments table */
|
|
rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
pWriter->iFree = sqlite3_column_int64(pStmt, 0);
|
|
pWriter->iFirst = pWriter->iFree;
|
|
}
|
|
rc = sqlite3_reset(pStmt);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
nData = pWriter->nData;
|
|
|
|
nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
|
|
nSuffix = nTerm-nPrefix;
|
|
|
|
/* Figure out how many bytes are required by this new entry */
|
|
nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */
|
|
sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */
|
|
nSuffix + /* Term suffix */
|
|
sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
|
|
nDoclist; /* Doclist data */
|
|
|
|
if( nData>0 && nData+nReq>p->nNodeSize ){
|
|
int rc;
|
|
|
|
/* The current leaf node is full. Write it out to the database. */
|
|
rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* Add the current term to the interior node tree. The term added to
|
|
** the interior tree must:
|
|
**
|
|
** a) be greater than the largest term on the leaf node just written
|
|
** to the database (still available in pWriter->zTerm), and
|
|
**
|
|
** b) be less than or equal to the term about to be added to the new
|
|
** leaf node (zTerm/nTerm).
|
|
**
|
|
** In other words, it must be the prefix of zTerm 1 byte longer than
|
|
** the common prefix (if any) of zTerm and pWriter->zTerm.
|
|
*/
|
|
assert( nPrefix<nTerm );
|
|
rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
nData = 0;
|
|
pWriter->nTerm = 0;
|
|
|
|
nPrefix = 0;
|
|
nSuffix = nTerm;
|
|
nReq = 1 + /* varint containing prefix size */
|
|
sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */
|
|
nTerm + /* Term suffix */
|
|
sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
|
|
nDoclist; /* Doclist data */
|
|
}
|
|
|
|
/* If the buffer currently allocated is too small for this entry, realloc
|
|
** the buffer to make it large enough.
|
|
*/
|
|
if( nReq>pWriter->nSize ){
|
|
char *aNew = sqlite3_realloc(pWriter->aData, nReq);
|
|
if( !aNew ) return SQLITE_NOMEM;
|
|
pWriter->aData = aNew;
|
|
pWriter->nSize = nReq;
|
|
}
|
|
assert( nData+nReq<=pWriter->nSize );
|
|
|
|
/* Append the prefix-compressed term and doclist to the buffer. */
|
|
nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
|
|
nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
|
|
memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
|
|
nData += nSuffix;
|
|
nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
|
|
memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
|
|
pWriter->nData = nData + nDoclist;
|
|
|
|
/* Save the current term so that it can be used to prefix-compress the next.
|
|
** If the isCopyTerm parameter is true, then the buffer pointed to by
|
|
** zTerm is transient, so take a copy of the term data. Otherwise, just
|
|
** store a copy of the pointer.
|
|
*/
|
|
if( isCopyTerm ){
|
|
if( nTerm>pWriter->nMalloc ){
|
|
char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2);
|
|
if( !zNew ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pWriter->nMalloc = nTerm*2;
|
|
pWriter->zMalloc = zNew;
|
|
pWriter->zTerm = zNew;
|
|
}
|
|
assert( pWriter->zTerm==pWriter->zMalloc );
|
|
memcpy(pWriter->zTerm, zTerm, nTerm);
|
|
}else{
|
|
pWriter->zTerm = (char *)zTerm;
|
|
}
|
|
pWriter->nTerm = nTerm;
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Flush all data associated with the SegmentWriter object pWriter to the
|
|
** database. This function must be called after all terms have been added
|
|
** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
|
|
** returned. Otherwise, an SQLite error code.
|
|
*/
|
|
static int fts3SegWriterFlush(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
SegmentWriter *pWriter, /* SegmentWriter to flush to the db */
|
|
int iLevel, /* Value for 'level' column of %_segdir */
|
|
int iIdx /* Value for 'idx' column of %_segdir */
|
|
){
|
|
int rc; /* Return code */
|
|
if( pWriter->pTree ){
|
|
sqlite3_int64 iLast = 0; /* Largest block id written to database */
|
|
sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */
|
|
char *zRoot = NULL; /* Pointer to buffer containing root node */
|
|
int nRoot = 0; /* Size of buffer zRoot */
|
|
|
|
iLastLeaf = pWriter->iFree;
|
|
rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3NodeWrite(p, pWriter->pTree, 1,
|
|
pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3WriteSegdir(
|
|
p, iLevel, iIdx, pWriter->iFirst, iLastLeaf, iLast, zRoot, nRoot);
|
|
}
|
|
}else{
|
|
/* The entire tree fits on the root node. Write it to the segdir table. */
|
|
rc = fts3WriteSegdir(
|
|
p, iLevel, iIdx, 0, 0, 0, pWriter->aData, pWriter->nData);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Release all memory held by the SegmentWriter object passed as the
|
|
** first argument.
|
|
*/
|
|
static void fts3SegWriterFree(SegmentWriter *pWriter){
|
|
if( pWriter ){
|
|
sqlite3_free(pWriter->aData);
|
|
sqlite3_free(pWriter->zMalloc);
|
|
fts3NodeFree(pWriter->pTree);
|
|
sqlite3_free(pWriter);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The first value in the apVal[] array is assumed to contain an integer.
|
|
** This function tests if there exist any documents with docid values that
|
|
** are different from that integer. i.e. if deleting the document with docid
|
|
** pRowid would mean the FTS3 table were empty.
|
|
**
|
|
** If successful, *pisEmpty is set to true if the table is empty except for
|
|
** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
|
|
** error occurs, an SQLite error code is returned.
|
|
*/
|
|
static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){
|
|
sqlite3_stmt *pStmt;
|
|
int rc;
|
|
rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid);
|
|
if( rc==SQLITE_OK ){
|
|
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
*pisEmpty = sqlite3_column_int(pStmt, 0);
|
|
}
|
|
rc = sqlite3_reset(pStmt);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Set *pnMax to the largest segment level in the database for the index
|
|
** iIndex.
|
|
**
|
|
** Segment levels are stored in the 'level' column of the %_segdir table.
|
|
**
|
|
** Return SQLITE_OK if successful, or an SQLite error code if not.
|
|
*/
|
|
static int fts3SegmentMaxLevel(Fts3Table *p, int iIndex, int *pnMax){
|
|
sqlite3_stmt *pStmt;
|
|
int rc;
|
|
assert( iIndex>=0 && iIndex<p->nIndex );
|
|
|
|
/* Set pStmt to the compiled version of:
|
|
**
|
|
** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
|
|
**
|
|
** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
|
|
*/
|
|
rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
sqlite3_bind_int(pStmt, 1, iIndex*FTS3_SEGDIR_MAXLEVEL);
|
|
sqlite3_bind_int(pStmt, 2, (iIndex+1)*FTS3_SEGDIR_MAXLEVEL - 1);
|
|
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
*pnMax = sqlite3_column_int(pStmt, 0);
|
|
}
|
|
return sqlite3_reset(pStmt);
|
|
}
|
|
|
|
/*
|
|
** This function is used after merging multiple segments into a single large
|
|
** segment to delete the old, now redundant, segment b-trees. Specifically,
|
|
** it:
|
|
**
|
|
** 1) Deletes all %_segments entries for the segments associated with
|
|
** each of the SegReader objects in the array passed as the third
|
|
** argument, and
|
|
**
|
|
** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
|
|
** entries regardless of level if (iLevel<0).
|
|
**
|
|
** SQLITE_OK is returned if successful, otherwise an SQLite error code.
|
|
*/
|
|
static int fts3DeleteSegdir(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
int iIndex, /* Index for p->aIndex */
|
|
int iLevel, /* Level of %_segdir entries to delete */
|
|
Fts3SegReader **apSegment, /* Array of SegReader objects */
|
|
int nReader /* Size of array apSegment */
|
|
){
|
|
int rc; /* Return Code */
|
|
int i; /* Iterator variable */
|
|
sqlite3_stmt *pDelete; /* SQL statement to delete rows */
|
|
|
|
rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
|
|
for(i=0; rc==SQLITE_OK && i<nReader; i++){
|
|
Fts3SegReader *pSegment = apSegment[i];
|
|
if( pSegment->iStartBlock ){
|
|
sqlite3_bind_int64(pDelete, 1, pSegment->iStartBlock);
|
|
sqlite3_bind_int64(pDelete, 2, pSegment->iEndBlock);
|
|
sqlite3_step(pDelete);
|
|
rc = sqlite3_reset(pDelete);
|
|
}
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
|
|
if( iLevel==FTS3_SEGCURSOR_ALL ){
|
|
rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_int(pDelete, 1, iIndex*FTS3_SEGDIR_MAXLEVEL);
|
|
sqlite3_bind_int(pDelete, 2, (iIndex+1) * FTS3_SEGDIR_MAXLEVEL - 1);
|
|
}
|
|
}else{
|
|
rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_int(pDelete, 1, iIndex*FTS3_SEGDIR_MAXLEVEL + iLevel);
|
|
}
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_step(pDelete);
|
|
rc = sqlite3_reset(pDelete);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** When this function is called, buffer *ppList (size *pnList bytes) contains
|
|
** a position list that may (or may not) feature multiple columns. This
|
|
** function adjusts the pointer *ppList and the length *pnList so that they
|
|
** identify the subset of the position list that corresponds to column iCol.
|
|
**
|
|
** If there are no entries in the input position list for column iCol, then
|
|
** *pnList is set to zero before returning.
|
|
*/
|
|
static void fts3ColumnFilter(
|
|
int iCol, /* Column to filter on */
|
|
char **ppList, /* IN/OUT: Pointer to position list */
|
|
int *pnList /* IN/OUT: Size of buffer *ppList in bytes */
|
|
){
|
|
char *pList = *ppList;
|
|
int nList = *pnList;
|
|
char *pEnd = &pList[nList];
|
|
int iCurrent = 0;
|
|
char *p = pList;
|
|
|
|
assert( iCol>=0 );
|
|
while( 1 ){
|
|
char c = 0;
|
|
while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
|
|
|
|
if( iCol==iCurrent ){
|
|
nList = (int)(p - pList);
|
|
break;
|
|
}
|
|
|
|
nList -= (int)(p - pList);
|
|
pList = p;
|
|
if( nList==0 ){
|
|
break;
|
|
}
|
|
p = &pList[1];
|
|
p += sqlite3Fts3GetVarint32(p, &iCurrent);
|
|
}
|
|
|
|
*ppList = pList;
|
|
*pnList = nList;
|
|
}
|
|
|
|
int sqlite3Fts3MsrIncrStart(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
Fts3MultiSegReader *pCsr, /* Cursor object */
|
|
int iCol, /* Column to match on. */
|
|
const char *zTerm, /* Term to iterate through a doclist for */
|
|
int nTerm /* Number of bytes in zTerm */
|
|
){
|
|
int i;
|
|
int nSegment = pCsr->nSegment;
|
|
int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
|
|
p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
|
|
);
|
|
|
|
assert( pCsr->pFilter==0 );
|
|
assert( zTerm && nTerm>0 );
|
|
|
|
/* Advance each segment iterator until it points to the term zTerm/nTerm. */
|
|
for(i=0; i<nSegment; i++){
|
|
Fts3SegReader *pSeg = pCsr->apSegment[i];
|
|
do {
|
|
int rc = fts3SegReaderNext(p, pSeg, 1);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}while( fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 );
|
|
}
|
|
fts3SegReaderSort(pCsr->apSegment, nSegment, nSegment, fts3SegReaderCmp);
|
|
|
|
/* Determine how many of the segments actually point to zTerm/nTerm. */
|
|
for(i=0; i<nSegment; i++){
|
|
Fts3SegReader *pSeg = pCsr->apSegment[i];
|
|
if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){
|
|
break;
|
|
}
|
|
}
|
|
pCsr->nAdvance = i;
|
|
|
|
/* Advance each of the segments to point to the first docid. */
|
|
for(i=0; i<pCsr->nAdvance; i++){
|
|
int rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
fts3SegReaderSort(pCsr->apSegment, i, i, xCmp);
|
|
|
|
assert( iCol<0 || iCol<p->nColumn );
|
|
pCsr->iColFilter = iCol;
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
int sqlite3Fts3MsrIncrNext(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
|
|
sqlite3_int64 *piDocid, /* OUT: Docid value */
|
|
char **paPoslist, /* OUT: Pointer to position list */
|
|
int *pnPoslist /* OUT: Size of position list in bytes */
|
|
){
|
|
int nMerge = pMsr->nAdvance;
|
|
Fts3SegReader **apSegment = pMsr->apSegment;
|
|
int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
|
|
p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
|
|
);
|
|
|
|
if( nMerge==0 ){
|
|
*paPoslist = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
while( 1 ){
|
|
Fts3SegReader *pSeg;
|
|
pSeg = pMsr->apSegment[0];
|
|
|
|
if( pSeg->pOffsetList==0 ){
|
|
*paPoslist = 0;
|
|
break;
|
|
}else{
|
|
int rc;
|
|
char *pList;
|
|
int nList;
|
|
int j;
|
|
sqlite3_int64 iDocid = apSegment[0]->iDocid;
|
|
|
|
rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
|
|
j = 1;
|
|
while( rc==SQLITE_OK
|
|
&& j<nMerge
|
|
&& apSegment[j]->pOffsetList
|
|
&& apSegment[j]->iDocid==iDocid
|
|
){
|
|
rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
|
|
j++;
|
|
}
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);
|
|
|
|
if( pMsr->iColFilter>=0 ){
|
|
fts3ColumnFilter(pMsr->iColFilter, &pList, &nList);
|
|
}
|
|
|
|
if( nList>0 ){
|
|
*piDocid = iDocid;
|
|
*paPoslist = pList;
|
|
*pnPoslist = nList;
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
int sqlite3Fts3SegReaderStart(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
Fts3MultiSegReader *pCsr, /* Cursor object */
|
|
Fts3SegFilter *pFilter /* Restrictions on range of iteration */
|
|
){
|
|
int i;
|
|
|
|
/* Initialize the cursor object */
|
|
pCsr->pFilter = pFilter;
|
|
|
|
/* If the Fts3SegFilter defines a specific term (or term prefix) to search
|
|
** for, then advance each segment iterator until it points to a term of
|
|
** equal or greater value than the specified term. This prevents many
|
|
** unnecessary merge/sort operations for the case where single segment
|
|
** b-tree leaf nodes contain more than one term.
|
|
*/
|
|
for(i=0; i<pCsr->nSegment; i++){
|
|
int nTerm = pFilter->nTerm;
|
|
const char *zTerm = pFilter->zTerm;
|
|
Fts3SegReader *pSeg = pCsr->apSegment[i];
|
|
do {
|
|
int rc = fts3SegReaderNext(p, pSeg, 0);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}while( zTerm && fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 );
|
|
}
|
|
fts3SegReaderSort(
|
|
pCsr->apSegment, pCsr->nSegment, pCsr->nSegment, fts3SegReaderCmp);
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
int sqlite3Fts3SegReaderStep(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
Fts3MultiSegReader *pCsr /* Cursor object */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
|
|
int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
|
|
int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
|
|
int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
|
|
int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
|
|
int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);
|
|
|
|
Fts3SegReader **apSegment = pCsr->apSegment;
|
|
int nSegment = pCsr->nSegment;
|
|
Fts3SegFilter *pFilter = pCsr->pFilter;
|
|
int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
|
|
p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
|
|
);
|
|
|
|
if( pCsr->nSegment==0 ) return SQLITE_OK;
|
|
|
|
do {
|
|
int nMerge;
|
|
int i;
|
|
|
|
/* Advance the first pCsr->nAdvance entries in the apSegment[] array
|
|
** forward. Then sort the list in order of current term again.
|
|
*/
|
|
for(i=0; i<pCsr->nAdvance; i++){
|
|
rc = fts3SegReaderNext(p, apSegment[i], 0);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
|
|
pCsr->nAdvance = 0;
|
|
|
|
/* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
|
|
assert( rc==SQLITE_OK );
|
|
if( apSegment[0]->aNode==0 ) break;
|
|
|
|
pCsr->nTerm = apSegment[0]->nTerm;
|
|
pCsr->zTerm = apSegment[0]->zTerm;
|
|
|
|
/* If this is a prefix-search, and if the term that apSegment[0] points
|
|
** to does not share a suffix with pFilter->zTerm/nTerm, then all
|
|
** required callbacks have been made. In this case exit early.
|
|
**
|
|
** Similarly, if this is a search for an exact match, and the first term
|
|
** of segment apSegment[0] is not a match, exit early.
|
|
*/
|
|
if( pFilter->zTerm && !isScan ){
|
|
if( pCsr->nTerm<pFilter->nTerm
|
|
|| (!isPrefix && pCsr->nTerm>pFilter->nTerm)
|
|
|| memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm)
|
|
){
|
|
break;
|
|
}
|
|
}
|
|
|
|
nMerge = 1;
|
|
while( nMerge<nSegment
|
|
&& apSegment[nMerge]->aNode
|
|
&& apSegment[nMerge]->nTerm==pCsr->nTerm
|
|
&& 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
|
|
){
|
|
nMerge++;
|
|
}
|
|
|
|
assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
|
|
if( nMerge==1
|
|
&& !isIgnoreEmpty
|
|
&& (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
|
|
){
|
|
pCsr->aDoclist = apSegment[0]->aDoclist;
|
|
pCsr->nDoclist = apSegment[0]->nDoclist;
|
|
rc = SQLITE_ROW;
|
|
}else{
|
|
int nDoclist = 0; /* Size of doclist */
|
|
sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */
|
|
|
|
/* The current term of the first nMerge entries in the array
|
|
** of Fts3SegReader objects is the same. The doclists must be merged
|
|
** and a single term returned with the merged doclist.
|
|
*/
|
|
for(i=0; i<nMerge; i++){
|
|
fts3SegReaderFirstDocid(p, apSegment[i]);
|
|
}
|
|
fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
|
|
while( apSegment[0]->pOffsetList ){
|
|
int j; /* Number of segments that share a docid */
|
|
char *pList;
|
|
int nList;
|
|
int nByte;
|
|
sqlite3_int64 iDocid = apSegment[0]->iDocid;
|
|
fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
|
|
j = 1;
|
|
while( j<nMerge
|
|
&& apSegment[j]->pOffsetList
|
|
&& apSegment[j]->iDocid==iDocid
|
|
){
|
|
fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
|
|
j++;
|
|
}
|
|
|
|
if( isColFilter ){
|
|
fts3ColumnFilter(pFilter->iCol, &pList, &nList);
|
|
}
|
|
|
|
if( !isIgnoreEmpty || nList>0 ){
|
|
|
|
/* Calculate the 'docid' delta value to write into the merged
|
|
** doclist. */
|
|
sqlite3_int64 iDelta;
|
|
if( p->bDescIdx && nDoclist>0 ){
|
|
iDelta = iPrev - iDocid;
|
|
}else{
|
|
iDelta = iDocid - iPrev;
|
|
}
|
|
assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) );
|
|
assert( nDoclist>0 || iDelta==iDocid );
|
|
|
|
nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);
|
|
if( nDoclist+nByte>pCsr->nBuffer ){
|
|
char *aNew;
|
|
pCsr->nBuffer = (nDoclist+nByte)*2;
|
|
aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer);
|
|
if( !aNew ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pCsr->aBuffer = aNew;
|
|
}
|
|
nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta);
|
|
iPrev = iDocid;
|
|
if( isRequirePos ){
|
|
memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
|
|
nDoclist += nList;
|
|
pCsr->aBuffer[nDoclist++] = '\0';
|
|
}
|
|
}
|
|
|
|
fts3SegReaderSort(apSegment, nMerge, j, xCmp);
|
|
}
|
|
if( nDoclist>0 ){
|
|
pCsr->aDoclist = pCsr->aBuffer;
|
|
pCsr->nDoclist = nDoclist;
|
|
rc = SQLITE_ROW;
|
|
}
|
|
}
|
|
pCsr->nAdvance = nMerge;
|
|
}while( rc==SQLITE_OK );
|
|
|
|
return rc;
|
|
}
|
|
|
|
|
|
void sqlite3Fts3SegReaderFinish(
|
|
Fts3MultiSegReader *pCsr /* Cursor object */
|
|
){
|
|
if( pCsr ){
|
|
int i;
|
|
for(i=0; i<pCsr->nSegment; i++){
|
|
sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
|
|
}
|
|
sqlite3_free(pCsr->apSegment);
|
|
sqlite3_free(pCsr->aBuffer);
|
|
|
|
pCsr->nSegment = 0;
|
|
pCsr->apSegment = 0;
|
|
pCsr->aBuffer = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Merge all level iLevel segments in the database into a single
|
|
** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
|
|
** single segment with a level equal to the numerically largest level
|
|
** currently present in the database.
|
|
**
|
|
** If this function is called with iLevel<0, but there is only one
|
|
** segment in the database, SQLITE_DONE is returned immediately.
|
|
** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
|
|
** an SQLite error code is returned.
|
|
*/
|
|
static int fts3SegmentMerge(Fts3Table *p, int iIndex, int iLevel){
|
|
int rc; /* Return code */
|
|
int iIdx = 0; /* Index of new segment */
|
|
int iNewLevel = 0; /* Level/index to create new segment at */
|
|
SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */
|
|
Fts3SegFilter filter; /* Segment term filter condition */
|
|
Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */
|
|
int bIgnoreEmpty = 0; /* True to ignore empty segments */
|
|
|
|
assert( iLevel==FTS3_SEGCURSOR_ALL
|
|
|| iLevel==FTS3_SEGCURSOR_PENDING
|
|
|| iLevel>=0
|
|
);
|
|
assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
|
|
assert( iIndex>=0 && iIndex<p->nIndex );
|
|
|
|
rc = sqlite3Fts3SegReaderCursor(p, iIndex, iLevel, 0, 0, 1, 0, &csr);
|
|
if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;
|
|
|
|
if( iLevel==FTS3_SEGCURSOR_ALL ){
|
|
/* This call is to merge all segments in the database to a single
|
|
** segment. The level of the new segment is equal to the the numerically
|
|
** greatest segment level currently present in the database for this
|
|
** index. The idx of the new segment is always 0. */
|
|
if( csr.nSegment==1 ){
|
|
rc = SQLITE_DONE;
|
|
goto finished;
|
|
}
|
|
rc = fts3SegmentMaxLevel(p, iIndex, &iNewLevel);
|
|
bIgnoreEmpty = 1;
|
|
|
|
}else if( iLevel==FTS3_SEGCURSOR_PENDING ){
|
|
iNewLevel = iIndex * FTS3_SEGDIR_MAXLEVEL;
|
|
rc = fts3AllocateSegdirIdx(p, iIndex, 0, &iIdx);
|
|
}else{
|
|
/* This call is to merge all segments at level iLevel. find the next
|
|
** available segment index at level iLevel+1. The call to
|
|
** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
|
|
** a single iLevel+2 segment if necessary. */
|
|
rc = fts3AllocateSegdirIdx(p, iIndex, iLevel+1, &iIdx);
|
|
iNewLevel = iIndex * FTS3_SEGDIR_MAXLEVEL + iLevel+1;
|
|
}
|
|
if( rc!=SQLITE_OK ) goto finished;
|
|
assert( csr.nSegment>0 );
|
|
assert( iNewLevel>=(iIndex*FTS3_SEGDIR_MAXLEVEL) );
|
|
assert( iNewLevel<((iIndex+1)*FTS3_SEGDIR_MAXLEVEL) );
|
|
|
|
memset(&filter, 0, sizeof(Fts3SegFilter));
|
|
filter.flags = FTS3_SEGMENT_REQUIRE_POS;
|
|
filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
|
|
|
|
rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
|
|
while( SQLITE_OK==rc ){
|
|
rc = sqlite3Fts3SegReaderStep(p, &csr);
|
|
if( rc!=SQLITE_ROW ) break;
|
|
rc = fts3SegWriterAdd(p, &pWriter, 1,
|
|
csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
|
|
}
|
|
if( rc!=SQLITE_OK ) goto finished;
|
|
assert( pWriter );
|
|
|
|
if( iLevel!=FTS3_SEGCURSOR_PENDING ){
|
|
rc = fts3DeleteSegdir(p, iIndex, iLevel, csr.apSegment, csr.nSegment);
|
|
if( rc!=SQLITE_OK ) goto finished;
|
|
}
|
|
rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);
|
|
|
|
finished:
|
|
fts3SegWriterFree(pWriter);
|
|
sqlite3Fts3SegReaderFinish(&csr);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Flush the contents of pendingTerms to level 0 segments.
|
|
*/
|
|
int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
|
|
int rc = SQLITE_OK;
|
|
int i;
|
|
for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
|
|
rc = fts3SegmentMerge(p, i, FTS3_SEGCURSOR_PENDING);
|
|
if( rc==SQLITE_DONE ) rc = SQLITE_OK;
|
|
}
|
|
sqlite3Fts3PendingTermsClear(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Encode N integers as varints into a blob.
|
|
*/
|
|
static void fts3EncodeIntArray(
|
|
int N, /* The number of integers to encode */
|
|
u32 *a, /* The integer values */
|
|
char *zBuf, /* Write the BLOB here */
|
|
int *pNBuf /* Write number of bytes if zBuf[] used here */
|
|
){
|
|
int i, j;
|
|
for(i=j=0; i<N; i++){
|
|
j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]);
|
|
}
|
|
*pNBuf = j;
|
|
}
|
|
|
|
/*
|
|
** Decode a blob of varints into N integers
|
|
*/
|
|
static void fts3DecodeIntArray(
|
|
int N, /* The number of integers to decode */
|
|
u32 *a, /* Write the integer values */
|
|
const char *zBuf, /* The BLOB containing the varints */
|
|
int nBuf /* size of the BLOB */
|
|
){
|
|
int i, j;
|
|
UNUSED_PARAMETER(nBuf);
|
|
for(i=j=0; i<N; i++){
|
|
sqlite3_int64 x;
|
|
j += sqlite3Fts3GetVarint(&zBuf[j], &x);
|
|
assert(j<=nBuf);
|
|
a[i] = (u32)(x & 0xffffffff);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Insert the sizes (in tokens) for each column of the document
|
|
** with docid equal to p->iPrevDocid. The sizes are encoded as
|
|
** a blob of varints.
|
|
*/
|
|
static void fts3InsertDocsize(
|
|
int *pRC, /* Result code */
|
|
Fts3Table *p, /* Table into which to insert */
|
|
u32 *aSz /* Sizes of each column */
|
|
){
|
|
char *pBlob; /* The BLOB encoding of the document size */
|
|
int nBlob; /* Number of bytes in the BLOB */
|
|
sqlite3_stmt *pStmt; /* Statement used to insert the encoding */
|
|
int rc; /* Result code from subfunctions */
|
|
|
|
if( *pRC ) return;
|
|
pBlob = sqlite3_malloc( 10*p->nColumn );
|
|
if( pBlob==0 ){
|
|
*pRC = SQLITE_NOMEM;
|
|
return;
|
|
}
|
|
fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
|
|
rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
|
|
if( rc ){
|
|
sqlite3_free(pBlob);
|
|
*pRC = rc;
|
|
return;
|
|
}
|
|
sqlite3_bind_int64(pStmt, 1, p->iPrevDocid);
|
|
sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free);
|
|
sqlite3_step(pStmt);
|
|
*pRC = sqlite3_reset(pStmt);
|
|
}
|
|
|
|
/*
|
|
** Record 0 of the %_stat table contains a blob consisting of N varints,
|
|
** where N is the number of user defined columns in the fts3 table plus
|
|
** two. If nCol is the number of user defined columns, then values of the
|
|
** varints are set as follows:
|
|
**
|
|
** Varint 0: Total number of rows in the table.
|
|
**
|
|
** Varint 1..nCol: For each column, the total number of tokens stored in
|
|
** the column for all rows of the table.
|
|
**
|
|
** Varint 1+nCol: The total size, in bytes, of all text values in all
|
|
** columns of all rows of the table.
|
|
**
|
|
*/
|
|
static void fts3UpdateDocTotals(
|
|
int *pRC, /* The result code */
|
|
Fts3Table *p, /* Table being updated */
|
|
u32 *aSzIns, /* Size increases */
|
|
u32 *aSzDel, /* Size decreases */
|
|
int nChng /* Change in the number of documents */
|
|
){
|
|
char *pBlob; /* Storage for BLOB written into %_stat */
|
|
int nBlob; /* Size of BLOB written into %_stat */
|
|
u32 *a; /* Array of integers that becomes the BLOB */
|
|
sqlite3_stmt *pStmt; /* Statement for reading and writing */
|
|
int i; /* Loop counter */
|
|
int rc; /* Result code from subfunctions */
|
|
|
|
const int nStat = p->nColumn+2;
|
|
|
|
if( *pRC ) return;
|
|
a = sqlite3_malloc( (sizeof(u32)+10)*nStat );
|
|
if( a==0 ){
|
|
*pRC = SQLITE_NOMEM;
|
|
return;
|
|
}
|
|
pBlob = (char*)&a[nStat];
|
|
rc = fts3SqlStmt(p, SQL_SELECT_DOCTOTAL, &pStmt, 0);
|
|
if( rc ){
|
|
sqlite3_free(a);
|
|
*pRC = rc;
|
|
return;
|
|
}
|
|
if( sqlite3_step(pStmt)==SQLITE_ROW ){
|
|
fts3DecodeIntArray(nStat, a,
|
|
sqlite3_column_blob(pStmt, 0),
|
|
sqlite3_column_bytes(pStmt, 0));
|
|
}else{
|
|
memset(a, 0, sizeof(u32)*(nStat) );
|
|
}
|
|
sqlite3_reset(pStmt);
|
|
if( nChng<0 && a[0]<(u32)(-nChng) ){
|
|
a[0] = 0;
|
|
}else{
|
|
a[0] += nChng;
|
|
}
|
|
for(i=0; i<p->nColumn+1; i++){
|
|
u32 x = a[i+1];
|
|
if( x+aSzIns[i] < aSzDel[i] ){
|
|
x = 0;
|
|
}else{
|
|
x = x + aSzIns[i] - aSzDel[i];
|
|
}
|
|
a[i+1] = x;
|
|
}
|
|
fts3EncodeIntArray(nStat, a, pBlob, &nBlob);
|
|
rc = fts3SqlStmt(p, SQL_REPLACE_DOCTOTAL, &pStmt, 0);
|
|
if( rc ){
|
|
sqlite3_free(a);
|
|
*pRC = rc;
|
|
return;
|
|
}
|
|
sqlite3_bind_blob(pStmt, 1, pBlob, nBlob, SQLITE_STATIC);
|
|
sqlite3_step(pStmt);
|
|
*pRC = sqlite3_reset(pStmt);
|
|
sqlite3_free(a);
|
|
}
|
|
|
|
static int fts3DoOptimize(Fts3Table *p, int bReturnDone){
|
|
int i;
|
|
int bSeenDone = 0;
|
|
int rc = SQLITE_OK;
|
|
for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
|
|
rc = fts3SegmentMerge(p, i, FTS3_SEGCURSOR_ALL);
|
|
if( rc==SQLITE_DONE ){
|
|
bSeenDone = 1;
|
|
rc = SQLITE_OK;
|
|
}
|
|
}
|
|
sqlite3Fts3SegmentsClose(p);
|
|
sqlite3Fts3PendingTermsClear(p);
|
|
|
|
return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc;
|
|
}
|
|
|
|
/*
|
|
** Handle a 'special' INSERT of the form:
|
|
**
|
|
** "INSERT INTO tbl(tbl) VALUES(<expr>)"
|
|
**
|
|
** Argument pVal contains the result of <expr>. Currently the only
|
|
** meaningful value to insert is the text 'optimize'.
|
|
*/
|
|
static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
|
|
int rc; /* Return Code */
|
|
const char *zVal = (const char *)sqlite3_value_text(pVal);
|
|
int nVal = sqlite3_value_bytes(pVal);
|
|
|
|
if( !zVal ){
|
|
return SQLITE_NOMEM;
|
|
}else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
|
|
rc = fts3DoOptimize(p, 0);
|
|
#ifdef SQLITE_TEST
|
|
}else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
|
|
p->nNodeSize = atoi(&zVal[9]);
|
|
rc = SQLITE_OK;
|
|
}else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
|
|
p->nMaxPendingData = atoi(&zVal[11]);
|
|
rc = SQLITE_OK;
|
|
#endif
|
|
}else{
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Delete all cached deferred doclists. Deferred doclists are cached
|
|
** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
|
|
*/
|
|
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
|
|
Fts3DeferredToken *pDef;
|
|
for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
|
|
fts3PendingListDelete(pDef->pList);
|
|
pDef->pList = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Free all entries in the pCsr->pDeffered list. Entries are added to
|
|
** this list using sqlite3Fts3DeferToken().
|
|
*/
|
|
void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
|
|
Fts3DeferredToken *pDef;
|
|
Fts3DeferredToken *pNext;
|
|
for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
|
|
pNext = pDef->pNext;
|
|
fts3PendingListDelete(pDef->pList);
|
|
sqlite3_free(pDef);
|
|
}
|
|
pCsr->pDeferred = 0;
|
|
}
|
|
|
|
/*
|
|
** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
|
|
** based on the row that pCsr currently points to.
|
|
**
|
|
** A deferred-doclist is like any other doclist with position information
|
|
** included, except that it only contains entries for a single row of the
|
|
** table, not for all rows.
|
|
*/
|
|
int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){
|
|
int rc = SQLITE_OK; /* Return code */
|
|
if( pCsr->pDeferred ){
|
|
int i; /* Used to iterate through table columns */
|
|
sqlite3_int64 iDocid; /* Docid of the row pCsr points to */
|
|
Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */
|
|
|
|
Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
|
|
sqlite3_tokenizer *pT = p->pTokenizer;
|
|
sqlite3_tokenizer_module const *pModule = pT->pModule;
|
|
|
|
assert( pCsr->isRequireSeek==0 );
|
|
iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
|
|
|
|
for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
|
|
const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
|
|
sqlite3_tokenizer_cursor *pTC = 0;
|
|
|
|
rc = pModule->xOpen(pT, zText, -1, &pTC);
|
|
while( rc==SQLITE_OK ){
|
|
char const *zToken; /* Buffer containing token */
|
|
int nToken; /* Number of bytes in token */
|
|
int iDum1, iDum2; /* Dummy variables */
|
|
int iPos; /* Position of token in zText */
|
|
|
|
pTC->pTokenizer = pT;
|
|
rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
|
|
for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
|
|
Fts3PhraseToken *pPT = pDef->pToken;
|
|
if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
|
|
&& (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
|
|
&& (0==memcmp(zToken, pPT->z, pPT->n))
|
|
){
|
|
fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
|
|
}
|
|
}
|
|
}
|
|
if( pTC ) pModule->xClose(pTC);
|
|
if( rc==SQLITE_DONE ) rc = SQLITE_OK;
|
|
}
|
|
|
|
for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
|
|
if( pDef->pList ){
|
|
rc = fts3PendingListAppendVarint(&pDef->pList, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int sqlite3Fts3DeferredTokenList(
|
|
Fts3DeferredToken *p,
|
|
char **ppData,
|
|
int *pnData
|
|
){
|
|
char *pRet;
|
|
int nSkip;
|
|
sqlite3_int64 dummy;
|
|
|
|
*ppData = 0;
|
|
*pnData = 0;
|
|
|
|
if( p->pList==0 ){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
pRet = (char *)sqlite3_malloc(p->pList->nData);
|
|
if( !pRet ) return SQLITE_NOMEM;
|
|
|
|
nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
|
|
*pnData = p->pList->nData - nSkip;
|
|
*ppData = pRet;
|
|
|
|
memcpy(pRet, &p->pList->aData[nSkip], *pnData);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Add an entry for token pToken to the pCsr->pDeferred list.
|
|
*/
|
|
int sqlite3Fts3DeferToken(
|
|
Fts3Cursor *pCsr, /* Fts3 table cursor */
|
|
Fts3PhraseToken *pToken, /* Token to defer */
|
|
int iCol /* Column that token must appear in (or -1) */
|
|
){
|
|
Fts3DeferredToken *pDeferred;
|
|
pDeferred = sqlite3_malloc(sizeof(*pDeferred));
|
|
if( !pDeferred ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(pDeferred, 0, sizeof(*pDeferred));
|
|
pDeferred->pToken = pToken;
|
|
pDeferred->pNext = pCsr->pDeferred;
|
|
pDeferred->iCol = iCol;
|
|
pCsr->pDeferred = pDeferred;
|
|
|
|
assert( pToken->pDeferred==0 );
|
|
pToken->pDeferred = pDeferred;
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** SQLite value pRowid contains the rowid of a row that may or may not be
|
|
** present in the FTS3 table. If it is, delete it and adjust the contents
|
|
** of subsiduary data structures accordingly.
|
|
*/
|
|
static int fts3DeleteByRowid(
|
|
Fts3Table *p,
|
|
sqlite3_value *pRowid,
|
|
int *pnDoc,
|
|
u32 *aSzDel
|
|
){
|
|
int isEmpty = 0;
|
|
int rc = fts3IsEmpty(p, pRowid, &isEmpty);
|
|
if( rc==SQLITE_OK ){
|
|
if( isEmpty ){
|
|
/* Deleting this row means the whole table is empty. In this case
|
|
** delete the contents of all three tables and throw away any
|
|
** data in the pendingTerms hash table. */
|
|
rc = fts3DeleteAll(p);
|
|
*pnDoc = *pnDoc - 1;
|
|
}else{
|
|
sqlite3_int64 iRemove = sqlite3_value_int64(pRowid);
|
|
rc = fts3PendingTermsDocid(p, iRemove);
|
|
fts3DeleteTerms(&rc, p, pRowid, aSzDel);
|
|
fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid);
|
|
if( sqlite3_changes(p->db) ) *pnDoc = *pnDoc - 1;
|
|
if( p->bHasDocsize ){
|
|
fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid);
|
|
}
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function does the work for the xUpdate method of FTS3 virtual
|
|
** tables.
|
|
*/
|
|
int sqlite3Fts3UpdateMethod(
|
|
sqlite3_vtab *pVtab, /* FTS3 vtab object */
|
|
int nArg, /* Size of argument array */
|
|
sqlite3_value **apVal, /* Array of arguments */
|
|
sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
|
|
){
|
|
Fts3Table *p = (Fts3Table *)pVtab;
|
|
int rc = SQLITE_OK; /* Return Code */
|
|
int isRemove = 0; /* True for an UPDATE or DELETE */
|
|
sqlite3_int64 iRemove = 0; /* Rowid removed by UPDATE or DELETE */
|
|
u32 *aSzIns = 0; /* Sizes of inserted documents */
|
|
u32 *aSzDel; /* Sizes of deleted documents */
|
|
int nChng = 0; /* Net change in number of documents */
|
|
int bInsertDone = 0;
|
|
|
|
assert( p->pSegments==0 );
|
|
|
|
/* Check for a "special" INSERT operation. One of the form:
|
|
**
|
|
** INSERT INTO xyz(xyz) VALUES('command');
|
|
*/
|
|
if( nArg>1
|
|
&& sqlite3_value_type(apVal[0])==SQLITE_NULL
|
|
&& sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL
|
|
){
|
|
rc = fts3SpecialInsert(p, apVal[p->nColumn+2]);
|
|
goto update_out;
|
|
}
|
|
|
|
/* Allocate space to hold the change in document sizes */
|
|
aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*(p->nColumn+1)*2 );
|
|
if( aSzIns==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
goto update_out;
|
|
}
|
|
aSzDel = &aSzIns[p->nColumn+1];
|
|
memset(aSzIns, 0, sizeof(aSzIns[0])*(p->nColumn+1)*2);
|
|
|
|
/* If this is an INSERT operation, or an UPDATE that modifies the rowid
|
|
** value, then this operation requires constraint handling.
|
|
**
|
|
** If the on-conflict mode is REPLACE, this means that the existing row
|
|
** should be deleted from the database before inserting the new row. Or,
|
|
** if the on-conflict mode is other than REPLACE, then this method must
|
|
** detect the conflict and return SQLITE_CONSTRAINT before beginning to
|
|
** modify the database file.
|
|
*/
|
|
if( nArg>1 ){
|
|
/* Find the value object that holds the new rowid value. */
|
|
sqlite3_value *pNewRowid = apVal[3+p->nColumn];
|
|
if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){
|
|
pNewRowid = apVal[1];
|
|
}
|
|
|
|
if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && (
|
|
sqlite3_value_type(apVal[0])==SQLITE_NULL
|
|
|| sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid)
|
|
)){
|
|
/* The new rowid is not NULL (in this case the rowid will be
|
|
** automatically assigned and there is no chance of a conflict), and
|
|
** the statement is either an INSERT or an UPDATE that modifies the
|
|
** rowid column. So if the conflict mode is REPLACE, then delete any
|
|
** existing row with rowid=pNewRowid.
|
|
**
|
|
** Or, if the conflict mode is not REPLACE, insert the new record into
|
|
** the %_content table. If we hit the duplicate rowid constraint (or any
|
|
** other error) while doing so, return immediately.
|
|
**
|
|
** This branch may also run if pNewRowid contains a value that cannot
|
|
** be losslessly converted to an integer. In this case, the eventual
|
|
** call to fts3InsertData() (either just below or further on in this
|
|
** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
|
|
** invoked, it will delete zero rows (since no row will have
|
|
** docid=$pNewRowid if $pNewRowid is not an integer value).
|
|
*/
|
|
if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){
|
|
rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel);
|
|
}else{
|
|
rc = fts3InsertData(p, apVal, pRowid);
|
|
bInsertDone = 1;
|
|
}
|
|
}
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
goto update_out;
|
|
}
|
|
|
|
/* If this is a DELETE or UPDATE operation, remove the old record. */
|
|
if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
|
|
assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
|
|
rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
|
|
isRemove = 1;
|
|
iRemove = sqlite3_value_int64(apVal[0]);
|
|
}
|
|
|
|
/* If this is an INSERT or UPDATE operation, insert the new record. */
|
|
if( nArg>1 && rc==SQLITE_OK ){
|
|
if( bInsertDone==0 ){
|
|
rc = fts3InsertData(p, apVal, pRowid);
|
|
if( rc==SQLITE_CONSTRAINT ) rc = SQLITE_CORRUPT_VTAB;
|
|
}
|
|
if( rc==SQLITE_OK && (!isRemove || *pRowid!=iRemove) ){
|
|
rc = fts3PendingTermsDocid(p, *pRowid);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3InsertTerms(p, apVal, aSzIns);
|
|
}
|
|
if( p->bHasDocsize ){
|
|
fts3InsertDocsize(&rc, p, aSzIns);
|
|
}
|
|
nChng++;
|
|
}
|
|
|
|
if( p->bHasStat ){
|
|
fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
|
|
}
|
|
|
|
update_out:
|
|
sqlite3_free(aSzIns);
|
|
sqlite3Fts3SegmentsClose(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Flush any data in the pending-terms hash table to disk. If successful,
|
|
** merge all segments in the database (including the new segment, if
|
|
** there was any data to flush) into a single segment.
|
|
*/
|
|
int sqlite3Fts3Optimize(Fts3Table *p){
|
|
int rc;
|
|
rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3DoOptimize(p, 1);
|
|
if( rc==SQLITE_OK || rc==SQLITE_DONE ){
|
|
int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
|
|
if( rc2!=SQLITE_OK ) rc = rc2;
|
|
}else{
|
|
sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
|
|
sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
|
|
}
|
|
}
|
|
sqlite3Fts3SegmentsClose(p);
|
|
return rc;
|
|
}
|
|
|
|
#endif
|