f7413d9acf
FossilOrigin-Name: 09c5a4ec13b02efd6207e26dab7beaf184f0d8ccea0bd0dfe94fc803fe5636ce
838 lines
24 KiB
C
838 lines
24 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** Memory allocation functions used throughout sqlite.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include <stdarg.h>
|
|
|
|
/*
|
|
** Attempt to release up to n bytes of non-essential memory currently
|
|
** held by SQLite. An example of non-essential memory is memory used to
|
|
** cache database pages that are not currently in use.
|
|
*/
|
|
int sqlite3_release_memory(int n){
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
return sqlite3PcacheReleaseMemory(n);
|
|
#else
|
|
/* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
|
|
** is a no-op returning zero if SQLite is not compiled with
|
|
** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
|
|
UNUSED_PARAMETER(n);
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Default value of the hard heap limit. 0 means "no limit".
|
|
*/
|
|
#ifndef SQLITE_MAX_MEMORY
|
|
# define SQLITE_MAX_MEMORY 0
|
|
#endif
|
|
|
|
/*
|
|
** State information local to the memory allocation subsystem.
|
|
*/
|
|
static SQLITE_WSD struct Mem0Global {
|
|
sqlite3_mutex *mutex; /* Mutex to serialize access */
|
|
sqlite3_int64 alarmThreshold; /* The soft heap limit */
|
|
sqlite3_int64 hardLimit; /* The hard upper bound on memory */
|
|
|
|
/*
|
|
** True if heap is nearly "full" where "full" is defined by the
|
|
** sqlite3_soft_heap_limit() setting.
|
|
*/
|
|
int nearlyFull;
|
|
} mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 };
|
|
|
|
#define mem0 GLOBAL(struct Mem0Global, mem0)
|
|
|
|
/*
|
|
** Return the memory allocator mutex. sqlite3_status() needs it.
|
|
*/
|
|
sqlite3_mutex *sqlite3MallocMutex(void){
|
|
return mem0.mutex;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_DEPRECATED
|
|
/*
|
|
** Deprecated external interface. It used to set an alarm callback
|
|
** that was invoked when memory usage grew too large. Now it is a
|
|
** no-op.
|
|
*/
|
|
int sqlite3_memory_alarm(
|
|
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
|
|
void *pArg,
|
|
sqlite3_int64 iThreshold
|
|
){
|
|
(void)xCallback;
|
|
(void)pArg;
|
|
(void)iThreshold;
|
|
return SQLITE_OK;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Set the soft heap-size limit for the library. An argument of
|
|
** zero disables the limit. A negative argument is a no-op used to
|
|
** obtain the return value.
|
|
**
|
|
** The return value is the value of the heap limit just before this
|
|
** interface was called.
|
|
**
|
|
** If the hard heap limit is enabled, then the soft heap limit cannot
|
|
** be disabled nor raised above the hard heap limit.
|
|
*/
|
|
sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
|
|
sqlite3_int64 priorLimit;
|
|
sqlite3_int64 excess;
|
|
sqlite3_int64 nUsed;
|
|
#ifndef SQLITE_OMIT_AUTOINIT
|
|
int rc = sqlite3_initialize();
|
|
if( rc ) return -1;
|
|
#endif
|
|
sqlite3_mutex_enter(mem0.mutex);
|
|
priorLimit = mem0.alarmThreshold;
|
|
if( n<0 ){
|
|
sqlite3_mutex_leave(mem0.mutex);
|
|
return priorLimit;
|
|
}
|
|
if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){
|
|
n = mem0.hardLimit;
|
|
}
|
|
mem0.alarmThreshold = n;
|
|
nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
|
|
AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed);
|
|
sqlite3_mutex_leave(mem0.mutex);
|
|
excess = sqlite3_memory_used() - n;
|
|
if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
|
|
return priorLimit;
|
|
}
|
|
void sqlite3_soft_heap_limit(int n){
|
|
if( n<0 ) n = 0;
|
|
sqlite3_soft_heap_limit64(n);
|
|
}
|
|
|
|
/*
|
|
** Set the hard heap-size limit for the library. An argument of zero
|
|
** disables the hard heap limit. A negative argument is a no-op used
|
|
** to obtain the return value without affecting the hard heap limit.
|
|
**
|
|
** The return value is the value of the hard heap limit just prior to
|
|
** calling this interface.
|
|
**
|
|
** Setting the hard heap limit will also activate the soft heap limit
|
|
** and constrain the soft heap limit to be no more than the hard heap
|
|
** limit.
|
|
*/
|
|
sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){
|
|
sqlite3_int64 priorLimit;
|
|
#ifndef SQLITE_OMIT_AUTOINIT
|
|
int rc = sqlite3_initialize();
|
|
if( rc ) return -1;
|
|
#endif
|
|
sqlite3_mutex_enter(mem0.mutex);
|
|
priorLimit = mem0.hardLimit;
|
|
if( n>=0 ){
|
|
mem0.hardLimit = n;
|
|
if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){
|
|
mem0.alarmThreshold = n;
|
|
}
|
|
}
|
|
sqlite3_mutex_leave(mem0.mutex);
|
|
return priorLimit;
|
|
}
|
|
|
|
|
|
/*
|
|
** Initialize the memory allocation subsystem.
|
|
*/
|
|
int sqlite3MallocInit(void){
|
|
int rc;
|
|
if( sqlite3GlobalConfig.m.xMalloc==0 ){
|
|
sqlite3MemSetDefault();
|
|
}
|
|
mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
|
if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
|
|
|| sqlite3GlobalConfig.nPage<=0 ){
|
|
sqlite3GlobalConfig.pPage = 0;
|
|
sqlite3GlobalConfig.szPage = 0;
|
|
}
|
|
rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
|
|
if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return true if the heap is currently under memory pressure - in other
|
|
** words if the amount of heap used is close to the limit set by
|
|
** sqlite3_soft_heap_limit().
|
|
*/
|
|
int sqlite3HeapNearlyFull(void){
|
|
return AtomicLoad(&mem0.nearlyFull);
|
|
}
|
|
|
|
/*
|
|
** Deinitialize the memory allocation subsystem.
|
|
*/
|
|
void sqlite3MallocEnd(void){
|
|
if( sqlite3GlobalConfig.m.xShutdown ){
|
|
sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
|
|
}
|
|
memset(&mem0, 0, sizeof(mem0));
|
|
}
|
|
|
|
/*
|
|
** Return the amount of memory currently checked out.
|
|
*/
|
|
sqlite3_int64 sqlite3_memory_used(void){
|
|
sqlite3_int64 res, mx;
|
|
sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
** Return the maximum amount of memory that has ever been
|
|
** checked out since either the beginning of this process
|
|
** or since the most recent reset.
|
|
*/
|
|
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
|
sqlite3_int64 res, mx;
|
|
sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
|
|
return mx;
|
|
}
|
|
|
|
/*
|
|
** Trigger the alarm
|
|
*/
|
|
static void sqlite3MallocAlarm(int nByte){
|
|
if( mem0.alarmThreshold<=0 ) return;
|
|
sqlite3_mutex_leave(mem0.mutex);
|
|
sqlite3_release_memory(nByte);
|
|
sqlite3_mutex_enter(mem0.mutex);
|
|
}
|
|
|
|
/*
|
|
** Do a memory allocation with statistics and alarms. Assume the
|
|
** lock is already held.
|
|
*/
|
|
static void mallocWithAlarm(int n, void **pp){
|
|
void *p;
|
|
int nFull;
|
|
assert( sqlite3_mutex_held(mem0.mutex) );
|
|
assert( n>0 );
|
|
|
|
/* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
|
|
** implementation of malloc_good_size(), which must be called in debug
|
|
** mode and specifically when the DMD "Dark Matter Detector" is enabled
|
|
** or else a crash results. Hence, do not attempt to optimize out the
|
|
** following xRoundup() call. */
|
|
nFull = sqlite3GlobalConfig.m.xRoundup(n);
|
|
|
|
sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
|
|
if( mem0.alarmThreshold>0 ){
|
|
sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
|
|
if( nUsed >= mem0.alarmThreshold - nFull ){
|
|
AtomicStore(&mem0.nearlyFull, 1);
|
|
sqlite3MallocAlarm(nFull);
|
|
if( mem0.hardLimit ){
|
|
nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
|
|
if( nUsed >= mem0.hardLimit - nFull ){
|
|
*pp = 0;
|
|
return;
|
|
}
|
|
}
|
|
}else{
|
|
AtomicStore(&mem0.nearlyFull, 0);
|
|
}
|
|
}
|
|
p = sqlite3GlobalConfig.m.xMalloc(nFull);
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
if( p==0 && mem0.alarmThreshold>0 ){
|
|
sqlite3MallocAlarm(nFull);
|
|
p = sqlite3GlobalConfig.m.xMalloc(nFull);
|
|
}
|
|
#endif
|
|
if( p ){
|
|
nFull = sqlite3MallocSize(p);
|
|
sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
|
|
sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
|
|
}
|
|
*pp = p;
|
|
}
|
|
|
|
/*
|
|
** Allocate memory. This routine is like sqlite3_malloc() except that it
|
|
** assumes the memory subsystem has already been initialized.
|
|
*/
|
|
void *sqlite3Malloc(u64 n){
|
|
void *p;
|
|
if( n==0 || n>=0x7fffff00 ){
|
|
/* A memory allocation of a number of bytes which is near the maximum
|
|
** signed integer value might cause an integer overflow inside of the
|
|
** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
|
|
** 255 bytes of overhead. SQLite itself will never use anything near
|
|
** this amount. The only way to reach the limit is with sqlite3_malloc() */
|
|
p = 0;
|
|
}else if( sqlite3GlobalConfig.bMemstat ){
|
|
sqlite3_mutex_enter(mem0.mutex);
|
|
mallocWithAlarm((int)n, &p);
|
|
sqlite3_mutex_leave(mem0.mutex);
|
|
}else{
|
|
p = sqlite3GlobalConfig.m.xMalloc((int)n);
|
|
}
|
|
assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** This version of the memory allocation is for use by the application.
|
|
** First make sure the memory subsystem is initialized, then do the
|
|
** allocation.
|
|
*/
|
|
void *sqlite3_malloc(int n){
|
|
#ifndef SQLITE_OMIT_AUTOINIT
|
|
if( sqlite3_initialize() ) return 0;
|
|
#endif
|
|
return n<=0 ? 0 : sqlite3Malloc(n);
|
|
}
|
|
void *sqlite3_malloc64(sqlite3_uint64 n){
|
|
#ifndef SQLITE_OMIT_AUTOINIT
|
|
if( sqlite3_initialize() ) return 0;
|
|
#endif
|
|
return sqlite3Malloc(n);
|
|
}
|
|
|
|
/*
|
|
** TRUE if p is a lookaside memory allocation from db
|
|
*/
|
|
#ifndef SQLITE_OMIT_LOOKASIDE
|
|
static int isLookaside(sqlite3 *db, const void *p){
|
|
return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd);
|
|
}
|
|
#else
|
|
#define isLookaside(A,B) 0
|
|
#endif
|
|
|
|
/*
|
|
** Return the size of a memory allocation previously obtained from
|
|
** sqlite3Malloc() or sqlite3_malloc().
|
|
*/
|
|
int sqlite3MallocSize(const void *p){
|
|
assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
|
|
return sqlite3GlobalConfig.m.xSize((void*)p);
|
|
}
|
|
static int lookasideMallocSize(sqlite3 *db, const void *p){
|
|
#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
|
|
return p<db->lookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL;
|
|
#else
|
|
return db->lookaside.szTrue;
|
|
#endif
|
|
}
|
|
int sqlite3DbMallocSize(sqlite3 *db, const void *p){
|
|
assert( p!=0 );
|
|
#ifdef SQLITE_DEBUG
|
|
if( db==0 || !isLookaside(db,p) ){
|
|
if( db==0 ){
|
|
assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
|
|
assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
|
|
}else{
|
|
assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
|
|
assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
|
|
}
|
|
}
|
|
#endif
|
|
if( db ){
|
|
if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
|
|
#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
|
|
if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
return LOOKASIDE_SMALL;
|
|
}
|
|
#endif
|
|
if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
return db->lookaside.szTrue;
|
|
}
|
|
}
|
|
}
|
|
return sqlite3GlobalConfig.m.xSize((void*)p);
|
|
}
|
|
sqlite3_uint64 sqlite3_msize(void *p){
|
|
assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
|
|
assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
|
|
return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
|
|
}
|
|
|
|
/*
|
|
** Free memory previously obtained from sqlite3Malloc().
|
|
*/
|
|
void sqlite3_free(void *p){
|
|
if( p==0 ) return; /* IMP: R-49053-54554 */
|
|
assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
|
|
assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
|
|
if( sqlite3GlobalConfig.bMemstat ){
|
|
sqlite3_mutex_enter(mem0.mutex);
|
|
sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
|
|
sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
|
|
sqlite3GlobalConfig.m.xFree(p);
|
|
sqlite3_mutex_leave(mem0.mutex);
|
|
}else{
|
|
sqlite3GlobalConfig.m.xFree(p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add the size of memory allocation "p" to the count in
|
|
** *db->pnBytesFreed.
|
|
*/
|
|
static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
|
|
*db->pnBytesFreed += sqlite3DbMallocSize(db,p);
|
|
}
|
|
|
|
/*
|
|
** Free memory that might be associated with a particular database
|
|
** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
|
|
** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
|
|
*/
|
|
void sqlite3DbFreeNN(sqlite3 *db, void *p){
|
|
assert( db==0 || sqlite3_mutex_held(db->mutex) );
|
|
assert( p!=0 );
|
|
if( db ){
|
|
if( db->pnBytesFreed ){
|
|
measureAllocationSize(db, p);
|
|
return;
|
|
}
|
|
if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
|
|
#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
|
|
if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
|
|
LookasideSlot *pBuf = (LookasideSlot*)p;
|
|
#ifdef SQLITE_DEBUG
|
|
memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */
|
|
#endif
|
|
pBuf->pNext = db->lookaside.pSmallFree;
|
|
db->lookaside.pSmallFree = pBuf;
|
|
return;
|
|
}
|
|
#endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
|
|
if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
|
|
LookasideSlot *pBuf = (LookasideSlot*)p;
|
|
#ifdef SQLITE_DEBUG
|
|
memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */
|
|
#endif
|
|
pBuf->pNext = db->lookaside.pFree;
|
|
db->lookaside.pFree = pBuf;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
|
|
assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
|
|
assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
|
|
sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
|
|
sqlite3_free(p);
|
|
}
|
|
void sqlite3DbFree(sqlite3 *db, void *p){
|
|
assert( db==0 || sqlite3_mutex_held(db->mutex) );
|
|
if( p ) sqlite3DbFreeNN(db, p);
|
|
}
|
|
|
|
/*
|
|
** Change the size of an existing memory allocation
|
|
*/
|
|
void *sqlite3Realloc(void *pOld, u64 nBytes){
|
|
int nOld, nNew, nDiff;
|
|
void *pNew;
|
|
assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
|
|
assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
|
|
if( pOld==0 ){
|
|
return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
|
|
}
|
|
if( nBytes==0 ){
|
|
sqlite3_free(pOld); /* IMP: R-26507-47431 */
|
|
return 0;
|
|
}
|
|
if( nBytes>=0x7fffff00 ){
|
|
/* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
|
|
return 0;
|
|
}
|
|
nOld = sqlite3MallocSize(pOld);
|
|
/* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
|
|
** argument to xRealloc is always a value returned by a prior call to
|
|
** xRoundup. */
|
|
nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
|
|
if( nOld==nNew ){
|
|
pNew = pOld;
|
|
}else if( sqlite3GlobalConfig.bMemstat ){
|
|
sqlite3_int64 nUsed;
|
|
sqlite3_mutex_enter(mem0.mutex);
|
|
sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
|
|
nDiff = nNew - nOld;
|
|
if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >=
|
|
mem0.alarmThreshold-nDiff ){
|
|
sqlite3MallocAlarm(nDiff);
|
|
if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){
|
|
sqlite3_mutex_leave(mem0.mutex);
|
|
return 0;
|
|
}
|
|
}
|
|
pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
|
|
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
|
if( pNew==0 && mem0.alarmThreshold>0 ){
|
|
sqlite3MallocAlarm((int)nBytes);
|
|
pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
|
|
}
|
|
#endif
|
|
if( pNew ){
|
|
nNew = sqlite3MallocSize(pNew);
|
|
sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
|
|
}
|
|
sqlite3_mutex_leave(mem0.mutex);
|
|
}else{
|
|
pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
|
|
}
|
|
assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** The public interface to sqlite3Realloc. Make sure that the memory
|
|
** subsystem is initialized prior to invoking sqliteRealloc.
|
|
*/
|
|
void *sqlite3_realloc(void *pOld, int n){
|
|
#ifndef SQLITE_OMIT_AUTOINIT
|
|
if( sqlite3_initialize() ) return 0;
|
|
#endif
|
|
if( n<0 ) n = 0; /* IMP: R-26507-47431 */
|
|
return sqlite3Realloc(pOld, n);
|
|
}
|
|
void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
|
|
#ifndef SQLITE_OMIT_AUTOINIT
|
|
if( sqlite3_initialize() ) return 0;
|
|
#endif
|
|
return sqlite3Realloc(pOld, n);
|
|
}
|
|
|
|
|
|
/*
|
|
** Allocate and zero memory.
|
|
*/
|
|
void *sqlite3MallocZero(u64 n){
|
|
void *p = sqlite3Malloc(n);
|
|
if( p ){
|
|
memset(p, 0, (size_t)n);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Allocate and zero memory. If the allocation fails, make
|
|
** the mallocFailed flag in the connection pointer.
|
|
*/
|
|
void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
|
|
void *p;
|
|
testcase( db==0 );
|
|
p = sqlite3DbMallocRaw(db, n);
|
|
if( p ) memset(p, 0, (size_t)n);
|
|
return p;
|
|
}
|
|
|
|
|
|
/* Finish the work of sqlite3DbMallocRawNN for the unusual and
|
|
** slower case when the allocation cannot be fulfilled using lookaside.
|
|
*/
|
|
static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
|
|
void *p;
|
|
assert( db!=0 );
|
|
p = sqlite3Malloc(n);
|
|
if( !p ) sqlite3OomFault(db);
|
|
sqlite3MemdebugSetType(p,
|
|
(db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Allocate memory, either lookaside (if possible) or heap.
|
|
** If the allocation fails, set the mallocFailed flag in
|
|
** the connection pointer.
|
|
**
|
|
** If db!=0 and db->mallocFailed is true (indicating a prior malloc
|
|
** failure on the same database connection) then always return 0.
|
|
** Hence for a particular database connection, once malloc starts
|
|
** failing, it fails consistently until mallocFailed is reset.
|
|
** This is an important assumption. There are many places in the
|
|
** code that do things like this:
|
|
**
|
|
** int *a = (int*)sqlite3DbMallocRaw(db, 100);
|
|
** int *b = (int*)sqlite3DbMallocRaw(db, 200);
|
|
** if( b ) a[10] = 9;
|
|
**
|
|
** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
|
|
** that all prior mallocs (ex: "a") worked too.
|
|
**
|
|
** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
|
|
** not a NULL pointer.
|
|
*/
|
|
void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
|
|
void *p;
|
|
if( db ) return sqlite3DbMallocRawNN(db, n);
|
|
p = sqlite3Malloc(n);
|
|
sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
|
|
return p;
|
|
}
|
|
void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
|
|
#ifndef SQLITE_OMIT_LOOKASIDE
|
|
LookasideSlot *pBuf;
|
|
assert( db!=0 );
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
assert( db->pnBytesFreed==0 );
|
|
if( n>db->lookaside.sz ){
|
|
if( !db->lookaside.bDisable ){
|
|
db->lookaside.anStat[1]++;
|
|
}else if( db->mallocFailed ){
|
|
return 0;
|
|
}
|
|
return dbMallocRawFinish(db, n);
|
|
}
|
|
#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
|
|
if( n<=LOOKASIDE_SMALL ){
|
|
if( (pBuf = db->lookaside.pSmallFree)!=0 ){
|
|
db->lookaside.pSmallFree = pBuf->pNext;
|
|
db->lookaside.anStat[0]++;
|
|
return (void*)pBuf;
|
|
}else if( (pBuf = db->lookaside.pSmallInit)!=0 ){
|
|
db->lookaside.pSmallInit = pBuf->pNext;
|
|
db->lookaside.anStat[0]++;
|
|
return (void*)pBuf;
|
|
}
|
|
}
|
|
#endif
|
|
if( (pBuf = db->lookaside.pFree)!=0 ){
|
|
db->lookaside.pFree = pBuf->pNext;
|
|
db->lookaside.anStat[0]++;
|
|
return (void*)pBuf;
|
|
}else if( (pBuf = db->lookaside.pInit)!=0 ){
|
|
db->lookaside.pInit = pBuf->pNext;
|
|
db->lookaside.anStat[0]++;
|
|
return (void*)pBuf;
|
|
}else{
|
|
db->lookaside.anStat[2]++;
|
|
}
|
|
#else
|
|
assert( db!=0 );
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
assert( db->pnBytesFreed==0 );
|
|
if( db->mallocFailed ){
|
|
return 0;
|
|
}
|
|
#endif
|
|
return dbMallocRawFinish(db, n);
|
|
}
|
|
|
|
/* Forward declaration */
|
|
static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
|
|
|
|
/*
|
|
** Resize the block of memory pointed to by p to n bytes. If the
|
|
** resize fails, set the mallocFailed flag in the connection object.
|
|
*/
|
|
void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
|
|
assert( db!=0 );
|
|
if( p==0 ) return sqlite3DbMallocRawNN(db, n);
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
if( ((uptr)p)<(uptr)db->lookaside.pEnd ){
|
|
#ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
|
|
if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){
|
|
if( n<=LOOKASIDE_SMALL ) return p;
|
|
}else
|
|
#endif
|
|
if( ((uptr)p)>=(uptr)db->lookaside.pStart ){
|
|
if( n<=db->lookaside.szTrue ) return p;
|
|
}
|
|
}
|
|
return dbReallocFinish(db, p, n);
|
|
}
|
|
static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
|
|
void *pNew = 0;
|
|
assert( db!=0 );
|
|
assert( p!=0 );
|
|
if( db->mallocFailed==0 ){
|
|
if( isLookaside(db, p) ){
|
|
pNew = sqlite3DbMallocRawNN(db, n);
|
|
if( pNew ){
|
|
memcpy(pNew, p, lookasideMallocSize(db, p));
|
|
sqlite3DbFree(db, p);
|
|
}
|
|
}else{
|
|
assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
|
|
assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
|
|
sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
|
|
pNew = sqlite3Realloc(p, n);
|
|
if( !pNew ){
|
|
sqlite3OomFault(db);
|
|
}
|
|
sqlite3MemdebugSetType(pNew,
|
|
(db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
|
|
}
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Attempt to reallocate p. If the reallocation fails, then free p
|
|
** and set the mallocFailed flag in the database connection.
|
|
*/
|
|
void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
|
|
void *pNew;
|
|
pNew = sqlite3DbRealloc(db, p, n);
|
|
if( !pNew ){
|
|
sqlite3DbFree(db, p);
|
|
}
|
|
return pNew;
|
|
}
|
|
|
|
/*
|
|
** Make a copy of a string in memory obtained from sqliteMalloc(). These
|
|
** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
|
|
** is because when memory debugging is turned on, these two functions are
|
|
** called via macros that record the current file and line number in the
|
|
** ThreadData structure.
|
|
*/
|
|
char *sqlite3DbStrDup(sqlite3 *db, const char *z){
|
|
char *zNew;
|
|
size_t n;
|
|
if( z==0 ){
|
|
return 0;
|
|
}
|
|
n = strlen(z) + 1;
|
|
zNew = sqlite3DbMallocRaw(db, n);
|
|
if( zNew ){
|
|
memcpy(zNew, z, n);
|
|
}
|
|
return zNew;
|
|
}
|
|
char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
|
|
char *zNew;
|
|
assert( db!=0 );
|
|
assert( z!=0 || n==0 );
|
|
assert( (n&0x7fffffff)==n );
|
|
zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0;
|
|
if( zNew ){
|
|
memcpy(zNew, z, (size_t)n);
|
|
zNew[n] = 0;
|
|
}
|
|
return zNew;
|
|
}
|
|
|
|
/*
|
|
** The text between zStart and zEnd represents a phrase within a larger
|
|
** SQL statement. Make a copy of this phrase in space obtained form
|
|
** sqlite3DbMalloc(). Omit leading and trailing whitespace.
|
|
*/
|
|
char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
|
|
int n;
|
|
while( sqlite3Isspace(zStart[0]) ) zStart++;
|
|
n = (int)(zEnd - zStart);
|
|
while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--;
|
|
return sqlite3DbStrNDup(db, zStart, n);
|
|
}
|
|
|
|
/*
|
|
** Free any prior content in *pz and replace it with a copy of zNew.
|
|
*/
|
|
void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
|
|
char *z = sqlite3DbStrDup(db, zNew);
|
|
sqlite3DbFree(db, *pz);
|
|
*pz = z;
|
|
}
|
|
|
|
/*
|
|
** Call this routine to record the fact that an OOM (out-of-memory) error
|
|
** has happened. This routine will set db->mallocFailed, and also
|
|
** temporarily disable the lookaside memory allocator and interrupt
|
|
** any running VDBEs.
|
|
**
|
|
** Always return a NULL pointer so that this routine can be invoked using
|
|
**
|
|
** return sqlite3OomFault(db);
|
|
**
|
|
** and thereby avoid unnecessary stack frame allocations for the overwhelmingly
|
|
** common case where no OOM occurs.
|
|
*/
|
|
void *sqlite3OomFault(sqlite3 *db){
|
|
if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
|
|
db->mallocFailed = 1;
|
|
if( db->nVdbeExec>0 ){
|
|
AtomicStore(&db->u1.isInterrupted, 1);
|
|
}
|
|
DisableLookaside;
|
|
if( db->pParse ){
|
|
sqlite3ErrorMsg(db->pParse, "out of memory");
|
|
db->pParse->rc = SQLITE_NOMEM_BKPT;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** This routine reactivates the memory allocator and clears the
|
|
** db->mallocFailed flag as necessary.
|
|
**
|
|
** The memory allocator is not restarted if there are running
|
|
** VDBEs.
|
|
*/
|
|
void sqlite3OomClear(sqlite3 *db){
|
|
if( db->mallocFailed && db->nVdbeExec==0 ){
|
|
db->mallocFailed = 0;
|
|
AtomicStore(&db->u1.isInterrupted, 0);
|
|
assert( db->lookaside.bDisable>0 );
|
|
EnableLookaside;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Take actions at the end of an API call to deal with error codes.
|
|
*/
|
|
static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){
|
|
if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
|
|
sqlite3OomClear(db);
|
|
sqlite3Error(db, SQLITE_NOMEM);
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
return rc & db->errMask;
|
|
}
|
|
|
|
/*
|
|
** This function must be called before exiting any API function (i.e.
|
|
** returning control to the user) that has called sqlite3_malloc or
|
|
** sqlite3_realloc.
|
|
**
|
|
** The returned value is normally a copy of the second argument to this
|
|
** function. However, if a malloc() failure has occurred since the previous
|
|
** invocation SQLITE_NOMEM is returned instead.
|
|
**
|
|
** If an OOM as occurred, then the connection error-code (the value
|
|
** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
|
|
*/
|
|
int sqlite3ApiExit(sqlite3* db, int rc){
|
|
/* If the db handle must hold the connection handle mutex here.
|
|
** Otherwise the read (and possible write) of db->mallocFailed
|
|
** is unsafe, as is the call to sqlite3Error().
|
|
*/
|
|
assert( db!=0 );
|
|
assert( sqlite3_mutex_held(db->mutex) );
|
|
if( db->mallocFailed || rc ){
|
|
return apiHandleError(db, rc);
|
|
}
|
|
return rc & db->errMask;
|
|
}
|