04b92471f7
dbsqlfuzz 7128d1b41ce9df2c007f9c24c1e89e2f1b2590ca. FossilOrigin-Name: b99135288b157044e2319833e8632c89483778f876aa45ee66e46ffb6ae42ab2
1989 lines
68 KiB
C
1989 lines
68 KiB
C
/*
|
|
** 2005-07-08
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains code associated with the ANALYZE command.
|
|
**
|
|
** The ANALYZE command gather statistics about the content of tables
|
|
** and indices. These statistics are made available to the query planner
|
|
** to help it make better decisions about how to perform queries.
|
|
**
|
|
** The following system tables are or have been supported:
|
|
**
|
|
** CREATE TABLE sqlite_stat1(tbl, idx, stat);
|
|
** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
|
|
** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
|
|
** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
|
|
**
|
|
** Additional tables might be added in future releases of SQLite.
|
|
** The sqlite_stat2 table is not created or used unless the SQLite version
|
|
** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
|
|
** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
|
|
** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
|
|
** created and used by SQLite versions 3.7.9 through 3.29.0 when
|
|
** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3
|
|
** is a superset of sqlite_stat2 and is also now deprecated. The
|
|
** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only
|
|
** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite
|
|
** versions 3.8.1 and later. STAT4 is the only variant that is still
|
|
** supported.
|
|
**
|
|
** For most applications, sqlite_stat1 provides all the statistics required
|
|
** for the query planner to make good choices.
|
|
**
|
|
** Format of sqlite_stat1:
|
|
**
|
|
** There is normally one row per index, with the index identified by the
|
|
** name in the idx column. The tbl column is the name of the table to
|
|
** which the index belongs. In each such row, the stat column will be
|
|
** a string consisting of a list of integers. The first integer in this
|
|
** list is the number of rows in the index. (This is the same as the
|
|
** number of rows in the table, except for partial indices.) The second
|
|
** integer is the average number of rows in the index that have the same
|
|
** value in the first column of the index. The third integer is the average
|
|
** number of rows in the index that have the same value for the first two
|
|
** columns. The N-th integer (for N>1) is the average number of rows in
|
|
** the index which have the same value for the first N-1 columns. For
|
|
** a K-column index, there will be K+1 integers in the stat column. If
|
|
** the index is unique, then the last integer will be 1.
|
|
**
|
|
** The list of integers in the stat column can optionally be followed
|
|
** by the keyword "unordered". The "unordered" keyword, if it is present,
|
|
** must be separated from the last integer by a single space. If the
|
|
** "unordered" keyword is present, then the query planner assumes that
|
|
** the index is unordered and will not use the index for a range query.
|
|
**
|
|
** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
|
|
** column contains a single integer which is the (estimated) number of
|
|
** rows in the table identified by sqlite_stat1.tbl.
|
|
**
|
|
** Format of sqlite_stat2:
|
|
**
|
|
** The sqlite_stat2 is only created and is only used if SQLite is compiled
|
|
** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
|
|
** 3.6.18 and 3.7.8. The "stat2" table contains additional information
|
|
** about the distribution of keys within an index. The index is identified by
|
|
** the "idx" column and the "tbl" column is the name of the table to which
|
|
** the index belongs. There are usually 10 rows in the sqlite_stat2
|
|
** table for each index.
|
|
**
|
|
** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
|
|
** inclusive are samples of the left-most key value in the index taken at
|
|
** evenly spaced points along the index. Let the number of samples be S
|
|
** (10 in the standard build) and let C be the number of rows in the index.
|
|
** Then the sampled rows are given by:
|
|
**
|
|
** rownumber = (i*C*2 + C)/(S*2)
|
|
**
|
|
** For i between 0 and S-1. Conceptually, the index space is divided into
|
|
** S uniform buckets and the samples are the middle row from each bucket.
|
|
**
|
|
** The format for sqlite_stat2 is recorded here for legacy reference. This
|
|
** version of SQLite does not support sqlite_stat2. It neither reads nor
|
|
** writes the sqlite_stat2 table. This version of SQLite only supports
|
|
** sqlite_stat3.
|
|
**
|
|
** Format for sqlite_stat3:
|
|
**
|
|
** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the
|
|
** sqlite_stat4 format will be described first. Further information
|
|
** about sqlite_stat3 follows the sqlite_stat4 description.
|
|
**
|
|
** Format for sqlite_stat4:
|
|
**
|
|
** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
|
|
** to aid the query planner in choosing good indices based on the values
|
|
** that indexed columns are compared against in the WHERE clauses of
|
|
** queries.
|
|
**
|
|
** The sqlite_stat4 table contains multiple entries for each index.
|
|
** The idx column names the index and the tbl column is the table of the
|
|
** index. If the idx and tbl columns are the same, then the sample is
|
|
** of the INTEGER PRIMARY KEY. The sample column is a blob which is the
|
|
** binary encoding of a key from the index. The nEq column is a
|
|
** list of integers. The first integer is the approximate number
|
|
** of entries in the index whose left-most column exactly matches
|
|
** the left-most column of the sample. The second integer in nEq
|
|
** is the approximate number of entries in the index where the
|
|
** first two columns match the first two columns of the sample.
|
|
** And so forth. nLt is another list of integers that show the approximate
|
|
** number of entries that are strictly less than the sample. The first
|
|
** integer in nLt contains the number of entries in the index where the
|
|
** left-most column is less than the left-most column of the sample.
|
|
** The K-th integer in the nLt entry is the number of index entries
|
|
** where the first K columns are less than the first K columns of the
|
|
** sample. The nDLt column is like nLt except that it contains the
|
|
** number of distinct entries in the index that are less than the
|
|
** sample.
|
|
**
|
|
** There can be an arbitrary number of sqlite_stat4 entries per index.
|
|
** The ANALYZE command will typically generate sqlite_stat4 tables
|
|
** that contain between 10 and 40 samples which are distributed across
|
|
** the key space, though not uniformly, and which include samples with
|
|
** large nEq values.
|
|
**
|
|
** Format for sqlite_stat3 redux:
|
|
**
|
|
** The sqlite_stat3 table is like sqlite_stat4 except that it only
|
|
** looks at the left-most column of the index. The sqlite_stat3.sample
|
|
** column contains the actual value of the left-most column instead
|
|
** of a blob encoding of the complete index key as is found in
|
|
** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3
|
|
** all contain just a single integer which is the same as the first
|
|
** integer in the equivalent columns in sqlite_stat4.
|
|
*/
|
|
#ifndef SQLITE_OMIT_ANALYZE
|
|
#include "sqliteInt.h"
|
|
|
|
#if defined(SQLITE_ENABLE_STAT4)
|
|
# define IsStat4 1
|
|
#else
|
|
# define IsStat4 0
|
|
# undef SQLITE_STAT4_SAMPLES
|
|
# define SQLITE_STAT4_SAMPLES 1
|
|
#endif
|
|
|
|
/*
|
|
** This routine generates code that opens the sqlite_statN tables.
|
|
** The sqlite_stat1 table is always relevant. sqlite_stat2 is now
|
|
** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when
|
|
** appropriate compile-time options are provided.
|
|
**
|
|
** If the sqlite_statN tables do not previously exist, it is created.
|
|
**
|
|
** Argument zWhere may be a pointer to a buffer containing a table name,
|
|
** or it may be a NULL pointer. If it is not NULL, then all entries in
|
|
** the sqlite_statN tables associated with the named table are deleted.
|
|
** If zWhere==0, then code is generated to delete all stat table entries.
|
|
*/
|
|
static void openStatTable(
|
|
Parse *pParse, /* Parsing context */
|
|
int iDb, /* The database we are looking in */
|
|
int iStatCur, /* Open the sqlite_stat1 table on this cursor */
|
|
const char *zWhere, /* Delete entries for this table or index */
|
|
const char *zWhereType /* Either "tbl" or "idx" */
|
|
){
|
|
static const struct {
|
|
const char *zName;
|
|
const char *zCols;
|
|
} aTable[] = {
|
|
{ "sqlite_stat1", "tbl,idx,stat" },
|
|
#if defined(SQLITE_ENABLE_STAT4)
|
|
{ "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
|
|
#else
|
|
{ "sqlite_stat4", 0 },
|
|
#endif
|
|
{ "sqlite_stat3", 0 },
|
|
};
|
|
int i;
|
|
sqlite3 *db = pParse->db;
|
|
Db *pDb;
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
u32 aRoot[ArraySize(aTable)];
|
|
u8 aCreateTbl[ArraySize(aTable)];
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1;
|
|
#else
|
|
const int nToOpen = 1;
|
|
#endif
|
|
|
|
if( v==0 ) return;
|
|
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
|
assert( sqlite3VdbeDb(v)==db );
|
|
pDb = &db->aDb[iDb];
|
|
|
|
/* Create new statistic tables if they do not exist, or clear them
|
|
** if they do already exist.
|
|
*/
|
|
for(i=0; i<ArraySize(aTable); i++){
|
|
const char *zTab = aTable[i].zName;
|
|
Table *pStat;
|
|
aCreateTbl[i] = 0;
|
|
if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){
|
|
if( i<nToOpen ){
|
|
/* The sqlite_statN table does not exist. Create it. Note that a
|
|
** side-effect of the CREATE TABLE statement is to leave the rootpage
|
|
** of the new table in register pParse->regRoot. This is important
|
|
** because the OpenWrite opcode below will be needing it. */
|
|
sqlite3NestedParse(pParse,
|
|
"CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
|
|
);
|
|
aRoot[i] = (u32)pParse->regRoot;
|
|
aCreateTbl[i] = OPFLAG_P2ISREG;
|
|
}
|
|
}else{
|
|
/* The table already exists. If zWhere is not NULL, delete all entries
|
|
** associated with the table zWhere. If zWhere is NULL, delete the
|
|
** entire contents of the table. */
|
|
aRoot[i] = pStat->tnum;
|
|
sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
|
|
if( zWhere ){
|
|
sqlite3NestedParse(pParse,
|
|
"DELETE FROM %Q.%s WHERE %s=%Q",
|
|
pDb->zDbSName, zTab, zWhereType, zWhere
|
|
);
|
|
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
|
|
}else if( db->xPreUpdateCallback ){
|
|
sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
|
|
#endif
|
|
}else{
|
|
/* The sqlite_stat[134] table already exists. Delete all rows. */
|
|
sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Open the sqlite_stat[134] tables for writing. */
|
|
for(i=0; i<nToOpen; i++){
|
|
assert( i<ArraySize(aTable) );
|
|
sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, (int)aRoot[i], iDb, 3);
|
|
sqlite3VdbeChangeP5(v, aCreateTbl[i]);
|
|
VdbeComment((v, aTable[i].zName));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Recommended number of samples for sqlite_stat4
|
|
*/
|
|
#ifndef SQLITE_STAT4_SAMPLES
|
|
# define SQLITE_STAT4_SAMPLES 24
|
|
#endif
|
|
|
|
/*
|
|
** Three SQL functions - stat_init(), stat_push(), and stat_get() -
|
|
** share an instance of the following structure to hold their state
|
|
** information.
|
|
*/
|
|
typedef struct StatAccum StatAccum;
|
|
typedef struct StatSample StatSample;
|
|
struct StatSample {
|
|
tRowcnt *anEq; /* sqlite_stat4.nEq */
|
|
tRowcnt *anDLt; /* sqlite_stat4.nDLt */
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
tRowcnt *anLt; /* sqlite_stat4.nLt */
|
|
union {
|
|
i64 iRowid; /* Rowid in main table of the key */
|
|
u8 *aRowid; /* Key for WITHOUT ROWID tables */
|
|
} u;
|
|
u32 nRowid; /* Sizeof aRowid[] */
|
|
u8 isPSample; /* True if a periodic sample */
|
|
int iCol; /* If !isPSample, the reason for inclusion */
|
|
u32 iHash; /* Tiebreaker hash */
|
|
#endif
|
|
};
|
|
struct StatAccum {
|
|
sqlite3 *db; /* Database connection, for malloc() */
|
|
tRowcnt nEst; /* Estimated number of rows */
|
|
tRowcnt nRow; /* Number of rows visited so far */
|
|
int nLimit; /* Analysis row-scan limit */
|
|
int nCol; /* Number of columns in index + pk/rowid */
|
|
int nKeyCol; /* Number of index columns w/o the pk/rowid */
|
|
u8 nSkipAhead; /* Number of times of skip-ahead */
|
|
StatSample current; /* Current row as a StatSample */
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
tRowcnt nPSample; /* How often to do a periodic sample */
|
|
int mxSample; /* Maximum number of samples to accumulate */
|
|
u32 iPrn; /* Pseudo-random number used for sampling */
|
|
StatSample *aBest; /* Array of nCol best samples */
|
|
int iMin; /* Index in a[] of entry with minimum score */
|
|
int nSample; /* Current number of samples */
|
|
int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */
|
|
int iGet; /* Index of current sample accessed by stat_get() */
|
|
StatSample *a; /* Array of mxSample StatSample objects */
|
|
#endif
|
|
};
|
|
|
|
/* Reclaim memory used by a StatSample
|
|
*/
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
static void sampleClear(sqlite3 *db, StatSample *p){
|
|
assert( db!=0 );
|
|
if( p->nRowid ){
|
|
sqlite3DbFree(db, p->u.aRowid);
|
|
p->nRowid = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Initialize the BLOB value of a ROWID
|
|
*/
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){
|
|
assert( db!=0 );
|
|
if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
|
|
p->u.aRowid = sqlite3DbMallocRawNN(db, n);
|
|
if( p->u.aRowid ){
|
|
p->nRowid = n;
|
|
memcpy(p->u.aRowid, pData, n);
|
|
}else{
|
|
p->nRowid = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Initialize the INTEGER value of a ROWID.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){
|
|
assert( db!=0 );
|
|
if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
|
|
p->nRowid = 0;
|
|
p->u.iRowid = iRowid;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Copy the contents of object (*pFrom) into (*pTo).
|
|
*/
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){
|
|
pTo->isPSample = pFrom->isPSample;
|
|
pTo->iCol = pFrom->iCol;
|
|
pTo->iHash = pFrom->iHash;
|
|
memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
|
|
memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
|
|
memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
|
|
if( pFrom->nRowid ){
|
|
sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
|
|
}else{
|
|
sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Reclaim all memory of a StatAccum structure.
|
|
*/
|
|
static void statAccumDestructor(void *pOld){
|
|
StatAccum *p = (StatAccum*)pOld;
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( p->mxSample ){
|
|
int i;
|
|
for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
|
|
for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
|
|
sampleClear(p->db, &p->current);
|
|
}
|
|
#endif
|
|
sqlite3DbFree(p->db, p);
|
|
}
|
|
|
|
/*
|
|
** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters
|
|
** are:
|
|
** N: The number of columns in the index including the rowid/pk (note 1)
|
|
** K: The number of columns in the index excluding the rowid/pk.
|
|
** C: Estimated number of rows in the index
|
|
** L: A limit on the number of rows to scan, or 0 for no-limit
|
|
**
|
|
** Note 1: In the special case of the covering index that implements a
|
|
** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
|
|
** total number of columns in the table.
|
|
**
|
|
** For indexes on ordinary rowid tables, N==K+1. But for indexes on
|
|
** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
|
|
** PRIMARY KEY of the table. The covering index that implements the
|
|
** original WITHOUT ROWID table as N==K as a special case.
|
|
**
|
|
** This routine allocates the StatAccum object in heap memory. The return
|
|
** value is a pointer to the StatAccum object. The datatype of the
|
|
** return value is BLOB, but it is really just a pointer to the StatAccum
|
|
** object.
|
|
*/
|
|
static void statInit(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
StatAccum *p;
|
|
int nCol; /* Number of columns in index being sampled */
|
|
int nKeyCol; /* Number of key columns */
|
|
int nColUp; /* nCol rounded up for alignment */
|
|
int n; /* Bytes of space to allocate */
|
|
sqlite3 *db = sqlite3_context_db_handle(context); /* Database connection */
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
/* Maximum number of samples. 0 if STAT4 data is not collected */
|
|
int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0;
|
|
#endif
|
|
|
|
/* Decode the three function arguments */
|
|
UNUSED_PARAMETER(argc);
|
|
nCol = sqlite3_value_int(argv[0]);
|
|
assert( nCol>0 );
|
|
nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
|
|
nKeyCol = sqlite3_value_int(argv[1]);
|
|
assert( nKeyCol<=nCol );
|
|
assert( nKeyCol>0 );
|
|
|
|
/* Allocate the space required for the StatAccum object */
|
|
n = sizeof(*p)
|
|
+ sizeof(tRowcnt)*nColUp /* StatAccum.anEq */
|
|
+ sizeof(tRowcnt)*nColUp; /* StatAccum.anDLt */
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( mxSample ){
|
|
n += sizeof(tRowcnt)*nColUp /* StatAccum.anLt */
|
|
+ sizeof(StatSample)*(nCol+mxSample) /* StatAccum.aBest[], a[] */
|
|
+ sizeof(tRowcnt)*3*nColUp*(nCol+mxSample);
|
|
}
|
|
#endif
|
|
p = sqlite3DbMallocZero(db, n);
|
|
if( p==0 ){
|
|
sqlite3_result_error_nomem(context);
|
|
return;
|
|
}
|
|
|
|
p->db = db;
|
|
p->nEst = sqlite3_value_int64(argv[2]);
|
|
p->nRow = 0;
|
|
p->nLimit = sqlite3_value_int64(argv[3]);
|
|
p->nCol = nCol;
|
|
p->nKeyCol = nKeyCol;
|
|
p->nSkipAhead = 0;
|
|
p->current.anDLt = (tRowcnt*)&p[1];
|
|
p->current.anEq = &p->current.anDLt[nColUp];
|
|
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
p->mxSample = p->nLimit==0 ? mxSample : 0;
|
|
if( mxSample ){
|
|
u8 *pSpace; /* Allocated space not yet assigned */
|
|
int i; /* Used to iterate through p->aSample[] */
|
|
|
|
p->iGet = -1;
|
|
p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1);
|
|
p->current.anLt = &p->current.anEq[nColUp];
|
|
p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
|
|
|
|
/* Set up the StatAccum.a[] and aBest[] arrays */
|
|
p->a = (struct StatSample*)&p->current.anLt[nColUp];
|
|
p->aBest = &p->a[mxSample];
|
|
pSpace = (u8*)(&p->a[mxSample+nCol]);
|
|
for(i=0; i<(mxSample+nCol); i++){
|
|
p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
|
|
p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
|
|
p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
|
|
}
|
|
assert( (pSpace - (u8*)p)==n );
|
|
|
|
for(i=0; i<nCol; i++){
|
|
p->aBest[i].iCol = i;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Return a pointer to the allocated object to the caller. Note that
|
|
** only the pointer (the 2nd parameter) matters. The size of the object
|
|
** (given by the 3rd parameter) is never used and can be any positive
|
|
** value. */
|
|
sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor);
|
|
}
|
|
static const FuncDef statInitFuncdef = {
|
|
4, /* nArg */
|
|
SQLITE_UTF8, /* funcFlags */
|
|
0, /* pUserData */
|
|
0, /* pNext */
|
|
statInit, /* xSFunc */
|
|
0, /* xFinalize */
|
|
0, 0, /* xValue, xInverse */
|
|
"stat_init", /* zName */
|
|
{0}
|
|
};
|
|
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
/*
|
|
** pNew and pOld are both candidate non-periodic samples selected for
|
|
** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
|
|
** considering only any trailing columns and the sample hash value, this
|
|
** function returns true if sample pNew is to be preferred over pOld.
|
|
** In other words, if we assume that the cardinalities of the selected
|
|
** column for pNew and pOld are equal, is pNew to be preferred over pOld.
|
|
**
|
|
** This function assumes that for each argument sample, the contents of
|
|
** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
|
|
*/
|
|
static int sampleIsBetterPost(
|
|
StatAccum *pAccum,
|
|
StatSample *pNew,
|
|
StatSample *pOld
|
|
){
|
|
int nCol = pAccum->nCol;
|
|
int i;
|
|
assert( pNew->iCol==pOld->iCol );
|
|
for(i=pNew->iCol+1; i<nCol; i++){
|
|
if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
|
|
if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
|
|
}
|
|
if( pNew->iHash>pOld->iHash ) return 1;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
/*
|
|
** Return true if pNew is to be preferred over pOld.
|
|
**
|
|
** This function assumes that for each argument sample, the contents of
|
|
** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
|
|
*/
|
|
static int sampleIsBetter(
|
|
StatAccum *pAccum,
|
|
StatSample *pNew,
|
|
StatSample *pOld
|
|
){
|
|
tRowcnt nEqNew = pNew->anEq[pNew->iCol];
|
|
tRowcnt nEqOld = pOld->anEq[pOld->iCol];
|
|
|
|
assert( pOld->isPSample==0 && pNew->isPSample==0 );
|
|
assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
|
|
|
|
if( (nEqNew>nEqOld) ) return 1;
|
|
if( nEqNew==nEqOld ){
|
|
if( pNew->iCol<pOld->iCol ) return 1;
|
|
return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Copy the contents of sample *pNew into the p->a[] array. If necessary,
|
|
** remove the least desirable sample from p->a[] to make room.
|
|
*/
|
|
static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){
|
|
StatSample *pSample = 0;
|
|
int i;
|
|
|
|
assert( IsStat4 || nEqZero==0 );
|
|
|
|
/* StatAccum.nMaxEqZero is set to the maximum number of leading 0
|
|
** values in the anEq[] array of any sample in StatAccum.a[]. In
|
|
** other words, if nMaxEqZero is n, then it is guaranteed that there
|
|
** are no samples with StatSample.anEq[m]==0 for (m>=n). */
|
|
if( nEqZero>p->nMaxEqZero ){
|
|
p->nMaxEqZero = nEqZero;
|
|
}
|
|
if( pNew->isPSample==0 ){
|
|
StatSample *pUpgrade = 0;
|
|
assert( pNew->anEq[pNew->iCol]>0 );
|
|
|
|
/* This sample is being added because the prefix that ends in column
|
|
** iCol occurs many times in the table. However, if we have already
|
|
** added a sample that shares this prefix, there is no need to add
|
|
** this one. Instead, upgrade the priority of the highest priority
|
|
** existing sample that shares this prefix. */
|
|
for(i=p->nSample-1; i>=0; i--){
|
|
StatSample *pOld = &p->a[i];
|
|
if( pOld->anEq[pNew->iCol]==0 ){
|
|
if( pOld->isPSample ) return;
|
|
assert( pOld->iCol>pNew->iCol );
|
|
assert( sampleIsBetter(p, pNew, pOld) );
|
|
if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
|
|
pUpgrade = pOld;
|
|
}
|
|
}
|
|
}
|
|
if( pUpgrade ){
|
|
pUpgrade->iCol = pNew->iCol;
|
|
pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
|
|
goto find_new_min;
|
|
}
|
|
}
|
|
|
|
/* If necessary, remove sample iMin to make room for the new sample. */
|
|
if( p->nSample>=p->mxSample ){
|
|
StatSample *pMin = &p->a[p->iMin];
|
|
tRowcnt *anEq = pMin->anEq;
|
|
tRowcnt *anLt = pMin->anLt;
|
|
tRowcnt *anDLt = pMin->anDLt;
|
|
sampleClear(p->db, pMin);
|
|
memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
|
|
pSample = &p->a[p->nSample-1];
|
|
pSample->nRowid = 0;
|
|
pSample->anEq = anEq;
|
|
pSample->anDLt = anDLt;
|
|
pSample->anLt = anLt;
|
|
p->nSample = p->mxSample-1;
|
|
}
|
|
|
|
/* The "rows less-than" for the rowid column must be greater than that
|
|
** for the last sample in the p->a[] array. Otherwise, the samples would
|
|
** be out of order. */
|
|
assert( p->nSample==0
|
|
|| pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
|
|
|
|
/* Insert the new sample */
|
|
pSample = &p->a[p->nSample];
|
|
sampleCopy(p, pSample, pNew);
|
|
p->nSample++;
|
|
|
|
/* Zero the first nEqZero entries in the anEq[] array. */
|
|
memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
|
|
|
|
find_new_min:
|
|
if( p->nSample>=p->mxSample ){
|
|
int iMin = -1;
|
|
for(i=0; i<p->mxSample; i++){
|
|
if( p->a[i].isPSample ) continue;
|
|
if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
|
|
iMin = i;
|
|
}
|
|
}
|
|
assert( iMin>=0 );
|
|
p->iMin = iMin;
|
|
}
|
|
}
|
|
#endif /* SQLITE_ENABLE_STAT4 */
|
|
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
/*
|
|
** Field iChng of the index being scanned has changed. So at this point
|
|
** p->current contains a sample that reflects the previous row of the
|
|
** index. The value of anEq[iChng] and subsequent anEq[] elements are
|
|
** correct at this point.
|
|
*/
|
|
static void samplePushPrevious(StatAccum *p, int iChng){
|
|
int i;
|
|
|
|
/* Check if any samples from the aBest[] array should be pushed
|
|
** into IndexSample.a[] at this point. */
|
|
for(i=(p->nCol-2); i>=iChng; i--){
|
|
StatSample *pBest = &p->aBest[i];
|
|
pBest->anEq[i] = p->current.anEq[i];
|
|
if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
|
|
sampleInsert(p, pBest, i);
|
|
}
|
|
}
|
|
|
|
/* Check that no sample contains an anEq[] entry with an index of
|
|
** p->nMaxEqZero or greater set to zero. */
|
|
for(i=p->nSample-1; i>=0; i--){
|
|
int j;
|
|
for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 );
|
|
}
|
|
|
|
/* Update the anEq[] fields of any samples already collected. */
|
|
if( iChng<p->nMaxEqZero ){
|
|
for(i=p->nSample-1; i>=0; i--){
|
|
int j;
|
|
for(j=iChng; j<p->nCol; j++){
|
|
if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
|
|
}
|
|
}
|
|
p->nMaxEqZero = iChng;
|
|
}
|
|
}
|
|
#endif /* SQLITE_ENABLE_STAT4 */
|
|
|
|
/*
|
|
** Implementation of the stat_push SQL function: stat_push(P,C,R)
|
|
** Arguments:
|
|
**
|
|
** P Pointer to the StatAccum object created by stat_init()
|
|
** C Index of left-most column to differ from previous row
|
|
** R Rowid for the current row. Might be a key record for
|
|
** WITHOUT ROWID tables.
|
|
**
|
|
** The purpose of this routine is to collect statistical data and/or
|
|
** samples from the index being analyzed into the StatAccum object.
|
|
** The stat_get() SQL function will be used afterwards to
|
|
** retrieve the information gathered.
|
|
**
|
|
** This SQL function usually returns NULL, but might return an integer
|
|
** if it wants the byte-code to do special processing.
|
|
**
|
|
** The R parameter is only used for STAT4
|
|
*/
|
|
static void statPush(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
int i;
|
|
|
|
/* The three function arguments */
|
|
StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
|
|
int iChng = sqlite3_value_int(argv[1]);
|
|
|
|
UNUSED_PARAMETER( argc );
|
|
UNUSED_PARAMETER( context );
|
|
assert( p->nCol>0 );
|
|
assert( iChng<p->nCol );
|
|
|
|
if( p->nRow==0 ){
|
|
/* This is the first call to this function. Do initialization. */
|
|
for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
|
|
}else{
|
|
/* Second and subsequent calls get processed here */
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( p->mxSample ) samplePushPrevious(p, iChng);
|
|
#endif
|
|
|
|
/* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
|
|
** to the current row of the index. */
|
|
for(i=0; i<iChng; i++){
|
|
p->current.anEq[i]++;
|
|
}
|
|
for(i=iChng; i<p->nCol; i++){
|
|
p->current.anDLt[i]++;
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i];
|
|
#endif
|
|
p->current.anEq[i] = 1;
|
|
}
|
|
}
|
|
|
|
p->nRow++;
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( p->mxSample ){
|
|
tRowcnt nLt;
|
|
if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
|
|
sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
|
|
}else{
|
|
sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
|
|
sqlite3_value_blob(argv[2]));
|
|
}
|
|
p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
|
|
|
|
nLt = p->current.anLt[p->nCol-1];
|
|
/* Check if this is to be a periodic sample. If so, add it. */
|
|
if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
|
|
p->current.isPSample = 1;
|
|
p->current.iCol = 0;
|
|
sampleInsert(p, &p->current, p->nCol-1);
|
|
p->current.isPSample = 0;
|
|
}
|
|
|
|
/* Update the aBest[] array. */
|
|
for(i=0; i<(p->nCol-1); i++){
|
|
p->current.iCol = i;
|
|
if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
|
|
sampleCopy(p, &p->aBest[i], &p->current);
|
|
}
|
|
}
|
|
}else
|
|
#endif
|
|
if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){
|
|
p->nSkipAhead++;
|
|
sqlite3_result_int(context, p->current.anDLt[0]>0);
|
|
}
|
|
}
|
|
|
|
static const FuncDef statPushFuncdef = {
|
|
2+IsStat4, /* nArg */
|
|
SQLITE_UTF8, /* funcFlags */
|
|
0, /* pUserData */
|
|
0, /* pNext */
|
|
statPush, /* xSFunc */
|
|
0, /* xFinalize */
|
|
0, 0, /* xValue, xInverse */
|
|
"stat_push", /* zName */
|
|
{0}
|
|
};
|
|
|
|
#define STAT_GET_STAT1 0 /* "stat" column of stat1 table */
|
|
#define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */
|
|
#define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */
|
|
#define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */
|
|
#define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */
|
|
|
|
/*
|
|
** Implementation of the stat_get(P,J) SQL function. This routine is
|
|
** used to query statistical information that has been gathered into
|
|
** the StatAccum object by prior calls to stat_push(). The P parameter
|
|
** has type BLOB but it is really just a pointer to the StatAccum object.
|
|
** The content to returned is determined by the parameter J
|
|
** which is one of the STAT_GET_xxxx values defined above.
|
|
**
|
|
** The stat_get(P,J) function is not available to generic SQL. It is
|
|
** inserted as part of a manually constructed bytecode program. (See
|
|
** the callStatGet() routine below.) It is guaranteed that the P
|
|
** parameter will always be a pointer to a StatAccum object, never a
|
|
** NULL.
|
|
**
|
|
** If STAT4 is not enabled, then J is always
|
|
** STAT_GET_STAT1 and is hence omitted and this routine becomes
|
|
** a one-parameter function, stat_get(P), that always returns the
|
|
** stat1 table entry information.
|
|
*/
|
|
static void statGet(
|
|
sqlite3_context *context,
|
|
int argc,
|
|
sqlite3_value **argv
|
|
){
|
|
StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
/* STAT4 has a parameter on this routine. */
|
|
int eCall = sqlite3_value_int(argv[1]);
|
|
assert( argc==2 );
|
|
assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
|
|
|| eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
|
|
|| eCall==STAT_GET_NDLT
|
|
);
|
|
assert( eCall==STAT_GET_STAT1 || p->mxSample );
|
|
if( eCall==STAT_GET_STAT1 )
|
|
#else
|
|
assert( argc==1 );
|
|
#endif
|
|
{
|
|
/* Return the value to store in the "stat" column of the sqlite_stat1
|
|
** table for this index.
|
|
**
|
|
** The value is a string composed of a list of integers describing
|
|
** the index. The first integer in the list is the total number of
|
|
** entries in the index. There is one additional integer in the list
|
|
** for each indexed column. This additional integer is an estimate of
|
|
** the number of rows matched by a equality query on the index using
|
|
** a key with the corresponding number of fields. In other words,
|
|
** if the index is on columns (a,b) and the sqlite_stat1 value is
|
|
** "100 10 2", then SQLite estimates that:
|
|
**
|
|
** * the index contains 100 rows,
|
|
** * "WHERE a=?" matches 10 rows, and
|
|
** * "WHERE a=? AND b=?" matches 2 rows.
|
|
**
|
|
** If D is the count of distinct values and K is the total number of
|
|
** rows, then each estimate is usually computed as:
|
|
**
|
|
** I = (K+D-1)/D
|
|
**
|
|
** In other words, I is K/D rounded up to the next whole integer.
|
|
** However, if I is between 1.0 and 1.1 (in other words if I is
|
|
** close to 1.0 but just a little larger) then do not round up but
|
|
** instead keep the I value at 1.0.
|
|
*/
|
|
sqlite3_str sStat; /* Text of the constructed "stat" line */
|
|
int i; /* Loop counter */
|
|
|
|
sqlite3StrAccumInit(&sStat, 0, 0, 0, (p->nKeyCol+1)*100);
|
|
sqlite3_str_appendf(&sStat, "%llu",
|
|
p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow);
|
|
for(i=0; i<p->nKeyCol; i++){
|
|
u64 nDistinct = p->current.anDLt[i] + 1;
|
|
u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
|
|
if( iVal==2 && p->nRow*10 <= nDistinct*11 ) iVal = 1;
|
|
sqlite3_str_appendf(&sStat, " %llu", iVal);
|
|
assert( p->current.anEq[i] );
|
|
}
|
|
sqlite3ResultStrAccum(context, &sStat);
|
|
}
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
else if( eCall==STAT_GET_ROWID ){
|
|
if( p->iGet<0 ){
|
|
samplePushPrevious(p, 0);
|
|
p->iGet = 0;
|
|
}
|
|
if( p->iGet<p->nSample ){
|
|
StatSample *pS = p->a + p->iGet;
|
|
if( pS->nRowid==0 ){
|
|
sqlite3_result_int64(context, pS->u.iRowid);
|
|
}else{
|
|
sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
|
|
SQLITE_TRANSIENT);
|
|
}
|
|
}
|
|
}else{
|
|
tRowcnt *aCnt = 0;
|
|
sqlite3_str sStat;
|
|
int i;
|
|
|
|
assert( p->iGet<p->nSample );
|
|
switch( eCall ){
|
|
case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break;
|
|
case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break;
|
|
default: {
|
|
aCnt = p->a[p->iGet].anDLt;
|
|
p->iGet++;
|
|
break;
|
|
}
|
|
}
|
|
sqlite3StrAccumInit(&sStat, 0, 0, 0, p->nCol*100);
|
|
for(i=0; i<p->nCol; i++){
|
|
sqlite3_str_appendf(&sStat, "%llu ", (u64)aCnt[i]);
|
|
}
|
|
if( sStat.nChar ) sStat.nChar--;
|
|
sqlite3ResultStrAccum(context, &sStat);
|
|
}
|
|
#endif /* SQLITE_ENABLE_STAT4 */
|
|
#ifndef SQLITE_DEBUG
|
|
UNUSED_PARAMETER( argc );
|
|
#endif
|
|
}
|
|
static const FuncDef statGetFuncdef = {
|
|
1+IsStat4, /* nArg */
|
|
SQLITE_UTF8, /* funcFlags */
|
|
0, /* pUserData */
|
|
0, /* pNext */
|
|
statGet, /* xSFunc */
|
|
0, /* xFinalize */
|
|
0, 0, /* xValue, xInverse */
|
|
"stat_get", /* zName */
|
|
{0}
|
|
};
|
|
|
|
static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1);
|
|
#elif SQLITE_DEBUG
|
|
assert( iParam==STAT_GET_STAT1 );
|
|
#else
|
|
UNUSED_PARAMETER( iParam );
|
|
#endif
|
|
assert( regOut!=regStat && regOut!=regStat+1 );
|
|
sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4,
|
|
&statGetFuncdef, 0);
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
|
/* Add a comment to the most recent VDBE opcode that is the name
|
|
** of the k-th column of the pIdx index.
|
|
*/
|
|
static void analyzeVdbeCommentIndexWithColumnName(
|
|
Vdbe *v, /* Prepared statement under construction */
|
|
Index *pIdx, /* Index whose column is being loaded */
|
|
int k /* Which column index */
|
|
){
|
|
int i; /* Index of column in the table */
|
|
assert( k>=0 && k<pIdx->nColumn );
|
|
i = pIdx->aiColumn[k];
|
|
if( NEVER(i==XN_ROWID) ){
|
|
VdbeComment((v,"%s.rowid",pIdx->zName));
|
|
}else if( i==XN_EXPR ){
|
|
assert( pIdx->bHasExpr );
|
|
VdbeComment((v,"%s.expr(%d)",pIdx->zName, k));
|
|
}else{
|
|
VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zCnName));
|
|
}
|
|
}
|
|
#else
|
|
# define analyzeVdbeCommentIndexWithColumnName(a,b,c)
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
/*
|
|
** Generate code to do an analysis of all indices associated with
|
|
** a single table.
|
|
*/
|
|
static void analyzeOneTable(
|
|
Parse *pParse, /* Parser context */
|
|
Table *pTab, /* Table whose indices are to be analyzed */
|
|
Index *pOnlyIdx, /* If not NULL, only analyze this one index */
|
|
int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
|
|
int iMem, /* Available memory locations begin here */
|
|
int iTab /* Next available cursor */
|
|
){
|
|
sqlite3 *db = pParse->db; /* Database handle */
|
|
Index *pIdx; /* An index to being analyzed */
|
|
int iIdxCur; /* Cursor open on index being analyzed */
|
|
int iTabCur; /* Table cursor */
|
|
Vdbe *v; /* The virtual machine being built up */
|
|
int i; /* Loop counter */
|
|
int jZeroRows = -1; /* Jump from here if number of rows is zero */
|
|
int iDb; /* Index of database containing pTab */
|
|
u8 needTableCnt = 1; /* True to count the table */
|
|
int regNewRowid = iMem++; /* Rowid for the inserted record */
|
|
int regStat = iMem++; /* Register to hold StatAccum object */
|
|
int regChng = iMem++; /* Index of changed index field */
|
|
int regRowid = iMem++; /* Rowid argument passed to stat_push() */
|
|
int regTemp = iMem++; /* Temporary use register */
|
|
int regTemp2 = iMem++; /* Second temporary use register */
|
|
int regTabname = iMem++; /* Register containing table name */
|
|
int regIdxname = iMem++; /* Register containing index name */
|
|
int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */
|
|
int regPrev = iMem; /* MUST BE LAST (see below) */
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
int doOnce = 1; /* Flag for a one-time computation */
|
|
#endif
|
|
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
|
|
Table *pStat1 = 0;
|
|
#endif
|
|
|
|
sqlite3TouchRegister(pParse, iMem);
|
|
assert( sqlite3NoTempsInRange(pParse, regNewRowid, iMem) );
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 || NEVER(pTab==0) ){
|
|
return;
|
|
}
|
|
if( !IsOrdinaryTable(pTab) ){
|
|
/* Do not gather statistics on views or virtual tables */
|
|
return;
|
|
}
|
|
if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){
|
|
/* Do not gather statistics on system tables */
|
|
return;
|
|
}
|
|
assert( sqlite3BtreeHoldsAllMutexes(db) );
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
assert( iDb>=0 );
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
|
|
db->aDb[iDb].zDbSName ) ){
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
|
|
if( db->xPreUpdateCallback ){
|
|
pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13);
|
|
if( pStat1==0 ) return;
|
|
pStat1->zName = (char*)&pStat1[1];
|
|
memcpy(pStat1->zName, "sqlite_stat1", 13);
|
|
pStat1->nCol = 3;
|
|
pStat1->iPKey = -1;
|
|
sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNAMIC);
|
|
}
|
|
#endif
|
|
|
|
/* Establish a read-lock on the table at the shared-cache level.
|
|
** Open a read-only cursor on the table. Also allocate a cursor number
|
|
** to use for scanning indexes (iIdxCur). No index cursor is opened at
|
|
** this time though. */
|
|
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
|
|
iTabCur = iTab++;
|
|
iIdxCur = iTab++;
|
|
pParse->nTab = MAX(pParse->nTab, iTab);
|
|
sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
|
|
sqlite3VdbeLoadString(v, regTabname, pTab->zName);
|
|
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
|
int nCol; /* Number of columns in pIdx. "N" */
|
|
int addrRewind; /* Address of "OP_Rewind iIdxCur" */
|
|
int addrNextRow; /* Address of "next_row:" */
|
|
const char *zIdxName; /* Name of the index */
|
|
int nColTest; /* Number of columns to test for changes */
|
|
|
|
if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
|
|
if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
|
|
if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
|
|
nCol = pIdx->nKeyCol;
|
|
zIdxName = pTab->zName;
|
|
nColTest = nCol - 1;
|
|
}else{
|
|
nCol = pIdx->nColumn;
|
|
zIdxName = pIdx->zName;
|
|
nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
|
|
}
|
|
|
|
/* Populate the register containing the index name. */
|
|
sqlite3VdbeLoadString(v, regIdxname, zIdxName);
|
|
VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
|
|
|
|
/*
|
|
** Pseudo-code for loop that calls stat_push():
|
|
**
|
|
** Rewind csr
|
|
** if eof(csr) goto end_of_scan;
|
|
** regChng = 0
|
|
** goto chng_addr_0;
|
|
**
|
|
** next_row:
|
|
** regChng = 0
|
|
** if( idx(0) != regPrev(0) ) goto chng_addr_0
|
|
** regChng = 1
|
|
** if( idx(1) != regPrev(1) ) goto chng_addr_1
|
|
** ...
|
|
** regChng = N
|
|
** goto chng_addr_N
|
|
**
|
|
** chng_addr_0:
|
|
** regPrev(0) = idx(0)
|
|
** chng_addr_1:
|
|
** regPrev(1) = idx(1)
|
|
** ...
|
|
**
|
|
** endDistinctTest:
|
|
** regRowid = idx(rowid)
|
|
** stat_push(P, regChng, regRowid)
|
|
** Next csr
|
|
** if !eof(csr) goto next_row;
|
|
**
|
|
** end_of_scan:
|
|
*/
|
|
|
|
/* Make sure there are enough memory cells allocated to accommodate
|
|
** the regPrev array and a trailing rowid (the rowid slot is required
|
|
** when building a record to insert into the sample column of
|
|
** the sqlite_stat4 table. */
|
|
sqlite3TouchRegister(pParse, regPrev+nColTest);
|
|
|
|
/* Open a read-only cursor on the index being analyzed. */
|
|
assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
|
|
sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
|
|
sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
|
|
VdbeComment((v, "%s", pIdx->zName));
|
|
|
|
/* Invoke the stat_init() function. The arguments are:
|
|
**
|
|
** (1) the number of columns in the index including the rowid
|
|
** (or for a WITHOUT ROWID table, the number of PK columns),
|
|
** (2) the number of columns in the key without the rowid/pk
|
|
** (3) estimated number of rows in the index,
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1);
|
|
assert( regRowid==regStat+2 );
|
|
sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid);
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( OptimizationEnabled(db, SQLITE_Stat4) ){
|
|
sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regTemp);
|
|
addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
|
|
VdbeCoverage(v);
|
|
}else
|
|
#endif
|
|
{
|
|
addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp, 1);
|
|
}
|
|
assert( regTemp2==regStat+4 );
|
|
sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2);
|
|
sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4,
|
|
&statInitFuncdef, 0);
|
|
|
|
/* Implementation of the following:
|
|
**
|
|
** Rewind csr
|
|
** if eof(csr) goto end_of_scan;
|
|
** regChng = 0
|
|
** goto next_push_0;
|
|
**
|
|
*/
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
|
|
addrNextRow = sqlite3VdbeCurrentAddr(v);
|
|
|
|
if( nColTest>0 ){
|
|
int endDistinctTest = sqlite3VdbeMakeLabel(pParse);
|
|
int *aGotoChng; /* Array of jump instruction addresses */
|
|
aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
|
|
if( aGotoChng==0 ) continue;
|
|
|
|
/*
|
|
** next_row:
|
|
** regChng = 0
|
|
** if( idx(0) != regPrev(0) ) goto chng_addr_0
|
|
** regChng = 1
|
|
** if( idx(1) != regPrev(1) ) goto chng_addr_1
|
|
** ...
|
|
** regChng = N
|
|
** goto endDistinctTest
|
|
*/
|
|
sqlite3VdbeAddOp0(v, OP_Goto);
|
|
addrNextRow = sqlite3VdbeCurrentAddr(v);
|
|
if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
|
|
/* For a single-column UNIQUE index, once we have found a non-NULL
|
|
** row, we know that all the rest will be distinct, so skip
|
|
** subsequent distinctness tests. */
|
|
sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
|
|
VdbeCoverage(v);
|
|
}
|
|
for(i=0; i<nColTest; i++){
|
|
char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
|
|
analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
|
|
aGotoChng[i] =
|
|
sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
|
|
sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
|
|
VdbeCoverage(v);
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
|
|
sqlite3VdbeGoto(v, endDistinctTest);
|
|
|
|
|
|
/*
|
|
** chng_addr_0:
|
|
** regPrev(0) = idx(0)
|
|
** chng_addr_1:
|
|
** regPrev(1) = idx(1)
|
|
** ...
|
|
*/
|
|
sqlite3VdbeJumpHere(v, addrNextRow-1);
|
|
for(i=0; i<nColTest; i++){
|
|
sqlite3VdbeJumpHere(v, aGotoChng[i]);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
|
|
analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, endDistinctTest);
|
|
sqlite3DbFree(db, aGotoChng);
|
|
}
|
|
|
|
/*
|
|
** chng_addr_N:
|
|
** regRowid = idx(rowid) // STAT4 only
|
|
** stat_push(P, regChng, regRowid) // 3rd parameter STAT4 only
|
|
** Next csr
|
|
** if !eof(csr) goto next_row;
|
|
*/
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( OptimizationEnabled(db, SQLITE_Stat4) ){
|
|
assert( regRowid==(regStat+2) );
|
|
if( HasRowid(pTab) ){
|
|
sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
|
|
}else{
|
|
Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
|
|
int j, k, regKey;
|
|
regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
|
|
for(j=0; j<pPk->nKeyCol; j++){
|
|
k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
|
|
assert( k>=0 && k<pIdx->nColumn );
|
|
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
|
|
analyzeVdbeCommentIndexWithColumnName(v,pIdx,k);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
|
|
sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
|
|
}
|
|
}
|
|
#endif
|
|
assert( regChng==(regStat+1) );
|
|
{
|
|
sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4,
|
|
&statPushFuncdef, 0);
|
|
if( db->nAnalysisLimit ){
|
|
int j1, j2, j3;
|
|
j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v);
|
|
j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v);
|
|
j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1);
|
|
VdbeCoverage(v);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
|
|
sqlite3VdbeJumpHere(v, j2);
|
|
sqlite3VdbeJumpHere(v, j3);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
|
|
}
|
|
}
|
|
|
|
/* Add the entry to the stat1 table. */
|
|
callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1);
|
|
assert( "BBB"[0]==SQLITE_AFF_TEXT );
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
|
|
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
|
|
sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
|
|
#endif
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
|
|
/* Add the entries to the stat4 table. */
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){
|
|
int regEq = regStat1;
|
|
int regLt = regStat1+1;
|
|
int regDLt = regStat1+2;
|
|
int regSample = regStat1+3;
|
|
int regCol = regStat1+4;
|
|
int regSampleRowid = regCol + nCol;
|
|
int addrNext;
|
|
int addrIsNull;
|
|
u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
|
|
|
|
if( doOnce ){
|
|
int mxCol = nCol;
|
|
Index *pX;
|
|
|
|
/* Compute the maximum number of columns in any index */
|
|
for(pX=pTab->pIndex; pX; pX=pX->pNext){
|
|
int nColX; /* Number of columns in pX */
|
|
if( !HasRowid(pTab) && IsPrimaryKeyIndex(pX) ){
|
|
nColX = pX->nKeyCol;
|
|
}else{
|
|
nColX = pX->nColumn;
|
|
}
|
|
if( nColX>mxCol ) mxCol = nColX;
|
|
}
|
|
|
|
/* Allocate space to compute results for the largest index */
|
|
sqlite3TouchRegister(pParse, regCol+mxCol);
|
|
doOnce = 0;
|
|
#ifdef SQLITE_DEBUG
|
|
/* Verify that the call to sqlite3ClearTempRegCache() below
|
|
** really is needed.
|
|
** https://sqlite.org/forum/forumpost/83cb4a95a0 (2023-03-25)
|
|
*/
|
|
testcase( !sqlite3NoTempsInRange(pParse, regEq, regCol+mxCol) );
|
|
#endif
|
|
sqlite3ClearTempRegCache(pParse); /* tag-20230325-1 */
|
|
assert( sqlite3NoTempsInRange(pParse, regEq, regCol+mxCol) );
|
|
}
|
|
assert( sqlite3NoTempsInRange(pParse, regEq, regCol+nCol) );
|
|
|
|
addrNext = sqlite3VdbeCurrentAddr(v);
|
|
callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid);
|
|
addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
|
|
VdbeCoverage(v);
|
|
callStatGet(pParse, regStat, STAT_GET_NEQ, regEq);
|
|
callStatGet(pParse, regStat, STAT_GET_NLT, regLt);
|
|
callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt);
|
|
sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
|
|
VdbeCoverage(v);
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
|
|
sqlite3VdbeJumpHere(v, addrIsNull);
|
|
}
|
|
#endif /* SQLITE_ENABLE_STAT4 */
|
|
|
|
/* End of analysis */
|
|
sqlite3VdbeJumpHere(v, addrRewind);
|
|
}
|
|
|
|
|
|
/* Create a single sqlite_stat1 entry containing NULL as the index
|
|
** name and the row count as the content.
|
|
*/
|
|
if( pOnlyIdx==0 && needTableCnt ){
|
|
VdbeComment((v, "%s", pTab->zName));
|
|
sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
|
|
jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
|
|
assert( "BBB"[0]==SQLITE_AFF_TEXT );
|
|
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
|
|
sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
|
|
#endif
|
|
sqlite3VdbeJumpHere(v, jZeroRows);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
** Generate code that will cause the most recent index analysis to
|
|
** be loaded into internal hash tables where is can be used.
|
|
*/
|
|
static void loadAnalysis(Parse *pParse, int iDb){
|
|
Vdbe *v = sqlite3GetVdbe(pParse);
|
|
if( v ){
|
|
sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate code that will do an analysis of an entire database
|
|
*/
|
|
static void analyzeDatabase(Parse *pParse, int iDb){
|
|
sqlite3 *db = pParse->db;
|
|
Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
|
|
HashElem *k;
|
|
int iStatCur;
|
|
int iMem;
|
|
int iTab;
|
|
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
iStatCur = pParse->nTab;
|
|
pParse->nTab += 3;
|
|
openStatTable(pParse, iDb, iStatCur, 0, 0);
|
|
iMem = pParse->nMem+1;
|
|
iTab = pParse->nTab;
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
|
|
Table *pTab = (Table*)sqliteHashData(k);
|
|
analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
iMem = sqlite3FirstAvailableRegister(pParse, iMem);
|
|
#else
|
|
assert( iMem==sqlite3FirstAvailableRegister(pParse,iMem) );
|
|
#endif
|
|
}
|
|
loadAnalysis(pParse, iDb);
|
|
}
|
|
|
|
/*
|
|
** Generate code that will do an analysis of a single table in
|
|
** a database. If pOnlyIdx is not NULL then it is a single index
|
|
** in pTab that should be analyzed.
|
|
*/
|
|
static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
|
|
int iDb;
|
|
int iStatCur;
|
|
|
|
assert( pTab!=0 );
|
|
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
sqlite3BeginWriteOperation(pParse, 0, iDb);
|
|
iStatCur = pParse->nTab;
|
|
pParse->nTab += 3;
|
|
if( pOnlyIdx ){
|
|
openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
|
|
}else{
|
|
openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
|
|
}
|
|
analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
|
|
loadAnalysis(pParse, iDb);
|
|
}
|
|
|
|
/*
|
|
** Generate code for the ANALYZE command. The parser calls this routine
|
|
** when it recognizes an ANALYZE command.
|
|
**
|
|
** ANALYZE -- 1
|
|
** ANALYZE <database> -- 2
|
|
** ANALYZE ?<database>.?<tablename> -- 3
|
|
**
|
|
** Form 1 causes all indices in all attached databases to be analyzed.
|
|
** Form 2 analyzes all indices the single database named.
|
|
** Form 3 analyzes all indices associated with the named table.
|
|
*/
|
|
void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
|
|
sqlite3 *db = pParse->db;
|
|
int iDb;
|
|
int i;
|
|
char *z, *zDb;
|
|
Table *pTab;
|
|
Index *pIdx;
|
|
Token *pTableName;
|
|
Vdbe *v;
|
|
|
|
/* Read the database schema. If an error occurs, leave an error message
|
|
** and code in pParse and return NULL. */
|
|
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
|
|
if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
|
return;
|
|
}
|
|
|
|
assert( pName2!=0 || pName1==0 );
|
|
if( pName1==0 ){
|
|
/* Form 1: Analyze everything */
|
|
for(i=0; i<db->nDb; i++){
|
|
if( i==1 ) continue; /* Do not analyze the TEMP database */
|
|
analyzeDatabase(pParse, i);
|
|
}
|
|
}else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){
|
|
/* Analyze the schema named as the argument */
|
|
analyzeDatabase(pParse, iDb);
|
|
}else{
|
|
/* Form 3: Analyze the table or index named as an argument */
|
|
iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
|
|
if( iDb>=0 ){
|
|
zDb = pName2->n ? db->aDb[iDb].zDbSName : 0;
|
|
z = sqlite3NameFromToken(db, pTableName);
|
|
if( z ){
|
|
if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
|
|
analyzeTable(pParse, pIdx->pTable, pIdx);
|
|
}else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
|
|
analyzeTable(pParse, pTab, 0);
|
|
}
|
|
sqlite3DbFree(db, z);
|
|
}
|
|
}
|
|
}
|
|
if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){
|
|
sqlite3VdbeAddOp0(v, OP_Expire);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Used to pass information from the analyzer reader through to the
|
|
** callback routine.
|
|
*/
|
|
typedef struct analysisInfo analysisInfo;
|
|
struct analysisInfo {
|
|
sqlite3 *db;
|
|
const char *zDatabase;
|
|
};
|
|
|
|
/*
|
|
** The first argument points to a nul-terminated string containing a
|
|
** list of space separated integers. Read the first nOut of these into
|
|
** the array aOut[].
|
|
*/
|
|
static void decodeIntArray(
|
|
char *zIntArray, /* String containing int array to decode */
|
|
int nOut, /* Number of slots in aOut[] */
|
|
tRowcnt *aOut, /* Store integers here */
|
|
LogEst *aLog, /* Or, if aOut==0, here */
|
|
Index *pIndex /* Handle extra flags for this index, if not NULL */
|
|
){
|
|
char *z = zIntArray;
|
|
int c;
|
|
int i;
|
|
tRowcnt v;
|
|
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( z==0 ) z = "";
|
|
#else
|
|
assert( z!=0 );
|
|
#endif
|
|
for(i=0; *z && i<nOut; i++){
|
|
v = 0;
|
|
while( (c=z[0])>='0' && c<='9' ){
|
|
v = v*10 + c - '0';
|
|
z++;
|
|
}
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( aOut ) aOut[i] = v;
|
|
if( aLog ) aLog[i] = sqlite3LogEst(v);
|
|
#else
|
|
assert( aOut==0 );
|
|
UNUSED_PARAMETER(aOut);
|
|
assert( aLog!=0 );
|
|
aLog[i] = sqlite3LogEst(v);
|
|
#endif
|
|
if( *z==' ' ) z++;
|
|
}
|
|
#ifndef SQLITE_ENABLE_STAT4
|
|
assert( pIndex!=0 ); {
|
|
#else
|
|
if( pIndex ){
|
|
#endif
|
|
pIndex->bUnordered = 0;
|
|
pIndex->noSkipScan = 0;
|
|
while( z[0] ){
|
|
if( sqlite3_strglob("unordered*", z)==0 ){
|
|
pIndex->bUnordered = 1;
|
|
}else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
|
|
int sz = sqlite3Atoi(z+3);
|
|
if( sz<2 ) sz = 2;
|
|
pIndex->szIdxRow = sqlite3LogEst(sz);
|
|
}else if( sqlite3_strglob("noskipscan*", z)==0 ){
|
|
pIndex->noSkipScan = 1;
|
|
}
|
|
#ifdef SQLITE_ENABLE_COSTMULT
|
|
else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
|
|
pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
|
|
}
|
|
#endif
|
|
while( z[0]!=0 && z[0]!=' ' ) z++;
|
|
while( z[0]==' ' ) z++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This callback is invoked once for each index when reading the
|
|
** sqlite_stat1 table.
|
|
**
|
|
** argv[0] = name of the table
|
|
** argv[1] = name of the index (might be NULL)
|
|
** argv[2] = results of analysis - on integer for each column
|
|
**
|
|
** Entries for which argv[1]==NULL simply record the number of rows in
|
|
** the table.
|
|
*/
|
|
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
|
|
analysisInfo *pInfo = (analysisInfo*)pData;
|
|
Index *pIndex;
|
|
Table *pTable;
|
|
const char *z;
|
|
|
|
assert( argc==3 );
|
|
UNUSED_PARAMETER2(NotUsed, argc);
|
|
|
|
if( argv==0 || argv[0]==0 || argv[2]==0 ){
|
|
return 0;
|
|
}
|
|
pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
|
|
if( pTable==0 ){
|
|
return 0;
|
|
}
|
|
if( argv[1]==0 ){
|
|
pIndex = 0;
|
|
}else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
|
|
pIndex = sqlite3PrimaryKeyIndex(pTable);
|
|
}else{
|
|
pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
|
|
}
|
|
z = argv[2];
|
|
|
|
if( pIndex ){
|
|
tRowcnt *aiRowEst = 0;
|
|
int nCol = pIndex->nKeyCol+1;
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
/* Index.aiRowEst may already be set here if there are duplicate
|
|
** sqlite_stat1 entries for this index. In that case just clobber
|
|
** the old data with the new instead of allocating a new array. */
|
|
if( pIndex->aiRowEst==0 ){
|
|
pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
|
|
if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
|
|
}
|
|
aiRowEst = pIndex->aiRowEst;
|
|
#endif
|
|
pIndex->bUnordered = 0;
|
|
decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
|
|
pIndex->hasStat1 = 1;
|
|
if( pIndex->pPartIdxWhere==0 ){
|
|
pTable->nRowLogEst = pIndex->aiRowLogEst[0];
|
|
pTable->tabFlags |= TF_HasStat1;
|
|
}
|
|
}else{
|
|
Index fakeIdx;
|
|
fakeIdx.szIdxRow = pTable->szTabRow;
|
|
#ifdef SQLITE_ENABLE_COSTMULT
|
|
fakeIdx.pTable = pTable;
|
|
#endif
|
|
decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
|
|
pTable->szTabRow = fakeIdx.szIdxRow;
|
|
pTable->tabFlags |= TF_HasStat1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** If the Index.aSample variable is not NULL, delete the aSample[] array
|
|
** and its contents.
|
|
*/
|
|
void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
|
|
assert( db!=0 );
|
|
assert( pIdx!=0 );
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( pIdx->aSample ){
|
|
int j;
|
|
for(j=0; j<pIdx->nSample; j++){
|
|
IndexSample *p = &pIdx->aSample[j];
|
|
sqlite3DbFree(db, p->p);
|
|
}
|
|
sqlite3DbFree(db, pIdx->aSample);
|
|
}
|
|
if( db->pnBytesFreed==0 ){
|
|
pIdx->nSample = 0;
|
|
pIdx->aSample = 0;
|
|
}
|
|
#else
|
|
UNUSED_PARAMETER(db);
|
|
UNUSED_PARAMETER(pIdx);
|
|
#endif /* SQLITE_ENABLE_STAT4 */
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
/*
|
|
** Populate the pIdx->aAvgEq[] array based on the samples currently
|
|
** stored in pIdx->aSample[].
|
|
*/
|
|
static void initAvgEq(Index *pIdx){
|
|
if( pIdx ){
|
|
IndexSample *aSample = pIdx->aSample;
|
|
IndexSample *pFinal = &aSample[pIdx->nSample-1];
|
|
int iCol;
|
|
int nCol = 1;
|
|
if( pIdx->nSampleCol>1 ){
|
|
/* If this is stat4 data, then calculate aAvgEq[] values for all
|
|
** sample columns except the last. The last is always set to 1, as
|
|
** once the trailing PK fields are considered all index keys are
|
|
** unique. */
|
|
nCol = pIdx->nSampleCol-1;
|
|
pIdx->aAvgEq[nCol] = 1;
|
|
}
|
|
for(iCol=0; iCol<nCol; iCol++){
|
|
int nSample = pIdx->nSample;
|
|
int i; /* Used to iterate through samples */
|
|
tRowcnt sumEq = 0; /* Sum of the nEq values */
|
|
tRowcnt avgEq = 0;
|
|
tRowcnt nRow; /* Number of rows in index */
|
|
i64 nSum100 = 0; /* Number of terms contributing to sumEq */
|
|
i64 nDist100; /* Number of distinct values in index */
|
|
|
|
if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
|
|
nRow = pFinal->anLt[iCol];
|
|
nDist100 = (i64)100 * pFinal->anDLt[iCol];
|
|
nSample--;
|
|
}else{
|
|
nRow = pIdx->aiRowEst[0];
|
|
nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
|
|
}
|
|
pIdx->nRowEst0 = nRow;
|
|
|
|
/* Set nSum to the number of distinct (iCol+1) field prefixes that
|
|
** occur in the stat4 table for this index. Set sumEq to the sum of
|
|
** the nEq values for column iCol for the same set (adding the value
|
|
** only once where there exist duplicate prefixes). */
|
|
for(i=0; i<nSample; i++){
|
|
if( i==(pIdx->nSample-1)
|
|
|| aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
|
|
){
|
|
sumEq += aSample[i].anEq[iCol];
|
|
nSum100 += 100;
|
|
}
|
|
}
|
|
|
|
if( nDist100>nSum100 && sumEq<nRow ){
|
|
avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
|
|
}
|
|
if( avgEq==0 ) avgEq = 1;
|
|
pIdx->aAvgEq[iCol] = avgEq;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Look up an index by name. Or, if the name of a WITHOUT ROWID table
|
|
** is supplied instead, find the PRIMARY KEY index for that table.
|
|
*/
|
|
static Index *findIndexOrPrimaryKey(
|
|
sqlite3 *db,
|
|
const char *zName,
|
|
const char *zDb
|
|
){
|
|
Index *pIdx = sqlite3FindIndex(db, zName, zDb);
|
|
if( pIdx==0 ){
|
|
Table *pTab = sqlite3FindTable(db, zName, zDb);
|
|
if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
|
|
}
|
|
return pIdx;
|
|
}
|
|
|
|
/*
|
|
** Load the content from either the sqlite_stat4
|
|
** into the relevant Index.aSample[] arrays.
|
|
**
|
|
** Arguments zSql1 and zSql2 must point to SQL statements that return
|
|
** data equivalent to the following:
|
|
**
|
|
** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
|
|
** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
|
|
**
|
|
** where %Q is replaced with the database name before the SQL is executed.
|
|
*/
|
|
static int loadStatTbl(
|
|
sqlite3 *db, /* Database handle */
|
|
const char *zSql1, /* SQL statement 1 (see above) */
|
|
const char *zSql2, /* SQL statement 2 (see above) */
|
|
const char *zDb /* Database name (e.g. "main") */
|
|
){
|
|
int rc; /* Result codes from subroutines */
|
|
sqlite3_stmt *pStmt = 0; /* An SQL statement being run */
|
|
char *zSql; /* Text of the SQL statement */
|
|
Index *pPrevIdx = 0; /* Previous index in the loop */
|
|
IndexSample *pSample; /* A slot in pIdx->aSample[] */
|
|
|
|
assert( db->lookaside.bDisable );
|
|
zSql = sqlite3MPrintf(db, zSql1, zDb);
|
|
if( !zSql ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
|
|
sqlite3DbFree(db, zSql);
|
|
if( rc ) return rc;
|
|
|
|
while( sqlite3_step(pStmt)==SQLITE_ROW ){
|
|
int nIdxCol = 1; /* Number of columns in stat4 records */
|
|
|
|
char *zIndex; /* Index name */
|
|
Index *pIdx; /* Pointer to the index object */
|
|
int nSample; /* Number of samples */
|
|
int nByte; /* Bytes of space required */
|
|
int i; /* Bytes of space required */
|
|
tRowcnt *pSpace;
|
|
|
|
zIndex = (char *)sqlite3_column_text(pStmt, 0);
|
|
if( zIndex==0 ) continue;
|
|
nSample = sqlite3_column_int(pStmt, 1);
|
|
pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
|
|
assert( pIdx==0 || pIdx->nSample==0 );
|
|
if( pIdx==0 ) continue;
|
|
if( pIdx->aSample!=0 ){
|
|
/* The same index appears in sqlite_stat4 under multiple names */
|
|
continue;
|
|
}
|
|
assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
|
|
if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
|
|
nIdxCol = pIdx->nKeyCol;
|
|
}else{
|
|
nIdxCol = pIdx->nColumn;
|
|
}
|
|
pIdx->nSampleCol = nIdxCol;
|
|
pIdx->mxSample = nSample;
|
|
nByte = sizeof(IndexSample) * nSample;
|
|
nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
|
|
nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */
|
|
|
|
pIdx->aSample = sqlite3DbMallocZero(db, nByte);
|
|
if( pIdx->aSample==0 ){
|
|
sqlite3_finalize(pStmt);
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
pSpace = (tRowcnt*)&pIdx->aSample[nSample];
|
|
pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
|
|
pIdx->pTable->tabFlags |= TF_HasStat4;
|
|
for(i=0; i<nSample; i++){
|
|
pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
|
|
pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
|
|
pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
|
|
}
|
|
assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
|
|
}
|
|
rc = sqlite3_finalize(pStmt);
|
|
if( rc ) return rc;
|
|
|
|
zSql = sqlite3MPrintf(db, zSql2, zDb);
|
|
if( !zSql ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
|
|
sqlite3DbFree(db, zSql);
|
|
if( rc ) return rc;
|
|
|
|
while( sqlite3_step(pStmt)==SQLITE_ROW ){
|
|
char *zIndex; /* Index name */
|
|
Index *pIdx; /* Pointer to the index object */
|
|
int nCol = 1; /* Number of columns in index */
|
|
|
|
zIndex = (char *)sqlite3_column_text(pStmt, 0);
|
|
if( zIndex==0 ) continue;
|
|
pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
|
|
if( pIdx==0 ) continue;
|
|
if( pIdx->nSample>=pIdx->mxSample ){
|
|
/* Too many slots used because the same index appears in
|
|
** sqlite_stat4 using multiple names */
|
|
continue;
|
|
}
|
|
/* This next condition is true if data has already been loaded from
|
|
** the sqlite_stat4 table. */
|
|
nCol = pIdx->nSampleCol;
|
|
if( pIdx!=pPrevIdx ){
|
|
initAvgEq(pPrevIdx);
|
|
pPrevIdx = pIdx;
|
|
}
|
|
pSample = &pIdx->aSample[pIdx->nSample];
|
|
decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
|
|
decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
|
|
decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
|
|
|
|
/* Take a copy of the sample. Add 8 extra 0x00 bytes the end of the buffer.
|
|
** This is in case the sample record is corrupted. In that case, the
|
|
** sqlite3VdbeRecordCompare() may read up to two varints past the
|
|
** end of the allocated buffer before it realizes it is dealing with
|
|
** a corrupt record. Or it might try to read a large integer from the
|
|
** buffer. In any case, eight 0x00 bytes prevents this from causing
|
|
** a buffer overread. */
|
|
pSample->n = sqlite3_column_bytes(pStmt, 4);
|
|
pSample->p = sqlite3DbMallocZero(db, pSample->n + 8);
|
|
if( pSample->p==0 ){
|
|
sqlite3_finalize(pStmt);
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
if( pSample->n ){
|
|
memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
|
|
}
|
|
pIdx->nSample++;
|
|
}
|
|
rc = sqlite3_finalize(pStmt);
|
|
if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Load content from the sqlite_stat4 table into
|
|
** the Index.aSample[] arrays of all indices.
|
|
*/
|
|
static int loadStat4(sqlite3 *db, const char *zDb){
|
|
int rc = SQLITE_OK; /* Result codes from subroutines */
|
|
const Table *pStat4;
|
|
|
|
assert( db->lookaside.bDisable );
|
|
if( OptimizationEnabled(db, SQLITE_Stat4)
|
|
&& (pStat4 = sqlite3FindTable(db, "sqlite_stat4", zDb))!=0
|
|
&& IsOrdinaryTable(pStat4)
|
|
){
|
|
rc = loadStatTbl(db,
|
|
"SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx COLLATE nocase",
|
|
"SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
|
|
zDb
|
|
);
|
|
}
|
|
return rc;
|
|
}
|
|
#endif /* SQLITE_ENABLE_STAT4 */
|
|
|
|
/*
|
|
** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The
|
|
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
|
|
** arrays. The contents of sqlite_stat4 are used to populate the
|
|
** Index.aSample[] arrays.
|
|
**
|
|
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
|
|
** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined
|
|
** during compilation and the sqlite_stat4 table is present, no data is
|
|
** read from it.
|
|
**
|
|
** If SQLITE_ENABLE_STAT4 was defined during compilation and the
|
|
** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
|
|
** returned. However, in this case, data is read from the sqlite_stat1
|
|
** table (if it is present) before returning.
|
|
**
|
|
** If an OOM error occurs, this function always sets db->mallocFailed.
|
|
** This means if the caller does not care about other errors, the return
|
|
** code may be ignored.
|
|
*/
|
|
int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
|
|
analysisInfo sInfo;
|
|
HashElem *i;
|
|
char *zSql;
|
|
int rc = SQLITE_OK;
|
|
Schema *pSchema = db->aDb[iDb].pSchema;
|
|
const Table *pStat1;
|
|
|
|
assert( iDb>=0 && iDb<db->nDb );
|
|
assert( db->aDb[iDb].pBt!=0 );
|
|
|
|
/* Clear any prior statistics */
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){
|
|
Table *pTab = sqliteHashData(i);
|
|
pTab->tabFlags &= ~TF_HasStat1;
|
|
}
|
|
for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
|
|
Index *pIdx = sqliteHashData(i);
|
|
pIdx->hasStat1 = 0;
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
sqlite3DeleteIndexSamples(db, pIdx);
|
|
pIdx->aSample = 0;
|
|
#endif
|
|
}
|
|
|
|
/* Load new statistics out of the sqlite_stat1 table */
|
|
sInfo.db = db;
|
|
sInfo.zDatabase = db->aDb[iDb].zDbSName;
|
|
if( (pStat1 = sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase))
|
|
&& IsOrdinaryTable(pStat1)
|
|
){
|
|
zSql = sqlite3MPrintf(db,
|
|
"SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
|
|
if( zSql==0 ){
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
}else{
|
|
rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
|
|
sqlite3DbFree(db, zSql);
|
|
}
|
|
}
|
|
|
|
/* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
|
|
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
|
for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
|
|
Index *pIdx = sqliteHashData(i);
|
|
if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx);
|
|
}
|
|
|
|
/* Load the statistics from the sqlite_stat4 table. */
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( rc==SQLITE_OK ){
|
|
DisableLookaside;
|
|
rc = loadStat4(db, sInfo.zDatabase);
|
|
EnableLookaside;
|
|
}
|
|
for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
|
|
Index *pIdx = sqliteHashData(i);
|
|
sqlite3_free(pIdx->aiRowEst);
|
|
pIdx->aiRowEst = 0;
|
|
}
|
|
#endif
|
|
|
|
if( rc==SQLITE_NOMEM ){
|
|
sqlite3OomFault(db);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
#endif /* SQLITE_OMIT_ANALYZE */
|