f6ad201ac2
FossilOrigin-Name: c28c973ad6debd63f13e5d4d3da036f680baaec9d863eda039f2747db9f1cfd5
270 lines
7.9 KiB
C
270 lines
7.9 KiB
C
/*
|
|
** 2001 September 22
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This is the implementation of generic hash-tables
|
|
** used in SQLite.
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include <assert.h>
|
|
|
|
/* Turn bulk memory into a hash table object by initializing the
|
|
** fields of the Hash structure.
|
|
**
|
|
** "pNew" is a pointer to the hash table that is to be initialized.
|
|
*/
|
|
void sqlite3HashInit(Hash *pNew){
|
|
assert( pNew!=0 );
|
|
pNew->first = 0;
|
|
pNew->count = 0;
|
|
pNew->htsize = 0;
|
|
pNew->ht = 0;
|
|
}
|
|
|
|
/* Remove all entries from a hash table. Reclaim all memory.
|
|
** Call this routine to delete a hash table or to reset a hash table
|
|
** to the empty state.
|
|
*/
|
|
void sqlite3HashClear(Hash *pH){
|
|
HashElem *elem; /* For looping over all elements of the table */
|
|
|
|
assert( pH!=0 );
|
|
elem = pH->first;
|
|
pH->first = 0;
|
|
sqlite3_free(pH->ht);
|
|
pH->ht = 0;
|
|
pH->htsize = 0;
|
|
while( elem ){
|
|
HashElem *next_elem = elem->next;
|
|
sqlite3_free(elem);
|
|
elem = next_elem;
|
|
}
|
|
pH->count = 0;
|
|
}
|
|
|
|
/*
|
|
** The hashing function.
|
|
*/
|
|
static unsigned int strHash(const char *z){
|
|
unsigned int h = 0;
|
|
unsigned char c;
|
|
while( (c = (unsigned char)*z++)!=0 ){ /*OPTIMIZATION-IF-TRUE*/
|
|
/* Knuth multiplicative hashing. (Sorting & Searching, p. 510).
|
|
** 0x9e3779b1 is 2654435761 which is the closest prime number to
|
|
** (2**32)*golden_ratio, where golden_ratio = (sqrt(5) - 1)/2. */
|
|
h += sqlite3UpperToLower[c];
|
|
h *= 0x9e3779b1;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
|
|
/* Link pNew element into the hash table pH. If pEntry!=0 then also
|
|
** insert pNew into the pEntry hash bucket.
|
|
*/
|
|
static void insertElement(
|
|
Hash *pH, /* The complete hash table */
|
|
struct _ht *pEntry, /* The entry into which pNew is inserted */
|
|
HashElem *pNew /* The element to be inserted */
|
|
){
|
|
HashElem *pHead; /* First element already in pEntry */
|
|
if( pEntry ){
|
|
pHead = pEntry->count ? pEntry->chain : 0;
|
|
pEntry->count++;
|
|
pEntry->chain = pNew;
|
|
}else{
|
|
pHead = 0;
|
|
}
|
|
if( pHead ){
|
|
pNew->next = pHead;
|
|
pNew->prev = pHead->prev;
|
|
if( pHead->prev ){ pHead->prev->next = pNew; }
|
|
else { pH->first = pNew; }
|
|
pHead->prev = pNew;
|
|
}else{
|
|
pNew->next = pH->first;
|
|
if( pH->first ){ pH->first->prev = pNew; }
|
|
pNew->prev = 0;
|
|
pH->first = pNew;
|
|
}
|
|
}
|
|
|
|
|
|
/* Resize the hash table so that it cantains "new_size" buckets.
|
|
**
|
|
** The hash table might fail to resize if sqlite3_malloc() fails or
|
|
** if the new size is the same as the prior size.
|
|
** Return TRUE if the resize occurs and false if not.
|
|
*/
|
|
static int rehash(Hash *pH, unsigned int new_size){
|
|
struct _ht *new_ht; /* The new hash table */
|
|
HashElem *elem, *next_elem; /* For looping over existing elements */
|
|
|
|
#if SQLITE_MALLOC_SOFT_LIMIT>0
|
|
if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
|
|
new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
|
|
}
|
|
if( new_size==pH->htsize ) return 0;
|
|
#endif
|
|
|
|
/* The inability to allocates space for a larger hash table is
|
|
** a performance hit but it is not a fatal error. So mark the
|
|
** allocation as a benign. Use sqlite3Malloc()/memset(0) instead of
|
|
** sqlite3MallocZero() to make the allocation, as sqlite3MallocZero()
|
|
** only zeroes the requested number of bytes whereas this module will
|
|
** use the actual amount of space allocated for the hash table (which
|
|
** may be larger than the requested amount).
|
|
*/
|
|
sqlite3BeginBenignMalloc();
|
|
new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) );
|
|
sqlite3EndBenignMalloc();
|
|
|
|
if( new_ht==0 ) return 0;
|
|
sqlite3_free(pH->ht);
|
|
pH->ht = new_ht;
|
|
pH->htsize = new_size = sqlite3MallocSize(new_ht)/sizeof(struct _ht);
|
|
memset(new_ht, 0, new_size*sizeof(struct _ht));
|
|
for(elem=pH->first, pH->first=0; elem; elem = next_elem){
|
|
unsigned int h = strHash(elem->pKey) % new_size;
|
|
next_elem = elem->next;
|
|
insertElement(pH, &new_ht[h], elem);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* This function (for internal use only) locates an element in an
|
|
** hash table that matches the given key. If no element is found,
|
|
** a pointer to a static null element with HashElem.data==0 is returned.
|
|
** If pH is not NULL, then the hash for this key is written to *pH.
|
|
*/
|
|
static HashElem *findElementWithHash(
|
|
const Hash *pH, /* The pH to be searched */
|
|
const char *pKey, /* The key we are searching for */
|
|
unsigned int *pHash /* Write the hash value here */
|
|
){
|
|
HashElem *elem; /* Used to loop thru the element list */
|
|
unsigned int count; /* Number of elements left to test */
|
|
unsigned int h; /* The computed hash */
|
|
static HashElem nullElement = { 0, 0, 0, 0 };
|
|
|
|
if( pH->ht ){ /*OPTIMIZATION-IF-TRUE*/
|
|
struct _ht *pEntry;
|
|
h = strHash(pKey) % pH->htsize;
|
|
pEntry = &pH->ht[h];
|
|
elem = pEntry->chain;
|
|
count = pEntry->count;
|
|
}else{
|
|
h = 0;
|
|
elem = pH->first;
|
|
count = pH->count;
|
|
}
|
|
if( pHash ) *pHash = h;
|
|
while( count-- ){
|
|
assert( elem!=0 );
|
|
if( sqlite3StrICmp(elem->pKey,pKey)==0 ){
|
|
return elem;
|
|
}
|
|
elem = elem->next;
|
|
}
|
|
return &nullElement;
|
|
}
|
|
|
|
/* Remove a single entry from the hash table given a pointer to that
|
|
** element and a hash on the element's key.
|
|
*/
|
|
static void removeElementGivenHash(
|
|
Hash *pH, /* The pH containing "elem" */
|
|
HashElem* elem, /* The element to be removed from the pH */
|
|
unsigned int h /* Hash value for the element */
|
|
){
|
|
struct _ht *pEntry;
|
|
if( elem->prev ){
|
|
elem->prev->next = elem->next;
|
|
}else{
|
|
pH->first = elem->next;
|
|
}
|
|
if( elem->next ){
|
|
elem->next->prev = elem->prev;
|
|
}
|
|
if( pH->ht ){
|
|
pEntry = &pH->ht[h];
|
|
if( pEntry->chain==elem ){
|
|
pEntry->chain = elem->next;
|
|
}
|
|
assert( pEntry->count>0 );
|
|
pEntry->count--;
|
|
}
|
|
sqlite3_free( elem );
|
|
pH->count--;
|
|
if( pH->count==0 ){
|
|
assert( pH->first==0 );
|
|
assert( pH->count==0 );
|
|
sqlite3HashClear(pH);
|
|
}
|
|
}
|
|
|
|
/* Attempt to locate an element of the hash table pH with a key
|
|
** that matches pKey. Return the data for this element if it is
|
|
** found, or NULL if there is no match.
|
|
*/
|
|
void *sqlite3HashFind(const Hash *pH, const char *pKey){
|
|
assert( pH!=0 );
|
|
assert( pKey!=0 );
|
|
return findElementWithHash(pH, pKey, 0)->data;
|
|
}
|
|
|
|
/* Insert an element into the hash table pH. The key is pKey
|
|
** and the data is "data".
|
|
**
|
|
** If no element exists with a matching key, then a new
|
|
** element is created and NULL is returned.
|
|
**
|
|
** If another element already exists with the same key, then the
|
|
** new data replaces the old data and the old data is returned.
|
|
** The key is not copied in this instance. If a malloc fails, then
|
|
** the new data is returned and the hash table is unchanged.
|
|
**
|
|
** If the "data" parameter to this function is NULL, then the
|
|
** element corresponding to "key" is removed from the hash table.
|
|
*/
|
|
void *sqlite3HashInsert(Hash *pH, const char *pKey, void *data){
|
|
unsigned int h; /* the hash of the key modulo hash table size */
|
|
HashElem *elem; /* Used to loop thru the element list */
|
|
HashElem *new_elem; /* New element added to the pH */
|
|
|
|
assert( pH!=0 );
|
|
assert( pKey!=0 );
|
|
elem = findElementWithHash(pH,pKey,&h);
|
|
if( elem->data ){
|
|
void *old_data = elem->data;
|
|
if( data==0 ){
|
|
removeElementGivenHash(pH,elem,h);
|
|
}else{
|
|
elem->data = data;
|
|
elem->pKey = pKey;
|
|
}
|
|
return old_data;
|
|
}
|
|
if( data==0 ) return 0;
|
|
new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) );
|
|
if( new_elem==0 ) return data;
|
|
new_elem->pKey = pKey;
|
|
new_elem->data = data;
|
|
pH->count++;
|
|
if( pH->count>=10 && pH->count > 2*pH->htsize ){
|
|
if( rehash(pH, pH->count*2) ){
|
|
assert( pH->htsize>0 );
|
|
h = strHash(pKey) % pH->htsize;
|
|
}
|
|
}
|
|
insertElement(pH, pH->ht ? &pH->ht[h] : 0, new_elem);
|
|
return 0;
|
|
}
|