3878 lines
163 KiB
C
3878 lines
163 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** Internal interface definitions for SQLite.
|
|
**
|
|
*/
|
|
#ifndef _SQLITEINT_H_
|
|
#define _SQLITEINT_H_
|
|
|
|
/*
|
|
** Include the header file used to customize the compiler options for MSVC.
|
|
** This should be done first so that it can successfully prevent spurious
|
|
** compiler warnings due to subsequent content in this file and other files
|
|
** that are included by this file.
|
|
*/
|
|
#include "msvc.h"
|
|
|
|
/*
|
|
** Special setup for VxWorks
|
|
*/
|
|
#include "vxworks.h"
|
|
|
|
/*
|
|
** These #defines should enable >2GB file support on POSIX if the
|
|
** underlying operating system supports it. If the OS lacks
|
|
** large file support, or if the OS is windows, these should be no-ops.
|
|
**
|
|
** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any
|
|
** system #includes. Hence, this block of code must be the very first
|
|
** code in all source files.
|
|
**
|
|
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
|
|
** on the compiler command line. This is necessary if you are compiling
|
|
** on a recent machine (ex: Red Hat 7.2) but you want your code to work
|
|
** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2
|
|
** without this option, LFS is enable. But LFS does not exist in the kernel
|
|
** in Red Hat 6.0, so the code won't work. Hence, for maximum binary
|
|
** portability you should omit LFS.
|
|
**
|
|
** The previous paragraph was written in 2005. (This paragraph is written
|
|
** on 2008-11-28.) These days, all Linux kernels support large files, so
|
|
** you should probably leave LFS enabled. But some embedded platforms might
|
|
** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
|
|
**
|
|
** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later.
|
|
*/
|
|
#ifndef SQLITE_DISABLE_LFS
|
|
# define _LARGE_FILE 1
|
|
# ifndef _FILE_OFFSET_BITS
|
|
# define _FILE_OFFSET_BITS 64
|
|
# endif
|
|
# define _LARGEFILE_SOURCE 1
|
|
#endif
|
|
|
|
/* Needed for various definitions... */
|
|
#if defined(__GNUC__) && !defined(_GNU_SOURCE)
|
|
# define _GNU_SOURCE
|
|
#endif
|
|
|
|
#if defined(__OpenBSD__) && !defined(_BSD_SOURCE)
|
|
# define _BSD_SOURCE
|
|
#endif
|
|
|
|
/*
|
|
** For MinGW, check to see if we can include the header file containing its
|
|
** version information, among other things. Normally, this internal MinGW
|
|
** header file would [only] be included automatically by other MinGW header
|
|
** files; however, the contained version information is now required by this
|
|
** header file to work around binary compatibility issues (see below) and
|
|
** this is the only known way to reliably obtain it. This entire #if block
|
|
** would be completely unnecessary if there was any other way of detecting
|
|
** MinGW via their preprocessor (e.g. if they customized their GCC to define
|
|
** some MinGW-specific macros). When compiling for MinGW, either the
|
|
** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be
|
|
** defined; otherwise, detection of conditions specific to MinGW will be
|
|
** disabled.
|
|
*/
|
|
#if defined(_HAVE_MINGW_H)
|
|
# include "mingw.h"
|
|
#elif defined(_HAVE__MINGW_H)
|
|
# include "_mingw.h"
|
|
#endif
|
|
|
|
/*
|
|
** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T
|
|
** define is required to maintain binary compatibility with the MSVC runtime
|
|
** library in use (e.g. for Windows XP).
|
|
*/
|
|
#if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \
|
|
defined(_WIN32) && !defined(_WIN64) && \
|
|
defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \
|
|
defined(__MSVCRT__)
|
|
# define _USE_32BIT_TIME_T
|
|
#endif
|
|
|
|
/* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear
|
|
** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for
|
|
** MinGW.
|
|
*/
|
|
#include "sqlite3.h"
|
|
|
|
/*
|
|
** Include the configuration header output by 'configure' if we're using the
|
|
** autoconf-based build
|
|
*/
|
|
#ifdef _HAVE_SQLITE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "sqliteLimit.h"
|
|
|
|
/* Disable nuisance warnings on Borland compilers */
|
|
#if defined(__BORLANDC__)
|
|
#pragma warn -rch /* unreachable code */
|
|
#pragma warn -ccc /* Condition is always true or false */
|
|
#pragma warn -aus /* Assigned value is never used */
|
|
#pragma warn -csu /* Comparing signed and unsigned */
|
|
#pragma warn -spa /* Suspicious pointer arithmetic */
|
|
#endif
|
|
|
|
/*
|
|
** Include standard header files as necessary
|
|
*/
|
|
#ifdef HAVE_STDINT_H
|
|
#include <stdint.h>
|
|
#endif
|
|
#ifdef HAVE_INTTYPES_H
|
|
#include <inttypes.h>
|
|
#endif
|
|
|
|
/*
|
|
** The following macros are used to cast pointers to integers and
|
|
** integers to pointers. The way you do this varies from one compiler
|
|
** to the next, so we have developed the following set of #if statements
|
|
** to generate appropriate macros for a wide range of compilers.
|
|
**
|
|
** The correct "ANSI" way to do this is to use the intptr_t type.
|
|
** Unfortunately, that typedef is not available on all compilers, or
|
|
** if it is available, it requires an #include of specific headers
|
|
** that vary from one machine to the next.
|
|
**
|
|
** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on
|
|
** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)).
|
|
** So we have to define the macros in different ways depending on the
|
|
** compiler.
|
|
*/
|
|
#if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */
|
|
# define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X))
|
|
# define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X))
|
|
#elif !defined(__GNUC__) /* Works for compilers other than LLVM */
|
|
# define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X])
|
|
# define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0))
|
|
#elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */
|
|
# define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X))
|
|
# define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X))
|
|
#else /* Generates a warning - but it always works */
|
|
# define SQLITE_INT_TO_PTR(X) ((void*)(X))
|
|
# define SQLITE_PTR_TO_INT(X) ((int)(X))
|
|
#endif
|
|
|
|
/*
|
|
** A macro to hint to the compiler that a function should not be
|
|
** inlined.
|
|
*/
|
|
#if defined(__GNUC__)
|
|
# define SQLITE_NOINLINE __attribute__((noinline))
|
|
#elif defined(_MSC_VER) && _MSC_VER>=1310
|
|
# define SQLITE_NOINLINE __declspec(noinline)
|
|
#else
|
|
# define SQLITE_NOINLINE
|
|
#endif
|
|
|
|
/*
|
|
** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2.
|
|
** 0 means mutexes are permanently disable and the library is never
|
|
** threadsafe. 1 means the library is serialized which is the highest
|
|
** level of threadsafety. 2 means the library is multithreaded - multiple
|
|
** threads can use SQLite as long as no two threads try to use the same
|
|
** database connection at the same time.
|
|
**
|
|
** Older versions of SQLite used an optional THREADSAFE macro.
|
|
** We support that for legacy.
|
|
*/
|
|
#if !defined(SQLITE_THREADSAFE)
|
|
# if defined(THREADSAFE)
|
|
# define SQLITE_THREADSAFE THREADSAFE
|
|
# else
|
|
# define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */
|
|
# endif
|
|
#endif
|
|
|
|
/*
|
|
** Powersafe overwrite is on by default. But can be turned off using
|
|
** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
|
|
*/
|
|
#ifndef SQLITE_POWERSAFE_OVERWRITE
|
|
# define SQLITE_POWERSAFE_OVERWRITE 1
|
|
#endif
|
|
|
|
/*
|
|
** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by
|
|
** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in
|
|
** which case memory allocation statistics are disabled by default.
|
|
*/
|
|
#if !defined(SQLITE_DEFAULT_MEMSTATUS)
|
|
# define SQLITE_DEFAULT_MEMSTATUS 1
|
|
#endif
|
|
|
|
/*
|
|
** Exactly one of the following macros must be defined in order to
|
|
** specify which memory allocation subsystem to use.
|
|
**
|
|
** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
|
|
** SQLITE_WIN32_MALLOC // Use Win32 native heap API
|
|
** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails
|
|
** SQLITE_MEMDEBUG // Debugging version of system malloc()
|
|
**
|
|
** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
|
|
** assert() macro is enabled, each call into the Win32 native heap subsystem
|
|
** will cause HeapValidate to be called. If heap validation should fail, an
|
|
** assertion will be triggered.
|
|
**
|
|
** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
|
|
** the default.
|
|
*/
|
|
#if defined(SQLITE_SYSTEM_MALLOC) \
|
|
+ defined(SQLITE_WIN32_MALLOC) \
|
|
+ defined(SQLITE_ZERO_MALLOC) \
|
|
+ defined(SQLITE_MEMDEBUG)>1
|
|
# error "Two or more of the following compile-time configuration options\
|
|
are defined but at most one is allowed:\
|
|
SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
|
|
SQLITE_ZERO_MALLOC"
|
|
#endif
|
|
#if defined(SQLITE_SYSTEM_MALLOC) \
|
|
+ defined(SQLITE_WIN32_MALLOC) \
|
|
+ defined(SQLITE_ZERO_MALLOC) \
|
|
+ defined(SQLITE_MEMDEBUG)==0
|
|
# define SQLITE_SYSTEM_MALLOC 1
|
|
#endif
|
|
|
|
/*
|
|
** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
|
|
** sizes of memory allocations below this value where possible.
|
|
*/
|
|
#if !defined(SQLITE_MALLOC_SOFT_LIMIT)
|
|
# define SQLITE_MALLOC_SOFT_LIMIT 1024
|
|
#endif
|
|
|
|
/*
|
|
** We need to define _XOPEN_SOURCE as follows in order to enable
|
|
** recursive mutexes on most Unix systems and fchmod() on OpenBSD.
|
|
** But _XOPEN_SOURCE define causes problems for Mac OS X, so omit
|
|
** it.
|
|
*/
|
|
#if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__)
|
|
# define _XOPEN_SOURCE 600
|
|
#endif
|
|
|
|
/*
|
|
** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that
|
|
** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true,
|
|
** make it true by defining or undefining NDEBUG.
|
|
**
|
|
** Setting NDEBUG makes the code smaller and faster by disabling the
|
|
** assert() statements in the code. So we want the default action
|
|
** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG
|
|
** is set. Thus NDEBUG becomes an opt-in rather than an opt-out
|
|
** feature.
|
|
*/
|
|
#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
|
|
# define NDEBUG 1
|
|
#endif
|
|
#if defined(NDEBUG) && defined(SQLITE_DEBUG)
|
|
# undef NDEBUG
|
|
#endif
|
|
|
|
/*
|
|
** Enable SQLITE_ENABLE_EXPLAIN_COMMENTS if SQLITE_DEBUG is turned on.
|
|
*/
|
|
#if !defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) && defined(SQLITE_DEBUG)
|
|
# define SQLITE_ENABLE_EXPLAIN_COMMENTS 1
|
|
#endif
|
|
|
|
/*
|
|
** The testcase() macro is used to aid in coverage testing. When
|
|
** doing coverage testing, the condition inside the argument to
|
|
** testcase() must be evaluated both true and false in order to
|
|
** get full branch coverage. The testcase() macro is inserted
|
|
** to help ensure adequate test coverage in places where simple
|
|
** condition/decision coverage is inadequate. For example, testcase()
|
|
** can be used to make sure boundary values are tested. For
|
|
** bitmask tests, testcase() can be used to make sure each bit
|
|
** is significant and used at least once. On switch statements
|
|
** where multiple cases go to the same block of code, testcase()
|
|
** can insure that all cases are evaluated.
|
|
**
|
|
*/
|
|
#ifdef SQLITE_COVERAGE_TEST
|
|
void sqlite3Coverage(int);
|
|
# define testcase(X) if( X ){ sqlite3Coverage(__LINE__); }
|
|
#else
|
|
# define testcase(X)
|
|
#endif
|
|
|
|
/*
|
|
** The TESTONLY macro is used to enclose variable declarations or
|
|
** other bits of code that are needed to support the arguments
|
|
** within testcase() and assert() macros.
|
|
*/
|
|
#if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST)
|
|
# define TESTONLY(X) X
|
|
#else
|
|
# define TESTONLY(X)
|
|
#endif
|
|
|
|
/*
|
|
** Sometimes we need a small amount of code such as a variable initialization
|
|
** to setup for a later assert() statement. We do not want this code to
|
|
** appear when assert() is disabled. The following macro is therefore
|
|
** used to contain that setup code. The "VVA" acronym stands for
|
|
** "Verification, Validation, and Accreditation". In other words, the
|
|
** code within VVA_ONLY() will only run during verification processes.
|
|
*/
|
|
#ifndef NDEBUG
|
|
# define VVA_ONLY(X) X
|
|
#else
|
|
# define VVA_ONLY(X)
|
|
#endif
|
|
|
|
/*
|
|
** The ALWAYS and NEVER macros surround boolean expressions which
|
|
** are intended to always be true or false, respectively. Such
|
|
** expressions could be omitted from the code completely. But they
|
|
** are included in a few cases in order to enhance the resilience
|
|
** of SQLite to unexpected behavior - to make the code "self-healing"
|
|
** or "ductile" rather than being "brittle" and crashing at the first
|
|
** hint of unplanned behavior.
|
|
**
|
|
** In other words, ALWAYS and NEVER are added for defensive code.
|
|
**
|
|
** When doing coverage testing ALWAYS and NEVER are hard-coded to
|
|
** be true and false so that the unreachable code they specify will
|
|
** not be counted as untested code.
|
|
*/
|
|
#if defined(SQLITE_COVERAGE_TEST)
|
|
# define ALWAYS(X) (1)
|
|
# define NEVER(X) (0)
|
|
#elif !defined(NDEBUG)
|
|
# define ALWAYS(X) ((X)?1:(assert(0),0))
|
|
# define NEVER(X) ((X)?(assert(0),1):0)
|
|
#else
|
|
# define ALWAYS(X) (X)
|
|
# define NEVER(X) (X)
|
|
#endif
|
|
|
|
/*
|
|
** Declarations used for tracing the operating system interfaces.
|
|
*/
|
|
#if (defined(SQLITE_DEBUG) && SQLITE_OS_WIN) || \
|
|
defined(SQLITE_TEST) || defined(SQLITE_FORCE_OS_TRACE)
|
|
extern int sqlite3OSTrace;
|
|
# define OSTRACE(X) if( sqlite3OSTrace ) sqlite3DebugPrintf X
|
|
# define SQLITE_HAVE_OS_TRACE
|
|
#else
|
|
# define OSTRACE(X)
|
|
# undef SQLITE_HAVE_OS_TRACE
|
|
#endif
|
|
|
|
/*
|
|
** Return true (non-zero) if the input is an integer that is too large
|
|
** to fit in 32-bits. This macro is used inside of various testcase()
|
|
** macros to verify that we have tested SQLite for large-file support.
|
|
*/
|
|
#define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0)
|
|
|
|
/*
|
|
** The macro unlikely() is a hint that surrounds a boolean
|
|
** expression that is usually false. Macro likely() surrounds
|
|
** a boolean expression that is usually true. These hints could,
|
|
** in theory, be used by the compiler to generate better code, but
|
|
** currently they are just comments for human readers.
|
|
*/
|
|
#define likely(X) (X)
|
|
#define unlikely(X) (X)
|
|
|
|
#include "hash.h"
|
|
#include "parse.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <stddef.h>
|
|
|
|
/*
|
|
** If compiling for a processor that lacks floating point support,
|
|
** substitute integer for floating-point
|
|
*/
|
|
#ifdef SQLITE_OMIT_FLOATING_POINT
|
|
# define double sqlite_int64
|
|
# define float sqlite_int64
|
|
# define LONGDOUBLE_TYPE sqlite_int64
|
|
# ifndef SQLITE_BIG_DBL
|
|
# define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50)
|
|
# endif
|
|
# define SQLITE_OMIT_DATETIME_FUNCS 1
|
|
# define SQLITE_OMIT_TRACE 1
|
|
# undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
|
|
# undef SQLITE_HAVE_ISNAN
|
|
#endif
|
|
#ifndef SQLITE_BIG_DBL
|
|
# define SQLITE_BIG_DBL (1e99)
|
|
#endif
|
|
|
|
/*
|
|
** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0
|
|
** afterward. Having this macro allows us to cause the C compiler
|
|
** to omit code used by TEMP tables without messy #ifndef statements.
|
|
*/
|
|
#ifdef SQLITE_OMIT_TEMPDB
|
|
#define OMIT_TEMPDB 1
|
|
#else
|
|
#define OMIT_TEMPDB 0
|
|
#endif
|
|
|
|
/*
|
|
** The "file format" number is an integer that is incremented whenever
|
|
** the VDBE-level file format changes. The following macros define the
|
|
** the default file format for new databases and the maximum file format
|
|
** that the library can read.
|
|
*/
|
|
#define SQLITE_MAX_FILE_FORMAT 4
|
|
#ifndef SQLITE_DEFAULT_FILE_FORMAT
|
|
# define SQLITE_DEFAULT_FILE_FORMAT 4
|
|
#endif
|
|
|
|
/*
|
|
** Determine whether triggers are recursive by default. This can be
|
|
** changed at run-time using a pragma.
|
|
*/
|
|
#ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS
|
|
# define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0
|
|
#endif
|
|
|
|
/*
|
|
** Provide a default value for SQLITE_TEMP_STORE in case it is not specified
|
|
** on the command-line
|
|
*/
|
|
#ifndef SQLITE_TEMP_STORE
|
|
# define SQLITE_TEMP_STORE 1
|
|
# define SQLITE_TEMP_STORE_xc 1 /* Exclude from ctime.c */
|
|
#endif
|
|
|
|
/*
|
|
** If no value has been provided for SQLITE_MAX_WORKER_THREADS, or if
|
|
** SQLITE_TEMP_STORE is set to 3 (never use temporary files), set it
|
|
** to zero.
|
|
*/
|
|
#if SQLITE_TEMP_STORE==3 || SQLITE_THREADSAFE==0
|
|
# undef SQLITE_MAX_WORKER_THREADS
|
|
# define SQLITE_MAX_WORKER_THREADS 0
|
|
#endif
|
|
#ifndef SQLITE_MAX_WORKER_THREADS
|
|
# define SQLITE_MAX_WORKER_THREADS 8
|
|
#endif
|
|
#ifndef SQLITE_DEFAULT_WORKER_THREADS
|
|
# define SQLITE_DEFAULT_WORKER_THREADS 0
|
|
#endif
|
|
#if SQLITE_DEFAULT_WORKER_THREADS>SQLITE_MAX_WORKER_THREADS
|
|
# undef SQLITE_MAX_WORKER_THREADS
|
|
# define SQLITE_MAX_WORKER_THREADS SQLITE_DEFAULT_WORKER_THREADS
|
|
#endif
|
|
|
|
|
|
/*
|
|
** GCC does not define the offsetof() macro so we'll have to do it
|
|
** ourselves.
|
|
*/
|
|
#ifndef offsetof
|
|
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
|
|
#endif
|
|
|
|
/*
|
|
** Macros to compute minimum and maximum of two numbers.
|
|
*/
|
|
#define MIN(A,B) ((A)<(B)?(A):(B))
|
|
#define MAX(A,B) ((A)>(B)?(A):(B))
|
|
|
|
/*
|
|
** Swap two objects of type TYPE.
|
|
*/
|
|
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
|
|
|
|
/*
|
|
** Check to see if this machine uses EBCDIC. (Yes, believe it or
|
|
** not, there are still machines out there that use EBCDIC.)
|
|
*/
|
|
#if 'A' == '\301'
|
|
# define SQLITE_EBCDIC 1
|
|
#else
|
|
# define SQLITE_ASCII 1
|
|
#endif
|
|
|
|
/*
|
|
** Integers of known sizes. These typedefs might change for architectures
|
|
** where the sizes very. Preprocessor macros are available so that the
|
|
** types can be conveniently redefined at compile-type. Like this:
|
|
**
|
|
** cc '-DUINTPTR_TYPE=long long int' ...
|
|
*/
|
|
#ifndef UINT32_TYPE
|
|
# ifdef HAVE_UINT32_T
|
|
# define UINT32_TYPE uint32_t
|
|
# else
|
|
# define UINT32_TYPE unsigned int
|
|
# endif
|
|
#endif
|
|
#ifndef UINT16_TYPE
|
|
# ifdef HAVE_UINT16_T
|
|
# define UINT16_TYPE uint16_t
|
|
# else
|
|
# define UINT16_TYPE unsigned short int
|
|
# endif
|
|
#endif
|
|
#ifndef INT16_TYPE
|
|
# ifdef HAVE_INT16_T
|
|
# define INT16_TYPE int16_t
|
|
# else
|
|
# define INT16_TYPE short int
|
|
# endif
|
|
#endif
|
|
#ifndef UINT8_TYPE
|
|
# ifdef HAVE_UINT8_T
|
|
# define UINT8_TYPE uint8_t
|
|
# else
|
|
# define UINT8_TYPE unsigned char
|
|
# endif
|
|
#endif
|
|
#ifndef INT8_TYPE
|
|
# ifdef HAVE_INT8_T
|
|
# define INT8_TYPE int8_t
|
|
# else
|
|
# define INT8_TYPE signed char
|
|
# endif
|
|
#endif
|
|
#ifndef LONGDOUBLE_TYPE
|
|
# define LONGDOUBLE_TYPE long double
|
|
#endif
|
|
typedef sqlite_int64 i64; /* 8-byte signed integer */
|
|
typedef sqlite_uint64 u64; /* 8-byte unsigned integer */
|
|
typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
|
|
typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
|
|
typedef INT16_TYPE i16; /* 2-byte signed integer */
|
|
typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
|
|
typedef INT8_TYPE i8; /* 1-byte signed integer */
|
|
|
|
/*
|
|
** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value
|
|
** that can be stored in a u32 without loss of data. The value
|
|
** is 0x00000000ffffffff. But because of quirks of some compilers, we
|
|
** have to specify the value in the less intuitive manner shown:
|
|
*/
|
|
#define SQLITE_MAX_U32 ((((u64)1)<<32)-1)
|
|
|
|
/*
|
|
** The datatype used to store estimates of the number of rows in a
|
|
** table or index. This is an unsigned integer type. For 99.9% of
|
|
** the world, a 32-bit integer is sufficient. But a 64-bit integer
|
|
** can be used at compile-time if desired.
|
|
*/
|
|
#ifdef SQLITE_64BIT_STATS
|
|
typedef u64 tRowcnt; /* 64-bit only if requested at compile-time */
|
|
#else
|
|
typedef u32 tRowcnt; /* 32-bit is the default */
|
|
#endif
|
|
|
|
/*
|
|
** Estimated quantities used for query planning are stored as 16-bit
|
|
** logarithms. For quantity X, the value stored is 10*log2(X). This
|
|
** gives a possible range of values of approximately 1.0e986 to 1e-986.
|
|
** But the allowed values are "grainy". Not every value is representable.
|
|
** For example, quantities 16 and 17 are both represented by a LogEst
|
|
** of 40. However, since LogEst quantities are suppose to be estimates,
|
|
** not exact values, this imprecision is not a problem.
|
|
**
|
|
** "LogEst" is short for "Logarithmic Estimate".
|
|
**
|
|
** Examples:
|
|
** 1 -> 0 20 -> 43 10000 -> 132
|
|
** 2 -> 10 25 -> 46 25000 -> 146
|
|
** 3 -> 16 100 -> 66 1000000 -> 199
|
|
** 4 -> 20 1000 -> 99 1048576 -> 200
|
|
** 10 -> 33 1024 -> 100 4294967296 -> 320
|
|
**
|
|
** The LogEst can be negative to indicate fractional values.
|
|
** Examples:
|
|
**
|
|
** 0.5 -> -10 0.1 -> -33 0.0625 -> -40
|
|
*/
|
|
typedef INT16_TYPE LogEst;
|
|
|
|
/*
|
|
** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer
|
|
*/
|
|
#ifndef SQLITE_PTRSIZE
|
|
# if defined(__SIZEOF_POINTER__)
|
|
# define SQLITE_PTRSIZE __SIZEOF_POINTER__
|
|
# elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \
|
|
defined(_M_ARM) || defined(__arm__) || defined(__x86)
|
|
# define SQLITE_PTRSIZE 4
|
|
# else
|
|
# define SQLITE_PTRSIZE 8
|
|
# endif
|
|
#endif
|
|
|
|
/*
|
|
** Macros to determine whether the machine is big or little endian,
|
|
** and whether or not that determination is run-time or compile-time.
|
|
**
|
|
** For best performance, an attempt is made to guess at the byte-order
|
|
** using C-preprocessor macros. If that is unsuccessful, or if
|
|
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
|
|
** at run-time.
|
|
*/
|
|
#ifdef SQLITE_AMALGAMATION
|
|
const int sqlite3one = 1;
|
|
#else
|
|
extern const int sqlite3one;
|
|
#endif
|
|
#if (defined(i386) || defined(__i386__) || defined(_M_IX86) || \
|
|
defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
|
|
defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
|
|
defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
|
|
# define SQLITE_BYTEORDER 1234
|
|
# define SQLITE_BIGENDIAN 0
|
|
# define SQLITE_LITTLEENDIAN 1
|
|
# define SQLITE_UTF16NATIVE SQLITE_UTF16LE
|
|
#endif
|
|
#if (defined(sparc) || defined(__ppc__)) \
|
|
&& !defined(SQLITE_RUNTIME_BYTEORDER)
|
|
# define SQLITE_BYTEORDER 4321
|
|
# define SQLITE_BIGENDIAN 1
|
|
# define SQLITE_LITTLEENDIAN 0
|
|
# define SQLITE_UTF16NATIVE SQLITE_UTF16BE
|
|
#endif
|
|
#if !defined(SQLITE_BYTEORDER)
|
|
# define SQLITE_BYTEORDER 0 /* 0 means "unknown at compile-time" */
|
|
# define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0)
|
|
# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
|
|
# define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
|
|
#endif
|
|
|
|
/*
|
|
** Constants for the largest and smallest possible 64-bit signed integers.
|
|
** These macros are designed to work correctly on both 32-bit and 64-bit
|
|
** compilers.
|
|
*/
|
|
#define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
|
|
#define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64)
|
|
|
|
/*
|
|
** Round up a number to the next larger multiple of 8. This is used
|
|
** to force 8-byte alignment on 64-bit architectures.
|
|
*/
|
|
#define ROUND8(x) (((x)+7)&~7)
|
|
|
|
/*
|
|
** Round down to the nearest multiple of 8
|
|
*/
|
|
#define ROUNDDOWN8(x) ((x)&~7)
|
|
|
|
/*
|
|
** Assert that the pointer X is aligned to an 8-byte boundary. This
|
|
** macro is used only within assert() to verify that the code gets
|
|
** all alignment restrictions correct.
|
|
**
|
|
** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the
|
|
** underlying malloc() implementation might return us 4-byte aligned
|
|
** pointers. In that case, only verify 4-byte alignment.
|
|
*/
|
|
#ifdef SQLITE_4_BYTE_ALIGNED_MALLOC
|
|
# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0)
|
|
#else
|
|
# define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0)
|
|
#endif
|
|
|
|
/*
|
|
** Disable MMAP on platforms where it is known to not work
|
|
*/
|
|
#if defined(__OpenBSD__) || defined(__QNXNTO__)
|
|
# undef SQLITE_MAX_MMAP_SIZE
|
|
# define SQLITE_MAX_MMAP_SIZE 0
|
|
#endif
|
|
|
|
/*
|
|
** Default maximum size of memory used by memory-mapped I/O in the VFS
|
|
*/
|
|
#ifdef __APPLE__
|
|
# include <TargetConditionals.h>
|
|
# if TARGET_OS_IPHONE
|
|
# undef SQLITE_MAX_MMAP_SIZE
|
|
# define SQLITE_MAX_MMAP_SIZE 0
|
|
# endif
|
|
#endif
|
|
#ifndef SQLITE_MAX_MMAP_SIZE
|
|
# if defined(__linux__) \
|
|
|| defined(_WIN32) \
|
|
|| (defined(__APPLE__) && defined(__MACH__)) \
|
|
|| defined(__sun)
|
|
# define SQLITE_MAX_MMAP_SIZE 0x7fff0000 /* 2147418112 */
|
|
# else
|
|
# define SQLITE_MAX_MMAP_SIZE 0
|
|
# endif
|
|
# define SQLITE_MAX_MMAP_SIZE_xc 1 /* exclude from ctime.c */
|
|
#endif
|
|
|
|
/*
|
|
** The default MMAP_SIZE is zero on all platforms. Or, even if a larger
|
|
** default MMAP_SIZE is specified at compile-time, make sure that it does
|
|
** not exceed the maximum mmap size.
|
|
*/
|
|
#ifndef SQLITE_DEFAULT_MMAP_SIZE
|
|
# define SQLITE_DEFAULT_MMAP_SIZE 0
|
|
# define SQLITE_DEFAULT_MMAP_SIZE_xc 1 /* Exclude from ctime.c */
|
|
#endif
|
|
#if SQLITE_DEFAULT_MMAP_SIZE>SQLITE_MAX_MMAP_SIZE
|
|
# undef SQLITE_DEFAULT_MMAP_SIZE
|
|
# define SQLITE_DEFAULT_MMAP_SIZE SQLITE_MAX_MMAP_SIZE
|
|
#endif
|
|
|
|
/*
|
|
** Only one of SQLITE_ENABLE_STAT3 or SQLITE_ENABLE_STAT4 can be defined.
|
|
** Priority is given to SQLITE_ENABLE_STAT4. If either are defined, also
|
|
** define SQLITE_ENABLE_STAT3_OR_STAT4
|
|
*/
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
# undef SQLITE_ENABLE_STAT3
|
|
# define SQLITE_ENABLE_STAT3_OR_STAT4 1
|
|
#elif SQLITE_ENABLE_STAT3
|
|
# define SQLITE_ENABLE_STAT3_OR_STAT4 1
|
|
#elif SQLITE_ENABLE_STAT3_OR_STAT4
|
|
# undef SQLITE_ENABLE_STAT3_OR_STAT4
|
|
#endif
|
|
|
|
/*
|
|
** SELECTTRACE_ENABLED will be either 1 or 0 depending on whether or not
|
|
** the Select query generator tracing logic is turned on.
|
|
*/
|
|
#if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_SELECTTRACE)
|
|
# define SELECTTRACE_ENABLED 1
|
|
#else
|
|
# define SELECTTRACE_ENABLED 0
|
|
#endif
|
|
|
|
/*
|
|
** An instance of the following structure is used to store the busy-handler
|
|
** callback for a given sqlite handle.
|
|
**
|
|
** The sqlite.busyHandler member of the sqlite struct contains the busy
|
|
** callback for the database handle. Each pager opened via the sqlite
|
|
** handle is passed a pointer to sqlite.busyHandler. The busy-handler
|
|
** callback is currently invoked only from within pager.c.
|
|
*/
|
|
typedef struct BusyHandler BusyHandler;
|
|
struct BusyHandler {
|
|
int (*xFunc)(void *,int); /* The busy callback */
|
|
void *pArg; /* First arg to busy callback */
|
|
int nBusy; /* Incremented with each busy call */
|
|
};
|
|
|
|
/*
|
|
** Name of the master database table. The master database table
|
|
** is a special table that holds the names and attributes of all
|
|
** user tables and indices.
|
|
*/
|
|
#define MASTER_NAME "sqlite_master"
|
|
#define TEMP_MASTER_NAME "sqlite_temp_master"
|
|
|
|
/*
|
|
** The root-page of the master database table.
|
|
*/
|
|
#define MASTER_ROOT 1
|
|
|
|
/*
|
|
** The name of the schema table.
|
|
*/
|
|
#define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME)
|
|
|
|
/*
|
|
** A convenience macro that returns the number of elements in
|
|
** an array.
|
|
*/
|
|
#define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0])))
|
|
|
|
/*
|
|
** Determine if the argument is a power of two
|
|
*/
|
|
#define IsPowerOfTwo(X) (((X)&((X)-1))==0)
|
|
|
|
/*
|
|
** The following value as a destructor means to use sqlite3DbFree().
|
|
** The sqlite3DbFree() routine requires two parameters instead of the
|
|
** one parameter that destructors normally want. So we have to introduce
|
|
** this magic value that the code knows to handle differently. Any
|
|
** pointer will work here as long as it is distinct from SQLITE_STATIC
|
|
** and SQLITE_TRANSIENT.
|
|
*/
|
|
#define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3MallocSize)
|
|
|
|
/*
|
|
** When SQLITE_OMIT_WSD is defined, it means that the target platform does
|
|
** not support Writable Static Data (WSD) such as global and static variables.
|
|
** All variables must either be on the stack or dynamically allocated from
|
|
** the heap. When WSD is unsupported, the variable declarations scattered
|
|
** throughout the SQLite code must become constants instead. The SQLITE_WSD
|
|
** macro is used for this purpose. And instead of referencing the variable
|
|
** directly, we use its constant as a key to lookup the run-time allocated
|
|
** buffer that holds real variable. The constant is also the initializer
|
|
** for the run-time allocated buffer.
|
|
**
|
|
** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
|
|
** macros become no-ops and have zero performance impact.
|
|
*/
|
|
#ifdef SQLITE_OMIT_WSD
|
|
#define SQLITE_WSD const
|
|
#define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
|
|
#define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
|
|
int sqlite3_wsd_init(int N, int J);
|
|
void *sqlite3_wsd_find(void *K, int L);
|
|
#else
|
|
#define SQLITE_WSD
|
|
#define GLOBAL(t,v) v
|
|
#define sqlite3GlobalConfig sqlite3Config
|
|
#endif
|
|
|
|
/*
|
|
** The following macros are used to suppress compiler warnings and to
|
|
** make it clear to human readers when a function parameter is deliberately
|
|
** left unused within the body of a function. This usually happens when
|
|
** a function is called via a function pointer. For example the
|
|
** implementation of an SQL aggregate step callback may not use the
|
|
** parameter indicating the number of arguments passed to the aggregate,
|
|
** if it knows that this is enforced elsewhere.
|
|
**
|
|
** When a function parameter is not used at all within the body of a function,
|
|
** it is generally named "NotUsed" or "NotUsed2" to make things even clearer.
|
|
** However, these macros may also be used to suppress warnings related to
|
|
** parameters that may or may not be used depending on compilation options.
|
|
** For example those parameters only used in assert() statements. In these
|
|
** cases the parameters are named as per the usual conventions.
|
|
*/
|
|
#define UNUSED_PARAMETER(x) (void)(x)
|
|
#define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y)
|
|
|
|
/*
|
|
** Forward references to structures
|
|
*/
|
|
typedef struct AggInfo AggInfo;
|
|
typedef struct AuthContext AuthContext;
|
|
typedef struct AutoincInfo AutoincInfo;
|
|
typedef struct Bitvec Bitvec;
|
|
typedef struct CollSeq CollSeq;
|
|
typedef struct Column Column;
|
|
typedef struct Db Db;
|
|
typedef struct Schema Schema;
|
|
typedef struct Expr Expr;
|
|
typedef struct ExprList ExprList;
|
|
typedef struct ExprSpan ExprSpan;
|
|
typedef struct FKey FKey;
|
|
typedef struct FuncDestructor FuncDestructor;
|
|
typedef struct FuncDef FuncDef;
|
|
typedef struct FuncDefHash FuncDefHash;
|
|
typedef struct IdList IdList;
|
|
typedef struct Index Index;
|
|
typedef struct IndexSample IndexSample;
|
|
typedef struct KeyClass KeyClass;
|
|
typedef struct KeyInfo KeyInfo;
|
|
typedef struct Lookaside Lookaside;
|
|
typedef struct LookasideSlot LookasideSlot;
|
|
typedef struct Module Module;
|
|
typedef struct NameContext NameContext;
|
|
typedef struct Parse Parse;
|
|
typedef struct PrintfArguments PrintfArguments;
|
|
typedef struct RowSet RowSet;
|
|
typedef struct Savepoint Savepoint;
|
|
typedef struct Select Select;
|
|
typedef struct SQLiteThread SQLiteThread;
|
|
typedef struct SelectDest SelectDest;
|
|
typedef struct SrcList SrcList;
|
|
typedef struct StrAccum StrAccum;
|
|
typedef struct Table Table;
|
|
typedef struct TableLock TableLock;
|
|
typedef struct Token Token;
|
|
typedef struct TreeView TreeView;
|
|
typedef struct Trigger Trigger;
|
|
typedef struct TriggerPrg TriggerPrg;
|
|
typedef struct TriggerStep TriggerStep;
|
|
typedef struct UnpackedRecord UnpackedRecord;
|
|
typedef struct VTable VTable;
|
|
typedef struct VtabCtx VtabCtx;
|
|
typedef struct Walker Walker;
|
|
typedef struct WhereInfo WhereInfo;
|
|
typedef struct With With;
|
|
|
|
/*
|
|
** Defer sourcing vdbe.h and btree.h until after the "u8" and
|
|
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
|
|
** pointer types (i.e. FuncDef) defined above.
|
|
*/
|
|
#include "btree.h"
|
|
#include "vdbe.h"
|
|
#include "pager.h"
|
|
#include "pcache.h"
|
|
|
|
#include "os.h"
|
|
#include "mutex.h"
|
|
|
|
|
|
/*
|
|
** Each database file to be accessed by the system is an instance
|
|
** of the following structure. There are normally two of these structures
|
|
** in the sqlite.aDb[] array. aDb[0] is the main database file and
|
|
** aDb[1] is the database file used to hold temporary tables. Additional
|
|
** databases may be attached.
|
|
*/
|
|
struct Db {
|
|
char *zName; /* Name of this database */
|
|
Btree *pBt; /* The B*Tree structure for this database file */
|
|
u8 safety_level; /* How aggressive at syncing data to disk */
|
|
Schema *pSchema; /* Pointer to database schema (possibly shared) */
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure stores a database schema.
|
|
**
|
|
** Most Schema objects are associated with a Btree. The exception is
|
|
** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing.
|
|
** In shared cache mode, a single Schema object can be shared by multiple
|
|
** Btrees that refer to the same underlying BtShared object.
|
|
**
|
|
** Schema objects are automatically deallocated when the last Btree that
|
|
** references them is destroyed. The TEMP Schema is manually freed by
|
|
** sqlite3_close().
|
|
*
|
|
** A thread must be holding a mutex on the corresponding Btree in order
|
|
** to access Schema content. This implies that the thread must also be
|
|
** holding a mutex on the sqlite3 connection pointer that owns the Btree.
|
|
** For a TEMP Schema, only the connection mutex is required.
|
|
*/
|
|
struct Schema {
|
|
int schema_cookie; /* Database schema version number for this file */
|
|
int iGeneration; /* Generation counter. Incremented with each change */
|
|
Hash tblHash; /* All tables indexed by name */
|
|
Hash idxHash; /* All (named) indices indexed by name */
|
|
Hash trigHash; /* All triggers indexed by name */
|
|
Hash fkeyHash; /* All foreign keys by referenced table name */
|
|
Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */
|
|
u8 file_format; /* Schema format version for this file */
|
|
u8 enc; /* Text encoding used by this database */
|
|
u16 schemaFlags; /* Flags associated with this schema */
|
|
int cache_size; /* Number of pages to use in the cache */
|
|
};
|
|
|
|
/*
|
|
** These macros can be used to test, set, or clear bits in the
|
|
** Db.pSchema->flags field.
|
|
*/
|
|
#define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))==(P))
|
|
#define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->schemaFlags&(P))!=0)
|
|
#define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags|=(P)
|
|
#define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->schemaFlags&=~(P)
|
|
|
|
/*
|
|
** Allowed values for the DB.pSchema->flags field.
|
|
**
|
|
** The DB_SchemaLoaded flag is set after the database schema has been
|
|
** read into internal hash tables.
|
|
**
|
|
** DB_UnresetViews means that one or more views have column names that
|
|
** have been filled out. If the schema changes, these column names might
|
|
** changes and so the view will need to be reset.
|
|
*/
|
|
#define DB_SchemaLoaded 0x0001 /* The schema has been loaded */
|
|
#define DB_UnresetViews 0x0002 /* Some views have defined column names */
|
|
#define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */
|
|
|
|
/*
|
|
** The number of different kinds of things that can be limited
|
|
** using the sqlite3_limit() interface.
|
|
*/
|
|
#define SQLITE_N_LIMIT (SQLITE_LIMIT_WORKER_THREADS+1)
|
|
|
|
/*
|
|
** Lookaside malloc is a set of fixed-size buffers that can be used
|
|
** to satisfy small transient memory allocation requests for objects
|
|
** associated with a particular database connection. The use of
|
|
** lookaside malloc provides a significant performance enhancement
|
|
** (approx 10%) by avoiding numerous malloc/free requests while parsing
|
|
** SQL statements.
|
|
**
|
|
** The Lookaside structure holds configuration information about the
|
|
** lookaside malloc subsystem. Each available memory allocation in
|
|
** the lookaside subsystem is stored on a linked list of LookasideSlot
|
|
** objects.
|
|
**
|
|
** Lookaside allocations are only allowed for objects that are associated
|
|
** with a particular database connection. Hence, schema information cannot
|
|
** be stored in lookaside because in shared cache mode the schema information
|
|
** is shared by multiple database connections. Therefore, while parsing
|
|
** schema information, the Lookaside.bEnabled flag is cleared so that
|
|
** lookaside allocations are not used to construct the schema objects.
|
|
*/
|
|
struct Lookaside {
|
|
u16 sz; /* Size of each buffer in bytes */
|
|
u8 bEnabled; /* False to disable new lookaside allocations */
|
|
u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */
|
|
int nOut; /* Number of buffers currently checked out */
|
|
int mxOut; /* Highwater mark for nOut */
|
|
int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */
|
|
LookasideSlot *pFree; /* List of available buffers */
|
|
void *pStart; /* First byte of available memory space */
|
|
void *pEnd; /* First byte past end of available space */
|
|
};
|
|
struct LookasideSlot {
|
|
LookasideSlot *pNext; /* Next buffer in the list of free buffers */
|
|
};
|
|
|
|
/*
|
|
** A hash table for function definitions.
|
|
**
|
|
** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
|
|
** Collisions are on the FuncDef.pHash chain.
|
|
*/
|
|
struct FuncDefHash {
|
|
FuncDef *a[23]; /* Hash table for functions */
|
|
};
|
|
|
|
#ifdef SQLITE_USER_AUTHENTICATION
|
|
/*
|
|
** Information held in the "sqlite3" database connection object and used
|
|
** to manage user authentication.
|
|
*/
|
|
typedef struct sqlite3_userauth sqlite3_userauth;
|
|
struct sqlite3_userauth {
|
|
u8 authLevel; /* Current authentication level */
|
|
int nAuthPW; /* Size of the zAuthPW in bytes */
|
|
char *zAuthPW; /* Password used to authenticate */
|
|
char *zAuthUser; /* User name used to authenticate */
|
|
};
|
|
|
|
/* Allowed values for sqlite3_userauth.authLevel */
|
|
#define UAUTH_Unknown 0 /* Authentication not yet checked */
|
|
#define UAUTH_Fail 1 /* User authentication failed */
|
|
#define UAUTH_User 2 /* Authenticated as a normal user */
|
|
#define UAUTH_Admin 3 /* Authenticated as an administrator */
|
|
|
|
/* Functions used only by user authorization logic */
|
|
int sqlite3UserAuthTable(const char*);
|
|
int sqlite3UserAuthCheckLogin(sqlite3*,const char*,u8*);
|
|
void sqlite3UserAuthInit(sqlite3*);
|
|
void sqlite3CryptFunc(sqlite3_context*,int,sqlite3_value**);
|
|
|
|
#endif /* SQLITE_USER_AUTHENTICATION */
|
|
|
|
/*
|
|
** typedef for the authorization callback function.
|
|
*/
|
|
#ifdef SQLITE_USER_AUTHENTICATION
|
|
typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
|
|
const char*, const char*);
|
|
#else
|
|
typedef int (*sqlite3_xauth)(void*,int,const char*,const char*,const char*,
|
|
const char*);
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Each database connection is an instance of the following structure.
|
|
*/
|
|
struct sqlite3 {
|
|
sqlite3_vfs *pVfs; /* OS Interface */
|
|
struct Vdbe *pVdbe; /* List of active virtual machines */
|
|
CollSeq *pDfltColl; /* The default collating sequence (BINARY) */
|
|
sqlite3_mutex *mutex; /* Connection mutex */
|
|
Db *aDb; /* All backends */
|
|
int nDb; /* Number of backends currently in use */
|
|
int flags; /* Miscellaneous flags. See below */
|
|
i64 lastRowid; /* ROWID of most recent insert (see above) */
|
|
i64 szMmap; /* Default mmap_size setting */
|
|
unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */
|
|
int errCode; /* Most recent error code (SQLITE_*) */
|
|
int errMask; /* & result codes with this before returning */
|
|
u16 dbOptFlags; /* Flags to enable/disable optimizations */
|
|
u8 enc; /* Text encoding */
|
|
u8 autoCommit; /* The auto-commit flag. */
|
|
u8 temp_store; /* 1: file 2: memory 0: default */
|
|
u8 mallocFailed; /* True if we have seen a malloc failure */
|
|
u8 dfltLockMode; /* Default locking-mode for attached dbs */
|
|
signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */
|
|
u8 suppressErr; /* Do not issue error messages if true */
|
|
u8 vtabOnConflict; /* Value to return for s3_vtab_on_conflict() */
|
|
u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */
|
|
int nextPagesize; /* Pagesize after VACUUM if >0 */
|
|
u32 magic; /* Magic number for detect library misuse */
|
|
int nChange; /* Value returned by sqlite3_changes() */
|
|
int nTotalChange; /* Value returned by sqlite3_total_changes() */
|
|
int aLimit[SQLITE_N_LIMIT]; /* Limits */
|
|
int nMaxSorterMmap; /* Maximum size of regions mapped by sorter */
|
|
struct sqlite3InitInfo { /* Information used during initialization */
|
|
int newTnum; /* Rootpage of table being initialized */
|
|
u8 iDb; /* Which db file is being initialized */
|
|
u8 busy; /* TRUE if currently initializing */
|
|
u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */
|
|
u8 imposterTable; /* Building an imposter table */
|
|
} init;
|
|
int nVdbeActive; /* Number of VDBEs currently running */
|
|
int nVdbeRead; /* Number of active VDBEs that read or write */
|
|
int nVdbeWrite; /* Number of active VDBEs that read and write */
|
|
int nVdbeExec; /* Number of nested calls to VdbeExec() */
|
|
int nVDestroy; /* Number of active OP_VDestroy operations */
|
|
int nExtension; /* Number of loaded extensions */
|
|
void **aExtension; /* Array of shared library handles */
|
|
void (*xTrace)(void*,const char*); /* Trace function */
|
|
void *pTraceArg; /* Argument to the trace function */
|
|
void (*xProfile)(void*,const char*,u64); /* Profiling function */
|
|
void *pProfileArg; /* Argument to profile function */
|
|
void *pCommitArg; /* Argument to xCommitCallback() */
|
|
int (*xCommitCallback)(void*); /* Invoked at every commit. */
|
|
void *pRollbackArg; /* Argument to xRollbackCallback() */
|
|
void (*xRollbackCallback)(void*); /* Invoked at every commit. */
|
|
void *pUpdateArg;
|
|
void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64);
|
|
#ifndef SQLITE_OMIT_WAL
|
|
int (*xWalCallback)(void *, sqlite3 *, const char *, int);
|
|
void *pWalArg;
|
|
#endif
|
|
void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*);
|
|
void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*);
|
|
void *pCollNeededArg;
|
|
sqlite3_value *pErr; /* Most recent error message */
|
|
union {
|
|
volatile int isInterrupted; /* True if sqlite3_interrupt has been called */
|
|
double notUsed1; /* Spacer */
|
|
} u1;
|
|
Lookaside lookaside; /* Lookaside malloc configuration */
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
sqlite3_xauth xAuth; /* Access authorization function */
|
|
void *pAuthArg; /* 1st argument to the access auth function */
|
|
#endif
|
|
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
|
|
int (*xProgress)(void *); /* The progress callback */
|
|
void *pProgressArg; /* Argument to the progress callback */
|
|
unsigned nProgressOps; /* Number of opcodes for progress callback */
|
|
#endif
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
int nVTrans; /* Allocated size of aVTrans */
|
|
Hash aModule; /* populated by sqlite3_create_module() */
|
|
VtabCtx *pVtabCtx; /* Context for active vtab connect/create */
|
|
VTable **aVTrans; /* Virtual tables with open transactions */
|
|
VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */
|
|
#endif
|
|
FuncDefHash aFunc; /* Hash table of connection functions */
|
|
Hash aCollSeq; /* All collating sequences */
|
|
BusyHandler busyHandler; /* Busy callback */
|
|
Db aDbStatic[2]; /* Static space for the 2 default backends */
|
|
Savepoint *pSavepoint; /* List of active savepoints */
|
|
int busyTimeout; /* Busy handler timeout, in msec */
|
|
int nSavepoint; /* Number of non-transaction savepoints */
|
|
int nStatement; /* Number of nested statement-transactions */
|
|
i64 nDeferredCons; /* Net deferred constraints this transaction. */
|
|
i64 nDeferredImmCons; /* Net deferred immediate constraints */
|
|
int *pnBytesFreed; /* If not NULL, increment this in DbFree() */
|
|
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
|
|
/* The following variables are all protected by the STATIC_MASTER
|
|
** mutex, not by sqlite3.mutex. They are used by code in notify.c.
|
|
**
|
|
** When X.pUnlockConnection==Y, that means that X is waiting for Y to
|
|
** unlock so that it can proceed.
|
|
**
|
|
** When X.pBlockingConnection==Y, that means that something that X tried
|
|
** tried to do recently failed with an SQLITE_LOCKED error due to locks
|
|
** held by Y.
|
|
*/
|
|
sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */
|
|
sqlite3 *pUnlockConnection; /* Connection to watch for unlock */
|
|
void *pUnlockArg; /* Argument to xUnlockNotify */
|
|
void (*xUnlockNotify)(void **, int); /* Unlock notify callback */
|
|
sqlite3 *pNextBlocked; /* Next in list of all blocked connections */
|
|
#endif
|
|
#ifdef SQLITE_USER_AUTHENTICATION
|
|
sqlite3_userauth auth; /* User authentication information */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** A macro to discover the encoding of a database.
|
|
*/
|
|
#define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc)
|
|
#define ENC(db) ((db)->enc)
|
|
|
|
/*
|
|
** Possible values for the sqlite3.flags.
|
|
*/
|
|
#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */
|
|
#define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */
|
|
#define SQLITE_FullFSync 0x00000004 /* Use full fsync on the backend */
|
|
#define SQLITE_CkptFullFSync 0x00000008 /* Use full fsync for checkpoint */
|
|
#define SQLITE_CacheSpill 0x00000010 /* OK to spill pager cache */
|
|
#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */
|
|
#define SQLITE_ShortColNames 0x00000040 /* Show short columns names */
|
|
#define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */
|
|
/* DELETE, or UPDATE and return */
|
|
/* the count using a callback. */
|
|
#define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */
|
|
/* result set is empty */
|
|
#define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */
|
|
#define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */
|
|
#define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */
|
|
#define SQLITE_VdbeAddopTrace 0x00001000 /* Trace sqlite3VdbeAddOp() calls */
|
|
#define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */
|
|
#define SQLITE_ReadUncommitted 0x0004000 /* For shared-cache mode */
|
|
#define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */
|
|
#define SQLITE_RecoveryMode 0x00010000 /* Ignore schema errors */
|
|
#define SQLITE_ReverseOrder 0x00020000 /* Reverse unordered SELECTs */
|
|
#define SQLITE_RecTriggers 0x00040000 /* Enable recursive triggers */
|
|
#define SQLITE_ForeignKeys 0x00080000 /* Enforce foreign key constraints */
|
|
#define SQLITE_AutoIndex 0x00100000 /* Enable automatic indexes */
|
|
#define SQLITE_PreferBuiltin 0x00200000 /* Preference to built-in funcs */
|
|
#define SQLITE_LoadExtension 0x00400000 /* Enable load_extension */
|
|
#define SQLITE_EnableTrigger 0x00800000 /* True to enable triggers */
|
|
#define SQLITE_DeferFKs 0x01000000 /* Defer all FK constraints */
|
|
#define SQLITE_QueryOnly 0x02000000 /* Disable database changes */
|
|
#define SQLITE_VdbeEQP 0x04000000 /* Debug EXPLAIN QUERY PLAN */
|
|
#define SQLITE_Vacuum 0x08000000 /* Currently in a VACUUM */
|
|
|
|
|
|
/*
|
|
** Bits of the sqlite3.dbOptFlags field that are used by the
|
|
** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to
|
|
** selectively disable various optimizations.
|
|
*/
|
|
#define SQLITE_QueryFlattener 0x0001 /* Query flattening */
|
|
#define SQLITE_ColumnCache 0x0002 /* Column cache */
|
|
#define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */
|
|
#define SQLITE_FactorOutConst 0x0008 /* Constant factoring */
|
|
/* not used 0x0010 // Was: SQLITE_IdxRealAsInt */
|
|
#define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */
|
|
#define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */
|
|
#define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */
|
|
#define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */
|
|
#define SQLITE_Transitive 0x0200 /* Transitive constraints */
|
|
#define SQLITE_OmitNoopJoin 0x0400 /* Omit unused tables in joins */
|
|
#define SQLITE_Stat34 0x0800 /* Use STAT3 or STAT4 data */
|
|
#define SQLITE_AllOpts 0xffff /* All optimizations */
|
|
|
|
/*
|
|
** Macros for testing whether or not optimizations are enabled or disabled.
|
|
*/
|
|
#ifndef SQLITE_OMIT_BUILTIN_TEST
|
|
#define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0)
|
|
#define OptimizationEnabled(db, mask) (((db)->dbOptFlags&(mask))==0)
|
|
#else
|
|
#define OptimizationDisabled(db, mask) 0
|
|
#define OptimizationEnabled(db, mask) 1
|
|
#endif
|
|
|
|
/*
|
|
** Return true if it OK to factor constant expressions into the initialization
|
|
** code. The argument is a Parse object for the code generator.
|
|
*/
|
|
#define ConstFactorOk(P) ((P)->okConstFactor)
|
|
|
|
/*
|
|
** Possible values for the sqlite.magic field.
|
|
** The numbers are obtained at random and have no special meaning, other
|
|
** than being distinct from one another.
|
|
*/
|
|
#define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */
|
|
#define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */
|
|
#define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */
|
|
#define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */
|
|
#define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */
|
|
#define SQLITE_MAGIC_ZOMBIE 0x64cffc7f /* Close with last statement close */
|
|
|
|
/*
|
|
** Each SQL function is defined by an instance of the following
|
|
** structure. A pointer to this structure is stored in the sqlite.aFunc
|
|
** hash table. When multiple functions have the same name, the hash table
|
|
** points to a linked list of these structures.
|
|
*/
|
|
struct FuncDef {
|
|
i16 nArg; /* Number of arguments. -1 means unlimited */
|
|
u16 funcFlags; /* Some combination of SQLITE_FUNC_* */
|
|
void *pUserData; /* User data parameter */
|
|
FuncDef *pNext; /* Next function with same name */
|
|
void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */
|
|
void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */
|
|
void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */
|
|
char *zName; /* SQL name of the function. */
|
|
FuncDef *pHash; /* Next with a different name but the same hash */
|
|
FuncDestructor *pDestructor; /* Reference counted destructor function */
|
|
};
|
|
|
|
/*
|
|
** This structure encapsulates a user-function destructor callback (as
|
|
** configured using create_function_v2()) and a reference counter. When
|
|
** create_function_v2() is called to create a function with a destructor,
|
|
** a single object of this type is allocated. FuncDestructor.nRef is set to
|
|
** the number of FuncDef objects created (either 1 or 3, depending on whether
|
|
** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor
|
|
** member of each of the new FuncDef objects is set to point to the allocated
|
|
** FuncDestructor.
|
|
**
|
|
** Thereafter, when one of the FuncDef objects is deleted, the reference
|
|
** count on this object is decremented. When it reaches 0, the destructor
|
|
** is invoked and the FuncDestructor structure freed.
|
|
*/
|
|
struct FuncDestructor {
|
|
int nRef;
|
|
void (*xDestroy)(void *);
|
|
void *pUserData;
|
|
};
|
|
|
|
/*
|
|
** Possible values for FuncDef.flags. Note that the _LENGTH and _TYPEOF
|
|
** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG. There
|
|
** are assert() statements in the code to verify this.
|
|
*/
|
|
#define SQLITE_FUNC_ENCMASK 0x003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
|
|
#define SQLITE_FUNC_LIKE 0x004 /* Candidate for the LIKE optimization */
|
|
#define SQLITE_FUNC_CASE 0x008 /* Case-sensitive LIKE-type function */
|
|
#define SQLITE_FUNC_EPHEM 0x010 /* Ephemeral. Delete with VDBE */
|
|
#define SQLITE_FUNC_NEEDCOLL 0x020 /* sqlite3GetFuncCollSeq() might be called */
|
|
#define SQLITE_FUNC_LENGTH 0x040 /* Built-in length() function */
|
|
#define SQLITE_FUNC_TYPEOF 0x080 /* Built-in typeof() function */
|
|
#define SQLITE_FUNC_COUNT 0x100 /* Built-in count(*) aggregate */
|
|
#define SQLITE_FUNC_COALESCE 0x200 /* Built-in coalesce() or ifnull() */
|
|
#define SQLITE_FUNC_UNLIKELY 0x400 /* Built-in unlikely() function */
|
|
#define SQLITE_FUNC_CONSTANT 0x800 /* Constant inputs give a constant output */
|
|
#define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */
|
|
|
|
/*
|
|
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
|
|
** used to create the initializers for the FuncDef structures.
|
|
**
|
|
** FUNCTION(zName, nArg, iArg, bNC, xFunc)
|
|
** Used to create a scalar function definition of a function zName
|
|
** implemented by C function xFunc that accepts nArg arguments. The
|
|
** value passed as iArg is cast to a (void*) and made available
|
|
** as the user-data (sqlite3_user_data()) for the function. If
|
|
** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set.
|
|
**
|
|
** VFUNCTION(zName, nArg, iArg, bNC, xFunc)
|
|
** Like FUNCTION except it omits the SQLITE_FUNC_CONSTANT flag.
|
|
**
|
|
** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal)
|
|
** Used to create an aggregate function definition implemented by
|
|
** the C functions xStep and xFinal. The first four parameters
|
|
** are interpreted in the same way as the first 4 parameters to
|
|
** FUNCTION().
|
|
**
|
|
** LIKEFUNC(zName, nArg, pArg, flags)
|
|
** Used to create a scalar function definition of a function zName
|
|
** that accepts nArg arguments and is implemented by a call to C
|
|
** function likeFunc. Argument pArg is cast to a (void *) and made
|
|
** available as the function user-data (sqlite3_user_data()). The
|
|
** FuncDef.flags variable is set to the value passed as the flags
|
|
** parameter.
|
|
*/
|
|
#define FUNCTION(zName, nArg, iArg, bNC, xFunc) \
|
|
{nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
|
|
SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
|
|
#define VFUNCTION(zName, nArg, iArg, bNC, xFunc) \
|
|
{nArg, SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
|
|
SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
|
|
#define FUNCTION2(zName, nArg, iArg, bNC, xFunc, extraFlags) \
|
|
{nArg,SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL)|extraFlags,\
|
|
SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0}
|
|
#define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \
|
|
{nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|(bNC*SQLITE_FUNC_NEEDCOLL), \
|
|
pArg, 0, xFunc, 0, 0, #zName, 0, 0}
|
|
#define LIKEFUNC(zName, nArg, arg, flags) \
|
|
{nArg, SQLITE_FUNC_CONSTANT|SQLITE_UTF8|flags, \
|
|
(void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0}
|
|
#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \
|
|
{nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
|
|
SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
|
|
#define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
|
|
{nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
|
|
SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0}
|
|
|
|
/*
|
|
** All current savepoints are stored in a linked list starting at
|
|
** sqlite3.pSavepoint. The first element in the list is the most recently
|
|
** opened savepoint. Savepoints are added to the list by the vdbe
|
|
** OP_Savepoint instruction.
|
|
*/
|
|
struct Savepoint {
|
|
char *zName; /* Savepoint name (nul-terminated) */
|
|
i64 nDeferredCons; /* Number of deferred fk violations */
|
|
i64 nDeferredImmCons; /* Number of deferred imm fk. */
|
|
Savepoint *pNext; /* Parent savepoint (if any) */
|
|
};
|
|
|
|
/*
|
|
** The following are used as the second parameter to sqlite3Savepoint(),
|
|
** and as the P1 argument to the OP_Savepoint instruction.
|
|
*/
|
|
#define SAVEPOINT_BEGIN 0
|
|
#define SAVEPOINT_RELEASE 1
|
|
#define SAVEPOINT_ROLLBACK 2
|
|
|
|
|
|
/*
|
|
** Each SQLite module (virtual table definition) is defined by an
|
|
** instance of the following structure, stored in the sqlite3.aModule
|
|
** hash table.
|
|
*/
|
|
struct Module {
|
|
const sqlite3_module *pModule; /* Callback pointers */
|
|
const char *zName; /* Name passed to create_module() */
|
|
void *pAux; /* pAux passed to create_module() */
|
|
void (*xDestroy)(void *); /* Module destructor function */
|
|
};
|
|
|
|
/*
|
|
** information about each column of an SQL table is held in an instance
|
|
** of this structure.
|
|
*/
|
|
struct Column {
|
|
char *zName; /* Name of this column */
|
|
Expr *pDflt; /* Default value of this column */
|
|
char *zDflt; /* Original text of the default value */
|
|
char *zType; /* Data type for this column */
|
|
char *zColl; /* Collating sequence. If NULL, use the default */
|
|
u8 notNull; /* An OE_ code for handling a NOT NULL constraint */
|
|
char affinity; /* One of the SQLITE_AFF_... values */
|
|
u8 szEst; /* Estimated size of this column. INT==1 */
|
|
u8 colFlags; /* Boolean properties. See COLFLAG_ defines below */
|
|
};
|
|
|
|
/* Allowed values for Column.colFlags:
|
|
*/
|
|
#define COLFLAG_PRIMKEY 0x0001 /* Column is part of the primary key */
|
|
#define COLFLAG_HIDDEN 0x0002 /* A hidden column in a virtual table */
|
|
|
|
/*
|
|
** A "Collating Sequence" is defined by an instance of the following
|
|
** structure. Conceptually, a collating sequence consists of a name and
|
|
** a comparison routine that defines the order of that sequence.
|
|
**
|
|
** If CollSeq.xCmp is NULL, it means that the
|
|
** collating sequence is undefined. Indices built on an undefined
|
|
** collating sequence may not be read or written.
|
|
*/
|
|
struct CollSeq {
|
|
char *zName; /* Name of the collating sequence, UTF-8 encoded */
|
|
u8 enc; /* Text encoding handled by xCmp() */
|
|
void *pUser; /* First argument to xCmp() */
|
|
int (*xCmp)(void*,int, const void*, int, const void*);
|
|
void (*xDel)(void*); /* Destructor for pUser */
|
|
};
|
|
|
|
/*
|
|
** A sort order can be either ASC or DESC.
|
|
*/
|
|
#define SQLITE_SO_ASC 0 /* Sort in ascending order */
|
|
#define SQLITE_SO_DESC 1 /* Sort in ascending order */
|
|
|
|
/*
|
|
** Column affinity types.
|
|
**
|
|
** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and
|
|
** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve
|
|
** the speed a little by numbering the values consecutively.
|
|
**
|
|
** But rather than start with 0 or 1, we begin with 'A'. That way,
|
|
** when multiple affinity types are concatenated into a string and
|
|
** used as the P4 operand, they will be more readable.
|
|
**
|
|
** Note also that the numeric types are grouped together so that testing
|
|
** for a numeric type is a single comparison. And the NONE type is first.
|
|
*/
|
|
#define SQLITE_AFF_NONE 'A'
|
|
#define SQLITE_AFF_TEXT 'B'
|
|
#define SQLITE_AFF_NUMERIC 'C'
|
|
#define SQLITE_AFF_INTEGER 'D'
|
|
#define SQLITE_AFF_REAL 'E'
|
|
|
|
#define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC)
|
|
|
|
/*
|
|
** The SQLITE_AFF_MASK values masks off the significant bits of an
|
|
** affinity value.
|
|
*/
|
|
#define SQLITE_AFF_MASK 0x47
|
|
|
|
/*
|
|
** Additional bit values that can be ORed with an affinity without
|
|
** changing the affinity.
|
|
**
|
|
** The SQLITE_NOTNULL flag is a combination of NULLEQ and JUMPIFNULL.
|
|
** It causes an assert() to fire if either operand to a comparison
|
|
** operator is NULL. It is added to certain comparison operators to
|
|
** prove that the operands are always NOT NULL.
|
|
*/
|
|
#define SQLITE_JUMPIFNULL 0x10 /* jumps if either operand is NULL */
|
|
#define SQLITE_STOREP2 0x20 /* Store result in reg[P2] rather than jump */
|
|
#define SQLITE_NULLEQ 0x80 /* NULL=NULL */
|
|
#define SQLITE_NOTNULL 0x90 /* Assert that operands are never NULL */
|
|
|
|
/*
|
|
** An object of this type is created for each virtual table present in
|
|
** the database schema.
|
|
**
|
|
** If the database schema is shared, then there is one instance of this
|
|
** structure for each database connection (sqlite3*) that uses the shared
|
|
** schema. This is because each database connection requires its own unique
|
|
** instance of the sqlite3_vtab* handle used to access the virtual table
|
|
** implementation. sqlite3_vtab* handles can not be shared between
|
|
** database connections, even when the rest of the in-memory database
|
|
** schema is shared, as the implementation often stores the database
|
|
** connection handle passed to it via the xConnect() or xCreate() method
|
|
** during initialization internally. This database connection handle may
|
|
** then be used by the virtual table implementation to access real tables
|
|
** within the database. So that they appear as part of the callers
|
|
** transaction, these accesses need to be made via the same database
|
|
** connection as that used to execute SQL operations on the virtual table.
|
|
**
|
|
** All VTable objects that correspond to a single table in a shared
|
|
** database schema are initially stored in a linked-list pointed to by
|
|
** the Table.pVTable member variable of the corresponding Table object.
|
|
** When an sqlite3_prepare() operation is required to access the virtual
|
|
** table, it searches the list for the VTable that corresponds to the
|
|
** database connection doing the preparing so as to use the correct
|
|
** sqlite3_vtab* handle in the compiled query.
|
|
**
|
|
** When an in-memory Table object is deleted (for example when the
|
|
** schema is being reloaded for some reason), the VTable objects are not
|
|
** deleted and the sqlite3_vtab* handles are not xDisconnect()ed
|
|
** immediately. Instead, they are moved from the Table.pVTable list to
|
|
** another linked list headed by the sqlite3.pDisconnect member of the
|
|
** corresponding sqlite3 structure. They are then deleted/xDisconnected
|
|
** next time a statement is prepared using said sqlite3*. This is done
|
|
** to avoid deadlock issues involving multiple sqlite3.mutex mutexes.
|
|
** Refer to comments above function sqlite3VtabUnlockList() for an
|
|
** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect
|
|
** list without holding the corresponding sqlite3.mutex mutex.
|
|
**
|
|
** The memory for objects of this type is always allocated by
|
|
** sqlite3DbMalloc(), using the connection handle stored in VTable.db as
|
|
** the first argument.
|
|
*/
|
|
struct VTable {
|
|
sqlite3 *db; /* Database connection associated with this table */
|
|
Module *pMod; /* Pointer to module implementation */
|
|
sqlite3_vtab *pVtab; /* Pointer to vtab instance */
|
|
int nRef; /* Number of pointers to this structure */
|
|
u8 bConstraint; /* True if constraints are supported */
|
|
int iSavepoint; /* Depth of the SAVEPOINT stack */
|
|
VTable *pNext; /* Next in linked list (see above) */
|
|
};
|
|
|
|
/*
|
|
** Each SQL table is represented in memory by an instance of the
|
|
** following structure.
|
|
**
|
|
** Table.zName is the name of the table. The case of the original
|
|
** CREATE TABLE statement is stored, but case is not significant for
|
|
** comparisons.
|
|
**
|
|
** Table.nCol is the number of columns in this table. Table.aCol is a
|
|
** pointer to an array of Column structures, one for each column.
|
|
**
|
|
** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of
|
|
** the column that is that key. Otherwise Table.iPKey is negative. Note
|
|
** that the datatype of the PRIMARY KEY must be INTEGER for this field to
|
|
** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
|
|
** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
|
|
** is generated for each row of the table. TF_HasPrimaryKey is set if
|
|
** the table has any PRIMARY KEY, INTEGER or otherwise.
|
|
**
|
|
** Table.tnum is the page number for the root BTree page of the table in the
|
|
** database file. If Table.iDb is the index of the database table backend
|
|
** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that
|
|
** holds temporary tables and indices. If TF_Ephemeral is set
|
|
** then the table is stored in a file that is automatically deleted
|
|
** when the VDBE cursor to the table is closed. In this case Table.tnum
|
|
** refers VDBE cursor number that holds the table open, not to the root
|
|
** page number. Transient tables are used to hold the results of a
|
|
** sub-query that appears instead of a real table name in the FROM clause
|
|
** of a SELECT statement.
|
|
*/
|
|
struct Table {
|
|
char *zName; /* Name of the table or view */
|
|
Column *aCol; /* Information about each column */
|
|
Index *pIndex; /* List of SQL indexes on this table. */
|
|
Select *pSelect; /* NULL for tables. Points to definition if a view. */
|
|
FKey *pFKey; /* Linked list of all foreign keys in this table */
|
|
char *zColAff; /* String defining the affinity of each column */
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
ExprList *pCheck; /* All CHECK constraints */
|
|
#endif
|
|
LogEst nRowLogEst; /* Estimated rows in table - from sqlite_stat1 table */
|
|
int tnum; /* Root BTree node for this table (see note above) */
|
|
i16 iPKey; /* If not negative, use aCol[iPKey] as the primary key */
|
|
i16 nCol; /* Number of columns in this table */
|
|
u16 nRef; /* Number of pointers to this Table */
|
|
LogEst szTabRow; /* Estimated size of each table row in bytes */
|
|
#ifdef SQLITE_ENABLE_COSTMULT
|
|
LogEst costMult; /* Cost multiplier for using this table */
|
|
#endif
|
|
u8 tabFlags; /* Mask of TF_* values */
|
|
u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
|
|
#ifndef SQLITE_OMIT_ALTERTABLE
|
|
int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */
|
|
#endif
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
int nModuleArg; /* Number of arguments to the module */
|
|
char **azModuleArg; /* Text of all module args. [0] is module name */
|
|
VTable *pVTable; /* List of VTable objects. */
|
|
#endif
|
|
Trigger *pTrigger; /* List of triggers stored in pSchema */
|
|
Schema *pSchema; /* Schema that contains this table */
|
|
Table *pNextZombie; /* Next on the Parse.pZombieTab list */
|
|
};
|
|
|
|
/*
|
|
** Allowed values for Table.tabFlags.
|
|
*/
|
|
#define TF_Readonly 0x01 /* Read-only system table */
|
|
#define TF_Ephemeral 0x02 /* An ephemeral table */
|
|
#define TF_HasPrimaryKey 0x04 /* Table has a primary key */
|
|
#define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */
|
|
#define TF_Virtual 0x10 /* Is a virtual table */
|
|
#define TF_WithoutRowid 0x20 /* No rowid used. PRIMARY KEY is the key */
|
|
|
|
|
|
/*
|
|
** Test to see whether or not a table is a virtual table. This is
|
|
** done as a macro so that it will be optimized out when virtual
|
|
** table support is omitted from the build.
|
|
*/
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
# define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0)
|
|
# define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
|
|
#else
|
|
# define IsVirtual(X) 0
|
|
# define IsHiddenColumn(X) 0
|
|
#endif
|
|
|
|
/* Does the table have a rowid */
|
|
#define HasRowid(X) (((X)->tabFlags & TF_WithoutRowid)==0)
|
|
|
|
/*
|
|
** Each foreign key constraint is an instance of the following structure.
|
|
**
|
|
** A foreign key is associated with two tables. The "from" table is
|
|
** the table that contains the REFERENCES clause that creates the foreign
|
|
** key. The "to" table is the table that is named in the REFERENCES clause.
|
|
** Consider this example:
|
|
**
|
|
** CREATE TABLE ex1(
|
|
** a INTEGER PRIMARY KEY,
|
|
** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x)
|
|
** );
|
|
**
|
|
** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2".
|
|
** Equivalent names:
|
|
**
|
|
** from-table == child-table
|
|
** to-table == parent-table
|
|
**
|
|
** Each REFERENCES clause generates an instance of the following structure
|
|
** which is attached to the from-table. The to-table need not exist when
|
|
** the from-table is created. The existence of the to-table is not checked.
|
|
**
|
|
** The list of all parents for child Table X is held at X.pFKey.
|
|
**
|
|
** A list of all children for a table named Z (which might not even exist)
|
|
** is held in Schema.fkeyHash with a hash key of Z.
|
|
*/
|
|
struct FKey {
|
|
Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */
|
|
FKey *pNextFrom; /* Next FKey with the same in pFrom. Next parent of pFrom */
|
|
char *zTo; /* Name of table that the key points to (aka: Parent) */
|
|
FKey *pNextTo; /* Next with the same zTo. Next child of zTo. */
|
|
FKey *pPrevTo; /* Previous with the same zTo */
|
|
int nCol; /* Number of columns in this key */
|
|
/* EV: R-30323-21917 */
|
|
u8 isDeferred; /* True if constraint checking is deferred till COMMIT */
|
|
u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */
|
|
Trigger *apTrigger[2];/* Triggers for aAction[] actions */
|
|
struct sColMap { /* Mapping of columns in pFrom to columns in zTo */
|
|
int iFrom; /* Index of column in pFrom */
|
|
char *zCol; /* Name of column in zTo. If NULL use PRIMARY KEY */
|
|
} aCol[1]; /* One entry for each of nCol columns */
|
|
};
|
|
|
|
/*
|
|
** SQLite supports many different ways to resolve a constraint
|
|
** error. ROLLBACK processing means that a constraint violation
|
|
** causes the operation in process to fail and for the current transaction
|
|
** to be rolled back. ABORT processing means the operation in process
|
|
** fails and any prior changes from that one operation are backed out,
|
|
** but the transaction is not rolled back. FAIL processing means that
|
|
** the operation in progress stops and returns an error code. But prior
|
|
** changes due to the same operation are not backed out and no rollback
|
|
** occurs. IGNORE means that the particular row that caused the constraint
|
|
** error is not inserted or updated. Processing continues and no error
|
|
** is returned. REPLACE means that preexisting database rows that caused
|
|
** a UNIQUE constraint violation are removed so that the new insert or
|
|
** update can proceed. Processing continues and no error is reported.
|
|
**
|
|
** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys.
|
|
** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the
|
|
** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign
|
|
** key is set to NULL. CASCADE means that a DELETE or UPDATE of the
|
|
** referenced table row is propagated into the row that holds the
|
|
** foreign key.
|
|
**
|
|
** The following symbolic values are used to record which type
|
|
** of action to take.
|
|
*/
|
|
#define OE_None 0 /* There is no constraint to check */
|
|
#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
|
|
#define OE_Abort 2 /* Back out changes but do no rollback transaction */
|
|
#define OE_Fail 3 /* Stop the operation but leave all prior changes */
|
|
#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
|
|
#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
|
|
|
|
#define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */
|
|
#define OE_SetNull 7 /* Set the foreign key value to NULL */
|
|
#define OE_SetDflt 8 /* Set the foreign key value to its default */
|
|
#define OE_Cascade 9 /* Cascade the changes */
|
|
|
|
#define OE_Default 10 /* Do whatever the default action is */
|
|
|
|
|
|
/*
|
|
** An instance of the following structure is passed as the first
|
|
** argument to sqlite3VdbeKeyCompare and is used to control the
|
|
** comparison of the two index keys.
|
|
**
|
|
** Note that aSortOrder[] and aColl[] have nField+1 slots. There
|
|
** are nField slots for the columns of an index then one extra slot
|
|
** for the rowid at the end.
|
|
*/
|
|
struct KeyInfo {
|
|
u32 nRef; /* Number of references to this KeyInfo object */
|
|
u8 enc; /* Text encoding - one of the SQLITE_UTF* values */
|
|
u16 nField; /* Number of key columns in the index */
|
|
u16 nXField; /* Number of columns beyond the key columns */
|
|
sqlite3 *db; /* The database connection */
|
|
u8 *aSortOrder; /* Sort order for each column. */
|
|
CollSeq *aColl[1]; /* Collating sequence for each term of the key */
|
|
};
|
|
|
|
/*
|
|
** An instance of the following structure holds information about a
|
|
** single index record that has already been parsed out into individual
|
|
** values.
|
|
**
|
|
** A record is an object that contains one or more fields of data.
|
|
** Records are used to store the content of a table row and to store
|
|
** the key of an index. A blob encoding of a record is created by
|
|
** the OP_MakeRecord opcode of the VDBE and is disassembled by the
|
|
** OP_Column opcode.
|
|
**
|
|
** This structure holds a record that has already been disassembled
|
|
** into its constituent fields.
|
|
**
|
|
** The r1 and r2 member variables are only used by the optimized comparison
|
|
** functions vdbeRecordCompareInt() and vdbeRecordCompareString().
|
|
*/
|
|
struct UnpackedRecord {
|
|
KeyInfo *pKeyInfo; /* Collation and sort-order information */
|
|
u16 nField; /* Number of entries in apMem[] */
|
|
i8 default_rc; /* Comparison result if keys are equal */
|
|
u8 errCode; /* Error detected by xRecordCompare (CORRUPT or NOMEM) */
|
|
Mem *aMem; /* Values */
|
|
int r1; /* Value to return if (lhs > rhs) */
|
|
int r2; /* Value to return if (rhs < lhs) */
|
|
};
|
|
|
|
|
|
/*
|
|
** Each SQL index is represented in memory by an
|
|
** instance of the following structure.
|
|
**
|
|
** The columns of the table that are to be indexed are described
|
|
** by the aiColumn[] field of this structure. For example, suppose
|
|
** we have the following table and index:
|
|
**
|
|
** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
|
|
** CREATE INDEX Ex2 ON Ex1(c3,c1);
|
|
**
|
|
** In the Table structure describing Ex1, nCol==3 because there are
|
|
** three columns in the table. In the Index structure describing
|
|
** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
|
|
** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
|
|
** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
|
|
** The second column to be indexed (c1) has an index of 0 in
|
|
** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
|
|
**
|
|
** The Index.onError field determines whether or not the indexed columns
|
|
** must be unique and what to do if they are not. When Index.onError=OE_None,
|
|
** it means this is not a unique index. Otherwise it is a unique index
|
|
** and the value of Index.onError indicate the which conflict resolution
|
|
** algorithm to employ whenever an attempt is made to insert a non-unique
|
|
** element.
|
|
*/
|
|
struct Index {
|
|
char *zName; /* Name of this index */
|
|
i16 *aiColumn; /* Which columns are used by this index. 1st is 0 */
|
|
LogEst *aiRowLogEst; /* From ANALYZE: Est. rows selected by each column */
|
|
Table *pTable; /* The SQL table being indexed */
|
|
char *zColAff; /* String defining the affinity of each column */
|
|
Index *pNext; /* The next index associated with the same table */
|
|
Schema *pSchema; /* Schema containing this index */
|
|
u8 *aSortOrder; /* for each column: True==DESC, False==ASC */
|
|
char **azColl; /* Array of collation sequence names for index */
|
|
Expr *pPartIdxWhere; /* WHERE clause for partial indices */
|
|
int tnum; /* DB Page containing root of this index */
|
|
LogEst szIdxRow; /* Estimated average row size in bytes */
|
|
u16 nKeyCol; /* Number of columns forming the key */
|
|
u16 nColumn; /* Number of columns stored in the index */
|
|
u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
|
unsigned idxType:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
|
|
unsigned bUnordered:1; /* Use this index for == or IN queries only */
|
|
unsigned uniqNotNull:1; /* True if UNIQUE and NOT NULL for all columns */
|
|
unsigned isResized:1; /* True if resizeIndexObject() has been called */
|
|
unsigned isCovering:1; /* True if this is a covering index */
|
|
unsigned noSkipScan:1; /* Do not try to use skip-scan if true */
|
|
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
|
int nSample; /* Number of elements in aSample[] */
|
|
int nSampleCol; /* Size of IndexSample.anEq[] and so on */
|
|
tRowcnt *aAvgEq; /* Average nEq values for keys not in aSample */
|
|
IndexSample *aSample; /* Samples of the left-most key */
|
|
tRowcnt *aiRowEst; /* Non-logarithmic stat1 data for this index */
|
|
tRowcnt nRowEst0; /* Non-logarithmic number of rows in the index */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
** Allowed values for Index.idxType
|
|
*/
|
|
#define SQLITE_IDXTYPE_APPDEF 0 /* Created using CREATE INDEX */
|
|
#define SQLITE_IDXTYPE_UNIQUE 1 /* Implements a UNIQUE constraint */
|
|
#define SQLITE_IDXTYPE_PRIMARYKEY 2 /* Is the PRIMARY KEY for the table */
|
|
|
|
/* Return true if index X is a PRIMARY KEY index */
|
|
#define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY)
|
|
|
|
/* Return true if index X is a UNIQUE index */
|
|
#define IsUniqueIndex(X) ((X)->onError!=OE_None)
|
|
|
|
/*
|
|
** Each sample stored in the sqlite_stat3 table is represented in memory
|
|
** using a structure of this type. See documentation at the top of the
|
|
** analyze.c source file for additional information.
|
|
*/
|
|
struct IndexSample {
|
|
void *p; /* Pointer to sampled record */
|
|
int n; /* Size of record in bytes */
|
|
tRowcnt *anEq; /* Est. number of rows where the key equals this sample */
|
|
tRowcnt *anLt; /* Est. number of rows where key is less than this sample */
|
|
tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */
|
|
};
|
|
|
|
/*
|
|
** Each token coming out of the lexer is an instance of
|
|
** this structure. Tokens are also used as part of an expression.
|
|
**
|
|
** Note if Token.z==0 then Token.dyn and Token.n are undefined and
|
|
** may contain random values. Do not make any assumptions about Token.dyn
|
|
** and Token.n when Token.z==0.
|
|
*/
|
|
struct Token {
|
|
const char *z; /* Text of the token. Not NULL-terminated! */
|
|
unsigned int n; /* Number of characters in this token */
|
|
};
|
|
|
|
/*
|
|
** An instance of this structure contains information needed to generate
|
|
** code for a SELECT that contains aggregate functions.
|
|
**
|
|
** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
|
|
** pointer to this structure. The Expr.iColumn field is the index in
|
|
** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
|
|
** code for that node.
|
|
**
|
|
** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
|
|
** original Select structure that describes the SELECT statement. These
|
|
** fields do not need to be freed when deallocating the AggInfo structure.
|
|
*/
|
|
struct AggInfo {
|
|
u8 directMode; /* Direct rendering mode means take data directly
|
|
** from source tables rather than from accumulators */
|
|
u8 useSortingIdx; /* In direct mode, reference the sorting index rather
|
|
** than the source table */
|
|
int sortingIdx; /* Cursor number of the sorting index */
|
|
int sortingIdxPTab; /* Cursor number of pseudo-table */
|
|
int nSortingColumn; /* Number of columns in the sorting index */
|
|
int mnReg, mxReg; /* Range of registers allocated for aCol and aFunc */
|
|
ExprList *pGroupBy; /* The group by clause */
|
|
struct AggInfo_col { /* For each column used in source tables */
|
|
Table *pTab; /* Source table */
|
|
int iTable; /* Cursor number of the source table */
|
|
int iColumn; /* Column number within the source table */
|
|
int iSorterColumn; /* Column number in the sorting index */
|
|
int iMem; /* Memory location that acts as accumulator */
|
|
Expr *pExpr; /* The original expression */
|
|
} *aCol;
|
|
int nColumn; /* Number of used entries in aCol[] */
|
|
int nAccumulator; /* Number of columns that show through to the output.
|
|
** Additional columns are used only as parameters to
|
|
** aggregate functions */
|
|
struct AggInfo_func { /* For each aggregate function */
|
|
Expr *pExpr; /* Expression encoding the function */
|
|
FuncDef *pFunc; /* The aggregate function implementation */
|
|
int iMem; /* Memory location that acts as accumulator */
|
|
int iDistinct; /* Ephemeral table used to enforce DISTINCT */
|
|
} *aFunc;
|
|
int nFunc; /* Number of entries in aFunc[] */
|
|
};
|
|
|
|
/*
|
|
** The datatype ynVar is a signed integer, either 16-bit or 32-bit.
|
|
** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater
|
|
** than 32767 we have to make it 32-bit. 16-bit is preferred because
|
|
** it uses less memory in the Expr object, which is a big memory user
|
|
** in systems with lots of prepared statements. And few applications
|
|
** need more than about 10 or 20 variables. But some extreme users want
|
|
** to have prepared statements with over 32767 variables, and for them
|
|
** the option is available (at compile-time).
|
|
*/
|
|
#if SQLITE_MAX_VARIABLE_NUMBER<=32767
|
|
typedef i16 ynVar;
|
|
#else
|
|
typedef int ynVar;
|
|
#endif
|
|
|
|
/*
|
|
** Each node of an expression in the parse tree is an instance
|
|
** of this structure.
|
|
**
|
|
** Expr.op is the opcode. The integer parser token codes are reused
|
|
** as opcodes here. For example, the parser defines TK_GE to be an integer
|
|
** code representing the ">=" operator. This same integer code is reused
|
|
** to represent the greater-than-or-equal-to operator in the expression
|
|
** tree.
|
|
**
|
|
** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB,
|
|
** or TK_STRING), then Expr.token contains the text of the SQL literal. If
|
|
** the expression is a variable (TK_VARIABLE), then Expr.token contains the
|
|
** variable name. Finally, if the expression is an SQL function (TK_FUNCTION),
|
|
** then Expr.token contains the name of the function.
|
|
**
|
|
** Expr.pRight and Expr.pLeft are the left and right subexpressions of a
|
|
** binary operator. Either or both may be NULL.
|
|
**
|
|
** Expr.x.pList is a list of arguments if the expression is an SQL function,
|
|
** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)".
|
|
** Expr.x.pSelect is used if the expression is a sub-select or an expression of
|
|
** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the
|
|
** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is
|
|
** valid.
|
|
**
|
|
** An expression of the form ID or ID.ID refers to a column in a table.
|
|
** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
|
|
** the integer cursor number of a VDBE cursor pointing to that table and
|
|
** Expr.iColumn is the column number for the specific column. If the
|
|
** expression is used as a result in an aggregate SELECT, then the
|
|
** value is also stored in the Expr.iAgg column in the aggregate so that
|
|
** it can be accessed after all aggregates are computed.
|
|
**
|
|
** If the expression is an unbound variable marker (a question mark
|
|
** character '?' in the original SQL) then the Expr.iTable holds the index
|
|
** number for that variable.
|
|
**
|
|
** If the expression is a subquery then Expr.iColumn holds an integer
|
|
** register number containing the result of the subquery. If the
|
|
** subquery gives a constant result, then iTable is -1. If the subquery
|
|
** gives a different answer at different times during statement processing
|
|
** then iTable is the address of a subroutine that computes the subquery.
|
|
**
|
|
** If the Expr is of type OP_Column, and the table it is selecting from
|
|
** is a disk table or the "old.*" pseudo-table, then pTab points to the
|
|
** corresponding table definition.
|
|
**
|
|
** ALLOCATION NOTES:
|
|
**
|
|
** Expr objects can use a lot of memory space in database schema. To
|
|
** help reduce memory requirements, sometimes an Expr object will be
|
|
** truncated. And to reduce the number of memory allocations, sometimes
|
|
** two or more Expr objects will be stored in a single memory allocation,
|
|
** together with Expr.zToken strings.
|
|
**
|
|
** If the EP_Reduced and EP_TokenOnly flags are set when
|
|
** an Expr object is truncated. When EP_Reduced is set, then all
|
|
** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees
|
|
** are contained within the same memory allocation. Note, however, that
|
|
** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately
|
|
** allocated, regardless of whether or not EP_Reduced is set.
|
|
*/
|
|
struct Expr {
|
|
u8 op; /* Operation performed by this node */
|
|
char affinity; /* The affinity of the column or 0 if not a column */
|
|
u32 flags; /* Various flags. EP_* See below */
|
|
union {
|
|
char *zToken; /* Token value. Zero terminated and dequoted */
|
|
int iValue; /* Non-negative integer value if EP_IntValue */
|
|
} u;
|
|
|
|
/* If the EP_TokenOnly flag is set in the Expr.flags mask, then no
|
|
** space is allocated for the fields below this point. An attempt to
|
|
** access them will result in a segfault or malfunction.
|
|
*********************************************************************/
|
|
|
|
Expr *pLeft; /* Left subnode */
|
|
Expr *pRight; /* Right subnode */
|
|
union {
|
|
ExprList *pList; /* op = IN, EXISTS, SELECT, CASE, FUNCTION, BETWEEN */
|
|
Select *pSelect; /* EP_xIsSelect and op = IN, EXISTS, SELECT */
|
|
} x;
|
|
|
|
/* If the EP_Reduced flag is set in the Expr.flags mask, then no
|
|
** space is allocated for the fields below this point. An attempt to
|
|
** access them will result in a segfault or malfunction.
|
|
*********************************************************************/
|
|
|
|
#if SQLITE_MAX_EXPR_DEPTH>0
|
|
int nHeight; /* Height of the tree headed by this node */
|
|
#endif
|
|
int iTable; /* TK_COLUMN: cursor number of table holding column
|
|
** TK_REGISTER: register number
|
|
** TK_TRIGGER: 1 -> new, 0 -> old
|
|
** EP_Unlikely: 134217728 times likelihood */
|
|
ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid.
|
|
** TK_VARIABLE: variable number (always >= 1). */
|
|
i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
|
|
i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */
|
|
u8 op2; /* TK_REGISTER: original value of Expr.op
|
|
** TK_COLUMN: the value of p5 for OP_Column
|
|
** TK_AGG_FUNCTION: nesting depth */
|
|
AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
|
|
Table *pTab; /* Table for TK_COLUMN expressions. */
|
|
};
|
|
|
|
/*
|
|
** The following are the meanings of bits in the Expr.flags field.
|
|
*/
|
|
#define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */
|
|
#define EP_Agg 0x000002 /* Contains one or more aggregate functions */
|
|
#define EP_Resolved 0x000004 /* IDs have been resolved to COLUMNs */
|
|
#define EP_Error 0x000008 /* Expression contains one or more errors */
|
|
#define EP_Distinct 0x000010 /* Aggregate function with DISTINCT keyword */
|
|
#define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
|
|
#define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
|
|
#define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
|
|
#define EP_Collate 0x000100 /* Tree contains a TK_COLLATE operator */
|
|
#define EP_Generic 0x000200 /* Ignore COLLATE or affinity on this tree */
|
|
#define EP_IntValue 0x000400 /* Integer value contained in u.iValue */
|
|
#define EP_xIsSelect 0x000800 /* x.pSelect is valid (otherwise x.pList is) */
|
|
#define EP_Skip 0x001000 /* COLLATE, AS, or UNLIKELY */
|
|
#define EP_Reduced 0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
|
|
#define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
|
|
#define EP_Static 0x008000 /* Held in memory not obtained from malloc() */
|
|
#define EP_MemToken 0x010000 /* Need to sqlite3DbFree() Expr.zToken */
|
|
#define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
|
|
#define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */
|
|
#define EP_ConstFunc 0x080000 /* Node is a SQLITE_FUNC_CONSTANT function */
|
|
#define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
|
|
#define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */
|
|
|
|
/*
|
|
** Combinations of two or more EP_* flags
|
|
*/
|
|
#define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */
|
|
|
|
/*
|
|
** These macros can be used to test, set, or clear bits in the
|
|
** Expr.flags field.
|
|
*/
|
|
#define ExprHasProperty(E,P) (((E)->flags&(P))!=0)
|
|
#define ExprHasAllProperty(E,P) (((E)->flags&(P))==(P))
|
|
#define ExprSetProperty(E,P) (E)->flags|=(P)
|
|
#define ExprClearProperty(E,P) (E)->flags&=~(P)
|
|
|
|
/* The ExprSetVVAProperty() macro is used for Verification, Validation,
|
|
** and Accreditation only. It works like ExprSetProperty() during VVA
|
|
** processes but is a no-op for delivery.
|
|
*/
|
|
#ifdef SQLITE_DEBUG
|
|
# define ExprSetVVAProperty(E,P) (E)->flags|=(P)
|
|
#else
|
|
# define ExprSetVVAProperty(E,P)
|
|
#endif
|
|
|
|
/*
|
|
** Macros to determine the number of bytes required by a normal Expr
|
|
** struct, an Expr struct with the EP_Reduced flag set in Expr.flags
|
|
** and an Expr struct with the EP_TokenOnly flag set.
|
|
*/
|
|
#define EXPR_FULLSIZE sizeof(Expr) /* Full size */
|
|
#define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */
|
|
#define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */
|
|
|
|
/*
|
|
** Flags passed to the sqlite3ExprDup() function. See the header comment
|
|
** above sqlite3ExprDup() for details.
|
|
*/
|
|
#define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */
|
|
|
|
/*
|
|
** A list of expressions. Each expression may optionally have a
|
|
** name. An expr/name combination can be used in several ways, such
|
|
** as the list of "expr AS ID" fields following a "SELECT" or in the
|
|
** list of "ID = expr" items in an UPDATE. A list of expressions can
|
|
** also be used as the argument to a function, in which case the a.zName
|
|
** field is not used.
|
|
**
|
|
** By default the Expr.zSpan field holds a human-readable description of
|
|
** the expression that is used in the generation of error messages and
|
|
** column labels. In this case, Expr.zSpan is typically the text of a
|
|
** column expression as it exists in a SELECT statement. However, if
|
|
** the bSpanIsTab flag is set, then zSpan is overloaded to mean the name
|
|
** of the result column in the form: DATABASE.TABLE.COLUMN. This later
|
|
** form is used for name resolution with nested FROM clauses.
|
|
*/
|
|
struct ExprList {
|
|
int nExpr; /* Number of expressions on the list */
|
|
struct ExprList_item { /* For each expression in the list */
|
|
Expr *pExpr; /* The list of expressions */
|
|
char *zName; /* Token associated with this expression */
|
|
char *zSpan; /* Original text of the expression */
|
|
u8 sortOrder; /* 1 for DESC or 0 for ASC */
|
|
unsigned done :1; /* A flag to indicate when processing is finished */
|
|
unsigned bSpanIsTab :1; /* zSpan holds DB.TABLE.COLUMN */
|
|
unsigned reusable :1; /* Constant expression is reusable */
|
|
union {
|
|
struct {
|
|
u16 iOrderByCol; /* For ORDER BY, column number in result set */
|
|
u16 iAlias; /* Index into Parse.aAlias[] for zName */
|
|
} x;
|
|
int iConstExprReg; /* Register in which Expr value is cached */
|
|
} u;
|
|
} *a; /* Alloc a power of two greater or equal to nExpr */
|
|
};
|
|
|
|
/*
|
|
** An instance of this structure is used by the parser to record both
|
|
** the parse tree for an expression and the span of input text for an
|
|
** expression.
|
|
*/
|
|
struct ExprSpan {
|
|
Expr *pExpr; /* The expression parse tree */
|
|
const char *zStart; /* First character of input text */
|
|
const char *zEnd; /* One character past the end of input text */
|
|
};
|
|
|
|
/*
|
|
** An instance of this structure can hold a simple list of identifiers,
|
|
** such as the list "a,b,c" in the following statements:
|
|
**
|
|
** INSERT INTO t(a,b,c) VALUES ...;
|
|
** CREATE INDEX idx ON t(a,b,c);
|
|
** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...;
|
|
**
|
|
** The IdList.a.idx field is used when the IdList represents the list of
|
|
** column names after a table name in an INSERT statement. In the statement
|
|
**
|
|
** INSERT INTO t(a,b,c) ...
|
|
**
|
|
** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
|
|
*/
|
|
struct IdList {
|
|
struct IdList_item {
|
|
char *zName; /* Name of the identifier */
|
|
int idx; /* Index in some Table.aCol[] of a column named zName */
|
|
} *a;
|
|
int nId; /* Number of identifiers on the list */
|
|
};
|
|
|
|
/*
|
|
** The bitmask datatype defined below is used for various optimizations.
|
|
**
|
|
** Changing this from a 64-bit to a 32-bit type limits the number of
|
|
** tables in a join to 32 instead of 64. But it also reduces the size
|
|
** of the library by 738 bytes on ix86.
|
|
*/
|
|
typedef u64 Bitmask;
|
|
|
|
/*
|
|
** The number of bits in a Bitmask. "BMS" means "BitMask Size".
|
|
*/
|
|
#define BMS ((int)(sizeof(Bitmask)*8))
|
|
|
|
/*
|
|
** A bit in a Bitmask
|
|
*/
|
|
#define MASKBIT(n) (((Bitmask)1)<<(n))
|
|
#define MASKBIT32(n) (((unsigned int)1)<<(n))
|
|
|
|
/*
|
|
** The following structure describes the FROM clause of a SELECT statement.
|
|
** Each table or subquery in the FROM clause is a separate element of
|
|
** the SrcList.a[] array.
|
|
**
|
|
** With the addition of multiple database support, the following structure
|
|
** can also be used to describe a particular table such as the table that
|
|
** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL,
|
|
** such a table must be a simple name: ID. But in SQLite, the table can
|
|
** now be identified by a database name, a dot, then the table name: ID.ID.
|
|
**
|
|
** The jointype starts out showing the join type between the current table
|
|
** and the next table on the list. The parser builds the list this way.
|
|
** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
|
|
** jointype expresses the join between the table and the previous table.
|
|
**
|
|
** In the colUsed field, the high-order bit (bit 63) is set if the table
|
|
** contains more than 63 columns and the 64-th or later column is used.
|
|
*/
|
|
struct SrcList {
|
|
int nSrc; /* Number of tables or subqueries in the FROM clause */
|
|
u32 nAlloc; /* Number of entries allocated in a[] below */
|
|
struct SrcList_item {
|
|
Schema *pSchema; /* Schema to which this item is fixed */
|
|
char *zDatabase; /* Name of database holding this table */
|
|
char *zName; /* Name of the table */
|
|
char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
|
|
Table *pTab; /* An SQL table corresponding to zName */
|
|
Select *pSelect; /* A SELECT statement used in place of a table name */
|
|
int addrFillSub; /* Address of subroutine to manifest a subquery */
|
|
int regReturn; /* Register holding return address of addrFillSub */
|
|
int regResult; /* Registers holding results of a co-routine */
|
|
u8 jointype; /* Type of join between this able and the previous */
|
|
unsigned notIndexed :1; /* True if there is a NOT INDEXED clause */
|
|
unsigned isCorrelated :1; /* True if sub-query is correlated */
|
|
unsigned viaCoroutine :1; /* Implemented as a co-routine */
|
|
unsigned isRecursive :1; /* True for recursive reference in WITH */
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */
|
|
#endif
|
|
int iCursor; /* The VDBE cursor number used to access this table */
|
|
Expr *pOn; /* The ON clause of a join */
|
|
IdList *pUsing; /* The USING clause of a join */
|
|
Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */
|
|
char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */
|
|
Index *pIndex; /* Index structure corresponding to zIndex, if any */
|
|
} a[1]; /* One entry for each identifier on the list */
|
|
};
|
|
|
|
/*
|
|
** Permitted values of the SrcList.a.jointype field
|
|
*/
|
|
#define JT_INNER 0x0001 /* Any kind of inner or cross join */
|
|
#define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */
|
|
#define JT_NATURAL 0x0004 /* True for a "natural" join */
|
|
#define JT_LEFT 0x0008 /* Left outer join */
|
|
#define JT_RIGHT 0x0010 /* Right outer join */
|
|
#define JT_OUTER 0x0020 /* The "OUTER" keyword is present */
|
|
#define JT_ERROR 0x0040 /* unknown or unsupported join type */
|
|
|
|
|
|
/*
|
|
** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
|
|
** and the WhereInfo.wctrlFlags member.
|
|
*/
|
|
#define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */
|
|
#define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */
|
|
#define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */
|
|
#define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */
|
|
#define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */
|
|
#define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */
|
|
#define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */
|
|
#define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */
|
|
#define WHERE_NO_AUTOINDEX 0x0080 /* Disallow automatic indexes */
|
|
#define WHERE_GROUPBY 0x0100 /* pOrderBy is really a GROUP BY */
|
|
#define WHERE_DISTINCTBY 0x0200 /* pOrderby is really a DISTINCT clause */
|
|
#define WHERE_WANT_DISTINCT 0x0400 /* All output needs to be distinct */
|
|
#define WHERE_SORTBYGROUP 0x0800 /* Support sqlite3WhereIsSorted() */
|
|
#define WHERE_REOPEN_IDX 0x1000 /* Try to use OP_ReopenIdx */
|
|
|
|
/* Allowed return values from sqlite3WhereIsDistinct()
|
|
*/
|
|
#define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */
|
|
#define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */
|
|
#define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */
|
|
#define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */
|
|
|
|
/*
|
|
** A NameContext defines a context in which to resolve table and column
|
|
** names. The context consists of a list of tables (the pSrcList) field and
|
|
** a list of named expression (pEList). The named expression list may
|
|
** be NULL. The pSrc corresponds to the FROM clause of a SELECT or
|
|
** to the table being operated on by INSERT, UPDATE, or DELETE. The
|
|
** pEList corresponds to the result set of a SELECT and is NULL for
|
|
** other statements.
|
|
**
|
|
** NameContexts can be nested. When resolving names, the inner-most
|
|
** context is searched first. If no match is found, the next outer
|
|
** context is checked. If there is still no match, the next context
|
|
** is checked. This process continues until either a match is found
|
|
** or all contexts are check. When a match is found, the nRef member of
|
|
** the context containing the match is incremented.
|
|
**
|
|
** Each subquery gets a new NameContext. The pNext field points to the
|
|
** NameContext in the parent query. Thus the process of scanning the
|
|
** NameContext list corresponds to searching through successively outer
|
|
** subqueries looking for a match.
|
|
*/
|
|
struct NameContext {
|
|
Parse *pParse; /* The parser */
|
|
SrcList *pSrcList; /* One or more tables used to resolve names */
|
|
ExprList *pEList; /* Optional list of result-set columns */
|
|
AggInfo *pAggInfo; /* Information about aggregates at this level */
|
|
NameContext *pNext; /* Next outer name context. NULL for outermost */
|
|
int nRef; /* Number of names resolved by this context */
|
|
int nErr; /* Number of errors encountered while resolving names */
|
|
u16 ncFlags; /* Zero or more NC_* flags defined below */
|
|
};
|
|
|
|
/*
|
|
** Allowed values for the NameContext, ncFlags field.
|
|
**
|
|
** Note: NC_MinMaxAgg must have the same value as SF_MinMaxAgg and
|
|
** SQLITE_FUNC_MINMAX.
|
|
**
|
|
*/
|
|
#define NC_AllowAgg 0x0001 /* Aggregate functions are allowed here */
|
|
#define NC_HasAgg 0x0002 /* One or more aggregate functions seen */
|
|
#define NC_IsCheck 0x0004 /* True if resolving names in a CHECK constraint */
|
|
#define NC_InAggFunc 0x0008 /* True if analyzing arguments to an agg func */
|
|
#define NC_PartIdx 0x0010 /* True if resolving a partial index WHERE */
|
|
#define NC_MinMaxAgg 0x1000 /* min/max aggregates seen. See note above */
|
|
|
|
/*
|
|
** An instance of the following structure contains all information
|
|
** needed to generate code for a single SELECT statement.
|
|
**
|
|
** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0.
|
|
** If there is a LIMIT clause, the parser sets nLimit to the value of the
|
|
** limit and nOffset to the value of the offset (or 0 if there is not
|
|
** offset). But later on, nLimit and nOffset become the memory locations
|
|
** in the VDBE that record the limit and offset counters.
|
|
**
|
|
** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes.
|
|
** These addresses must be stored so that we can go back and fill in
|
|
** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor
|
|
** the number of columns in P2 can be computed at the same time
|
|
** as the OP_OpenEphm instruction is coded because not
|
|
** enough information about the compound query is known at that point.
|
|
** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences
|
|
** for the result set. The KeyInfo for addrOpenEphm[2] contains collating
|
|
** sequences for the ORDER BY clause.
|
|
*/
|
|
struct Select {
|
|
ExprList *pEList; /* The fields of the result */
|
|
u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
|
|
u16 selFlags; /* Various SF_* values */
|
|
int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */
|
|
#if SELECTTRACE_ENABLED
|
|
char zSelName[12]; /* Symbolic name of this SELECT use for debugging */
|
|
#endif
|
|
int addrOpenEphm[2]; /* OP_OpenEphem opcodes related to this select */
|
|
u64 nSelectRow; /* Estimated number of result rows */
|
|
SrcList *pSrc; /* The FROM clause */
|
|
Expr *pWhere; /* The WHERE clause */
|
|
ExprList *pGroupBy; /* The GROUP BY clause */
|
|
Expr *pHaving; /* The HAVING clause */
|
|
ExprList *pOrderBy; /* The ORDER BY clause */
|
|
Select *pPrior; /* Prior select in a compound select statement */
|
|
Select *pNext; /* Next select to the left in a compound */
|
|
Expr *pLimit; /* LIMIT expression. NULL means not used. */
|
|
Expr *pOffset; /* OFFSET expression. NULL means not used. */
|
|
With *pWith; /* WITH clause attached to this select. Or NULL. */
|
|
};
|
|
|
|
/*
|
|
** Allowed values for Select.selFlags. The "SF" prefix stands for
|
|
** "Select Flag".
|
|
*/
|
|
#define SF_Distinct 0x0001 /* Output should be DISTINCT */
|
|
#define SF_Resolved 0x0002 /* Identifiers have been resolved */
|
|
#define SF_Aggregate 0x0004 /* Contains aggregate functions */
|
|
#define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */
|
|
#define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */
|
|
#define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */
|
|
#define SF_Compound 0x0040 /* Part of a compound query */
|
|
#define SF_Values 0x0080 /* Synthesized from VALUES clause */
|
|
#define SF_AllValues 0x0100 /* All terms of compound are VALUES */
|
|
#define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */
|
|
#define SF_MaybeConvert 0x0400 /* Need convertCompoundSelectToSubquery() */
|
|
#define SF_Recursive 0x0800 /* The recursive part of a recursive CTE */
|
|
#define SF_MinMaxAgg 0x1000 /* Aggregate containing min() or max() */
|
|
#define SF_Converted 0x2000 /* By convertCompoundSelectToSubquery() */
|
|
|
|
|
|
/*
|
|
** The results of a SELECT can be distributed in several ways, as defined
|
|
** by one of the following macros. The "SRT" prefix means "SELECT Result
|
|
** Type".
|
|
**
|
|
** SRT_Union Store results as a key in a temporary index
|
|
** identified by pDest->iSDParm.
|
|
**
|
|
** SRT_Except Remove results from the temporary index pDest->iSDParm.
|
|
**
|
|
** SRT_Exists Store a 1 in memory cell pDest->iSDParm if the result
|
|
** set is not empty.
|
|
**
|
|
** SRT_Discard Throw the results away. This is used by SELECT
|
|
** statements within triggers whose only purpose is
|
|
** the side-effects of functions.
|
|
**
|
|
** All of the above are free to ignore their ORDER BY clause. Those that
|
|
** follow must honor the ORDER BY clause.
|
|
**
|
|
** SRT_Output Generate a row of output (using the OP_ResultRow
|
|
** opcode) for each row in the result set.
|
|
**
|
|
** SRT_Mem Only valid if the result is a single column.
|
|
** Store the first column of the first result row
|
|
** in register pDest->iSDParm then abandon the rest
|
|
** of the query. This destination implies "LIMIT 1".
|
|
**
|
|
** SRT_Set The result must be a single column. Store each
|
|
** row of result as the key in table pDest->iSDParm.
|
|
** Apply the affinity pDest->affSdst before storing
|
|
** results. Used to implement "IN (SELECT ...)".
|
|
**
|
|
** SRT_EphemTab Create an temporary table pDest->iSDParm and store
|
|
** the result there. The cursor is left open after
|
|
** returning. This is like SRT_Table except that
|
|
** this destination uses OP_OpenEphemeral to create
|
|
** the table first.
|
|
**
|
|
** SRT_Coroutine Generate a co-routine that returns a new row of
|
|
** results each time it is invoked. The entry point
|
|
** of the co-routine is stored in register pDest->iSDParm
|
|
** and the result row is stored in pDest->nDest registers
|
|
** starting with pDest->iSdst.
|
|
**
|
|
** SRT_Table Store results in temporary table pDest->iSDParm.
|
|
** SRT_Fifo This is like SRT_EphemTab except that the table
|
|
** is assumed to already be open. SRT_Fifo has
|
|
** the additional property of being able to ignore
|
|
** the ORDER BY clause.
|
|
**
|
|
** SRT_DistFifo Store results in a temporary table pDest->iSDParm.
|
|
** But also use temporary table pDest->iSDParm+1 as
|
|
** a record of all prior results and ignore any duplicate
|
|
** rows. Name means: "Distinct Fifo".
|
|
**
|
|
** SRT_Queue Store results in priority queue pDest->iSDParm (really
|
|
** an index). Append a sequence number so that all entries
|
|
** are distinct.
|
|
**
|
|
** SRT_DistQueue Store results in priority queue pDest->iSDParm only if
|
|
** the same record has never been stored before. The
|
|
** index at pDest->iSDParm+1 hold all prior stores.
|
|
*/
|
|
#define SRT_Union 1 /* Store result as keys in an index */
|
|
#define SRT_Except 2 /* Remove result from a UNION index */
|
|
#define SRT_Exists 3 /* Store 1 if the result is not empty */
|
|
#define SRT_Discard 4 /* Do not save the results anywhere */
|
|
#define SRT_Fifo 5 /* Store result as data with an automatic rowid */
|
|
#define SRT_DistFifo 6 /* Like SRT_Fifo, but unique results only */
|
|
#define SRT_Queue 7 /* Store result in an queue */
|
|
#define SRT_DistQueue 8 /* Like SRT_Queue, but unique results only */
|
|
|
|
/* The ORDER BY clause is ignored for all of the above */
|
|
#define IgnorableOrderby(X) ((X->eDest)<=SRT_DistQueue)
|
|
|
|
#define SRT_Output 9 /* Output each row of result */
|
|
#define SRT_Mem 10 /* Store result in a memory cell */
|
|
#define SRT_Set 11 /* Store results as keys in an index */
|
|
#define SRT_EphemTab 12 /* Create transient tab and store like SRT_Table */
|
|
#define SRT_Coroutine 13 /* Generate a single row of result */
|
|
#define SRT_Table 14 /* Store result as data with an automatic rowid */
|
|
|
|
/*
|
|
** An instance of this object describes where to put of the results of
|
|
** a SELECT statement.
|
|
*/
|
|
struct SelectDest {
|
|
u8 eDest; /* How to dispose of the results. On of SRT_* above. */
|
|
char affSdst; /* Affinity used when eDest==SRT_Set */
|
|
int iSDParm; /* A parameter used by the eDest disposal method */
|
|
int iSdst; /* Base register where results are written */
|
|
int nSdst; /* Number of registers allocated */
|
|
ExprList *pOrderBy; /* Key columns for SRT_Queue and SRT_DistQueue */
|
|
};
|
|
|
|
/*
|
|
** During code generation of statements that do inserts into AUTOINCREMENT
|
|
** tables, the following information is attached to the Table.u.autoInc.p
|
|
** pointer of each autoincrement table to record some side information that
|
|
** the code generator needs. We have to keep per-table autoincrement
|
|
** information in case inserts are down within triggers. Triggers do not
|
|
** normally coordinate their activities, but we do need to coordinate the
|
|
** loading and saving of autoincrement information.
|
|
*/
|
|
struct AutoincInfo {
|
|
AutoincInfo *pNext; /* Next info block in a list of them all */
|
|
Table *pTab; /* Table this info block refers to */
|
|
int iDb; /* Index in sqlite3.aDb[] of database holding pTab */
|
|
int regCtr; /* Memory register holding the rowid counter */
|
|
};
|
|
|
|
/*
|
|
** Size of the column cache
|
|
*/
|
|
#ifndef SQLITE_N_COLCACHE
|
|
# define SQLITE_N_COLCACHE 10
|
|
#endif
|
|
|
|
/*
|
|
** At least one instance of the following structure is created for each
|
|
** trigger that may be fired while parsing an INSERT, UPDATE or DELETE
|
|
** statement. All such objects are stored in the linked list headed at
|
|
** Parse.pTriggerPrg and deleted once statement compilation has been
|
|
** completed.
|
|
**
|
|
** A Vdbe sub-program that implements the body and WHEN clause of trigger
|
|
** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of
|
|
** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable.
|
|
** The Parse.pTriggerPrg list never contains two entries with the same
|
|
** values for both pTrigger and orconf.
|
|
**
|
|
** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns
|
|
** accessed (or set to 0 for triggers fired as a result of INSERT
|
|
** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to
|
|
** a mask of new.* columns used by the program.
|
|
*/
|
|
struct TriggerPrg {
|
|
Trigger *pTrigger; /* Trigger this program was coded from */
|
|
TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */
|
|
SubProgram *pProgram; /* Program implementing pTrigger/orconf */
|
|
int orconf; /* Default ON CONFLICT policy */
|
|
u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */
|
|
};
|
|
|
|
/*
|
|
** The yDbMask datatype for the bitmask of all attached databases.
|
|
*/
|
|
#if SQLITE_MAX_ATTACHED>30
|
|
typedef unsigned char yDbMask[(SQLITE_MAX_ATTACHED+9)/8];
|
|
# define DbMaskTest(M,I) (((M)[(I)/8]&(1<<((I)&7)))!=0)
|
|
# define DbMaskZero(M) memset((M),0,sizeof(M))
|
|
# define DbMaskSet(M,I) (M)[(I)/8]|=(1<<((I)&7))
|
|
# define DbMaskAllZero(M) sqlite3DbMaskAllZero(M)
|
|
# define DbMaskNonZero(M) (sqlite3DbMaskAllZero(M)==0)
|
|
#else
|
|
typedef unsigned int yDbMask;
|
|
# define DbMaskTest(M,I) (((M)&(((yDbMask)1)<<(I)))!=0)
|
|
# define DbMaskZero(M) (M)=0
|
|
# define DbMaskSet(M,I) (M)|=(((yDbMask)1)<<(I))
|
|
# define DbMaskAllZero(M) (M)==0
|
|
# define DbMaskNonZero(M) (M)!=0
|
|
#endif
|
|
|
|
/*
|
|
** An SQL parser context. A copy of this structure is passed through
|
|
** the parser and down into all the parser action routine in order to
|
|
** carry around information that is global to the entire parse.
|
|
**
|
|
** The structure is divided into two parts. When the parser and code
|
|
** generate call themselves recursively, the first part of the structure
|
|
** is constant but the second part is reset at the beginning and end of
|
|
** each recursion.
|
|
**
|
|
** The nTableLock and aTableLock variables are only used if the shared-cache
|
|
** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are
|
|
** used to store the set of table-locks required by the statement being
|
|
** compiled. Function sqlite3TableLock() is used to add entries to the
|
|
** list.
|
|
*/
|
|
struct Parse {
|
|
sqlite3 *db; /* The main database structure */
|
|
char *zErrMsg; /* An error message */
|
|
Vdbe *pVdbe; /* An engine for executing database bytecode */
|
|
int rc; /* Return code from execution */
|
|
u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */
|
|
u8 checkSchema; /* Causes schema cookie check after an error */
|
|
u8 nested; /* Number of nested calls to the parser/code generator */
|
|
u8 nTempReg; /* Number of temporary registers in aTempReg[] */
|
|
u8 isMultiWrite; /* True if statement may modify/insert multiple rows */
|
|
u8 mayAbort; /* True if statement may throw an ABORT exception */
|
|
u8 hasCompound; /* Need to invoke convertCompoundSelectToSubquery() */
|
|
u8 okConstFactor; /* OK to factor out constants */
|
|
int aTempReg[8]; /* Holding area for temporary registers */
|
|
int nRangeReg; /* Size of the temporary register block */
|
|
int iRangeReg; /* First register in temporary register block */
|
|
int nErr; /* Number of errors seen */
|
|
int nTab; /* Number of previously allocated VDBE cursors */
|
|
int nMem; /* Number of memory cells used so far */
|
|
int nSet; /* Number of sets used so far */
|
|
int nOnce; /* Number of OP_Once instructions so far */
|
|
int nOpAlloc; /* Number of slots allocated for Vdbe.aOp[] */
|
|
int iFixedOp; /* Never back out opcodes iFixedOp-1 or earlier */
|
|
int ckBase; /* Base register of data during check constraints */
|
|
int iPartIdxTab; /* Table corresponding to a partial index */
|
|
int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
|
|
int iCacheCnt; /* Counter used to generate aColCache[].lru values */
|
|
int nLabel; /* Number of labels used */
|
|
int *aLabel; /* Space to hold the labels */
|
|
struct yColCache {
|
|
int iTable; /* Table cursor number */
|
|
i16 iColumn; /* Table column number */
|
|
u8 tempReg; /* iReg is a temp register that needs to be freed */
|
|
int iLevel; /* Nesting level */
|
|
int iReg; /* Reg with value of this column. 0 means none. */
|
|
int lru; /* Least recently used entry has the smallest value */
|
|
} aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */
|
|
ExprList *pConstExpr;/* Constant expressions */
|
|
Token constraintName;/* Name of the constraint currently being parsed */
|
|
yDbMask writeMask; /* Start a write transaction on these databases */
|
|
yDbMask cookieMask; /* Bitmask of schema verified databases */
|
|
int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */
|
|
int regRowid; /* Register holding rowid of CREATE TABLE entry */
|
|
int regRoot; /* Register holding root page number for new objects */
|
|
int nMaxArg; /* Max args passed to user function by sub-program */
|
|
#if SELECTTRACE_ENABLED
|
|
int nSelect; /* Number of SELECT statements seen */
|
|
int nSelectIndent; /* How far to indent SELECTTRACE() output */
|
|
#endif
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
int nTableLock; /* Number of locks in aTableLock */
|
|
TableLock *aTableLock; /* Required table locks for shared-cache mode */
|
|
#endif
|
|
AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */
|
|
|
|
/* Information used while coding trigger programs. */
|
|
Parse *pToplevel; /* Parse structure for main program (or NULL) */
|
|
Table *pTriggerTab; /* Table triggers are being coded for */
|
|
int addrCrTab; /* Address of OP_CreateTable opcode on CREATE TABLE */
|
|
int addrSkipPK; /* Address of instruction to skip PRIMARY KEY index */
|
|
u32 nQueryLoop; /* Est number of iterations of a query (10*log2(N)) */
|
|
u32 oldmask; /* Mask of old.* columns referenced */
|
|
u32 newmask; /* Mask of new.* columns referenced */
|
|
u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */
|
|
u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */
|
|
u8 disableTriggers; /* True to disable triggers */
|
|
|
|
/************************************************************************
|
|
** Above is constant between recursions. Below is reset before and after
|
|
** each recursion. The boundary between these two regions is determined
|
|
** using offsetof(Parse,nVar) so the nVar field must be the first field
|
|
** in the recursive region.
|
|
************************************************************************/
|
|
|
|
int nVar; /* Number of '?' variables seen in the SQL so far */
|
|
int nzVar; /* Number of available slots in azVar[] */
|
|
u8 iPkSortOrder; /* ASC or DESC for INTEGER PRIMARY KEY */
|
|
u8 bFreeWith; /* True if pWith should be freed with parser */
|
|
u8 explain; /* True if the EXPLAIN flag is found on the query */
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
u8 declareVtab; /* True if inside sqlite3_declare_vtab() */
|
|
int nVtabLock; /* Number of virtual tables to lock */
|
|
#endif
|
|
int nAlias; /* Number of aliased result set columns */
|
|
int nHeight; /* Expression tree height of current sub-select */
|
|
#ifndef SQLITE_OMIT_EXPLAIN
|
|
int iSelectId; /* ID of current select for EXPLAIN output */
|
|
int iNextSelectId; /* Next available select ID for EXPLAIN output */
|
|
#endif
|
|
char **azVar; /* Pointers to names of parameters */
|
|
Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */
|
|
const char *zTail; /* All SQL text past the last semicolon parsed */
|
|
Table *pNewTable; /* A table being constructed by CREATE TABLE */
|
|
Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */
|
|
const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
|
|
Token sNameToken; /* Token with unqualified schema object name */
|
|
Token sLastToken; /* The last token parsed */
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
Token sArg; /* Complete text of a module argument */
|
|
Table **apVtabLock; /* Pointer to virtual tables needing locking */
|
|
#endif
|
|
Table *pZombieTab; /* List of Table objects to delete after code gen */
|
|
TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */
|
|
With *pWith; /* Current WITH clause, or NULL */
|
|
};
|
|
|
|
/*
|
|
** Return true if currently inside an sqlite3_declare_vtab() call.
|
|
*/
|
|
#ifdef SQLITE_OMIT_VIRTUALTABLE
|
|
#define IN_DECLARE_VTAB 0
|
|
#else
|
|
#define IN_DECLARE_VTAB (pParse->declareVtab)
|
|
#endif
|
|
|
|
/*
|
|
** An instance of the following structure can be declared on a stack and used
|
|
** to save the Parse.zAuthContext value so that it can be restored later.
|
|
*/
|
|
struct AuthContext {
|
|
const char *zAuthContext; /* Put saved Parse.zAuthContext here */
|
|
Parse *pParse; /* The Parse structure */
|
|
};
|
|
|
|
/*
|
|
** Bitfield flags for P5 value in various opcodes.
|
|
*/
|
|
#define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */
|
|
#define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */
|
|
#define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */
|
|
#define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */
|
|
#define OPFLAG_APPEND 0x08 /* This is likely to be an append */
|
|
#define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */
|
|
#define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */
|
|
#define OPFLAG_TYPEOFARG 0x80 /* OP_Column only used for typeof() */
|
|
#define OPFLAG_BULKCSR 0x01 /* OP_Open** used to open bulk cursor */
|
|
#define OPFLAG_SEEKEQ 0x02 /* OP_Open** cursor uses EQ seek only */
|
|
#define OPFLAG_P2ISREG 0x04 /* P2 to OP_Open** is a register number */
|
|
#define OPFLAG_PERMUTE 0x01 /* OP_Compare: use the permutation */
|
|
|
|
/*
|
|
* Each trigger present in the database schema is stored as an instance of
|
|
* struct Trigger.
|
|
*
|
|
* Pointers to instances of struct Trigger are stored in two ways.
|
|
* 1. In the "trigHash" hash table (part of the sqlite3* that represents the
|
|
* database). This allows Trigger structures to be retrieved by name.
|
|
* 2. All triggers associated with a single table form a linked list, using the
|
|
* pNext member of struct Trigger. A pointer to the first element of the
|
|
* linked list is stored as the "pTrigger" member of the associated
|
|
* struct Table.
|
|
*
|
|
* The "step_list" member points to the first element of a linked list
|
|
* containing the SQL statements specified as the trigger program.
|
|
*/
|
|
struct Trigger {
|
|
char *zName; /* The name of the trigger */
|
|
char *table; /* The table or view to which the trigger applies */
|
|
u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */
|
|
u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */
|
|
Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */
|
|
IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger,
|
|
the <column-list> is stored here */
|
|
Schema *pSchema; /* Schema containing the trigger */
|
|
Schema *pTabSchema; /* Schema containing the table */
|
|
TriggerStep *step_list; /* Link list of trigger program steps */
|
|
Trigger *pNext; /* Next trigger associated with the table */
|
|
};
|
|
|
|
/*
|
|
** A trigger is either a BEFORE or an AFTER trigger. The following constants
|
|
** determine which.
|
|
**
|
|
** If there are multiple triggers, you might of some BEFORE and some AFTER.
|
|
** In that cases, the constants below can be ORed together.
|
|
*/
|
|
#define TRIGGER_BEFORE 1
|
|
#define TRIGGER_AFTER 2
|
|
|
|
/*
|
|
* An instance of struct TriggerStep is used to store a single SQL statement
|
|
* that is a part of a trigger-program.
|
|
*
|
|
* Instances of struct TriggerStep are stored in a singly linked list (linked
|
|
* using the "pNext" member) referenced by the "step_list" member of the
|
|
* associated struct Trigger instance. The first element of the linked list is
|
|
* the first step of the trigger-program.
|
|
*
|
|
* The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or
|
|
* "SELECT" statement. The meanings of the other members is determined by the
|
|
* value of "op" as follows:
|
|
*
|
|
* (op == TK_INSERT)
|
|
* orconf -> stores the ON CONFLICT algorithm
|
|
* pSelect -> If this is an INSERT INTO ... SELECT ... statement, then
|
|
* this stores a pointer to the SELECT statement. Otherwise NULL.
|
|
* target -> A token holding the quoted name of the table to insert into.
|
|
* pExprList -> If this is an INSERT INTO ... VALUES ... statement, then
|
|
* this stores values to be inserted. Otherwise NULL.
|
|
* pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ...
|
|
* statement, then this stores the column-names to be
|
|
* inserted into.
|
|
*
|
|
* (op == TK_DELETE)
|
|
* target -> A token holding the quoted name of the table to delete from.
|
|
* pWhere -> The WHERE clause of the DELETE statement if one is specified.
|
|
* Otherwise NULL.
|
|
*
|
|
* (op == TK_UPDATE)
|
|
* target -> A token holding the quoted name of the table to update rows of.
|
|
* pWhere -> The WHERE clause of the UPDATE statement if one is specified.
|
|
* Otherwise NULL.
|
|
* pExprList -> A list of the columns to update and the expressions to update
|
|
* them to. See sqlite3Update() documentation of "pChanges"
|
|
* argument.
|
|
*
|
|
*/
|
|
struct TriggerStep {
|
|
u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */
|
|
u8 orconf; /* OE_Rollback etc. */
|
|
Trigger *pTrig; /* The trigger that this step is a part of */
|
|
Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */
|
|
Token target; /* Target table for DELETE, UPDATE, INSERT */
|
|
Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */
|
|
ExprList *pExprList; /* SET clause for UPDATE. */
|
|
IdList *pIdList; /* Column names for INSERT */
|
|
TriggerStep *pNext; /* Next in the link-list */
|
|
TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */
|
|
};
|
|
|
|
/*
|
|
** The following structure contains information used by the sqliteFix...
|
|
** routines as they walk the parse tree to make database references
|
|
** explicit.
|
|
*/
|
|
typedef struct DbFixer DbFixer;
|
|
struct DbFixer {
|
|
Parse *pParse; /* The parsing context. Error messages written here */
|
|
Schema *pSchema; /* Fix items to this schema */
|
|
int bVarOnly; /* Check for variable references only */
|
|
const char *zDb; /* Make sure all objects are contained in this database */
|
|
const char *zType; /* Type of the container - used for error messages */
|
|
const Token *pName; /* Name of the container - used for error messages */
|
|
};
|
|
|
|
/*
|
|
** An objected used to accumulate the text of a string where we
|
|
** do not necessarily know how big the string will be in the end.
|
|
*/
|
|
struct StrAccum {
|
|
sqlite3 *db; /* Optional database for lookaside. Can be NULL */
|
|
char *zBase; /* A base allocation. Not from malloc. */
|
|
char *zText; /* The string collected so far */
|
|
int nChar; /* Length of the string so far */
|
|
int nAlloc; /* Amount of space allocated in zText */
|
|
int mxAlloc; /* Maximum allowed string length */
|
|
u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */
|
|
u8 accError; /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
|
|
};
|
|
#define STRACCUM_NOMEM 1
|
|
#define STRACCUM_TOOBIG 2
|
|
|
|
/*
|
|
** A pointer to this structure is used to communicate information
|
|
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
|
|
*/
|
|
typedef struct {
|
|
sqlite3 *db; /* The database being initialized */
|
|
char **pzErrMsg; /* Error message stored here */
|
|
int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */
|
|
int rc; /* Result code stored here */
|
|
} InitData;
|
|
|
|
/*
|
|
** Structure containing global configuration data for the SQLite library.
|
|
**
|
|
** This structure also contains some state information.
|
|
*/
|
|
struct Sqlite3Config {
|
|
int bMemstat; /* True to enable memory status */
|
|
int bCoreMutex; /* True to enable core mutexing */
|
|
int bFullMutex; /* True to enable full mutexing */
|
|
int bOpenUri; /* True to interpret filenames as URIs */
|
|
int bUseCis; /* Use covering indices for full-scans */
|
|
int mxStrlen; /* Maximum string length */
|
|
int neverCorrupt; /* Database is always well-formed */
|
|
int szLookaside; /* Default lookaside buffer size */
|
|
int nLookaside; /* Default lookaside buffer count */
|
|
sqlite3_mem_methods m; /* Low-level memory allocation interface */
|
|
sqlite3_mutex_methods mutex; /* Low-level mutex interface */
|
|
sqlite3_pcache_methods2 pcache2; /* Low-level page-cache interface */
|
|
void *pHeap; /* Heap storage space */
|
|
int nHeap; /* Size of pHeap[] */
|
|
int mnReq, mxReq; /* Min and max heap requests sizes */
|
|
sqlite3_int64 szMmap; /* mmap() space per open file */
|
|
sqlite3_int64 mxMmap; /* Maximum value for szMmap */
|
|
void *pScratch; /* Scratch memory */
|
|
int szScratch; /* Size of each scratch buffer */
|
|
int nScratch; /* Number of scratch buffers */
|
|
void *pPage; /* Page cache memory */
|
|
int szPage; /* Size of each page in pPage[] */
|
|
int nPage; /* Number of pages in pPage[] */
|
|
int mxParserStack; /* maximum depth of the parser stack */
|
|
int sharedCacheEnabled; /* true if shared-cache mode enabled */
|
|
u32 szPma; /* Maximum Sorter PMA size */
|
|
/* The above might be initialized to non-zero. The following need to always
|
|
** initially be zero, however. */
|
|
int isInit; /* True after initialization has finished */
|
|
int inProgress; /* True while initialization in progress */
|
|
int isMutexInit; /* True after mutexes are initialized */
|
|
int isMallocInit; /* True after malloc is initialized */
|
|
int isPCacheInit; /* True after malloc is initialized */
|
|
int nRefInitMutex; /* Number of users of pInitMutex */
|
|
sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */
|
|
void (*xLog)(void*,int,const char*); /* Function for logging */
|
|
void *pLogArg; /* First argument to xLog() */
|
|
#ifdef SQLITE_ENABLE_SQLLOG
|
|
void(*xSqllog)(void*,sqlite3*,const char*, int);
|
|
void *pSqllogArg;
|
|
#endif
|
|
#ifdef SQLITE_VDBE_COVERAGE
|
|
/* The following callback (if not NULL) is invoked on every VDBE branch
|
|
** operation. Set the callback using SQLITE_TESTCTRL_VDBE_COVERAGE.
|
|
*/
|
|
void (*xVdbeBranch)(void*,int iSrcLine,u8 eThis,u8 eMx); /* Callback */
|
|
void *pVdbeBranchArg; /* 1st argument */
|
|
#endif
|
|
#ifndef SQLITE_OMIT_BUILTIN_TEST
|
|
int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */
|
|
#endif
|
|
int bLocaltimeFault; /* True to fail localtime() calls */
|
|
};
|
|
|
|
/*
|
|
** This macro is used inside of assert() statements to indicate that
|
|
** the assert is only valid on a well-formed database. Instead of:
|
|
**
|
|
** assert( X );
|
|
**
|
|
** One writes:
|
|
**
|
|
** assert( X || CORRUPT_DB );
|
|
**
|
|
** CORRUPT_DB is true during normal operation. CORRUPT_DB does not indicate
|
|
** that the database is definitely corrupt, only that it might be corrupt.
|
|
** For most test cases, CORRUPT_DB is set to false using a special
|
|
** sqlite3_test_control(). This enables assert() statements to prove
|
|
** things that are always true for well-formed databases.
|
|
*/
|
|
#define CORRUPT_DB (sqlite3Config.neverCorrupt==0)
|
|
|
|
/*
|
|
** Context pointer passed down through the tree-walk.
|
|
*/
|
|
struct Walker {
|
|
int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */
|
|
int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */
|
|
void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
|
|
Parse *pParse; /* Parser context. */
|
|
int walkerDepth; /* Number of subqueries */
|
|
u8 eCode; /* A small processing code */
|
|
union { /* Extra data for callback */
|
|
NameContext *pNC; /* Naming context */
|
|
int n; /* A counter */
|
|
int iCur; /* A cursor number */
|
|
SrcList *pSrcList; /* FROM clause */
|
|
struct SrcCount *pSrcCount; /* Counting column references */
|
|
} u;
|
|
};
|
|
|
|
/* Forward declarations */
|
|
int sqlite3WalkExpr(Walker*, Expr*);
|
|
int sqlite3WalkExprList(Walker*, ExprList*);
|
|
int sqlite3WalkSelect(Walker*, Select*);
|
|
int sqlite3WalkSelectExpr(Walker*, Select*);
|
|
int sqlite3WalkSelectFrom(Walker*, Select*);
|
|
|
|
/*
|
|
** Return code from the parse-tree walking primitives and their
|
|
** callbacks.
|
|
*/
|
|
#define WRC_Continue 0 /* Continue down into children */
|
|
#define WRC_Prune 1 /* Omit children but continue walking siblings */
|
|
#define WRC_Abort 2 /* Abandon the tree walk */
|
|
|
|
/*
|
|
** An instance of this structure represents a set of one or more CTEs
|
|
** (common table expressions) created by a single WITH clause.
|
|
*/
|
|
struct With {
|
|
int nCte; /* Number of CTEs in the WITH clause */
|
|
With *pOuter; /* Containing WITH clause, or NULL */
|
|
struct Cte { /* For each CTE in the WITH clause.... */
|
|
char *zName; /* Name of this CTE */
|
|
ExprList *pCols; /* List of explicit column names, or NULL */
|
|
Select *pSelect; /* The definition of this CTE */
|
|
const char *zErr; /* Error message for circular references */
|
|
} a[1];
|
|
};
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** An instance of the TreeView object is used for printing the content of
|
|
** data structures on sqlite3DebugPrintf() using a tree-like view.
|
|
*/
|
|
struct TreeView {
|
|
int iLevel; /* Which level of the tree we are on */
|
|
u8 bLine[100]; /* Draw vertical in column i if bLine[i] is true */
|
|
};
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
/*
|
|
** Assuming zIn points to the first byte of a UTF-8 character,
|
|
** advance zIn to point to the first byte of the next UTF-8 character.
|
|
*/
|
|
#define SQLITE_SKIP_UTF8(zIn) { \
|
|
if( (*(zIn++))>=0xc0 ){ \
|
|
while( (*zIn & 0xc0)==0x80 ){ zIn++; } \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
** The SQLITE_*_BKPT macros are substitutes for the error codes with
|
|
** the same name but without the _BKPT suffix. These macros invoke
|
|
** routines that report the line-number on which the error originated
|
|
** using sqlite3_log(). The routines also provide a convenient place
|
|
** to set a debugger breakpoint.
|
|
*/
|
|
int sqlite3CorruptError(int);
|
|
int sqlite3MisuseError(int);
|
|
int sqlite3CantopenError(int);
|
|
#define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__)
|
|
#define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__)
|
|
#define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__)
|
|
|
|
|
|
/*
|
|
** FTS4 is really an extension for FTS3. It is enabled using the
|
|
** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also call
|
|
** the SQLITE_ENABLE_FTS4 macro to serve as an alias for SQLITE_ENABLE_FTS3.
|
|
*/
|
|
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
|
|
# define SQLITE_ENABLE_FTS3 1
|
|
#endif
|
|
|
|
/*
|
|
** The ctype.h header is needed for non-ASCII systems. It is also
|
|
** needed by FTS3 when FTS3 is included in the amalgamation.
|
|
*/
|
|
#if !defined(SQLITE_ASCII) || \
|
|
(defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION))
|
|
# include <ctype.h>
|
|
#endif
|
|
|
|
/*
|
|
** The following macros mimic the standard library functions toupper(),
|
|
** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The
|
|
** sqlite versions only work for ASCII characters, regardless of locale.
|
|
*/
|
|
#ifdef SQLITE_ASCII
|
|
# define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20))
|
|
# define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01)
|
|
# define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06)
|
|
# define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02)
|
|
# define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04)
|
|
# define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08)
|
|
# define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)])
|
|
#else
|
|
# define sqlite3Toupper(x) toupper((unsigned char)(x))
|
|
# define sqlite3Isspace(x) isspace((unsigned char)(x))
|
|
# define sqlite3Isalnum(x) isalnum((unsigned char)(x))
|
|
# define sqlite3Isalpha(x) isalpha((unsigned char)(x))
|
|
# define sqlite3Isdigit(x) isdigit((unsigned char)(x))
|
|
# define sqlite3Isxdigit(x) isxdigit((unsigned char)(x))
|
|
# define sqlite3Tolower(x) tolower((unsigned char)(x))
|
|
#endif
|
|
int sqlite3IsIdChar(u8);
|
|
|
|
/*
|
|
** Internal function prototypes
|
|
*/
|
|
#define sqlite3StrICmp sqlite3_stricmp
|
|
int sqlite3Strlen30(const char*);
|
|
#define sqlite3StrNICmp sqlite3_strnicmp
|
|
|
|
int sqlite3MallocInit(void);
|
|
void sqlite3MallocEnd(void);
|
|
void *sqlite3Malloc(u64);
|
|
void *sqlite3MallocZero(u64);
|
|
void *sqlite3DbMallocZero(sqlite3*, u64);
|
|
void *sqlite3DbMallocRaw(sqlite3*, u64);
|
|
char *sqlite3DbStrDup(sqlite3*,const char*);
|
|
char *sqlite3DbStrNDup(sqlite3*,const char*, u64);
|
|
void *sqlite3Realloc(void*, u64);
|
|
void *sqlite3DbReallocOrFree(sqlite3 *, void *, u64);
|
|
void *sqlite3DbRealloc(sqlite3 *, void *, u64);
|
|
void sqlite3DbFree(sqlite3*, void*);
|
|
int sqlite3MallocSize(void*);
|
|
int sqlite3DbMallocSize(sqlite3*, void*);
|
|
void *sqlite3ScratchMalloc(int);
|
|
void sqlite3ScratchFree(void*);
|
|
void *sqlite3PageMalloc(int);
|
|
void sqlite3PageFree(void*);
|
|
void sqlite3MemSetDefault(void);
|
|
void sqlite3BenignMallocHooks(void (*)(void), void (*)(void));
|
|
int sqlite3HeapNearlyFull(void);
|
|
|
|
/*
|
|
** On systems with ample stack space and that support alloca(), make
|
|
** use of alloca() to obtain space for large automatic objects. By default,
|
|
** obtain space from malloc().
|
|
**
|
|
** The alloca() routine never returns NULL. This will cause code paths
|
|
** that deal with sqlite3StackAlloc() failures to be unreachable.
|
|
*/
|
|
#ifdef SQLITE_USE_ALLOCA
|
|
# define sqlite3StackAllocRaw(D,N) alloca(N)
|
|
# define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N)
|
|
# define sqlite3StackFree(D,P)
|
|
#else
|
|
# define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N)
|
|
# define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N)
|
|
# define sqlite3StackFree(D,P) sqlite3DbFree(D,P)
|
|
#endif
|
|
|
|
#ifdef SQLITE_ENABLE_MEMSYS3
|
|
const sqlite3_mem_methods *sqlite3MemGetMemsys3(void);
|
|
#endif
|
|
#ifdef SQLITE_ENABLE_MEMSYS5
|
|
const sqlite3_mem_methods *sqlite3MemGetMemsys5(void);
|
|
#endif
|
|
|
|
|
|
#ifndef SQLITE_MUTEX_OMIT
|
|
sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
|
|
sqlite3_mutex_methods const *sqlite3NoopMutex(void);
|
|
sqlite3_mutex *sqlite3MutexAlloc(int);
|
|
int sqlite3MutexInit(void);
|
|
int sqlite3MutexEnd(void);
|
|
#endif
|
|
|
|
sqlite3_int64 sqlite3StatusValue(int);
|
|
void sqlite3StatusUp(int, int);
|
|
void sqlite3StatusDown(int, int);
|
|
void sqlite3StatusSet(int, int);
|
|
|
|
/* Access to mutexes used by sqlite3_status() */
|
|
sqlite3_mutex *sqlite3Pcache1Mutex(void);
|
|
sqlite3_mutex *sqlite3MallocMutex(void);
|
|
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
int sqlite3IsNaN(double);
|
|
#else
|
|
# define sqlite3IsNaN(X) 0
|
|
#endif
|
|
|
|
/*
|
|
** An instance of the following structure holds information about SQL
|
|
** functions arguments that are the parameters to the printf() function.
|
|
*/
|
|
struct PrintfArguments {
|
|
int nArg; /* Total number of arguments */
|
|
int nUsed; /* Number of arguments used so far */
|
|
sqlite3_value **apArg; /* The argument values */
|
|
};
|
|
|
|
#define SQLITE_PRINTF_INTERNAL 0x01
|
|
#define SQLITE_PRINTF_SQLFUNC 0x02
|
|
void sqlite3VXPrintf(StrAccum*, u32, const char*, va_list);
|
|
void sqlite3XPrintf(StrAccum*, u32, const char*, ...);
|
|
char *sqlite3MPrintf(sqlite3*,const char*, ...);
|
|
char *sqlite3VMPrintf(sqlite3*,const char*, va_list);
|
|
char *sqlite3MAppendf(sqlite3*,char*,const char*,...);
|
|
#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
|
|
void sqlite3DebugPrintf(const char*, ...);
|
|
#endif
|
|
#if defined(SQLITE_TEST)
|
|
void *sqlite3TestTextToPtr(const char*);
|
|
#endif
|
|
|
|
#if defined(SQLITE_DEBUG)
|
|
TreeView *sqlite3TreeViewPush(TreeView*,u8);
|
|
void sqlite3TreeViewPop(TreeView*);
|
|
void sqlite3TreeViewLine(TreeView*, const char*, ...);
|
|
void sqlite3TreeViewItem(TreeView*, const char*, u8);
|
|
void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
|
|
void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
|
|
void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
|
|
#endif
|
|
|
|
|
|
void sqlite3SetString(char **, sqlite3*, const char*, ...);
|
|
void sqlite3ErrorMsg(Parse*, const char*, ...);
|
|
int sqlite3Dequote(char*);
|
|
int sqlite3KeywordCode(const unsigned char*, int);
|
|
int sqlite3RunParser(Parse*, const char*, char **);
|
|
void sqlite3FinishCoding(Parse*);
|
|
int sqlite3GetTempReg(Parse*);
|
|
void sqlite3ReleaseTempReg(Parse*,int);
|
|
int sqlite3GetTempRange(Parse*,int);
|
|
void sqlite3ReleaseTempRange(Parse*,int,int);
|
|
void sqlite3ClearTempRegCache(Parse*);
|
|
Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int);
|
|
Expr *sqlite3Expr(sqlite3*,int,const char*);
|
|
void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*);
|
|
Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*);
|
|
Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*);
|
|
Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
|
|
void sqlite3ExprAssignVarNumber(Parse*, Expr*);
|
|
void sqlite3ExprDelete(sqlite3*, Expr*);
|
|
ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
|
|
void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
|
|
void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
|
|
void sqlite3ExprListDelete(sqlite3*, ExprList*);
|
|
u32 sqlite3ExprListFlags(const ExprList*);
|
|
int sqlite3Init(sqlite3*, char**);
|
|
int sqlite3InitCallback(void*, int, char**, char**);
|
|
void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
|
|
void sqlite3ResetAllSchemasOfConnection(sqlite3*);
|
|
void sqlite3ResetOneSchema(sqlite3*,int);
|
|
void sqlite3CollapseDatabaseArray(sqlite3*);
|
|
void sqlite3BeginParse(Parse*,int);
|
|
void sqlite3CommitInternalChanges(sqlite3*);
|
|
Table *sqlite3ResultSetOfSelect(Parse*,Select*);
|
|
void sqlite3OpenMasterTable(Parse *, int);
|
|
Index *sqlite3PrimaryKeyIndex(Table*);
|
|
i16 sqlite3ColumnOfIndex(Index*, i16);
|
|
void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
|
|
void sqlite3AddColumn(Parse*,Token*);
|
|
void sqlite3AddNotNull(Parse*, int);
|
|
void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
|
|
void sqlite3AddCheckConstraint(Parse*, Expr*);
|
|
void sqlite3AddColumnType(Parse*,Token*);
|
|
void sqlite3AddDefaultValue(Parse*,ExprSpan*);
|
|
void sqlite3AddCollateType(Parse*, Token*);
|
|
void sqlite3EndTable(Parse*,Token*,Token*,u8,Select*);
|
|
int sqlite3ParseUri(const char*,const char*,unsigned int*,
|
|
sqlite3_vfs**,char**,char **);
|
|
Btree *sqlite3DbNameToBtree(sqlite3*,const char*);
|
|
int sqlite3CodeOnce(Parse *);
|
|
|
|
#ifdef SQLITE_OMIT_BUILTIN_TEST
|
|
# define sqlite3FaultSim(X) SQLITE_OK
|
|
#else
|
|
int sqlite3FaultSim(int);
|
|
#endif
|
|
|
|
Bitvec *sqlite3BitvecCreate(u32);
|
|
int sqlite3BitvecTest(Bitvec*, u32);
|
|
int sqlite3BitvecSet(Bitvec*, u32);
|
|
void sqlite3BitvecClear(Bitvec*, u32, void*);
|
|
void sqlite3BitvecDestroy(Bitvec*);
|
|
u32 sqlite3BitvecSize(Bitvec*);
|
|
int sqlite3BitvecBuiltinTest(int,int*);
|
|
|
|
RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int);
|
|
void sqlite3RowSetClear(RowSet*);
|
|
void sqlite3RowSetInsert(RowSet*, i64);
|
|
int sqlite3RowSetTest(RowSet*, int iBatch, i64);
|
|
int sqlite3RowSetNext(RowSet*, i64*);
|
|
|
|
void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int);
|
|
|
|
#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
|
int sqlite3ViewGetColumnNames(Parse*,Table*);
|
|
#else
|
|
# define sqlite3ViewGetColumnNames(A,B) 0
|
|
#endif
|
|
|
|
#if SQLITE_MAX_ATTACHED>30
|
|
int sqlite3DbMaskAllZero(yDbMask);
|
|
#endif
|
|
void sqlite3DropTable(Parse*, SrcList*, int, int);
|
|
void sqlite3CodeDropTable(Parse*, Table*, int, int);
|
|
void sqlite3DeleteTable(sqlite3*, Table*);
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
void sqlite3AutoincrementBegin(Parse *pParse);
|
|
void sqlite3AutoincrementEnd(Parse *pParse);
|
|
#else
|
|
# define sqlite3AutoincrementBegin(X)
|
|
# define sqlite3AutoincrementEnd(X)
|
|
#endif
|
|
void sqlite3Insert(Parse*, SrcList*, Select*, IdList*, int);
|
|
void *sqlite3ArrayAllocate(sqlite3*,void*,int,int*,int*);
|
|
IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*);
|
|
int sqlite3IdListIndex(IdList*,const char*);
|
|
SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int);
|
|
SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*);
|
|
SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*,
|
|
Token*, Select*, Expr*, IdList*);
|
|
void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *);
|
|
int sqlite3IndexedByLookup(Parse *, struct SrcList_item *);
|
|
void sqlite3SrcListShiftJoinType(SrcList*);
|
|
void sqlite3SrcListAssignCursors(Parse*, SrcList*);
|
|
void sqlite3IdListDelete(sqlite3*, IdList*);
|
|
void sqlite3SrcListDelete(sqlite3*, SrcList*);
|
|
Index *sqlite3AllocateIndexObject(sqlite3*,i16,int,char**);
|
|
Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*,
|
|
Expr*, int, int);
|
|
void sqlite3DropIndex(Parse*, SrcList*, int);
|
|
int sqlite3Select(Parse*, Select*, SelectDest*);
|
|
Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*,
|
|
Expr*,ExprList*,u16,Expr*,Expr*);
|
|
void sqlite3SelectDelete(sqlite3*, Select*);
|
|
Table *sqlite3SrcListLookup(Parse*, SrcList*);
|
|
int sqlite3IsReadOnly(Parse*, Table*, int);
|
|
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
|
|
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
|
|
Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
|
|
#endif
|
|
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
|
|
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
|
|
WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
|
|
void sqlite3WhereEnd(WhereInfo*);
|
|
u64 sqlite3WhereOutputRowCount(WhereInfo*);
|
|
int sqlite3WhereIsDistinct(WhereInfo*);
|
|
int sqlite3WhereIsOrdered(WhereInfo*);
|
|
int sqlite3WhereIsSorted(WhereInfo*);
|
|
int sqlite3WhereContinueLabel(WhereInfo*);
|
|
int sqlite3WhereBreakLabel(WhereInfo*);
|
|
int sqlite3WhereOkOnePass(WhereInfo*, int*);
|
|
int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
|
|
void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
|
|
void sqlite3ExprCodeMove(Parse*, int, int, int);
|
|
void sqlite3ExprCacheStore(Parse*, int, int, int);
|
|
void sqlite3ExprCachePush(Parse*);
|
|
void sqlite3ExprCachePop(Parse*);
|
|
void sqlite3ExprCacheRemove(Parse*, int, int);
|
|
void sqlite3ExprCacheClear(Parse*);
|
|
void sqlite3ExprCacheAffinityChange(Parse*, int, int);
|
|
void sqlite3ExprCode(Parse*, Expr*, int);
|
|
void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
|
|
void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
|
|
int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
|
|
int sqlite3ExprCodeTarget(Parse*, Expr*, int);
|
|
void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
|
|
int sqlite3ExprCodeExprList(Parse*, ExprList*, int, u8);
|
|
#define SQLITE_ECEL_DUP 0x01 /* Deep, not shallow copies */
|
|
#define SQLITE_ECEL_FACTOR 0x02 /* Factor out constant terms */
|
|
void sqlite3ExprIfTrue(Parse*, Expr*, int, int);
|
|
void sqlite3ExprIfFalse(Parse*, Expr*, int, int);
|
|
Table *sqlite3FindTable(sqlite3*,const char*, const char*);
|
|
Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*);
|
|
Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *);
|
|
Index *sqlite3FindIndex(sqlite3*,const char*, const char*);
|
|
void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*);
|
|
void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*);
|
|
void sqlite3Vacuum(Parse*);
|
|
int sqlite3RunVacuum(char**, sqlite3*);
|
|
char *sqlite3NameFromToken(sqlite3*, Token*);
|
|
int sqlite3ExprCompare(Expr*, Expr*, int);
|
|
int sqlite3ExprListCompare(ExprList*, ExprList*, int);
|
|
int sqlite3ExprImpliesExpr(Expr*, Expr*, int);
|
|
void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
|
|
void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
|
|
int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
|
|
Vdbe *sqlite3GetVdbe(Parse*);
|
|
void sqlite3PrngSaveState(void);
|
|
void sqlite3PrngRestoreState(void);
|
|
void sqlite3RollbackAll(sqlite3*,int);
|
|
void sqlite3CodeVerifySchema(Parse*, int);
|
|
void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
|
|
void sqlite3BeginTransaction(Parse*, int);
|
|
void sqlite3CommitTransaction(Parse*);
|
|
void sqlite3RollbackTransaction(Parse*);
|
|
void sqlite3Savepoint(Parse*, int, Token*);
|
|
void sqlite3CloseSavepoints(sqlite3 *);
|
|
void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
|
|
int sqlite3ExprIsConstant(Expr*);
|
|
int sqlite3ExprIsConstantNotJoin(Expr*);
|
|
int sqlite3ExprIsConstantOrFunction(Expr*, u8);
|
|
int sqlite3ExprIsTableConstant(Expr*,int);
|
|
int sqlite3ExprIsInteger(Expr*, int*);
|
|
int sqlite3ExprCanBeNull(const Expr*);
|
|
int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
|
|
int sqlite3IsRowid(const char*);
|
|
void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
|
|
void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
|
|
int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
|
|
void sqlite3ResolvePartIdxLabel(Parse*,int);
|
|
void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
|
|
u8,u8,int,int*);
|
|
void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
|
|
int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*);
|
|
void sqlite3BeginWriteOperation(Parse*, int, int);
|
|
void sqlite3MultiWrite(Parse*);
|
|
void sqlite3MayAbort(Parse*);
|
|
void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
|
|
void sqlite3UniqueConstraint(Parse*, int, Index*);
|
|
void sqlite3RowidConstraint(Parse*, int, Table*);
|
|
Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
|
|
ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
|
|
SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
|
|
IdList *sqlite3IdListDup(sqlite3*,IdList*);
|
|
Select *sqlite3SelectDup(sqlite3*,Select*,int);
|
|
#if SELECTTRACE_ENABLED
|
|
void sqlite3SelectSetName(Select*,const char*);
|
|
#else
|
|
# define sqlite3SelectSetName(A,B)
|
|
#endif
|
|
void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*);
|
|
FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,u8);
|
|
void sqlite3RegisterBuiltinFunctions(sqlite3*);
|
|
void sqlite3RegisterDateTimeFunctions(void);
|
|
void sqlite3RegisterGlobalFunctions(void);
|
|
int sqlite3SafetyCheckOk(sqlite3*);
|
|
int sqlite3SafetyCheckSickOrOk(sqlite3*);
|
|
void sqlite3ChangeCookie(Parse*, int);
|
|
|
|
#if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER)
|
|
void sqlite3MaterializeView(Parse*, Table*, Expr*, int);
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*,
|
|
Expr*,int, int);
|
|
void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*);
|
|
void sqlite3DropTrigger(Parse*, SrcList*, int);
|
|
void sqlite3DropTriggerPtr(Parse*, Trigger*);
|
|
Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask);
|
|
Trigger *sqlite3TriggerList(Parse *, Table *);
|
|
void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *,
|
|
int, int, int);
|
|
void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int);
|
|
void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*);
|
|
void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*);
|
|
TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*);
|
|
TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*,
|
|
Select*,u8);
|
|
TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8);
|
|
TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*);
|
|
void sqlite3DeleteTrigger(sqlite3*, Trigger*);
|
|
void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*);
|
|
u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int);
|
|
# define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p))
|
|
#else
|
|
# define sqlite3TriggersExist(B,C,D,E,F) 0
|
|
# define sqlite3DeleteTrigger(A,B)
|
|
# define sqlite3DropTriggerPtr(A,B)
|
|
# define sqlite3UnlinkAndDeleteTrigger(A,B,C)
|
|
# define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I)
|
|
# define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F)
|
|
# define sqlite3TriggerList(X, Y) 0
|
|
# define sqlite3ParseToplevel(p) p
|
|
# define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0
|
|
#endif
|
|
|
|
int sqlite3JoinType(Parse*, Token*, Token*, Token*);
|
|
void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int);
|
|
void sqlite3DeferForeignKey(Parse*, int);
|
|
#ifndef SQLITE_OMIT_AUTHORIZATION
|
|
void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*);
|
|
int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*);
|
|
void sqlite3AuthContextPush(Parse*, AuthContext*, const char*);
|
|
void sqlite3AuthContextPop(AuthContext*);
|
|
int sqlite3AuthReadCol(Parse*, const char *, const char *, int);
|
|
#else
|
|
# define sqlite3AuthRead(a,b,c,d)
|
|
# define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK
|
|
# define sqlite3AuthContextPush(a,b,c)
|
|
# define sqlite3AuthContextPop(a) ((void)(a))
|
|
#endif
|
|
void sqlite3Attach(Parse*, Expr*, Expr*, Expr*);
|
|
void sqlite3Detach(Parse*, Expr*);
|
|
void sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*);
|
|
int sqlite3FixSrcList(DbFixer*, SrcList*);
|
|
int sqlite3FixSelect(DbFixer*, Select*);
|
|
int sqlite3FixExpr(DbFixer*, Expr*);
|
|
int sqlite3FixExprList(DbFixer*, ExprList*);
|
|
int sqlite3FixTriggerStep(DbFixer*, TriggerStep*);
|
|
int sqlite3AtoF(const char *z, double*, int, u8);
|
|
int sqlite3GetInt32(const char *, int*);
|
|
int sqlite3Atoi(const char*);
|
|
int sqlite3Utf16ByteLen(const void *pData, int nChar);
|
|
int sqlite3Utf8CharLen(const char *pData, int nByte);
|
|
u32 sqlite3Utf8Read(const u8**);
|
|
LogEst sqlite3LogEst(u64);
|
|
LogEst sqlite3LogEstAdd(LogEst,LogEst);
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
LogEst sqlite3LogEstFromDouble(double);
|
|
#endif
|
|
u64 sqlite3LogEstToInt(LogEst);
|
|
|
|
/*
|
|
** Routines to read and write variable-length integers. These used to
|
|
** be defined locally, but now we use the varint routines in the util.c
|
|
** file.
|
|
*/
|
|
int sqlite3PutVarint(unsigned char*, u64);
|
|
u8 sqlite3GetVarint(const unsigned char *, u64 *);
|
|
u8 sqlite3GetVarint32(const unsigned char *, u32 *);
|
|
int sqlite3VarintLen(u64 v);
|
|
|
|
/*
|
|
** The common case is for a varint to be a single byte. They following
|
|
** macros handle the common case without a procedure call, but then call
|
|
** the procedure for larger varints.
|
|
*/
|
|
#define getVarint32(A,B) \
|
|
(u8)((*(A)<(u8)0x80)?((B)=(u32)*(A)),1:sqlite3GetVarint32((A),(u32 *)&(B)))
|
|
#define putVarint32(A,B) \
|
|
(u8)(((u32)(B)<(u32)0x80)?(*(A)=(unsigned char)(B)),1:\
|
|
sqlite3PutVarint((A),(B)))
|
|
#define getVarint sqlite3GetVarint
|
|
#define putVarint sqlite3PutVarint
|
|
|
|
|
|
const char *sqlite3IndexAffinityStr(Vdbe *, Index *);
|
|
void sqlite3TableAffinity(Vdbe*, Table*, int);
|
|
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
|
|
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
|
|
char sqlite3ExprAffinity(Expr *pExpr);
|
|
int sqlite3Atoi64(const char*, i64*, int, u8);
|
|
int sqlite3DecOrHexToI64(const char*, i64*);
|
|
void sqlite3ErrorWithMsg(sqlite3*, int, const char*,...);
|
|
void sqlite3Error(sqlite3*,int);
|
|
void *sqlite3HexToBlob(sqlite3*, const char *z, int n);
|
|
u8 sqlite3HexToInt(int h);
|
|
int sqlite3TwoPartName(Parse *, Token *, Token *, Token **);
|
|
|
|
#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
|
|
const char *sqlite3ErrName(int);
|
|
#endif
|
|
|
|
const char *sqlite3ErrStr(int);
|
|
int sqlite3ReadSchema(Parse *pParse);
|
|
CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
|
|
CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
|
|
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
|
|
Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int);
|
|
Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
|
|
Expr *sqlite3ExprSkipCollate(Expr*);
|
|
int sqlite3CheckCollSeq(Parse *, CollSeq *);
|
|
int sqlite3CheckObjectName(Parse *, const char *);
|
|
void sqlite3VdbeSetChanges(sqlite3 *, int);
|
|
int sqlite3AddInt64(i64*,i64);
|
|
int sqlite3SubInt64(i64*,i64);
|
|
int sqlite3MulInt64(i64*,i64);
|
|
int sqlite3AbsInt32(int);
|
|
#ifdef SQLITE_ENABLE_8_3_NAMES
|
|
void sqlite3FileSuffix3(const char*, char*);
|
|
#else
|
|
# define sqlite3FileSuffix3(X,Y)
|
|
#endif
|
|
u8 sqlite3GetBoolean(const char *z,u8);
|
|
|
|
const void *sqlite3ValueText(sqlite3_value*, u8);
|
|
int sqlite3ValueBytes(sqlite3_value*, u8);
|
|
void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8,
|
|
void(*)(void*));
|
|
void sqlite3ValueSetNull(sqlite3_value*);
|
|
void sqlite3ValueFree(sqlite3_value*);
|
|
sqlite3_value *sqlite3ValueNew(sqlite3 *);
|
|
char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
|
|
int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
|
|
void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
|
|
#ifndef SQLITE_AMALGAMATION
|
|
extern const unsigned char sqlite3OpcodeProperty[];
|
|
extern const unsigned char sqlite3UpperToLower[];
|
|
extern const unsigned char sqlite3CtypeMap[];
|
|
extern const Token sqlite3IntTokens[];
|
|
extern SQLITE_WSD struct Sqlite3Config sqlite3Config;
|
|
extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
|
|
#ifndef SQLITE_OMIT_WSD
|
|
extern int sqlite3PendingByte;
|
|
#endif
|
|
#endif
|
|
void sqlite3RootPageMoved(sqlite3*, int, int, int);
|
|
void sqlite3Reindex(Parse*, Token*, Token*);
|
|
void sqlite3AlterFunctions(void);
|
|
void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
|
|
int sqlite3GetToken(const unsigned char *, int *);
|
|
void sqlite3NestedParse(Parse*, const char*, ...);
|
|
void sqlite3ExpirePreparedStatements(sqlite3*);
|
|
int sqlite3CodeSubselect(Parse *, Expr *, int, int);
|
|
void sqlite3SelectPrep(Parse*, Select*, NameContext*);
|
|
int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
|
|
int sqlite3ResolveExprNames(NameContext*, Expr*);
|
|
void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*);
|
|
void sqlite3ResolveSelfReference(Parse*,Table*,int,Expr*,ExprList*);
|
|
int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*);
|
|
void sqlite3ColumnDefault(Vdbe *, Table *, int, int);
|
|
void sqlite3AlterFinishAddColumn(Parse *, Token *);
|
|
void sqlite3AlterBeginAddColumn(Parse *, SrcList *);
|
|
CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*);
|
|
char sqlite3AffinityType(const char*, u8*);
|
|
void sqlite3Analyze(Parse*, Token*, Token*);
|
|
int sqlite3InvokeBusyHandler(BusyHandler*);
|
|
int sqlite3FindDb(sqlite3*, Token*);
|
|
int sqlite3FindDbName(sqlite3 *, const char *);
|
|
int sqlite3AnalysisLoad(sqlite3*,int iDB);
|
|
void sqlite3DeleteIndexSamples(sqlite3*,Index*);
|
|
void sqlite3DefaultRowEst(Index*);
|
|
void sqlite3RegisterLikeFunctions(sqlite3*, int);
|
|
int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*);
|
|
void sqlite3MinimumFileFormat(Parse*, int, int);
|
|
void sqlite3SchemaClear(void *);
|
|
Schema *sqlite3SchemaGet(sqlite3 *, Btree *);
|
|
int sqlite3SchemaToIndex(sqlite3 *db, Schema *);
|
|
KeyInfo *sqlite3KeyInfoAlloc(sqlite3*,int,int);
|
|
void sqlite3KeyInfoUnref(KeyInfo*);
|
|
KeyInfo *sqlite3KeyInfoRef(KeyInfo*);
|
|
KeyInfo *sqlite3KeyInfoOfIndex(Parse*, Index*);
|
|
#ifdef SQLITE_DEBUG
|
|
int sqlite3KeyInfoIsWriteable(KeyInfo*);
|
|
#endif
|
|
int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *,
|
|
void (*)(sqlite3_context*,int,sqlite3_value **),
|
|
void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*),
|
|
FuncDestructor *pDestructor
|
|
);
|
|
int sqlite3ApiExit(sqlite3 *db, int);
|
|
int sqlite3OpenTempDatabase(Parse *);
|
|
|
|
void sqlite3StrAccumInit(StrAccum*, char*, int, int);
|
|
void sqlite3StrAccumAppend(StrAccum*,const char*,int);
|
|
void sqlite3StrAccumAppendAll(StrAccum*,const char*);
|
|
void sqlite3AppendChar(StrAccum*,int,char);
|
|
char *sqlite3StrAccumFinish(StrAccum*);
|
|
void sqlite3StrAccumReset(StrAccum*);
|
|
void sqlite3SelectDestInit(SelectDest*,int,int);
|
|
Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int);
|
|
|
|
void sqlite3BackupRestart(sqlite3_backup *);
|
|
void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);
|
|
|
|
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
|
void sqlite3AnalyzeFunctions(void);
|
|
int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);
|
|
int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
|
|
void sqlite3Stat4ProbeFree(UnpackedRecord*);
|
|
int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
|
|
#endif
|
|
|
|
/*
|
|
** The interface to the LEMON-generated parser
|
|
*/
|
|
void *sqlite3ParserAlloc(void*(*)(u64));
|
|
void sqlite3ParserFree(void*, void(*)(void*));
|
|
void sqlite3Parser(void*, int, Token, Parse*);
|
|
#ifdef YYTRACKMAXSTACKDEPTH
|
|
int sqlite3ParserStackPeak(void*);
|
|
#endif
|
|
|
|
void sqlite3AutoLoadExtensions(sqlite3*);
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
void sqlite3CloseExtensions(sqlite3*);
|
|
#else
|
|
# define sqlite3CloseExtensions(X)
|
|
#endif
|
|
|
|
#ifndef SQLITE_OMIT_SHARED_CACHE
|
|
void sqlite3TableLock(Parse *, int, int, u8, const char *);
|
|
#else
|
|
#define sqlite3TableLock(v,w,x,y,z)
|
|
#endif
|
|
|
|
#ifdef SQLITE_TEST
|
|
int sqlite3Utf8To8(unsigned char*);
|
|
#endif
|
|
|
|
#ifdef SQLITE_OMIT_VIRTUALTABLE
|
|
# define sqlite3VtabClear(Y)
|
|
# define sqlite3VtabSync(X,Y) SQLITE_OK
|
|
# define sqlite3VtabRollback(X)
|
|
# define sqlite3VtabCommit(X)
|
|
# define sqlite3VtabInSync(db) 0
|
|
# define sqlite3VtabLock(X)
|
|
# define sqlite3VtabUnlock(X)
|
|
# define sqlite3VtabUnlockList(X)
|
|
# define sqlite3VtabSavepoint(X, Y, Z) SQLITE_OK
|
|
# define sqlite3GetVTable(X,Y) ((VTable*)0)
|
|
#else
|
|
void sqlite3VtabClear(sqlite3 *db, Table*);
|
|
void sqlite3VtabDisconnect(sqlite3 *db, Table *p);
|
|
int sqlite3VtabSync(sqlite3 *db, Vdbe*);
|
|
int sqlite3VtabRollback(sqlite3 *db);
|
|
int sqlite3VtabCommit(sqlite3 *db);
|
|
void sqlite3VtabLock(VTable *);
|
|
void sqlite3VtabUnlock(VTable *);
|
|
void sqlite3VtabUnlockList(sqlite3*);
|
|
int sqlite3VtabSavepoint(sqlite3 *, int, int);
|
|
void sqlite3VtabImportErrmsg(Vdbe*, sqlite3_vtab*);
|
|
VTable *sqlite3GetVTable(sqlite3*, Table*);
|
|
# define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0)
|
|
#endif
|
|
void sqlite3VtabMakeWritable(Parse*,Table*);
|
|
void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*, int);
|
|
void sqlite3VtabFinishParse(Parse*, Token*);
|
|
void sqlite3VtabArgInit(Parse*);
|
|
void sqlite3VtabArgExtend(Parse*, Token*);
|
|
int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **);
|
|
int sqlite3VtabCallConnect(Parse*, Table*);
|
|
int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
|
|
int sqlite3VtabBegin(sqlite3 *, VTable *);
|
|
FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
|
|
void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**);
|
|
sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
|
|
int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
|
|
int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
|
|
void sqlite3ParserReset(Parse*);
|
|
int sqlite3Reprepare(Vdbe*);
|
|
void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
|
|
CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
|
|
int sqlite3TempInMemory(const sqlite3*);
|
|
const char *sqlite3JournalModename(int);
|
|
#ifndef SQLITE_OMIT_WAL
|
|
int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
|
|
int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int);
|
|
#endif
|
|
#ifndef SQLITE_OMIT_CTE
|
|
With *sqlite3WithAdd(Parse*,With*,Token*,ExprList*,Select*);
|
|
void sqlite3WithDelete(sqlite3*,With*);
|
|
void sqlite3WithPush(Parse*, With*, u8);
|
|
#else
|
|
#define sqlite3WithPush(x,y,z)
|
|
#define sqlite3WithDelete(x,y)
|
|
#endif
|
|
|
|
/* Declarations for functions in fkey.c. All of these are replaced by
|
|
** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign
|
|
** key functionality is available. If OMIT_TRIGGER is defined but
|
|
** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In
|
|
** this case foreign keys are parsed, but no other functionality is
|
|
** provided (enforcement of FK constraints requires the triggers sub-system).
|
|
*/
|
|
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
|
|
void sqlite3FkCheck(Parse*, Table*, int, int, int*, int);
|
|
void sqlite3FkDropTable(Parse*, SrcList *, Table*);
|
|
void sqlite3FkActions(Parse*, Table*, ExprList*, int, int*, int);
|
|
int sqlite3FkRequired(Parse*, Table*, int*, int);
|
|
u32 sqlite3FkOldmask(Parse*, Table*);
|
|
FKey *sqlite3FkReferences(Table *);
|
|
#else
|
|
#define sqlite3FkActions(a,b,c,d,e,f)
|
|
#define sqlite3FkCheck(a,b,c,d,e,f)
|
|
#define sqlite3FkDropTable(a,b,c)
|
|
#define sqlite3FkOldmask(a,b) 0
|
|
#define sqlite3FkRequired(a,b,c,d) 0
|
|
#endif
|
|
#ifndef SQLITE_OMIT_FOREIGN_KEY
|
|
void sqlite3FkDelete(sqlite3 *, Table*);
|
|
int sqlite3FkLocateIndex(Parse*,Table*,FKey*,Index**,int**);
|
|
#else
|
|
#define sqlite3FkDelete(a,b)
|
|
#define sqlite3FkLocateIndex(a,b,c,d,e)
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Available fault injectors. Should be numbered beginning with 0.
|
|
*/
|
|
#define SQLITE_FAULTINJECTOR_MALLOC 0
|
|
#define SQLITE_FAULTINJECTOR_COUNT 1
|
|
|
|
/*
|
|
** The interface to the code in fault.c used for identifying "benign"
|
|
** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST
|
|
** is not defined.
|
|
*/
|
|
#ifndef SQLITE_OMIT_BUILTIN_TEST
|
|
void sqlite3BeginBenignMalloc(void);
|
|
void sqlite3EndBenignMalloc(void);
|
|
#else
|
|
#define sqlite3BeginBenignMalloc()
|
|
#define sqlite3EndBenignMalloc()
|
|
#endif
|
|
|
|
/*
|
|
** Allowed return values from sqlite3FindInIndex()
|
|
*/
|
|
#define IN_INDEX_ROWID 1 /* Search the rowid of the table */
|
|
#define IN_INDEX_EPH 2 /* Search an ephemeral b-tree */
|
|
#define IN_INDEX_INDEX_ASC 3 /* Existing index ASCENDING */
|
|
#define IN_INDEX_INDEX_DESC 4 /* Existing index DESCENDING */
|
|
#define IN_INDEX_NOOP 5 /* No table available. Use comparisons */
|
|
/*
|
|
** Allowed flags for the 3rd parameter to sqlite3FindInIndex().
|
|
*/
|
|
#define IN_INDEX_NOOP_OK 0x0001 /* OK to return IN_INDEX_NOOP */
|
|
#define IN_INDEX_MEMBERSHIP 0x0002 /* IN operator used for membership test */
|
|
#define IN_INDEX_LOOP 0x0004 /* IN operator used as a loop */
|
|
int sqlite3FindInIndex(Parse *, Expr *, u32, int*);
|
|
|
|
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
|
|
int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int);
|
|
int sqlite3JournalSize(sqlite3_vfs *);
|
|
int sqlite3JournalCreate(sqlite3_file *);
|
|
int sqlite3JournalExists(sqlite3_file *p);
|
|
#else
|
|
#define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile)
|
|
#define sqlite3JournalExists(p) 1
|
|
#endif
|
|
|
|
void sqlite3MemJournalOpen(sqlite3_file *);
|
|
int sqlite3MemJournalSize(void);
|
|
int sqlite3IsMemJournal(sqlite3_file *);
|
|
|
|
void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p);
|
|
#if SQLITE_MAX_EXPR_DEPTH>0
|
|
int sqlite3SelectExprHeight(Select *);
|
|
int sqlite3ExprCheckHeight(Parse*, int);
|
|
#else
|
|
#define sqlite3SelectExprHeight(x) 0
|
|
#define sqlite3ExprCheckHeight(x,y)
|
|
#endif
|
|
|
|
u32 sqlite3Get4byte(const u8*);
|
|
void sqlite3Put4byte(u8*, u32);
|
|
|
|
#ifdef SQLITE_ENABLE_UNLOCK_NOTIFY
|
|
void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *);
|
|
void sqlite3ConnectionUnlocked(sqlite3 *db);
|
|
void sqlite3ConnectionClosed(sqlite3 *db);
|
|
#else
|
|
#define sqlite3ConnectionBlocked(x,y)
|
|
#define sqlite3ConnectionUnlocked(x)
|
|
#define sqlite3ConnectionClosed(x)
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
void sqlite3ParserTrace(FILE*, char *);
|
|
#endif
|
|
|
|
/*
|
|
** If the SQLITE_ENABLE IOTRACE exists then the global variable
|
|
** sqlite3IoTrace is a pointer to a printf-like routine used to
|
|
** print I/O tracing messages.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_IOTRACE
|
|
# define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; }
|
|
void sqlite3VdbeIOTraceSql(Vdbe*);
|
|
SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...);
|
|
#else
|
|
# define IOTRACE(A)
|
|
# define sqlite3VdbeIOTraceSql(X)
|
|
#endif
|
|
|
|
/*
|
|
** These routines are available for the mem2.c debugging memory allocator
|
|
** only. They are used to verify that different "types" of memory
|
|
** allocations are properly tracked by the system.
|
|
**
|
|
** sqlite3MemdebugSetType() sets the "type" of an allocation to one of
|
|
** the MEMTYPE_* macros defined below. The type must be a bitmask with
|
|
** a single bit set.
|
|
**
|
|
** sqlite3MemdebugHasType() returns true if any of the bits in its second
|
|
** argument match the type set by the previous sqlite3MemdebugSetType().
|
|
** sqlite3MemdebugHasType() is intended for use inside assert() statements.
|
|
**
|
|
** sqlite3MemdebugNoType() returns true if none of the bits in its second
|
|
** argument match the type set by the previous sqlite3MemdebugSetType().
|
|
**
|
|
** Perhaps the most important point is the difference between MEMTYPE_HEAP
|
|
** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means
|
|
** it might have been allocated by lookaside, except the allocation was
|
|
** too large or lookaside was already full. It is important to verify
|
|
** that allocations that might have been satisfied by lookaside are not
|
|
** passed back to non-lookaside free() routines. Asserts such as the
|
|
** example above are placed on the non-lookaside free() routines to verify
|
|
** this constraint.
|
|
**
|
|
** All of this is no-op for a production build. It only comes into
|
|
** play when the SQLITE_MEMDEBUG compile-time option is used.
|
|
*/
|
|
#ifdef SQLITE_MEMDEBUG
|
|
void sqlite3MemdebugSetType(void*,u8);
|
|
int sqlite3MemdebugHasType(void*,u8);
|
|
int sqlite3MemdebugNoType(void*,u8);
|
|
#else
|
|
# define sqlite3MemdebugSetType(X,Y) /* no-op */
|
|
# define sqlite3MemdebugHasType(X,Y) 1
|
|
# define sqlite3MemdebugNoType(X,Y) 1
|
|
#endif
|
|
#define MEMTYPE_HEAP 0x01 /* General heap allocations */
|
|
#define MEMTYPE_LOOKASIDE 0x02 /* Heap that might have been lookaside */
|
|
#define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */
|
|
#define MEMTYPE_PCACHE 0x08 /* Page cache allocations */
|
|
|
|
/*
|
|
** Threading interface
|
|
*/
|
|
#if SQLITE_MAX_WORKER_THREADS>0
|
|
int sqlite3ThreadCreate(SQLiteThread**,void*(*)(void*),void*);
|
|
int sqlite3ThreadJoin(SQLiteThread*, void**);
|
|
#endif
|
|
|
|
#endif /* _SQLITEINT_H_ */
|