0a62730d3f
sanely following an OOM fault. FossilOrigin-Name: b939a37a8ce296785a300e79ab9d3d87ad91343f
2155 lines
71 KiB
C
2155 lines
71 KiB
C
/*
|
|
** 2009 Oct 23
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file is part of the SQLite FTS3 extension module. Specifically,
|
|
** this file contains code to insert, update and delete rows from FTS3
|
|
** tables. It also contains code to merge FTS3 b-tree segments. Some
|
|
** of the sub-routines used to merge segments are also used by the query
|
|
** code in fts3.c.
|
|
*/
|
|
|
|
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
|
|
|
|
#include "fts3Int.h"
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
|
|
#define INTERIOR_MAX 2048 /* Soft limit for segment node size */
|
|
#define LEAF_MAX 2048 /* Soft limit for segment leaf size */
|
|
|
|
typedef struct PendingList PendingList;
|
|
typedef struct SegmentNode SegmentNode;
|
|
typedef struct SegmentWriter SegmentWriter;
|
|
|
|
/*
|
|
** Data structure used while accumulating terms in the pending-terms hash
|
|
** table. The hash table entry maps from term (a string) to a malloced
|
|
** instance of this structure.
|
|
*/
|
|
struct PendingList {
|
|
int nData;
|
|
char *aData;
|
|
int nSpace;
|
|
sqlite3_int64 iLastDocid;
|
|
sqlite3_int64 iLastCol;
|
|
sqlite3_int64 iLastPos;
|
|
};
|
|
|
|
/*
|
|
** An instance of this structure is used to iterate through the terms on
|
|
** a contiguous set of segment b-tree leaf nodes. Although the details of
|
|
** this structure are only manipulated by code in this file, opaque handles
|
|
** of type Fts3SegReader* are also used by code in fts3.c to iterate through
|
|
** terms when querying the full-text index. See functions:
|
|
**
|
|
** sqlite3Fts3SegReaderNew()
|
|
** sqlite3Fts3SegReaderFree()
|
|
** sqlite3Fts3SegReaderIterate()
|
|
*/
|
|
struct Fts3SegReader {
|
|
int iIdx; /* Index within level */
|
|
sqlite3_int64 iStartBlock;
|
|
sqlite3_int64 iEndBlock;
|
|
sqlite3_stmt *pStmt; /* SQL Statement to access leaf nodes */
|
|
char *aNode; /* Pointer to node data (or NULL) */
|
|
int nNode; /* Size of buffer at aNode (or 0) */
|
|
int nTermAlloc; /* Allocated size of zTerm buffer */
|
|
|
|
/* Variables set by fts3SegReaderNext(). These may be read directly
|
|
** by the caller. They are valid from the time SegmentReaderNew() returns
|
|
** until SegmentReaderNext() returns something other than SQLITE_OK
|
|
** (i.e. SQLITE_DONE).
|
|
*/
|
|
int nTerm; /* Number of bytes in current term */
|
|
char *zTerm; /* Pointer to current term */
|
|
char *aDoclist; /* Pointer to doclist of current entry */
|
|
int nDoclist; /* Size of doclist in current entry */
|
|
|
|
/* The following variables are used to iterate through the current doclist */
|
|
char *pOffsetList;
|
|
sqlite3_int64 iDocid;
|
|
};
|
|
|
|
/*
|
|
** An instance of this structure is used to create a segment b-tree in the
|
|
** database. The internal details of this type are only accessed by the
|
|
** following functions:
|
|
**
|
|
** fts3SegWriterAdd()
|
|
** fts3SegWriterFlush()
|
|
** fts3SegWriterFree()
|
|
*/
|
|
struct SegmentWriter {
|
|
SegmentNode *pTree; /* Pointer to interior tree structure */
|
|
sqlite3_int64 iFirst; /* First slot in %_segments written */
|
|
sqlite3_int64 iFree; /* Next free slot in %_segments */
|
|
char *zTerm; /* Pointer to previous term buffer */
|
|
int nTerm; /* Number of bytes in zTerm */
|
|
int nMalloc; /* Size of malloc'd buffer at zMalloc */
|
|
char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
|
|
int nSize; /* Size of allocation at aData */
|
|
int nData; /* Bytes of data in aData */
|
|
char *aData; /* Pointer to block from malloc() */
|
|
};
|
|
|
|
/*
|
|
** Type SegmentNode is used by the following three functions to create
|
|
** the interior part of the segment b+-tree structures (everything except
|
|
** the leaf nodes). These functions and type are only ever used by code
|
|
** within the fts3SegWriterXXX() family of functions described above.
|
|
**
|
|
** fts3NodeAddTerm()
|
|
** fts3NodeWrite()
|
|
** fts3NodeFree()
|
|
*/
|
|
struct SegmentNode {
|
|
SegmentNode *pParent; /* Parent node (or NULL for root node) */
|
|
SegmentNode *pRight; /* Pointer to right-sibling */
|
|
SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */
|
|
int nEntry; /* Number of terms written to node so far */
|
|
char *zTerm; /* Pointer to previous term buffer */
|
|
int nTerm; /* Number of bytes in zTerm */
|
|
int nMalloc; /* Size of malloc'd buffer at zMalloc */
|
|
char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
|
|
int nData; /* Bytes of valid data so far */
|
|
char *aData; /* Node data */
|
|
};
|
|
|
|
/*
|
|
** Valid values for the second argument to fts3SqlStmt().
|
|
*/
|
|
#define SQL_DELETE_CONTENT 0
|
|
#define SQL_IS_EMPTY 1
|
|
#define SQL_DELETE_ALL_CONTENT 2
|
|
#define SQL_DELETE_ALL_SEGMENTS 3
|
|
#define SQL_DELETE_ALL_SEGDIR 4
|
|
#define SQL_SELECT_CONTENT_BY_ROWID 5
|
|
#define SQL_NEXT_SEGMENT_INDEX 6
|
|
#define SQL_INSERT_SEGMENTS 7
|
|
#define SQL_NEXT_SEGMENTS_ID 8
|
|
#define SQL_INSERT_SEGDIR 9
|
|
#define SQL_SELECT_LEVEL 10
|
|
#define SQL_SELECT_ALL_LEVEL 11
|
|
#define SQL_SELECT_LEVEL_COUNT 12
|
|
#define SQL_SELECT_SEGDIR_COUNT_MAX 13
|
|
#define SQL_DELETE_SEGDIR_BY_LEVEL 14
|
|
#define SQL_DELETE_SEGMENTS_RANGE 15
|
|
#define SQL_CONTENT_INSERT 16
|
|
#define SQL_GET_BLOCK 17
|
|
|
|
/*
|
|
** This function is used to obtain an SQLite prepared statement handle
|
|
** for the statement identified by the second argument. If successful,
|
|
** *pp is set to the requested statement handle and SQLITE_OK returned.
|
|
** Otherwise, an SQLite error code is returned and *pp is set to 0.
|
|
**
|
|
** If argument apVal is not NULL, then it must point to an array with
|
|
** at least as many entries as the requested statement has bound
|
|
** parameters. The values are bound to the statements parameters before
|
|
** returning.
|
|
*/
|
|
static int fts3SqlStmt(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
int eStmt, /* One of the SQL_XXX constants above */
|
|
sqlite3_stmt **pp, /* OUT: Statement handle */
|
|
sqlite3_value **apVal /* Values to bind to statement */
|
|
){
|
|
const char *azSql[] = {
|
|
/* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
|
|
/* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
|
|
/* 2 */ "DELETE FROM %Q.'%q_content'",
|
|
/* 3 */ "DELETE FROM %Q.'%q_segments'",
|
|
/* 4 */ "DELETE FROM %Q.'%q_segdir'",
|
|
/* 5 */ "SELECT * FROM %Q.'%q_content' WHERE rowid=?",
|
|
/* 6 */ "SELECT coalesce(max(idx)+1, 0) FROM %Q.'%q_segdir' WHERE level=?",
|
|
/* 7 */ "INSERT INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
|
|
/* 8 */ "SELECT coalesce(max(blockid)+1, 1) FROM %Q.'%q_segments'",
|
|
/* 9 */ "INSERT INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
|
|
|
|
/* Return segments in order from oldest to newest.*/
|
|
/* 10 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
|
|
"FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
|
|
/* 11 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
|
|
"FROM %Q.'%q_segdir' ORDER BY level DESC, idx ASC",
|
|
|
|
/* 12 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
|
|
/* 13 */ "SELECT count(*), max(level) FROM %Q.'%q_segdir'",
|
|
|
|
/* 14 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
|
|
/* 15 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
|
|
/* 16 */ "INSERT INTO %Q.'%q_content' VALUES(%z)",
|
|
/* 17 */ "SELECT block FROM %Q.'%q_segments' WHERE blockid = ?",
|
|
};
|
|
int rc = SQLITE_OK;
|
|
sqlite3_stmt *pStmt;
|
|
|
|
assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
|
|
assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
|
|
|
|
pStmt = p->aStmt[eStmt];
|
|
if( !pStmt ){
|
|
char *zSql;
|
|
if( eStmt==SQL_CONTENT_INSERT ){
|
|
int i; /* Iterator variable */
|
|
char *zVarlist; /* The "?, ?, ..." string */
|
|
zVarlist = (char *)sqlite3_malloc(2*p->nColumn+2);
|
|
if( !zVarlist ){
|
|
*pp = 0;
|
|
return SQLITE_NOMEM;
|
|
}
|
|
zVarlist[0] = '?';
|
|
zVarlist[p->nColumn*2+1] = '\0';
|
|
for(i=1; i<=p->nColumn; i++){
|
|
zVarlist[i*2-1] = ',';
|
|
zVarlist[i*2] = '?';
|
|
}
|
|
zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, zVarlist);
|
|
}else{
|
|
zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
|
|
}
|
|
if( !zSql ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL);
|
|
sqlite3_free(zSql);
|
|
assert( rc==SQLITE_OK || pStmt==0 );
|
|
p->aStmt[eStmt] = pStmt;
|
|
}
|
|
}
|
|
if( apVal ){
|
|
int i;
|
|
int nParam = sqlite3_bind_parameter_count(pStmt);
|
|
for(i=0; rc==SQLITE_OK && i<nParam; i++){
|
|
rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
|
|
}
|
|
}
|
|
*pp = pStmt;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Similar to fts3SqlStmt(). Except, after binding the parameters in
|
|
** array apVal[] to the SQL statement identified by eStmt, the statement
|
|
** is executed.
|
|
**
|
|
** Returns SQLITE_OK if the statement is successfully executed, or an
|
|
** SQLite error code otherwise.
|
|
*/
|
|
static int fts3SqlExec(Fts3Table *p, int eStmt, sqlite3_value **apVal){
|
|
sqlite3_stmt *pStmt;
|
|
int rc = fts3SqlStmt(p, eStmt, &pStmt, apVal);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_step(pStmt);
|
|
rc = sqlite3_reset(pStmt);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** Read a single block from the %_segments table. If the specified block
|
|
** does not exist, return SQLITE_CORRUPT. If some other error (malloc, IO
|
|
** etc.) occurs, return the appropriate SQLite error code.
|
|
**
|
|
** Otherwise, if successful, set *pzBlock to point to a buffer containing
|
|
** the block read from the database, and *pnBlock to the size of the read
|
|
** block in bytes.
|
|
**
|
|
** WARNING: The returned buffer is only valid until the next call to
|
|
** sqlite3Fts3ReadBlock().
|
|
*/
|
|
int sqlite3Fts3ReadBlock(
|
|
Fts3Table *p,
|
|
sqlite3_int64 iBlock,
|
|
char const **pzBlock,
|
|
int *pnBlock
|
|
){
|
|
sqlite3_stmt *pStmt;
|
|
int rc = fts3SqlStmt(p, SQL_GET_BLOCK, &pStmt, 0);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
sqlite3_reset(pStmt);
|
|
|
|
sqlite3_bind_int64(pStmt, 1, iBlock);
|
|
rc = sqlite3_step(pStmt);
|
|
if( rc!=SQLITE_ROW ){
|
|
return SQLITE_CORRUPT;
|
|
}
|
|
|
|
*pnBlock = sqlite3_column_bytes(pStmt, 0);
|
|
*pzBlock = (char *)sqlite3_column_blob(pStmt, 0);
|
|
if( !*pzBlock ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Set *ppStmt to a statement handle that may be used to iterate through
|
|
** all rows in the %_segdir table, from oldest to newest. If successful,
|
|
** return SQLITE_OK. If an error occurs while preparing the statement,
|
|
** return an SQLite error code.
|
|
**
|
|
** There is only ever one instance of this SQL statement compiled for
|
|
** each FTS3 table.
|
|
**
|
|
** The statement returns the following columns from the %_segdir table:
|
|
**
|
|
** 0: idx
|
|
** 1: start_block
|
|
** 2: leaves_end_block
|
|
** 3: end_block
|
|
** 4: root
|
|
*/
|
|
int sqlite3Fts3AllSegdirs(Fts3Table *p, sqlite3_stmt **ppStmt){
|
|
return fts3SqlStmt(p, SQL_SELECT_ALL_LEVEL, ppStmt, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
** Append a single varint to a PendingList buffer. SQLITE_OK is returned
|
|
** if successful, or an SQLite error code otherwise.
|
|
**
|
|
** This function also serves to allocate the PendingList structure itself.
|
|
** For example, to create a new PendingList structure containing two
|
|
** varints:
|
|
**
|
|
** PendingList *p = 0;
|
|
** fts3PendingListAppendVarint(&p, 1);
|
|
** fts3PendingListAppendVarint(&p, 2);
|
|
*/
|
|
static int fts3PendingListAppendVarint(
|
|
PendingList **pp, /* IN/OUT: Pointer to PendingList struct */
|
|
sqlite3_int64 i /* Value to append to data */
|
|
){
|
|
PendingList *p = *pp;
|
|
|
|
/* Allocate or grow the PendingList as required. */
|
|
if( !p ){
|
|
p = sqlite3_malloc(sizeof(*p) + 100);
|
|
if( !p ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
p->nSpace = 100;
|
|
p->aData = (char *)&p[1];
|
|
p->nData = 0;
|
|
}
|
|
else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
|
|
int nNew = p->nSpace * 2;
|
|
p = sqlite3_realloc(p, sizeof(*p) + nNew);
|
|
if( !p ){
|
|
sqlite3_free(*pp);
|
|
*pp = 0;
|
|
return SQLITE_NOMEM;
|
|
}
|
|
p->nSpace = nNew;
|
|
p->aData = (char *)&p[1];
|
|
}
|
|
|
|
/* Append the new serialized varint to the end of the list. */
|
|
p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
|
|
p->aData[p->nData] = '\0';
|
|
*pp = p;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Add a docid/column/position entry to a PendingList structure. Non-zero
|
|
** is returned if the structure is sqlite3_realloced as part of adding
|
|
** the entry. Otherwise, zero.
|
|
**
|
|
** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
|
|
** Zero is always returned in this case. Otherwise, if no OOM error occurs,
|
|
** it is set to SQLITE_OK.
|
|
*/
|
|
static int fts3PendingListAppend(
|
|
PendingList **pp, /* IN/OUT: PendingList structure */
|
|
sqlite3_int64 iDocid, /* Docid for entry to add */
|
|
sqlite3_int64 iCol, /* Column for entry to add */
|
|
sqlite3_int64 iPos, /* Position of term for entry to add */
|
|
int *pRc /* OUT: Return code */
|
|
){
|
|
PendingList *p = *pp;
|
|
int rc = SQLITE_OK;
|
|
|
|
assert( !p || p->iLastDocid<=iDocid );
|
|
|
|
if( !p || p->iLastDocid!=iDocid ){
|
|
sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0);
|
|
if( p ){
|
|
assert( p->nData<p->nSpace );
|
|
assert( p->aData[p->nData]==0 );
|
|
p->nData++;
|
|
}
|
|
if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
|
|
goto pendinglistappend_out;
|
|
}
|
|
p->iLastCol = -1;
|
|
p->iLastPos = 0;
|
|
p->iLastDocid = iDocid;
|
|
}
|
|
if( iCol>0 && p->iLastCol!=iCol ){
|
|
if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
|
|
|| SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
|
|
){
|
|
goto pendinglistappend_out;
|
|
}
|
|
p->iLastCol = iCol;
|
|
p->iLastPos = 0;
|
|
}
|
|
if( iCol>=0 ){
|
|
assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
|
|
rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
|
|
if( rc==SQLITE_OK ){
|
|
p->iLastPos = iPos;
|
|
}
|
|
}
|
|
|
|
pendinglistappend_out:
|
|
*pRc = rc;
|
|
if( p!=*pp ){
|
|
*pp = p;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Tokenize the nul-terminated string zText and add all tokens to the
|
|
** pending-terms hash-table. The docid used is that currently stored in
|
|
** p->iPrevDocid, and the column is specified by argument iCol.
|
|
**
|
|
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
|
|
*/
|
|
static int fts3PendingTermsAdd(Fts3Table *p, const char *zText, int iCol){
|
|
int rc;
|
|
int iStart;
|
|
int iEnd;
|
|
int iPos;
|
|
|
|
char const *zToken;
|
|
int nToken;
|
|
|
|
sqlite3_tokenizer *pTokenizer = p->pTokenizer;
|
|
sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
|
|
sqlite3_tokenizer_cursor *pCsr;
|
|
int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
|
|
const char**,int*,int*,int*,int*);
|
|
|
|
assert( pTokenizer && pModule );
|
|
|
|
rc = pModule->xOpen(pTokenizer, zText, -1, &pCsr);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
pCsr->pTokenizer = pTokenizer;
|
|
|
|
xNext = pModule->xNext;
|
|
while( SQLITE_OK==rc
|
|
&& SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
|
|
){
|
|
PendingList *pList;
|
|
|
|
/* Positions cannot be negative; we use -1 as a terminator internally.
|
|
** Tokens must have a non-zero length.
|
|
*/
|
|
if( iPos<0 || !zToken || nToken<=0 ){
|
|
rc = SQLITE_ERROR;
|
|
break;
|
|
}
|
|
|
|
pList = (PendingList *)fts3HashFind(&p->pendingTerms, zToken, nToken);
|
|
if( pList ){
|
|
p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
|
|
}
|
|
if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
|
|
if( pList==fts3HashInsert(&p->pendingTerms, zToken, nToken, pList) ){
|
|
/* Malloc failed while inserting the new entry. This can only
|
|
** happen if there was no previous entry for this token.
|
|
*/
|
|
assert( 0==fts3HashFind(&p->pendingTerms, zToken, nToken) );
|
|
sqlite3_free(pList);
|
|
rc = SQLITE_NOMEM;
|
|
}
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
|
|
}
|
|
}
|
|
|
|
pModule->xClose(pCsr);
|
|
return (rc==SQLITE_DONE ? SQLITE_OK : rc);
|
|
}
|
|
|
|
/*
|
|
** Calling this function indicates that subsequent calls to
|
|
** fts3PendingTermsAdd() are to add term/position-list pairs for the
|
|
** contents of the document with docid iDocid.
|
|
*/
|
|
static int fts3PendingTermsDocid(Fts3Table *p, sqlite_int64 iDocid){
|
|
/* TODO(shess) Explore whether partially flushing the buffer on
|
|
** forced-flush would provide better performance. I suspect that if
|
|
** we ordered the doclists by size and flushed the largest until the
|
|
** buffer was half empty, that would let the less frequent terms
|
|
** generate longer doclists.
|
|
*/
|
|
if( iDocid<=p->iPrevDocid || p->nPendingData>FTS3_MAX_PENDING_DATA ){
|
|
int rc = sqlite3Fts3PendingTermsFlush(p);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
p->iPrevDocid = iDocid;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
void sqlite3Fts3PendingTermsClear(Fts3Table *p){
|
|
Fts3HashElem *pElem;
|
|
for(pElem=fts3HashFirst(&p->pendingTerms); pElem; pElem=fts3HashNext(pElem)){
|
|
sqlite3_free(fts3HashData(pElem));
|
|
}
|
|
fts3HashClear(&p->pendingTerms);
|
|
p->nPendingData = 0;
|
|
}
|
|
|
|
/*
|
|
** This function is called by the xUpdate() method as part of an INSERT
|
|
** operation. It adds entries for each term in the new record to the
|
|
** pendingTerms hash table.
|
|
**
|
|
** Argument apVal is the same as the similarly named argument passed to
|
|
** fts3InsertData(). Parameter iDocid is the docid of the new row.
|
|
*/
|
|
static int fts3InsertTerms(Fts3Table *p, sqlite3_value **apVal){
|
|
int i; /* Iterator variable */
|
|
for(i=2; i<p->nColumn+2; i++){
|
|
const char *zText = (const char *)sqlite3_value_text(apVal[i]);
|
|
if( zText ){
|
|
int rc = fts3PendingTermsAdd(p, zText, i-2);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** This function is called by the xUpdate() method for an INSERT operation.
|
|
** The apVal parameter is passed a copy of the apVal argument passed by
|
|
** SQLite to the xUpdate() method. i.e:
|
|
**
|
|
** apVal[0] Not used for INSERT.
|
|
** apVal[1] rowid
|
|
** apVal[2] Left-most user-defined column
|
|
** ...
|
|
** apVal[p->nColumn+1] Right-most user-defined column
|
|
** apVal[p->nColumn+2] Hidden column with same name as table
|
|
** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
|
|
*/
|
|
static int fts3InsertData(
|
|
Fts3Table *p, /* Full-text table */
|
|
sqlite3_value **apVal, /* Array of values to insert */
|
|
sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */
|
|
){
|
|
int rc; /* Return code */
|
|
int i; /* Iterator variable */
|
|
sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */
|
|
|
|
/* Locate the statement handle used to insert data into the %_content
|
|
** table. The SQL for this statement is:
|
|
**
|
|
** INSERT INTO %_content VALUES(?, ?, ?, ...)
|
|
**
|
|
** The statement features N '?' variables, where N is the number of user
|
|
** defined columns in the FTS3 table, plus one for the docid field.
|
|
*/
|
|
rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
/* There is a quirk here. The users INSERT statement may have specified
|
|
** a value for the "rowid" field, for the "docid" field, or for both.
|
|
** Which is a problem, since "rowid" and "docid" are aliases for the
|
|
** same value. For example:
|
|
**
|
|
** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
|
|
**
|
|
** In FTS3, if a non-NULL docid value is specified, it is the value
|
|
** inserted. Otherwise, the rowid value is used.
|
|
*/
|
|
if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
|
|
rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
|
|
/* Execute the statement to insert the record. Set *piDocid to the
|
|
** new docid value.
|
|
*/
|
|
sqlite3_step(pContentInsert);
|
|
rc = sqlite3_reset(pContentInsert);
|
|
|
|
*piDocid = sqlite3_last_insert_rowid(p->db);
|
|
return rc;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** Remove all data from the FTS3 table. Clear the hash table containing
|
|
** pending terms.
|
|
*/
|
|
static int fts3DeleteAll(Fts3Table *p){
|
|
int rc; /* Return code */
|
|
|
|
/* Discard the contents of the pending-terms hash table. */
|
|
sqlite3Fts3PendingTermsClear(p);
|
|
|
|
/* Delete everything from the %_content, %_segments and %_segdir tables. */
|
|
rc = fts3SqlExec(p, SQL_DELETE_ALL_CONTENT, 0);
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3SqlExec(p, SQL_DELETE_ALL_SEGMENTS, 0);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3SqlExec(p, SQL_DELETE_ALL_SEGDIR, 0);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The first element in the apVal[] array is assumed to contain the docid
|
|
** (an integer) of a row about to be deleted. Remove all terms from the
|
|
** full-text index.
|
|
*/
|
|
static int fts3DeleteTerms(Fts3Table *p, sqlite3_value **apVal){
|
|
int rc;
|
|
sqlite3_stmt *pSelect;
|
|
|
|
rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, apVal);
|
|
if( rc==SQLITE_OK ){
|
|
if( SQLITE_ROW==sqlite3_step(pSelect) ){
|
|
int i;
|
|
for(i=1; i<=p->nColumn; i++){
|
|
const char *zText = (const char *)sqlite3_column_text(pSelect, i);
|
|
rc = fts3PendingTermsAdd(p, zText, -1);
|
|
if( rc!=SQLITE_OK ){
|
|
sqlite3_reset(pSelect);
|
|
return rc;
|
|
}
|
|
}
|
|
}
|
|
rc = sqlite3_reset(pSelect);
|
|
}else{
|
|
sqlite3_reset(pSelect);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Forward declaration to account for the circular dependency between
|
|
** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
|
|
*/
|
|
static int fts3SegmentMerge(Fts3Table *, int);
|
|
|
|
/*
|
|
** This function allocates a new level iLevel index in the segdir table.
|
|
** Usually, indexes are allocated within a level sequentially starting
|
|
** with 0, so the allocated index is one greater than the value returned
|
|
** by:
|
|
**
|
|
** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
|
|
**
|
|
** However, if there are already FTS3_MERGE_COUNT indexes at the requested
|
|
** level, they are merged into a single level (iLevel+1) segment and the
|
|
** allocated index is 0.
|
|
**
|
|
** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
|
|
** returned. Otherwise, an SQLite error code is returned.
|
|
*/
|
|
static int fts3AllocateSegdirIdx(Fts3Table *p, int iLevel, int *piIdx){
|
|
int rc; /* Return Code */
|
|
sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */
|
|
int iNext; /* Result of query pNextIdx */
|
|
|
|
/* Set variable iNext to the next available segdir index at level iLevel. */
|
|
rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_int(pNextIdx, 1, iLevel);
|
|
if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
|
|
iNext = sqlite3_column_int64(pNextIdx, 0);
|
|
}
|
|
rc = sqlite3_reset(pNextIdx);
|
|
}
|
|
|
|
if( rc==SQLITE_OK ){
|
|
/* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
|
|
** full, merge all segments in level iLevel into a single iLevel+1
|
|
** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
|
|
** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
|
|
*/
|
|
if( iNext>=FTS3_MERGE_COUNT ){
|
|
rc = fts3SegmentMerge(p, iLevel);
|
|
*piIdx = 0;
|
|
}else{
|
|
*piIdx = iNext;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Move the iterator passed as the first argument to the next term in the
|
|
** segment. If successful, SQLITE_OK is returned. If there is no next term,
|
|
** SQLITE_DONE. Otherwise, an SQLite error code.
|
|
*/
|
|
static int fts3SegReaderNext(Fts3SegReader *pReader){
|
|
char *pNext; /* Cursor variable */
|
|
int nPrefix; /* Number of bytes in term prefix */
|
|
int nSuffix; /* Number of bytes in term suffix */
|
|
|
|
if( !pReader->aDoclist ){
|
|
pNext = pReader->aNode;
|
|
}else{
|
|
pNext = &pReader->aDoclist[pReader->nDoclist];
|
|
}
|
|
|
|
if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
|
|
int rc;
|
|
if( !pReader->pStmt ){
|
|
pReader->aNode = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
rc = sqlite3_step(pReader->pStmt);
|
|
if( rc!=SQLITE_ROW ){
|
|
pReader->aNode = 0;
|
|
return (rc==SQLITE_DONE ? SQLITE_OK : rc);
|
|
}
|
|
pReader->nNode = sqlite3_column_bytes(pReader->pStmt, 0);
|
|
pReader->aNode = (char *)sqlite3_column_blob(pReader->pStmt, 0);
|
|
pNext = pReader->aNode;
|
|
}
|
|
|
|
pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix);
|
|
pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix);
|
|
|
|
if( nPrefix+nSuffix>pReader->nTermAlloc ){
|
|
int nNew = (nPrefix+nSuffix)*2;
|
|
char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
|
|
if( !zNew ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pReader->zTerm = zNew;
|
|
pReader->nTermAlloc = nNew;
|
|
}
|
|
memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
|
|
pReader->nTerm = nPrefix+nSuffix;
|
|
pNext += nSuffix;
|
|
pNext += sqlite3Fts3GetVarint32(pNext, &pReader->nDoclist);
|
|
assert( pNext<&pReader->aNode[pReader->nNode] );
|
|
pReader->aDoclist = pNext;
|
|
pReader->pOffsetList = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Set the SegReader to point to the first docid in the doclist associated
|
|
** with the current term.
|
|
*/
|
|
static void fts3SegReaderFirstDocid(Fts3SegReader *pReader){
|
|
int n;
|
|
assert( pReader->aDoclist );
|
|
assert( !pReader->pOffsetList );
|
|
n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
|
|
pReader->pOffsetList = &pReader->aDoclist[n];
|
|
}
|
|
|
|
/*
|
|
** Advance the SegReader to point to the next docid in the doclist
|
|
** associated with the current term.
|
|
**
|
|
** If arguments ppOffsetList and pnOffsetList are not NULL, then
|
|
** *ppOffsetList is set to point to the first column-offset list
|
|
** in the doclist entry (i.e. immediately past the docid varint).
|
|
** *pnOffsetList is set to the length of the set of column-offset
|
|
** lists, not including the nul-terminator byte. For example:
|
|
*/
|
|
static void fts3SegReaderNextDocid(
|
|
Fts3SegReader *pReader,
|
|
char **ppOffsetList,
|
|
int *pnOffsetList
|
|
){
|
|
char *p = pReader->pOffsetList;
|
|
char c = 0;
|
|
|
|
/* Pointer p currently points at the first byte of an offset list. The
|
|
** following two lines advance it to point one byte past the end of
|
|
** the same offset list.
|
|
*/
|
|
while( *p | c ) c = *p++ & 0x80;
|
|
p++;
|
|
|
|
/* If required, populate the output variables with a pointer to and the
|
|
** size of the previous offset-list.
|
|
*/
|
|
if( ppOffsetList ){
|
|
*ppOffsetList = pReader->pOffsetList;
|
|
*pnOffsetList = p - pReader->pOffsetList - 1;
|
|
}
|
|
|
|
/* If there are no more entries in the doclist, set pOffsetList to
|
|
** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
|
|
** Fts3SegReader.pOffsetList to point to the next offset list before
|
|
** returning.
|
|
*/
|
|
if( p>=&pReader->aDoclist[pReader->nDoclist] ){
|
|
pReader->pOffsetList = 0;
|
|
}else{
|
|
sqlite3_int64 iDelta;
|
|
pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta);
|
|
pReader->iDocid += iDelta;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Free all allocations associated with the iterator passed as the
|
|
** second argument.
|
|
*/
|
|
void sqlite3Fts3SegReaderFree(Fts3Table *p, Fts3SegReader *pReader){
|
|
if( pReader ){
|
|
if( pReader->pStmt ){
|
|
/* Move the leaf-range SELECT statement to the aLeavesStmt[] array,
|
|
** so that it can be reused when required by another query.
|
|
*/
|
|
assert( p->nLeavesStmt<p->nLeavesTotal );
|
|
sqlite3_reset(pReader->pStmt);
|
|
p->aLeavesStmt[p->nLeavesStmt++] = pReader->pStmt;
|
|
}
|
|
sqlite3_free(pReader->zTerm);
|
|
sqlite3_free(pReader);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Allocate a new SegReader object.
|
|
*/
|
|
int sqlite3Fts3SegReaderNew(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
int iAge, /* Segment "age". */
|
|
sqlite3_int64 iStartLeaf, /* First leaf to traverse */
|
|
sqlite3_int64 iEndLeaf, /* Final leaf to traverse */
|
|
sqlite3_int64 iEndBlock, /* Final block of segment */
|
|
const char *zRoot, /* Buffer containing root node */
|
|
int nRoot, /* Size of buffer containing root node */
|
|
Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */
|
|
){
|
|
int rc = SQLITE_OK; /* Return code */
|
|
Fts3SegReader *pReader; /* Newly allocated SegReader object */
|
|
int nExtra = 0; /* Bytes to allocate segment root node */
|
|
|
|
if( iStartLeaf==0 ){
|
|
nExtra = nRoot;
|
|
}
|
|
|
|
pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
|
|
if( !pReader ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(pReader, 0, sizeof(Fts3SegReader));
|
|
pReader->iStartBlock = iStartLeaf;
|
|
pReader->iIdx = iAge;
|
|
pReader->iEndBlock = iEndBlock;
|
|
|
|
if( nExtra ){
|
|
/* The entire segment is stored in the root node. */
|
|
pReader->aNode = (char *)&pReader[1];
|
|
pReader->nNode = nRoot;
|
|
memcpy(pReader->aNode, zRoot, nRoot);
|
|
}else{
|
|
sqlite3_stmt *pStmt;
|
|
|
|
/* If the text of the SQL statement to iterate through a contiguous
|
|
** set of entries in the %_segments table has not yet been composed,
|
|
** compose it now.
|
|
*/
|
|
if( !p->zSelectLeaves ){
|
|
p->zSelectLeaves = sqlite3_mprintf(
|
|
"SELECT block FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ? "
|
|
"ORDER BY blockid", p->zDb, p->zName
|
|
);
|
|
if( !p->zSelectLeaves ){
|
|
rc = SQLITE_NOMEM;
|
|
goto finished;
|
|
}
|
|
}
|
|
|
|
/* If there are no free statements in the aLeavesStmt[] array, prepare
|
|
** a new statement now. Otherwise, reuse a prepared statement from
|
|
** aLeavesStmt[].
|
|
*/
|
|
if( p->nLeavesStmt==0 ){
|
|
if( p->nLeavesTotal==p->nLeavesAlloc ){
|
|
int nNew = p->nLeavesAlloc + 16;
|
|
sqlite3_stmt **aNew = (sqlite3_stmt **)sqlite3_realloc(
|
|
p->aLeavesStmt, nNew*sizeof(sqlite3_stmt *)
|
|
);
|
|
if( !aNew ){
|
|
rc = SQLITE_NOMEM;
|
|
goto finished;
|
|
}
|
|
p->nLeavesAlloc = nNew;
|
|
p->aLeavesStmt = aNew;
|
|
}
|
|
rc = sqlite3_prepare_v2(p->db, p->zSelectLeaves, -1, &pReader->pStmt, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
goto finished;
|
|
}
|
|
p->nLeavesTotal++;
|
|
}else{
|
|
pReader->pStmt = p->aLeavesStmt[--p->nLeavesStmt];
|
|
}
|
|
|
|
/* Bind the start and end leaf blockids to the prepared SQL statement. */
|
|
sqlite3_bind_int64(pReader->pStmt, 1, iStartLeaf);
|
|
sqlite3_bind_int64(pReader->pStmt, 2, iEndLeaf);
|
|
}
|
|
rc = fts3SegReaderNext(pReader);
|
|
|
|
finished:
|
|
if( rc==SQLITE_OK ){
|
|
*ppReader = pReader;
|
|
}else{
|
|
sqlite3Fts3SegReaderFree(p, pReader);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
** The second argument to this function is expected to be a statement of
|
|
** the form:
|
|
**
|
|
** SELECT
|
|
** idx, -- col 0
|
|
** start_block, -- col 1
|
|
** leaves_end_block, -- col 2
|
|
** end_block, -- col 3
|
|
** root -- col 4
|
|
** FROM %_segdir ...
|
|
**
|
|
** This function allocates and initializes a Fts3SegReader structure to
|
|
** iterate through the terms stored in the segment identified by the
|
|
** current row that pStmt is pointing to.
|
|
**
|
|
** If successful, the Fts3SegReader is left pointing to the first term
|
|
** in the segment and SQLITE_OK is returned. Otherwise, an SQLite error
|
|
** code is returned.
|
|
*/
|
|
static int fts3SegReaderNew(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
sqlite3_stmt *pStmt, /* See above */
|
|
int iAge, /* Segment "age". */
|
|
Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */
|
|
){
|
|
return sqlite3Fts3SegReaderNew(p, iAge,
|
|
sqlite3_column_int64(pStmt, 1),
|
|
sqlite3_column_int64(pStmt, 2),
|
|
sqlite3_column_int64(pStmt, 3),
|
|
sqlite3_column_blob(pStmt, 4),
|
|
sqlite3_column_bytes(pStmt, 4),
|
|
ppReader
|
|
);
|
|
}
|
|
|
|
/*
|
|
** Compare the entries pointed to by two Fts3SegReader structures.
|
|
** Comparison is as follows:
|
|
**
|
|
** 1) EOF is greater than not EOF.
|
|
**
|
|
** 2) The current terms (if any) are compared with memcmp(). If one
|
|
** term is a prefix of another, the longer term is considered the
|
|
** larger.
|
|
**
|
|
** 3) By segment age. An older segment is considered larger.
|
|
*/
|
|
static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
|
|
int rc;
|
|
if( pLhs->aNode && pRhs->aNode ){
|
|
int rc2 = pLhs->nTerm - pRhs->nTerm;
|
|
if( rc2<0 ){
|
|
rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
|
|
}else{
|
|
rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
|
|
}
|
|
if( rc==0 ){
|
|
rc = rc2;
|
|
}
|
|
}else{
|
|
rc = (pLhs->aNode==0) - (pRhs->aNode==0);
|
|
}
|
|
if( rc==0 ){
|
|
rc = pRhs->iIdx - pLhs->iIdx;
|
|
}
|
|
assert( rc!=0 );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** A different comparison function for SegReader structures. In this
|
|
** version, it is assumed that each SegReader points to an entry in
|
|
** a doclist for identical terms. Comparison is made as follows:
|
|
**
|
|
** 1) EOF (end of doclist in this case) is greater than not EOF.
|
|
**
|
|
** 2) By current docid.
|
|
**
|
|
** 3) By segment age. An older segment is considered larger.
|
|
*/
|
|
static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
|
|
int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
|
|
if( rc==0 ){
|
|
if( pLhs->iDocid==pRhs->iDocid ){
|
|
rc = pRhs->iIdx - pLhs->iIdx;
|
|
}else{
|
|
rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
|
|
}
|
|
}
|
|
assert( pLhs->aNode && pRhs->aNode );
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Compare the term that the Fts3SegReader object passed as the first argument
|
|
** points to with the term specified by arguments zTerm and nTerm.
|
|
**
|
|
** If the pSeg iterator is already at EOF, return 0. Otherwise, return
|
|
** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
|
|
** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
|
|
*/
|
|
static int fts3SegReaderTermCmp(
|
|
Fts3SegReader *pSeg, /* Segment reader object */
|
|
const char *zTerm, /* Term to compare to */
|
|
int nTerm /* Size of term zTerm in bytes */
|
|
){
|
|
int res = 0;
|
|
if( pSeg->aNode ){
|
|
if( pSeg->nTerm>nTerm ){
|
|
res = memcmp(pSeg->zTerm, zTerm, nTerm);
|
|
}else{
|
|
res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
|
|
}
|
|
if( res==0 ){
|
|
res = pSeg->nTerm-nTerm;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
** Argument apSegment is an array of nSegment elements. It is known that
|
|
** the final (nSegment-nSuspect) members are already in sorted order
|
|
** (according to the comparison function provided). This function shuffles
|
|
** the array around until all entries are in sorted order.
|
|
*/
|
|
static void fts3SegReaderSort(
|
|
Fts3SegReader **apSegment, /* Array to sort entries of */
|
|
int nSegment, /* Size of apSegment array */
|
|
int nSuspect, /* Unsorted entry count */
|
|
int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */
|
|
){
|
|
int i; /* Iterator variable */
|
|
|
|
assert( nSuspect<=nSegment );
|
|
|
|
if( nSuspect==nSegment ) nSuspect--;
|
|
for(i=nSuspect-1; i>=0; i--){
|
|
int j;
|
|
for(j=i; j<(nSegment-1); j++){
|
|
Fts3SegReader *pTmp;
|
|
if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
|
|
pTmp = apSegment[j+1];
|
|
apSegment[j+1] = apSegment[j];
|
|
apSegment[j] = pTmp;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/* Check that the list really is sorted now. */
|
|
for(i=0; i<(nSuspect-1); i++){
|
|
assert( xCmp(apSegment[i], apSegment[i+1])<0 );
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Insert a record into the %_segments table.
|
|
*/
|
|
static int fts3WriteSegment(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
sqlite3_int64 iBlock, /* Block id for new block */
|
|
char *z, /* Pointer to buffer containing block data */
|
|
int n /* Size of buffer z in bytes */
|
|
){
|
|
sqlite3_stmt *pStmt;
|
|
int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_int64(pStmt, 1, iBlock);
|
|
rc = sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_step(pStmt);
|
|
rc = sqlite3_reset(pStmt);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Insert a record into the %_segdir table.
|
|
*/
|
|
static int fts3WriteSegdir(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
int iLevel, /* Value for "level" field */
|
|
int iIdx, /* Value for "idx" field */
|
|
sqlite3_int64 iStartBlock, /* Value for "start_block" field */
|
|
sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */
|
|
sqlite3_int64 iEndBlock, /* Value for "end_block" field */
|
|
char *zRoot, /* Blob value for "root" field */
|
|
int nRoot /* Number of bytes in buffer zRoot */
|
|
){
|
|
sqlite3_stmt *pStmt;
|
|
int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_int(pStmt, 1, iLevel);
|
|
sqlite3_bind_int(pStmt, 2, iIdx);
|
|
sqlite3_bind_int64(pStmt, 3, iStartBlock);
|
|
sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
|
|
sqlite3_bind_int64(pStmt, 5, iEndBlock);
|
|
rc = sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_step(pStmt);
|
|
rc = sqlite3_reset(pStmt);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Return the size of the common prefix (if any) shared by zPrev and
|
|
** zNext, in bytes. For example,
|
|
**
|
|
** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
|
|
** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
|
|
** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
|
|
*/
|
|
static int fts3PrefixCompress(
|
|
const char *zPrev, /* Buffer containing previous term */
|
|
int nPrev, /* Size of buffer zPrev in bytes */
|
|
const char *zNext, /* Buffer containing next term */
|
|
int nNext /* Size of buffer zNext in bytes */
|
|
){
|
|
int n;
|
|
for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
|
|
** (according to memcmp) than the previous term.
|
|
*/
|
|
static int fts3NodeAddTerm(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */
|
|
int isCopyTerm, /* True if zTerm/nTerm is transient */
|
|
const char *zTerm, /* Pointer to buffer containing term */
|
|
int nTerm /* Size of term in bytes */
|
|
){
|
|
SegmentNode *pTree = *ppTree;
|
|
int rc;
|
|
SegmentNode *pNew;
|
|
|
|
/* First try to append the term to the current node. Return early if
|
|
** this is possible.
|
|
*/
|
|
if( pTree ){
|
|
int nData = pTree->nData; /* Current size of node in bytes */
|
|
int nReq = nData; /* Required space after adding zTerm */
|
|
int nPrefix; /* Number of bytes of prefix compression */
|
|
int nSuffix; /* Suffix length */
|
|
|
|
nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
|
|
nSuffix = nTerm-nPrefix;
|
|
|
|
nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
|
|
if( nReq<=INTERIOR_MAX || !pTree->zTerm ){
|
|
|
|
if( nReq>INTERIOR_MAX ){
|
|
/* An unusual case: this is the first term to be added to the node
|
|
** and the static node buffer (INTERIOR_MAX bytes) is not large
|
|
** enough. Use a separately malloced buffer instead This wastes
|
|
** INTERIOR_MAX bytes, but since this scenario only comes about when
|
|
** the database contain two terms that share a prefix of almost 2KB,
|
|
** this is not expected to be a serious problem.
|
|
*/
|
|
assert( pTree->aData==(char *)&pTree[1] );
|
|
pTree->aData = (char *)sqlite3_malloc(nReq);
|
|
if( !pTree->aData ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
}
|
|
|
|
if( pTree->zTerm ){
|
|
/* There is no prefix-length field for first term in a node */
|
|
nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
|
|
}
|
|
|
|
nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
|
|
memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
|
|
pTree->nData = nData + nSuffix;
|
|
pTree->nEntry++;
|
|
|
|
if( isCopyTerm ){
|
|
if( pTree->nMalloc<nTerm ){
|
|
char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2);
|
|
if( !zNew ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pTree->nMalloc = nTerm*2;
|
|
pTree->zMalloc = zNew;
|
|
}
|
|
pTree->zTerm = pTree->zMalloc;
|
|
memcpy(pTree->zTerm, zTerm, nTerm);
|
|
pTree->nTerm = nTerm;
|
|
}else{
|
|
pTree->zTerm = (char *)zTerm;
|
|
pTree->nTerm = nTerm;
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
}
|
|
|
|
/* If control flows to here, it was not possible to append zTerm to the
|
|
** current node. Create a new node (a right-sibling of the current node).
|
|
** If this is the first node in the tree, the term is added to it.
|
|
**
|
|
** Otherwise, the term is not added to the new node, it is left empty for
|
|
** now. Instead, the term is inserted into the parent of pTree. If pTree
|
|
** has no parent, one is created here.
|
|
*/
|
|
pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + INTERIOR_MAX);
|
|
if( !pNew ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(pNew, 0, sizeof(SegmentNode));
|
|
pNew->nData = 1 + FTS3_VARINT_MAX;
|
|
pNew->aData = (char *)&pNew[1];
|
|
|
|
if( pTree ){
|
|
SegmentNode *pParent = pTree->pParent;
|
|
rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
|
|
if( pTree->pParent==0 ){
|
|
pTree->pParent = pParent;
|
|
}
|
|
pTree->pRight = pNew;
|
|
pNew->pLeftmost = pTree->pLeftmost;
|
|
pNew->pParent = pParent;
|
|
pNew->zMalloc = pTree->zMalloc;
|
|
pNew->nMalloc = pTree->nMalloc;
|
|
pTree->zMalloc = 0;
|
|
}else{
|
|
pNew->pLeftmost = pNew;
|
|
rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm);
|
|
}
|
|
|
|
*ppTree = pNew;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Helper function for fts3NodeWrite().
|
|
*/
|
|
static int fts3TreeFinishNode(
|
|
SegmentNode *pTree,
|
|
int iHeight,
|
|
sqlite3_int64 iLeftChild
|
|
){
|
|
int nStart;
|
|
assert( iHeight>=1 && iHeight<128 );
|
|
nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
|
|
pTree->aData[nStart] = (char)iHeight;
|
|
sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
|
|
return nStart;
|
|
}
|
|
|
|
/*
|
|
** Write the buffer for the segment node pTree and all of its peers to the
|
|
** database. Then call this function recursively to write the parent of
|
|
** pTree and its peers to the database.
|
|
**
|
|
** Except, if pTree is a root node, do not write it to the database. Instead,
|
|
** set output variables *paRoot and *pnRoot to contain the root node.
|
|
**
|
|
** If successful, SQLITE_OK is returned and output variable *piLast is
|
|
** set to the largest blockid written to the database (or zero if no
|
|
** blocks were written to the db). Otherwise, an SQLite error code is
|
|
** returned.
|
|
*/
|
|
static int fts3NodeWrite(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
SegmentNode *pTree, /* SegmentNode handle */
|
|
int iHeight, /* Height of this node in tree */
|
|
sqlite3_int64 iLeaf, /* Block id of first leaf node */
|
|
sqlite3_int64 iFree, /* Block id of next free slot in %_segments */
|
|
sqlite3_int64 *piLast, /* OUT: Block id of last entry written */
|
|
char **paRoot, /* OUT: Data for root node */
|
|
int *pnRoot /* OUT: Size of root node in bytes */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
|
|
if( !pTree->pParent ){
|
|
/* Root node of the tree. */
|
|
int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
|
|
*piLast = iFree-1;
|
|
*pnRoot = pTree->nData - nStart;
|
|
*paRoot = &pTree->aData[nStart];
|
|
}else{
|
|
SegmentNode *pIter;
|
|
sqlite3_int64 iNextFree = iFree;
|
|
sqlite3_int64 iNextLeaf = iLeaf;
|
|
for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
|
|
int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
|
|
int nWrite = pIter->nData - nStart;
|
|
|
|
rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
|
|
iNextFree++;
|
|
iNextLeaf += (pIter->nEntry+1);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
assert( iNextLeaf==iFree );
|
|
rc = fts3NodeWrite(
|
|
p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
|
|
);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Free all memory allocations associated with the tree pTree.
|
|
*/
|
|
static void fts3NodeFree(SegmentNode *pTree){
|
|
if( pTree ){
|
|
SegmentNode *p = pTree->pLeftmost;
|
|
fts3NodeFree(p->pParent);
|
|
while( p ){
|
|
SegmentNode *pRight = p->pRight;
|
|
if( p->aData!=(char *)&p[1] ){
|
|
sqlite3_free(p->aData);
|
|
}
|
|
assert( pRight==0 || p->zMalloc==0 );
|
|
sqlite3_free(p->zMalloc);
|
|
sqlite3_free(p);
|
|
p = pRight;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add a term to the segment being constructed by the SegmentWriter object
|
|
** *ppWriter. When adding the first term to a segment, *ppWriter should
|
|
** be passed NULL. This function will allocate a new SegmentWriter object
|
|
** and return it via the input/output variable *ppWriter in this case.
|
|
**
|
|
** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
|
|
*/
|
|
static int fts3SegWriterAdd(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */
|
|
int isCopyTerm, /* True if buffer zTerm must be copied */
|
|
const char *zTerm, /* Pointer to buffer containing term */
|
|
int nTerm, /* Size of term in bytes */
|
|
const char *aDoclist, /* Pointer to buffer containing doclist */
|
|
int nDoclist /* Size of doclist in bytes */
|
|
){
|
|
int nPrefix; /* Size of term prefix in bytes */
|
|
int nSuffix; /* Size of term suffix in bytes */
|
|
int nReq; /* Number of bytes required on leaf page */
|
|
int nData;
|
|
SegmentWriter *pWriter = *ppWriter;
|
|
|
|
if( !pWriter ){
|
|
int rc;
|
|
sqlite3_stmt *pStmt;
|
|
|
|
/* Allocate the SegmentWriter structure */
|
|
pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter));
|
|
if( !pWriter ) return SQLITE_NOMEM;
|
|
memset(pWriter, 0, sizeof(SegmentWriter));
|
|
*ppWriter = pWriter;
|
|
|
|
/* Allocate a buffer in which to accumulate data */
|
|
pWriter->aData = (char *)sqlite3_malloc(LEAF_MAX);
|
|
if( !pWriter->aData ) return SQLITE_NOMEM;
|
|
pWriter->nSize = LEAF_MAX;
|
|
|
|
/* Find the next free blockid in the %_segments table */
|
|
rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
pWriter->iFree = sqlite3_column_int64(pStmt, 0);
|
|
pWriter->iFirst = pWriter->iFree;
|
|
}
|
|
rc = sqlite3_reset(pStmt);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
}
|
|
nData = pWriter->nData;
|
|
|
|
nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
|
|
nSuffix = nTerm-nPrefix;
|
|
|
|
/* Figure out how many bytes are required by this new entry */
|
|
nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */
|
|
sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */
|
|
nSuffix + /* Term suffix */
|
|
sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
|
|
nDoclist; /* Doclist data */
|
|
|
|
if( nData>0 && nData+nReq>LEAF_MAX ){
|
|
int rc;
|
|
|
|
/* The current leaf node is full. Write it out to the database. */
|
|
rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
/* Add the current term to the interior node tree. The term added to
|
|
** the interior tree must:
|
|
**
|
|
** a) be greater than the largest term on the leaf node just written
|
|
** to the database (still available in pWriter->zTerm), and
|
|
**
|
|
** b) be less than or equal to the term about to be added to the new
|
|
** leaf node (zTerm/nTerm).
|
|
**
|
|
** In other words, it must be the prefix of zTerm 1 byte longer than
|
|
** the common prefix (if any) of zTerm and pWriter->zTerm.
|
|
*/
|
|
assert( nPrefix<nTerm );
|
|
rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
|
|
nData = 0;
|
|
pWriter->nTerm = 0;
|
|
|
|
nPrefix = 0;
|
|
nSuffix = nTerm;
|
|
nReq = 1 + /* varint containing prefix size */
|
|
sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */
|
|
nTerm + /* Term suffix */
|
|
sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
|
|
nDoclist; /* Doclist data */
|
|
}
|
|
|
|
/* If the buffer currently allocated is too small for this entry, realloc
|
|
** the buffer to make it large enough.
|
|
*/
|
|
if( nReq>pWriter->nSize ){
|
|
char *aNew = sqlite3_realloc(pWriter->aData, nReq);
|
|
if( !aNew ) return SQLITE_NOMEM;
|
|
pWriter->aData = aNew;
|
|
pWriter->nSize = nReq;
|
|
}
|
|
assert( nData+nReq<=pWriter->nSize );
|
|
|
|
/* Append the prefix-compressed term and doclist to the buffer. */
|
|
nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
|
|
nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
|
|
memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
|
|
nData += nSuffix;
|
|
nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
|
|
memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
|
|
pWriter->nData = nData + nDoclist;
|
|
|
|
/* Save the current term so that it can be used to prefix-compress the next.
|
|
** If the isCopyTerm parameter is true, then the buffer pointed to by
|
|
** zTerm is transient, so take a copy of the term data. Otherwise, just
|
|
** store a copy of the pointer.
|
|
*/
|
|
if( isCopyTerm ){
|
|
if( nTerm>pWriter->nMalloc ){
|
|
char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2);
|
|
if( !zNew ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
pWriter->nMalloc = nTerm*2;
|
|
pWriter->zMalloc = zNew;
|
|
pWriter->zTerm = zNew;
|
|
}
|
|
assert( pWriter->zTerm==pWriter->zMalloc );
|
|
memcpy(pWriter->zTerm, zTerm, nTerm);
|
|
}else{
|
|
pWriter->zTerm = (char *)zTerm;
|
|
}
|
|
pWriter->nTerm = nTerm;
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Flush all data associated with the SegmentWriter object pWriter to the
|
|
** database. This function must be called after all terms have been added
|
|
** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
|
|
** returned. Otherwise, an SQLite error code.
|
|
*/
|
|
static int fts3SegWriterFlush(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
SegmentWriter *pWriter, /* SegmentWriter to flush to the db */
|
|
int iLevel, /* Value for 'level' column of %_segdir */
|
|
int iIdx /* Value for 'idx' column of %_segdir */
|
|
){
|
|
int rc; /* Return code */
|
|
if( pWriter->pTree ){
|
|
sqlite3_int64 iLast; /* Largest block id written to database */
|
|
sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */
|
|
char *zRoot; /* Pointer to buffer containing root node */
|
|
int nRoot; /* Size of buffer zRoot */
|
|
|
|
iLastLeaf = pWriter->iFree;
|
|
rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3NodeWrite(p, pWriter->pTree, 1,
|
|
pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3WriteSegdir(
|
|
p, iLevel, iIdx, pWriter->iFirst, iLastLeaf, iLast, zRoot, nRoot);
|
|
}
|
|
}else{
|
|
/* The entire tree fits on the root node. Write it to the segdir table. */
|
|
rc = fts3WriteSegdir(
|
|
p, iLevel, iIdx, 0, 0, 0, pWriter->aData, pWriter->nData);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Release all memory held by the SegmentWriter object passed as the
|
|
** first argument.
|
|
*/
|
|
static void fts3SegWriterFree(SegmentWriter *pWriter){
|
|
if( pWriter ){
|
|
sqlite3_free(pWriter->aData);
|
|
sqlite3_free(pWriter->zMalloc);
|
|
fts3NodeFree(pWriter->pTree);
|
|
sqlite3_free(pWriter);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** The first value in the apVal[] array is assumed to contain an integer.
|
|
** This function tests if there exist any documents with docid values that
|
|
** are different from that integer. i.e. if deleting the document with docid
|
|
** apVal[0] would mean the FTS3 table were empty.
|
|
**
|
|
** If successful, *pisEmpty is set to true if the table is empty except for
|
|
** document apVal[0], or false otherwise, and SQLITE_OK is returned. If an
|
|
** error occurs, an SQLite error code is returned.
|
|
*/
|
|
static int fts3IsEmpty(Fts3Table *p, sqlite3_value **apVal, int *pisEmpty){
|
|
sqlite3_stmt *pStmt;
|
|
int rc;
|
|
rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, apVal);
|
|
if( rc==SQLITE_OK ){
|
|
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
*pisEmpty = sqlite3_column_int(pStmt, 0);
|
|
}
|
|
rc = sqlite3_reset(pStmt);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Set *pnSegment to the number of segments of level iLevel in the database.
|
|
**
|
|
** Return SQLITE_OK if successful, or an SQLite error code if not.
|
|
*/
|
|
static int fts3SegmentCount(Fts3Table *p, int iLevel, int *pnSegment){
|
|
sqlite3_stmt *pStmt;
|
|
int rc;
|
|
|
|
assert( iLevel>=0 );
|
|
rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_COUNT, &pStmt, 0);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
sqlite3_bind_int(pStmt, 1, iLevel);
|
|
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
*pnSegment = sqlite3_column_int(pStmt, 0);
|
|
}
|
|
return sqlite3_reset(pStmt);
|
|
}
|
|
|
|
/*
|
|
** Set *pnSegment to the total number of segments in the database. Set
|
|
** *pnMax to the largest segment level in the database (segment levels
|
|
** are stored in the 'level' column of the %_segdir table).
|
|
**
|
|
** Return SQLITE_OK if successful, or an SQLite error code if not.
|
|
*/
|
|
static int fts3SegmentCountMax(Fts3Table *p, int *pnSegment, int *pnMax){
|
|
sqlite3_stmt *pStmt;
|
|
int rc;
|
|
|
|
rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_COUNT_MAX, &pStmt, 0);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
*pnSegment = sqlite3_column_int(pStmt, 0);
|
|
*pnMax = sqlite3_column_int(pStmt, 1);
|
|
}
|
|
return sqlite3_reset(pStmt);
|
|
}
|
|
|
|
/*
|
|
** This function is used after merging multiple segments into a single large
|
|
** segment to delete the old, now redundant, segment b-trees. Specifically,
|
|
** it:
|
|
**
|
|
** 1) Deletes all %_segments entries for the segments associated with
|
|
** each of the SegReader objects in the array passed as the third
|
|
** argument, and
|
|
**
|
|
** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
|
|
** entries regardless of level if (iLevel<0).
|
|
**
|
|
** SQLITE_OK is returned if successful, otherwise an SQLite error code.
|
|
*/
|
|
static int fts3DeleteSegdir(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
int iLevel, /* Level of %_segdir entries to delete */
|
|
Fts3SegReader **apSegment, /* Array of SegReader objects */
|
|
int nReader /* Size of array apSegment */
|
|
){
|
|
int rc; /* Return Code */
|
|
int i; /* Iterator variable */
|
|
sqlite3_stmt *pDelete; /* SQL statement to delete rows */
|
|
|
|
rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
|
|
for(i=0; rc==SQLITE_OK && i<nReader; i++){
|
|
Fts3SegReader *pSegment = apSegment[i];
|
|
if( pSegment->iStartBlock ){
|
|
sqlite3_bind_int64(pDelete, 1, pSegment->iStartBlock);
|
|
sqlite3_bind_int64(pDelete, 2, pSegment->iEndBlock);
|
|
sqlite3_step(pDelete);
|
|
rc = sqlite3_reset(pDelete);
|
|
}
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
if( iLevel>=0 ){
|
|
rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_BY_LEVEL, &pDelete, 0);
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_bind_int(pDelete, 1, iLevel);
|
|
sqlite3_step(pDelete);
|
|
rc = sqlite3_reset(pDelete);
|
|
}
|
|
}else{
|
|
rc = fts3SqlExec(p, SQL_DELETE_ALL_SEGDIR, 0);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** When this function is called, buffer *ppList (size *pnList bytes) contains
|
|
** a position list that may (or may not) feature multiple columns. This
|
|
** function adjusts the pointer *ppList and the length *pnList so that they
|
|
** identify the subset of the position list that corresponds to column iCol.
|
|
**
|
|
** If there are no entries in the input position list for column iCol, then
|
|
** *pnList is set to zero before returning.
|
|
*/
|
|
static void fts3ColumnFilter(
|
|
int iCol, /* Column to filter on */
|
|
char **ppList, /* IN/OUT: Pointer to position list */
|
|
int *pnList /* IN/OUT: Size of buffer *ppList in bytes */
|
|
){
|
|
char *pList = *ppList;
|
|
int nList = *pnList;
|
|
char *pEnd = &pList[nList];
|
|
int iCurrent = 0;
|
|
char *p = pList;
|
|
|
|
assert( iCol>=0 );
|
|
while( 1 ){
|
|
char c = 0;
|
|
while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
|
|
|
|
if( iCol==iCurrent ){
|
|
nList = (p - pList);
|
|
break;
|
|
}
|
|
|
|
nList -= (p - pList);
|
|
pList = p;
|
|
if( nList==0 ){
|
|
break;
|
|
}
|
|
p = &pList[1];
|
|
p += sqlite3Fts3GetVarint32(p, &iCurrent);
|
|
}
|
|
|
|
*ppList = pList;
|
|
*pnList = nList;
|
|
}
|
|
|
|
/*
|
|
** sqlite3Fts3SegReaderIterate() callback used when merging multiple
|
|
** segments to create a single, larger segment.
|
|
*/
|
|
static int fts3MergeCallback(
|
|
Fts3Table *p,
|
|
void *pContext,
|
|
char *zTerm,
|
|
int nTerm,
|
|
char *aDoclist,
|
|
int nDoclist
|
|
){
|
|
SegmentWriter **ppW = (SegmentWriter **)pContext;
|
|
return fts3SegWriterAdd(p, ppW, 1, zTerm, nTerm, aDoclist, nDoclist);
|
|
}
|
|
|
|
/*
|
|
** This function is used to iterate through a contiguous set of terms
|
|
** stored in the full-text index. It merges data contained in one or
|
|
** more segments to support this.
|
|
**
|
|
** The second argument is passed an array of pointers to SegReader objects
|
|
** allocated with sqlite3Fts3SegReaderNew(). This function merges the range
|
|
** of terms selected by each SegReader. If a single term is present in
|
|
** more than one segment, the associated doclists are merged. For each
|
|
** term and (possibly merged) doclist in the merged range, the callback
|
|
** function xFunc is invoked with its arguments set as follows.
|
|
**
|
|
** arg 0: Copy of 'p' parameter passed to this function
|
|
** arg 1: Copy of 'pContext' parameter passed to this function
|
|
** arg 2: Pointer to buffer containing term
|
|
** arg 3: Size of arg 2 buffer in bytes
|
|
** arg 4: Pointer to buffer containing doclist
|
|
** arg 5: Size of arg 2 buffer in bytes
|
|
**
|
|
** The 4th argument to this function is a pointer to a structure of type
|
|
** Fts3SegFilter, defined in fts3Int.h. The contents of this structure
|
|
** further restrict the range of terms that callbacks are made for and
|
|
** modify the behaviour of this function. See comments above structure
|
|
** definition for details.
|
|
*/
|
|
int sqlite3Fts3SegReaderIterate(
|
|
Fts3Table *p, /* Virtual table handle */
|
|
Fts3SegReader **apSegment, /* Array of Fts3SegReader objects */
|
|
int nSegment, /* Size of apSegment array */
|
|
Fts3SegFilter *pFilter, /* Restrictions on range of iteration */
|
|
int (*xFunc)(Fts3Table *, void *, char *, int, char *, int), /* Callback */
|
|
void *pContext /* Callback context (2nd argument) */
|
|
){
|
|
int i; /* Iterator variable */
|
|
char *aBuffer = 0; /* Buffer to merge doclists in */
|
|
int nAlloc = 0; /* Allocated size of aBuffer buffer */
|
|
int rc = SQLITE_OK; /* Return code */
|
|
|
|
int isIgnoreEmpty = (pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
|
|
int isRequirePos = (pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
|
|
int isColFilter = (pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
|
|
int isPrefix = (pFilter->flags & FTS3_SEGMENT_PREFIX);
|
|
|
|
/* If the Fts3SegFilter defines a specific term (or term prefix) to search
|
|
** for, then advance each segment iterator until it points to a term of
|
|
** equal or greater value than the specified term. This prevents many
|
|
** unnecessary merge/sort operations for the case where single segment
|
|
** b-tree leaf nodes contain more than one term.
|
|
*/
|
|
if( pFilter->zTerm ){
|
|
int nTerm = pFilter->nTerm;
|
|
const char *zTerm = pFilter->zTerm;
|
|
for(i=0; i<nSegment; i++){
|
|
Fts3SegReader *pSeg = apSegment[i];
|
|
while( fts3SegReaderTermCmp(pSeg, zTerm, nTerm)<0 ){
|
|
rc = fts3SegReaderNext(pSeg);
|
|
if( rc!=SQLITE_OK ) goto finished;
|
|
}
|
|
}
|
|
}
|
|
|
|
fts3SegReaderSort(apSegment, nSegment, nSegment, fts3SegReaderCmp);
|
|
while( apSegment[0]->aNode ){
|
|
int nTerm = apSegment[0]->nTerm;
|
|
char *zTerm = apSegment[0]->zTerm;
|
|
int nMerge = 1;
|
|
|
|
/* If this is a prefix-search, and if the term that apSegment[0] points
|
|
** to does not share a suffix with pFilter->zTerm/nTerm, then all
|
|
** required callbacks have been made. In this case exit early.
|
|
**
|
|
** Similarly, if this is a search for an exact match, and the first term
|
|
** of segment apSegment[0] is not a match, exit early.
|
|
*/
|
|
if( pFilter->zTerm ){
|
|
if( nTerm<pFilter->nTerm
|
|
|| (!isPrefix && nTerm>pFilter->nTerm)
|
|
|| memcmp(zTerm, pFilter->zTerm, pFilter->nTerm)
|
|
){
|
|
goto finished;
|
|
}
|
|
}
|
|
|
|
while( nMerge<nSegment
|
|
&& apSegment[nMerge]->aNode
|
|
&& apSegment[nMerge]->nTerm==nTerm
|
|
&& 0==memcmp(zTerm, apSegment[nMerge]->zTerm, nTerm)
|
|
){
|
|
nMerge++;
|
|
}
|
|
|
|
if( nMerge==1 && !isIgnoreEmpty && !isColFilter && isRequirePos ){
|
|
Fts3SegReader *p0 = apSegment[0];
|
|
rc = xFunc(p, pContext, zTerm, nTerm, p0->aDoclist, p0->nDoclist);
|
|
if( rc!=SQLITE_OK ) goto finished;
|
|
}else{
|
|
int nDoclist = 0; /* Size of doclist */
|
|
sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */
|
|
|
|
/* The current term of the first nMerge entries in the array
|
|
** of Fts3SegReader objects is the same. The doclists must be merged
|
|
** and a single term added to the new segment.
|
|
*/
|
|
for(i=0; i<nMerge; i++){
|
|
fts3SegReaderFirstDocid(apSegment[i]);
|
|
}
|
|
fts3SegReaderSort(apSegment, nMerge, nMerge, fts3SegReaderDoclistCmp);
|
|
while( apSegment[0]->pOffsetList ){
|
|
int j; /* Number of segments that share a docid */
|
|
char *pList;
|
|
int nList;
|
|
int nByte;
|
|
sqlite3_int64 iDocid = apSegment[0]->iDocid;
|
|
fts3SegReaderNextDocid(apSegment[0], &pList, &nList);
|
|
j = 1;
|
|
while( j<nMerge
|
|
&& apSegment[j]->pOffsetList
|
|
&& apSegment[j]->iDocid==iDocid
|
|
){
|
|
fts3SegReaderNextDocid(apSegment[j], 0, 0);
|
|
j++;
|
|
}
|
|
|
|
if( isColFilter ){
|
|
fts3ColumnFilter(pFilter->iCol, &pList, &nList);
|
|
}
|
|
|
|
if( !isIgnoreEmpty || nList>0 ){
|
|
nByte = sqlite3Fts3VarintLen(iDocid-iPrev) + (isRequirePos?nList+1:0);
|
|
if( nDoclist+nByte>nAlloc ){
|
|
char *aNew;
|
|
nAlloc = nDoclist+nByte*2;
|
|
aNew = sqlite3_realloc(aBuffer, nAlloc);
|
|
if( !aNew ){
|
|
rc = SQLITE_NOMEM;
|
|
goto finished;
|
|
}
|
|
aBuffer = aNew;
|
|
}
|
|
nDoclist += sqlite3Fts3PutVarint(&aBuffer[nDoclist], iDocid-iPrev);
|
|
iPrev = iDocid;
|
|
if( isRequirePos ){
|
|
memcpy(&aBuffer[nDoclist], pList, nList);
|
|
nDoclist += nList;
|
|
aBuffer[nDoclist++] = '\0';
|
|
}
|
|
}
|
|
|
|
fts3SegReaderSort(apSegment, nMerge, j, fts3SegReaderDoclistCmp);
|
|
}
|
|
|
|
if( nDoclist>0 ){
|
|
rc = xFunc(p, pContext, zTerm, nTerm, aBuffer, nDoclist);
|
|
if( rc!=SQLITE_OK ) goto finished;
|
|
}
|
|
}
|
|
|
|
/* If there is a term specified to filter on, and this is not a prefix
|
|
** search, return now. The callback that corresponds to the required
|
|
** term (if such a term exists in the index) has already been made.
|
|
*/
|
|
if( pFilter->zTerm && !isPrefix ){
|
|
goto finished;
|
|
}
|
|
|
|
for(i=0; i<nMerge; i++){
|
|
rc = fts3SegReaderNext(apSegment[i]);
|
|
if( rc!=SQLITE_OK ) goto finished;
|
|
}
|
|
fts3SegReaderSort(apSegment, nSegment, nMerge, fts3SegReaderCmp);
|
|
}
|
|
|
|
finished:
|
|
sqlite3_free(aBuffer);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Merge all level iLevel segments in the database into a single
|
|
** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
|
|
** single segment with a level equal to the numerically largest level
|
|
** currently present in the database.
|
|
**
|
|
** If this function is called with iLevel<0, but there is only one
|
|
** segment in the database, SQLITE_DONE is returned immediately.
|
|
** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
|
|
** an SQLite error code is returned.
|
|
*/
|
|
static int fts3SegmentMerge(Fts3Table *p, int iLevel){
|
|
int i; /* Iterator variable */
|
|
int rc; /* Return code */
|
|
int iIdx; /* Index of new segment */
|
|
int iNewLevel; /* Level to create new segment at */
|
|
sqlite3_stmt *pStmt;
|
|
SegmentWriter *pWriter = 0;
|
|
int nSegment = 0; /* Number of segments being merged */
|
|
Fts3SegReader **apSegment = 0; /* Array of Segment iterators */
|
|
Fts3SegFilter filter; /* Segment term filter condition */
|
|
|
|
if( iLevel<0 ){
|
|
/* This call is to merge all segments in the database to a single
|
|
** segment. The level of the new segment is equal to the the numerically
|
|
** greatest segment level currently present in the database. The index
|
|
** of the new segment is always 0.
|
|
*/
|
|
iIdx = 0;
|
|
rc = fts3SegmentCountMax(p, &nSegment, &iNewLevel);
|
|
if( nSegment==1 ){
|
|
return SQLITE_DONE;
|
|
}
|
|
}else{
|
|
/* This call is to merge all segments at level iLevel. Find the next
|
|
** available segment index at level iLevel+1. The call to
|
|
** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
|
|
** a single iLevel+2 segment if necessary.
|
|
*/
|
|
iNewLevel = iLevel+1;
|
|
rc = fts3AllocateSegdirIdx(p, iNewLevel, &iIdx);
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
rc = fts3SegmentCount(p, iLevel, &nSegment);
|
|
}
|
|
if( rc!=SQLITE_OK ) return rc;
|
|
assert( nSegment>0 );
|
|
assert( iNewLevel>=0 );
|
|
|
|
/* Allocate space for an array of pointers to segment iterators. */
|
|
apSegment = (Fts3SegReader**)sqlite3_malloc(sizeof(Fts3SegReader *)*nSegment);
|
|
if( !apSegment ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
memset(apSegment, 0, sizeof(Fts3SegReader *)*nSegment);
|
|
|
|
/* Allocate a Fts3SegReader structure for each segment being merged. A
|
|
** Fts3SegReader stores the state data required to iterate through all
|
|
** entries on all leaves of a single segment.
|
|
*/
|
|
assert( SQL_SELECT_LEVEL+1==SQL_SELECT_ALL_LEVEL);
|
|
rc = fts3SqlStmt(p, SQL_SELECT_LEVEL+(iLevel<0), &pStmt, 0);
|
|
if( rc!=SQLITE_OK ) goto finished;
|
|
sqlite3_bind_int(pStmt, 1, iLevel);
|
|
for(i=0; SQLITE_ROW==(sqlite3_step(pStmt)); i++){
|
|
rc = fts3SegReaderNew(p, pStmt, i, &apSegment[i]);
|
|
if( rc!=SQLITE_OK ){
|
|
goto finished;
|
|
}
|
|
}
|
|
rc = sqlite3_reset(pStmt);
|
|
pStmt = 0;
|
|
if( rc!=SQLITE_OK ) goto finished;
|
|
|
|
memset(&filter, 0, sizeof(Fts3SegFilter));
|
|
filter.flags = FTS3_SEGMENT_REQUIRE_POS;
|
|
filter.flags |= (iLevel<0 ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
|
|
rc = sqlite3Fts3SegReaderIterate(p, apSegment, nSegment,
|
|
&filter, fts3MergeCallback, (void *)&pWriter
|
|
);
|
|
if( rc!=SQLITE_OK ) goto finished;
|
|
|
|
rc = fts3DeleteSegdir(p, iLevel, apSegment, nSegment);
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);
|
|
}
|
|
|
|
finished:
|
|
fts3SegWriterFree(pWriter);
|
|
if( apSegment ){
|
|
for(i=0; i<nSegment; i++){
|
|
sqlite3Fts3SegReaderFree(p, apSegment[i]);
|
|
}
|
|
sqlite3_free(apSegment);
|
|
}
|
|
sqlite3_reset(pStmt);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This is a comparison function used as a qsort() callback when sorting
|
|
** an array of pending terms by term. This occurs as part of flushing
|
|
** the contents of the pending-terms hash table to the database.
|
|
*/
|
|
static int qsortCompare(const void *lhs, const void *rhs){
|
|
char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
|
|
char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
|
|
int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
|
|
int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);
|
|
|
|
int n = (n1<n2 ? n1 : n2);
|
|
int c = memcmp(z1, z2, n);
|
|
if( c==0 ){
|
|
c = n1 - n2;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
/*
|
|
** Flush the contents of pendingTerms to a level 0 segment.
|
|
*/
|
|
int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
|
|
Fts3HashElem *pElem;
|
|
int idx, rc, i;
|
|
Fts3HashElem **apElem; /* Array of pointers to hash elements */
|
|
int nElem; /* Number of terms in new segment */
|
|
SegmentWriter *pWriter = 0; /* Used to write the segment */
|
|
|
|
/* Find the number of terms that will make up the new segment. If there
|
|
** are no terms, return early (do not bother to write an empty segment).
|
|
*/
|
|
nElem = fts3HashCount(&p->pendingTerms);
|
|
if( nElem==0 ){
|
|
assert( p->nPendingData==0 );
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Determine the next index at level 0, merging as necessary. */
|
|
rc = fts3AllocateSegdirIdx(p, 0, &idx);
|
|
if( rc!=SQLITE_OK ){
|
|
return rc;
|
|
}
|
|
|
|
apElem = sqlite3_malloc(nElem*sizeof(Fts3HashElem *));
|
|
if( !apElem ){
|
|
return SQLITE_NOMEM;
|
|
}
|
|
|
|
i = 0;
|
|
for(pElem=fts3HashFirst(&p->pendingTerms); pElem; pElem=fts3HashNext(pElem)){
|
|
apElem[i++] = pElem;
|
|
}
|
|
assert( i==nElem );
|
|
|
|
/* TODO(shess) Should we allow user-defined collation sequences,
|
|
** here? I think we only need that once we support prefix searches.
|
|
** Also, should we be using qsort()?
|
|
*/
|
|
if( nElem>1 ){
|
|
qsort(apElem, nElem, sizeof(Fts3HashElem *), qsortCompare);
|
|
}
|
|
|
|
|
|
/* Write the segment tree into the database. */
|
|
for(i=0; rc==SQLITE_OK && i<nElem; i++){
|
|
const char *z = fts3HashKey(apElem[i]);
|
|
int n = fts3HashKeysize(apElem[i]);
|
|
PendingList *pList = fts3HashData(apElem[i]);
|
|
rc = fts3SegWriterAdd(p, &pWriter, 0, z, n, pList->aData, pList->nData+1);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3SegWriterFlush(p, pWriter, 0, idx);
|
|
}
|
|
|
|
/* Free all allocated resources before returning */
|
|
fts3SegWriterFree(pWriter);
|
|
sqlite3_free(apElem);
|
|
sqlite3Fts3PendingTermsClear(p);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function does the work for the xUpdate method of FTS3 virtual
|
|
** tables.
|
|
*/
|
|
int sqlite3Fts3UpdateMethod(
|
|
sqlite3_vtab *pVtab, /* FTS3 vtab object */
|
|
int nArg, /* Size of argument array */
|
|
sqlite3_value **apVal, /* Array of arguments */
|
|
sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
|
|
){
|
|
Fts3Table *p = (Fts3Table *)pVtab;
|
|
int rc = SQLITE_OK; /* Return Code */
|
|
int isRemove = 0; /* True for an UPDATE or DELETE */
|
|
sqlite3_int64 iRemove; /* Rowid removed by UPDATE or DELETE */
|
|
|
|
/* If this is a DELETE or UPDATE operation, remove the old record. */
|
|
if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
|
|
int isEmpty;
|
|
rc = fts3IsEmpty(p, apVal, &isEmpty);
|
|
if( rc==SQLITE_OK ){
|
|
if( isEmpty ){
|
|
/* Deleting this row means the whole table is empty. In this case
|
|
** delete the contents of all three tables and throw away any
|
|
** data in the pendingTerms hash table.
|
|
*/
|
|
rc = fts3DeleteAll(p);
|
|
}else{
|
|
isRemove = 1;
|
|
iRemove = sqlite3_value_int64(apVal[0]);
|
|
rc = fts3PendingTermsDocid(p, iRemove);
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3DeleteTerms(p, apVal);
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3SqlExec(p, SQL_DELETE_CONTENT, apVal);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If this is an INSERT or UPDATE operation, insert the new record. */
|
|
if( nArg>1 && rc==SQLITE_OK ){
|
|
rc = fts3InsertData(p, apVal, pRowid);
|
|
if( rc==SQLITE_OK && (!isRemove || *pRowid!=iRemove) ){
|
|
rc = fts3PendingTermsDocid(p, *pRowid);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3InsertTerms(p, apVal);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Flush any data in the pending-terms hash table to disk. If successful,
|
|
** merge all segments in the database (including the new segment, if
|
|
** there was any data to flush) into a single segment.
|
|
*/
|
|
int sqlite3Fts3Optimize(Fts3Table *p){
|
|
int rc = sqlite3Fts3PendingTermsFlush(p);
|
|
if( rc==SQLITE_OK ){
|
|
rc = fts3SegmentMerge(p, -1);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
#endif
|