1739 lines
60 KiB
C
1739 lines
60 KiB
C
/*
|
|
** 2001 September 15
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
** This file contains C code routines that are called by the parser
|
|
** to handle INSERT statements in SQLite.
|
|
**
|
|
** $Id: insert.c,v 1.249 2008/08/20 16:35:10 drh Exp $
|
|
*/
|
|
#include "sqliteInt.h"
|
|
|
|
/*
|
|
** Set P4 of the most recently inserted opcode to a column affinity
|
|
** string for index pIdx. A column affinity string has one character
|
|
** for each column in the table, according to the affinity of the column:
|
|
**
|
|
** Character Column affinity
|
|
** ------------------------------
|
|
** 'a' TEXT
|
|
** 'b' NONE
|
|
** 'c' NUMERIC
|
|
** 'd' INTEGER
|
|
** 'e' REAL
|
|
**
|
|
** An extra 'b' is appended to the end of the string to cover the
|
|
** rowid that appears as the last column in every index.
|
|
*/
|
|
void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
|
|
if( !pIdx->zColAff ){
|
|
/* The first time a column affinity string for a particular index is
|
|
** required, it is allocated and populated here. It is then stored as
|
|
** a member of the Index structure for subsequent use.
|
|
**
|
|
** The column affinity string will eventually be deleted by
|
|
** sqliteDeleteIndex() when the Index structure itself is cleaned
|
|
** up.
|
|
*/
|
|
int n;
|
|
Table *pTab = pIdx->pTable;
|
|
sqlite3 *db = sqlite3VdbeDb(v);
|
|
pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2);
|
|
if( !pIdx->zColAff ){
|
|
db->mallocFailed = 1;
|
|
return;
|
|
}
|
|
for(n=0; n<pIdx->nColumn; n++){
|
|
pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
|
|
}
|
|
pIdx->zColAff[n++] = SQLITE_AFF_NONE;
|
|
pIdx->zColAff[n] = 0;
|
|
}
|
|
|
|
sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
|
|
}
|
|
|
|
/*
|
|
** Set P4 of the most recently inserted opcode to a column affinity
|
|
** string for table pTab. A column affinity string has one character
|
|
** for each column indexed by the index, according to the affinity of the
|
|
** column:
|
|
**
|
|
** Character Column affinity
|
|
** ------------------------------
|
|
** 'a' TEXT
|
|
** 'b' NONE
|
|
** 'c' NUMERIC
|
|
** 'd' INTEGER
|
|
** 'e' REAL
|
|
*/
|
|
void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
|
|
/* The first time a column affinity string for a particular table
|
|
** is required, it is allocated and populated here. It is then
|
|
** stored as a member of the Table structure for subsequent use.
|
|
**
|
|
** The column affinity string will eventually be deleted by
|
|
** sqlite3DeleteTable() when the Table structure itself is cleaned up.
|
|
*/
|
|
if( !pTab->zColAff ){
|
|
char *zColAff;
|
|
int i;
|
|
sqlite3 *db = sqlite3VdbeDb(v);
|
|
|
|
zColAff = (char *)sqlite3Malloc(pTab->nCol+1);
|
|
if( !zColAff ){
|
|
db->mallocFailed = 1;
|
|
return;
|
|
}
|
|
|
|
for(i=0; i<pTab->nCol; i++){
|
|
zColAff[i] = pTab->aCol[i].affinity;
|
|
}
|
|
zColAff[pTab->nCol] = '\0';
|
|
|
|
pTab->zColAff = zColAff;
|
|
}
|
|
|
|
sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
|
|
}
|
|
|
|
/*
|
|
** Return non-zero if the table pTab in database iDb or any of its indices
|
|
** have been opened at any point in the VDBE program beginning at location
|
|
** iStartAddr throught the end of the program. This is used to see if
|
|
** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
|
|
** run without using temporary table for the results of the SELECT.
|
|
*/
|
|
static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
|
|
int i;
|
|
int iEnd = sqlite3VdbeCurrentAddr(v);
|
|
for(i=iStartAddr; i<iEnd; i++){
|
|
VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
|
|
assert( pOp!=0 );
|
|
if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
|
|
Index *pIndex;
|
|
int tnum = pOp->p2;
|
|
if( tnum==pTab->tnum ){
|
|
return 1;
|
|
}
|
|
for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
|
|
if( tnum==pIndex->tnum ){
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
|
|
assert( pOp->p4.pVtab!=0 );
|
|
assert( pOp->p4type==P4_VTAB );
|
|
return 1;
|
|
}
|
|
#endif
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_AUTOINCREMENT
|
|
/*
|
|
** Write out code to initialize the autoincrement logic. This code
|
|
** looks up the current autoincrement value in the sqlite_sequence
|
|
** table and stores that value in a register. Code generated by
|
|
** autoIncStep() will keep that register holding the largest
|
|
** rowid value. Code generated by autoIncEnd() will write the new
|
|
** largest value of the counter back into the sqlite_sequence table.
|
|
**
|
|
** This routine returns the index of the mem[] cell that contains
|
|
** the maximum rowid counter.
|
|
**
|
|
** Three consecutive registers are allocated by this routine. The
|
|
** first two hold the name of the target table and the maximum rowid
|
|
** inserted into the target table, respectively.
|
|
** The third holds the rowid in sqlite_sequence where we will
|
|
** write back the revised maximum rowid. This routine returns the
|
|
** index of the second of these three registers.
|
|
*/
|
|
static int autoIncBegin(
|
|
Parse *pParse, /* Parsing context */
|
|
int iDb, /* Index of the database holding pTab */
|
|
Table *pTab /* The table we are writing to */
|
|
){
|
|
int memId = 0; /* Register holding maximum rowid */
|
|
if( pTab->tabFlags & TF_Autoincrement ){
|
|
Vdbe *v = pParse->pVdbe;
|
|
Db *pDb = &pParse->db->aDb[iDb];
|
|
int iCur = pParse->nTab;
|
|
int addr; /* Address of the top of the loop */
|
|
assert( v );
|
|
pParse->nMem++; /* Holds name of table */
|
|
memId = ++pParse->nMem;
|
|
pParse->nMem++;
|
|
sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
|
|
addr = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+9);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
|
|
sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
|
|
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
|
|
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
|
|
sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
|
|
}
|
|
return memId;
|
|
}
|
|
|
|
/*
|
|
** Update the maximum rowid for an autoincrement calculation.
|
|
**
|
|
** This routine should be called when the top of the stack holds a
|
|
** new rowid that is about to be inserted. If that new rowid is
|
|
** larger than the maximum rowid in the memId memory cell, then the
|
|
** memory cell is updated. The stack is unchanged.
|
|
*/
|
|
static void autoIncStep(Parse *pParse, int memId, int regRowid){
|
|
if( memId>0 ){
|
|
sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** After doing one or more inserts, the maximum rowid is stored
|
|
** in reg[memId]. Generate code to write this value back into the
|
|
** the sqlite_sequence table.
|
|
*/
|
|
static void autoIncEnd(
|
|
Parse *pParse, /* The parsing context */
|
|
int iDb, /* Index of the database holding pTab */
|
|
Table *pTab, /* Table we are inserting into */
|
|
int memId /* Memory cell holding the maximum rowid */
|
|
){
|
|
if( pTab->tabFlags & TF_Autoincrement ){
|
|
int iCur = pParse->nTab;
|
|
Vdbe *v = pParse->pVdbe;
|
|
Db *pDb = &pParse->db->aDb[iDb];
|
|
int j1;
|
|
int iRec = ++pParse->nMem; /* Memory cell used for record */
|
|
|
|
assert( v );
|
|
sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
|
sqlite3VdbeAddOp1(v, OP_Close, iCur);
|
|
}
|
|
}
|
|
#else
|
|
/*
|
|
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
|
|
** above are all no-ops
|
|
*/
|
|
# define autoIncBegin(A,B,C) (0)
|
|
# define autoIncStep(A,B,C)
|
|
# define autoIncEnd(A,B,C,D)
|
|
#endif /* SQLITE_OMIT_AUTOINCREMENT */
|
|
|
|
|
|
/* Forward declaration */
|
|
static int xferOptimization(
|
|
Parse *pParse, /* Parser context */
|
|
Table *pDest, /* The table we are inserting into */
|
|
Select *pSelect, /* A SELECT statement to use as the data source */
|
|
int onError, /* How to handle constraint errors */
|
|
int iDbDest /* The database of pDest */
|
|
);
|
|
|
|
/*
|
|
** This routine is call to handle SQL of the following forms:
|
|
**
|
|
** insert into TABLE (IDLIST) values(EXPRLIST)
|
|
** insert into TABLE (IDLIST) select
|
|
**
|
|
** The IDLIST following the table name is always optional. If omitted,
|
|
** then a list of all columns for the table is substituted. The IDLIST
|
|
** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
|
|
**
|
|
** The pList parameter holds EXPRLIST in the first form of the INSERT
|
|
** statement above, and pSelect is NULL. For the second form, pList is
|
|
** NULL and pSelect is a pointer to the select statement used to generate
|
|
** data for the insert.
|
|
**
|
|
** The code generated follows one of four templates. For a simple
|
|
** select with data coming from a VALUES clause, the code executes
|
|
** once straight down through. Pseudo-code follows (we call this
|
|
** the "1st template"):
|
|
**
|
|
** open write cursor to <table> and its indices
|
|
** puts VALUES clause expressions onto the stack
|
|
** write the resulting record into <table>
|
|
** cleanup
|
|
**
|
|
** The three remaining templates assume the statement is of the form
|
|
**
|
|
** INSERT INTO <table> SELECT ...
|
|
**
|
|
** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
|
|
** in other words if the SELECT pulls all columns from a single table
|
|
** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
|
|
** if <table2> and <table1> are distinct tables but have identical
|
|
** schemas, including all the same indices, then a special optimization
|
|
** is invoked that copies raw records from <table2> over to <table1>.
|
|
** See the xferOptimization() function for the implementation of this
|
|
** template. This is the 2nd template.
|
|
**
|
|
** open a write cursor to <table>
|
|
** open read cursor on <table2>
|
|
** transfer all records in <table2> over to <table>
|
|
** close cursors
|
|
** foreach index on <table>
|
|
** open a write cursor on the <table> index
|
|
** open a read cursor on the corresponding <table2> index
|
|
** transfer all records from the read to the write cursors
|
|
** close cursors
|
|
** end foreach
|
|
**
|
|
** The 3rd template is for when the second template does not apply
|
|
** and the SELECT clause does not read from <table> at any time.
|
|
** The generated code follows this template:
|
|
**
|
|
** EOF <- 0
|
|
** X <- A
|
|
** goto B
|
|
** A: setup for the SELECT
|
|
** loop over the rows in the SELECT
|
|
** load values into registers R..R+n
|
|
** yield X
|
|
** end loop
|
|
** cleanup after the SELECT
|
|
** EOF <- 1
|
|
** yield X
|
|
** goto A
|
|
** B: open write cursor to <table> and its indices
|
|
** C: yield X
|
|
** if EOF goto D
|
|
** insert the select result into <table> from R..R+n
|
|
** goto C
|
|
** D: cleanup
|
|
**
|
|
** The 4th template is used if the insert statement takes its
|
|
** values from a SELECT but the data is being inserted into a table
|
|
** that is also read as part of the SELECT. In the third form,
|
|
** we have to use a intermediate table to store the results of
|
|
** the select. The template is like this:
|
|
**
|
|
** EOF <- 0
|
|
** X <- A
|
|
** goto B
|
|
** A: setup for the SELECT
|
|
** loop over the tables in the SELECT
|
|
** load value into register R..R+n
|
|
** yield X
|
|
** end loop
|
|
** cleanup after the SELECT
|
|
** EOF <- 1
|
|
** yield X
|
|
** halt-error
|
|
** B: open temp table
|
|
** L: yield X
|
|
** if EOF goto M
|
|
** insert row from R..R+n into temp table
|
|
** goto L
|
|
** M: open write cursor to <table> and its indices
|
|
** rewind temp table
|
|
** C: loop over rows of intermediate table
|
|
** transfer values form intermediate table into <table>
|
|
** end loop
|
|
** D: cleanup
|
|
*/
|
|
void sqlite3Insert(
|
|
Parse *pParse, /* Parser context */
|
|
SrcList *pTabList, /* Name of table into which we are inserting */
|
|
ExprList *pList, /* List of values to be inserted */
|
|
Select *pSelect, /* A SELECT statement to use as the data source */
|
|
IdList *pColumn, /* Column names corresponding to IDLIST. */
|
|
int onError /* How to handle constraint errors */
|
|
){
|
|
sqlite3 *db; /* The main database structure */
|
|
Table *pTab; /* The table to insert into. aka TABLE */
|
|
char *zTab; /* Name of the table into which we are inserting */
|
|
const char *zDb; /* Name of the database holding this table */
|
|
int i, j, idx; /* Loop counters */
|
|
Vdbe *v; /* Generate code into this virtual machine */
|
|
Index *pIdx; /* For looping over indices of the table */
|
|
int nColumn; /* Number of columns in the data */
|
|
int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
|
|
int baseCur = 0; /* VDBE Cursor number for pTab */
|
|
int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
|
|
int endOfLoop; /* Label for the end of the insertion loop */
|
|
int useTempTable = 0; /* Store SELECT results in intermediate table */
|
|
int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
|
|
int addrInsTop = 0; /* Jump to label "D" */
|
|
int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
|
|
int addrSelect = 0; /* Address of coroutine that implements the SELECT */
|
|
SelectDest dest; /* Destination for SELECT on rhs of INSERT */
|
|
int newIdx = -1; /* Cursor for the NEW pseudo-table */
|
|
int iDb; /* Index of database holding TABLE */
|
|
Db *pDb; /* The database containing table being inserted into */
|
|
int appendFlag = 0; /* True if the insert is likely to be an append */
|
|
|
|
/* Register allocations */
|
|
int regFromSelect; /* Base register for data coming from SELECT */
|
|
int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
|
|
int regRowCount = 0; /* Memory cell used for the row counter */
|
|
int regIns; /* Block of regs holding rowid+data being inserted */
|
|
int regRowid; /* registers holding insert rowid */
|
|
int regData; /* register holding first column to insert */
|
|
int regRecord; /* Holds the assemblied row record */
|
|
int regEof; /* Register recording end of SELECT data */
|
|
int *aRegIdx = 0; /* One register allocated to each index */
|
|
|
|
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
int isView; /* True if attempting to insert into a view */
|
|
int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
|
|
#endif
|
|
|
|
db = pParse->db;
|
|
if( pParse->nErr || db->mallocFailed ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* Locate the table into which we will be inserting new information.
|
|
*/
|
|
assert( pTabList->nSrc==1 );
|
|
zTab = pTabList->a[0].zName;
|
|
if( zTab==0 ) goto insert_cleanup;
|
|
pTab = sqlite3SrcListLookup(pParse, pTabList);
|
|
if( pTab==0 ){
|
|
goto insert_cleanup;
|
|
}
|
|
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
|
assert( iDb<db->nDb );
|
|
pDb = &db->aDb[iDb];
|
|
zDb = pDb->zName;
|
|
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* Figure out if we have any triggers and if the table being
|
|
** inserted into is a view
|
|
*/
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
|
|
isView = pTab->pSelect!=0;
|
|
#else
|
|
# define triggers_exist 0
|
|
# define isView 0
|
|
#endif
|
|
#ifdef SQLITE_OMIT_VIEW
|
|
# undef isView
|
|
# define isView 0
|
|
#endif
|
|
|
|
/* Ensure that:
|
|
* (a) the table is not read-only,
|
|
* (b) that if it is a view then ON INSERT triggers exist
|
|
*/
|
|
if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
|
|
goto insert_cleanup;
|
|
}
|
|
assert( pTab!=0 );
|
|
|
|
/* If pTab is really a view, make sure it has been initialized.
|
|
** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
|
|
** module table).
|
|
*/
|
|
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* Allocate a VDBE
|
|
*/
|
|
v = sqlite3GetVdbe(pParse);
|
|
if( v==0 ) goto insert_cleanup;
|
|
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
|
|
sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
|
|
|
|
/* if there are row triggers, allocate a temp table for new.* references. */
|
|
if( triggers_exist ){
|
|
newIdx = pParse->nTab++;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_XFER_OPT
|
|
/* If the statement is of the form
|
|
**
|
|
** INSERT INTO <table1> SELECT * FROM <table2>;
|
|
**
|
|
** Then special optimizations can be applied that make the transfer
|
|
** very fast and which reduce fragmentation of indices.
|
|
**
|
|
** This is the 2nd template.
|
|
*/
|
|
if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
|
|
assert( !triggers_exist );
|
|
assert( pList==0 );
|
|
goto insert_cleanup;
|
|
}
|
|
#endif /* SQLITE_OMIT_XFER_OPT */
|
|
|
|
/* If this is an AUTOINCREMENT table, look up the sequence number in the
|
|
** sqlite_sequence table and store it in memory cell regAutoinc.
|
|
*/
|
|
regAutoinc = autoIncBegin(pParse, iDb, pTab);
|
|
|
|
/* Figure out how many columns of data are supplied. If the data
|
|
** is coming from a SELECT statement, then generate a co-routine that
|
|
** produces a single row of the SELECT on each invocation. The
|
|
** co-routine is the common header to the 3rd and 4th templates.
|
|
*/
|
|
if( pSelect ){
|
|
/* Data is coming from a SELECT. Generate code to implement that SELECT
|
|
** as a co-routine. The code is common to both the 3rd and 4th
|
|
** templates:
|
|
**
|
|
** EOF <- 0
|
|
** X <- A
|
|
** goto B
|
|
** A: setup for the SELECT
|
|
** loop over the tables in the SELECT
|
|
** load value into register R..R+n
|
|
** yield X
|
|
** end loop
|
|
** cleanup after the SELECT
|
|
** EOF <- 1
|
|
** yield X
|
|
** halt-error
|
|
**
|
|
** On each invocation of the co-routine, it puts a single row of the
|
|
** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
|
|
** (These output registers are allocated by sqlite3Select().) When
|
|
** the SELECT completes, it sets the EOF flag stored in regEof.
|
|
*/
|
|
int rc, j1;
|
|
|
|
regEof = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */
|
|
VdbeComment((v, "SELECT eof flag"));
|
|
sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
|
|
addrSelect = sqlite3VdbeCurrentAddr(v)+2;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
|
|
j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
|
VdbeComment((v, "Jump over SELECT coroutine"));
|
|
|
|
/* Resolve the expressions in the SELECT statement and execute it. */
|
|
rc = sqlite3Select(pParse, pSelect, &dest);
|
|
if( rc || pParse->nErr || db->mallocFailed ){
|
|
goto insert_cleanup;
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */
|
|
sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */
|
|
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
|
|
VdbeComment((v, "End of SELECT coroutine"));
|
|
sqlite3VdbeJumpHere(v, j1); /* label B: */
|
|
|
|
regFromSelect = dest.iMem;
|
|
assert( pSelect->pEList );
|
|
nColumn = pSelect->pEList->nExpr;
|
|
assert( dest.nMem==nColumn );
|
|
|
|
/* Set useTempTable to TRUE if the result of the SELECT statement
|
|
** should be written into a temporary table (template 4). Set to
|
|
** FALSE if each* row of the SELECT can be written directly into
|
|
** the destination table (template 3).
|
|
**
|
|
** A temp table must be used if the table being updated is also one
|
|
** of the tables being read by the SELECT statement. Also use a
|
|
** temp table in the case of row triggers.
|
|
*/
|
|
if( triggers_exist || readsTable(v, addrSelect, iDb, pTab) ){
|
|
useTempTable = 1;
|
|
}
|
|
|
|
if( useTempTable ){
|
|
/* Invoke the coroutine to extract information from the SELECT
|
|
** and add it to a transient table srcTab. The code generated
|
|
** here is from the 4th template:
|
|
**
|
|
** B: open temp table
|
|
** L: yield X
|
|
** if EOF goto M
|
|
** insert row from R..R+n into temp table
|
|
** goto L
|
|
** M: ...
|
|
*/
|
|
int regRec; /* Register to hold packed record */
|
|
int regRowid; /* Register to hold temp table ROWID */
|
|
int addrTop; /* Label "L" */
|
|
int addrIf; /* Address of jump to M */
|
|
|
|
srcTab = pParse->nTab++;
|
|
regRec = sqlite3GetTempReg(pParse);
|
|
regRowid = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
|
|
addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
|
|
addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
|
|
sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
|
|
sqlite3VdbeJumpHere(v, addrIf);
|
|
sqlite3ReleaseTempReg(pParse, regRec);
|
|
sqlite3ReleaseTempReg(pParse, regRowid);
|
|
}
|
|
}else{
|
|
/* This is the case if the data for the INSERT is coming from a VALUES
|
|
** clause
|
|
*/
|
|
NameContext sNC;
|
|
memset(&sNC, 0, sizeof(sNC));
|
|
sNC.pParse = pParse;
|
|
srcTab = -1;
|
|
assert( useTempTable==0 );
|
|
nColumn = pList ? pList->nExpr : 0;
|
|
for(i=0; i<nColumn; i++){
|
|
if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Make sure the number of columns in the source data matches the number
|
|
** of columns to be inserted into the table.
|
|
*/
|
|
if( IsVirtual(pTab) ){
|
|
for(i=0; i<pTab->nCol; i++){
|
|
nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
|
|
}
|
|
}
|
|
if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
|
|
sqlite3ErrorMsg(pParse,
|
|
"table %S has %d columns but %d values were supplied",
|
|
pTabList, 0, pTab->nCol, nColumn);
|
|
goto insert_cleanup;
|
|
}
|
|
if( pColumn!=0 && nColumn!=pColumn->nId ){
|
|
sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
|
|
goto insert_cleanup;
|
|
}
|
|
|
|
/* If the INSERT statement included an IDLIST term, then make sure
|
|
** all elements of the IDLIST really are columns of the table and
|
|
** remember the column indices.
|
|
**
|
|
** If the table has an INTEGER PRIMARY KEY column and that column
|
|
** is named in the IDLIST, then record in the keyColumn variable
|
|
** the index into IDLIST of the primary key column. keyColumn is
|
|
** the index of the primary key as it appears in IDLIST, not as
|
|
** is appears in the original table. (The index of the primary
|
|
** key in the original table is pTab->iPKey.)
|
|
*/
|
|
if( pColumn ){
|
|
for(i=0; i<pColumn->nId; i++){
|
|
pColumn->a[i].idx = -1;
|
|
}
|
|
for(i=0; i<pColumn->nId; i++){
|
|
for(j=0; j<pTab->nCol; j++){
|
|
if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
|
|
pColumn->a[i].idx = j;
|
|
if( j==pTab->iPKey ){
|
|
keyColumn = i;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if( j>=pTab->nCol ){
|
|
if( sqlite3IsRowid(pColumn->a[i].zName) ){
|
|
keyColumn = i;
|
|
}else{
|
|
sqlite3ErrorMsg(pParse, "table %S has no column named %s",
|
|
pTabList, 0, pColumn->a[i].zName);
|
|
pParse->nErr++;
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If there is no IDLIST term but the table has an integer primary
|
|
** key, the set the keyColumn variable to the primary key column index
|
|
** in the original table definition.
|
|
*/
|
|
if( pColumn==0 && nColumn>0 ){
|
|
keyColumn = pTab->iPKey;
|
|
}
|
|
|
|
/* Open the temp table for FOR EACH ROW triggers
|
|
*/
|
|
if( triggers_exist ){
|
|
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
|
|
sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
|
|
}
|
|
|
|
/* Initialize the count of rows to be inserted
|
|
*/
|
|
if( db->flags & SQLITE_CountRows ){
|
|
regRowCount = ++pParse->nMem;
|
|
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
|
|
}
|
|
|
|
/* If this is not a view, open the table and and all indices */
|
|
if( !isView ){
|
|
int nIdx;
|
|
int i;
|
|
|
|
baseCur = pParse->nTab;
|
|
nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
|
|
aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
|
|
if( aRegIdx==0 ){
|
|
goto insert_cleanup;
|
|
}
|
|
for(i=0; i<nIdx; i++){
|
|
aRegIdx[i] = ++pParse->nMem;
|
|
}
|
|
}
|
|
|
|
/* This is the top of the main insertion loop */
|
|
if( useTempTable ){
|
|
/* This block codes the top of loop only. The complete loop is the
|
|
** following pseudocode (template 4):
|
|
**
|
|
** rewind temp table
|
|
** C: loop over rows of intermediate table
|
|
** transfer values form intermediate table into <table>
|
|
** end loop
|
|
** D: ...
|
|
*/
|
|
addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
|
|
addrCont = sqlite3VdbeCurrentAddr(v);
|
|
}else if( pSelect ){
|
|
/* This block codes the top of loop only. The complete loop is the
|
|
** following pseudocode (template 3):
|
|
**
|
|
** C: yield X
|
|
** if EOF goto D
|
|
** insert the select result into <table> from R..R+n
|
|
** goto C
|
|
** D: ...
|
|
*/
|
|
addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
|
|
addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
|
|
}
|
|
|
|
/* Allocate registers for holding the rowid of the new row,
|
|
** the content of the new row, and the assemblied row record.
|
|
*/
|
|
regRecord = ++pParse->nMem;
|
|
regRowid = regIns = pParse->nMem+1;
|
|
pParse->nMem += pTab->nCol + 1;
|
|
if( IsVirtual(pTab) ){
|
|
regRowid++;
|
|
pParse->nMem++;
|
|
}
|
|
regData = regRowid+1;
|
|
|
|
/* Run the BEFORE and INSTEAD OF triggers, if there are any
|
|
*/
|
|
endOfLoop = sqlite3VdbeMakeLabel(v);
|
|
if( triggers_exist & TRIGGER_BEFORE ){
|
|
int regRowid;
|
|
int regCols;
|
|
int regRec;
|
|
|
|
/* build the NEW.* reference row. Note that if there is an INTEGER
|
|
** PRIMARY KEY into which a NULL is being inserted, that NULL will be
|
|
** translated into a unique ID for the row. But on a BEFORE trigger,
|
|
** we do not know what the unique ID will be (because the insert has
|
|
** not happened yet) so we substitute a rowid of -1
|
|
*/
|
|
regRowid = sqlite3GetTempReg(pParse);
|
|
if( keyColumn<0 ){
|
|
sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
|
|
}else if( useTempTable ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
|
|
}else{
|
|
int j1;
|
|
assert( pSelect==0 ); /* Otherwise useTempTable is true */
|
|
sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
|
|
sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
|
|
}
|
|
|
|
/* Cannot have triggers on a virtual table. If it were possible,
|
|
** this block would have to account for hidden column.
|
|
*/
|
|
assert(!IsVirtual(pTab));
|
|
|
|
/* Create the new column data
|
|
*/
|
|
regCols = sqlite3GetTempRange(pParse, pTab->nCol);
|
|
for(i=0; i<pTab->nCol; i++){
|
|
if( pColumn==0 ){
|
|
j = i;
|
|
}else{
|
|
for(j=0; j<pColumn->nId; j++){
|
|
if( pColumn->a[j].idx==i ) break;
|
|
}
|
|
}
|
|
if( pColumn && j>=pColumn->nId ){
|
|
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
|
|
}else if( useTempTable ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i);
|
|
}else{
|
|
assert( pSelect==0 ); /* Otherwise useTempTable is true */
|
|
sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
|
|
}
|
|
}
|
|
regRec = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
|
|
|
|
/* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
|
|
** do not attempt any conversions before assembling the record.
|
|
** If this is a real table, attempt conversions as required by the
|
|
** table column affinities.
|
|
*/
|
|
if( !isView ){
|
|
sqlite3TableAffinityStr(v, pTab);
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
|
|
sqlite3ReleaseTempReg(pParse, regRec);
|
|
sqlite3ReleaseTempReg(pParse, regRowid);
|
|
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
|
|
|
|
/* Fire BEFORE or INSTEAD OF triggers */
|
|
if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
|
|
newIdx, -1, onError, endOfLoop, 0, 0) ){
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
|
|
/* Push the record number for the new entry onto the stack. The
|
|
** record number is a randomly generate integer created by NewRowid
|
|
** except when the table has an INTEGER PRIMARY KEY column, in which
|
|
** case the record number is the same as that column.
|
|
*/
|
|
if( !isView ){
|
|
if( IsVirtual(pTab) ){
|
|
/* The row that the VUpdate opcode will delete: none */
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
|
|
}
|
|
if( keyColumn>=0 ){
|
|
if( useTempTable ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
|
|
}else{
|
|
VdbeOp *pOp;
|
|
sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
|
|
pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
|
|
if( pOp && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
|
|
appendFlag = 1;
|
|
pOp->opcode = OP_NewRowid;
|
|
pOp->p1 = baseCur;
|
|
pOp->p2 = regRowid;
|
|
pOp->p3 = regAutoinc;
|
|
}
|
|
}
|
|
/* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
|
|
** to generate a unique primary key value.
|
|
*/
|
|
if( !appendFlag ){
|
|
int j1;
|
|
if( !IsVirtual(pTab) ){
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
|
|
sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
}else{
|
|
j1 = sqlite3VdbeCurrentAddr(v);
|
|
sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
|
|
}
|
|
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
|
|
}
|
|
}else if( IsVirtual(pTab) ){
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
|
|
}else{
|
|
sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
|
|
appendFlag = 1;
|
|
}
|
|
autoIncStep(pParse, regAutoinc, regRowid);
|
|
|
|
/* Push onto the stack, data for all columns of the new entry, beginning
|
|
** with the first column.
|
|
*/
|
|
nHidden = 0;
|
|
for(i=0; i<pTab->nCol; i++){
|
|
int iRegStore = regRowid+1+i;
|
|
if( i==pTab->iPKey ){
|
|
/* The value of the INTEGER PRIMARY KEY column is always a NULL.
|
|
** Whenever this column is read, the record number will be substituted
|
|
** in its place. So will fill this column with a NULL to avoid
|
|
** taking up data space with information that will never be used. */
|
|
sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
|
|
continue;
|
|
}
|
|
if( pColumn==0 ){
|
|
if( IsHiddenColumn(&pTab->aCol[i]) ){
|
|
assert( IsVirtual(pTab) );
|
|
j = -1;
|
|
nHidden++;
|
|
}else{
|
|
j = i - nHidden;
|
|
}
|
|
}else{
|
|
for(j=0; j<pColumn->nId; j++){
|
|
if( pColumn->a[j].idx==i ) break;
|
|
}
|
|
}
|
|
if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
|
|
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
|
|
}else if( useTempTable ){
|
|
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
|
|
}else{
|
|
sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
|
|
}
|
|
}
|
|
|
|
/* Generate code to check constraints and generate index keys and
|
|
** do the insertion.
|
|
*/
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( IsVirtual(pTab) ){
|
|
sqlite3VtabMakeWritable(pParse, pTab);
|
|
sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
|
|
(const char*)pTab->pVtab, P4_VTAB);
|
|
}else
|
|
#endif
|
|
{
|
|
sqlite3GenerateConstraintChecks(
|
|
pParse,
|
|
pTab,
|
|
baseCur,
|
|
regIns,
|
|
aRegIdx,
|
|
keyColumn>=0,
|
|
0,
|
|
onError,
|
|
endOfLoop
|
|
);
|
|
sqlite3CompleteInsertion(
|
|
pParse,
|
|
pTab,
|
|
baseCur,
|
|
regIns,
|
|
aRegIdx,
|
|
0,
|
|
0,
|
|
(triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
|
|
appendFlag
|
|
);
|
|
}
|
|
}
|
|
|
|
/* Update the count of rows that are inserted
|
|
*/
|
|
if( (db->flags & SQLITE_CountRows)!=0 ){
|
|
sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
|
|
}
|
|
|
|
if( triggers_exist ){
|
|
/* Code AFTER triggers */
|
|
if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
|
|
newIdx, -1, onError, endOfLoop, 0, 0) ){
|
|
goto insert_cleanup;
|
|
}
|
|
}
|
|
|
|
/* The bottom of the main insertion loop, if the data source
|
|
** is a SELECT statement.
|
|
*/
|
|
sqlite3VdbeResolveLabel(v, endOfLoop);
|
|
if( useTempTable ){
|
|
sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
|
|
sqlite3VdbeJumpHere(v, addrInsTop);
|
|
sqlite3VdbeAddOp1(v, OP_Close, srcTab);
|
|
}else if( pSelect ){
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
|
|
sqlite3VdbeJumpHere(v, addrInsTop);
|
|
}
|
|
|
|
if( !IsVirtual(pTab) && !isView ){
|
|
/* Close all tables opened */
|
|
sqlite3VdbeAddOp1(v, OP_Close, baseCur);
|
|
for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
|
sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
|
|
}
|
|
}
|
|
|
|
/* Update the sqlite_sequence table by storing the content of the
|
|
** counter value in memory regAutoinc back into the sqlite_sequence
|
|
** table.
|
|
*/
|
|
autoIncEnd(pParse, iDb, pTab, regAutoinc);
|
|
|
|
/*
|
|
** Return the number of rows inserted. If this routine is
|
|
** generating code because of a call to sqlite3NestedParse(), do not
|
|
** invoke the callback function.
|
|
*/
|
|
if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
|
|
sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
|
|
sqlite3VdbeSetNumCols(v, 1);
|
|
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
|
|
}
|
|
|
|
insert_cleanup:
|
|
sqlite3SrcListDelete(db, pTabList);
|
|
sqlite3ExprListDelete(db, pList);
|
|
sqlite3SelectDelete(db, pSelect);
|
|
sqlite3IdListDelete(db, pColumn);
|
|
sqlite3DbFree(db, aRegIdx);
|
|
}
|
|
|
|
/*
|
|
** Generate code to do constraint checks prior to an INSERT or an UPDATE.
|
|
**
|
|
** The input is a range of consecutive registers as follows:
|
|
**
|
|
** 1. The rowid of the row to be updated before the update. This
|
|
** value is omitted unless we are doing an UPDATE that involves a
|
|
** change to the record number or writing to a virtual table.
|
|
**
|
|
** 2. The rowid of the row after the update.
|
|
**
|
|
** 3. The data in the first column of the entry after the update.
|
|
**
|
|
** i. Data from middle columns...
|
|
**
|
|
** N. The data in the last column of the entry after the update.
|
|
**
|
|
** The regRowid parameter is the index of the register containing (2).
|
|
**
|
|
** The old rowid shown as entry (1) above is omitted unless both isUpdate
|
|
** and rowidChng are 1. isUpdate is true for UPDATEs and false for
|
|
** INSERTs. RowidChng means that the new rowid is explicitly specified by
|
|
** the update or insert statement. If rowidChng is false, it means that
|
|
** the rowid is computed automatically in an insert or that the rowid value
|
|
** is not modified by the update.
|
|
**
|
|
** The code generated by this routine store new index entries into
|
|
** registers identified by aRegIdx[]. No index entry is created for
|
|
** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
|
|
** the same as the order of indices on the linked list of indices
|
|
** attached to the table.
|
|
**
|
|
** This routine also generates code to check constraints. NOT NULL,
|
|
** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
|
|
** then the appropriate action is performed. There are five possible
|
|
** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
|
|
**
|
|
** Constraint type Action What Happens
|
|
** --------------- ---------- ----------------------------------------
|
|
** any ROLLBACK The current transaction is rolled back and
|
|
** sqlite3_exec() returns immediately with a
|
|
** return code of SQLITE_CONSTRAINT.
|
|
**
|
|
** any ABORT Back out changes from the current command
|
|
** only (do not do a complete rollback) then
|
|
** cause sqlite3_exec() to return immediately
|
|
** with SQLITE_CONSTRAINT.
|
|
**
|
|
** any FAIL Sqlite_exec() returns immediately with a
|
|
** return code of SQLITE_CONSTRAINT. The
|
|
** transaction is not rolled back and any
|
|
** prior changes are retained.
|
|
**
|
|
** any IGNORE The record number and data is popped from
|
|
** the stack and there is an immediate jump
|
|
** to label ignoreDest.
|
|
**
|
|
** NOT NULL REPLACE The NULL value is replace by the default
|
|
** value for that column. If the default value
|
|
** is NULL, the action is the same as ABORT.
|
|
**
|
|
** UNIQUE REPLACE The other row that conflicts with the row
|
|
** being inserted is removed.
|
|
**
|
|
** CHECK REPLACE Illegal. The results in an exception.
|
|
**
|
|
** Which action to take is determined by the overrideError parameter.
|
|
** Or if overrideError==OE_Default, then the pParse->onError parameter
|
|
** is used. Or if pParse->onError==OE_Default then the onError value
|
|
** for the constraint is used.
|
|
**
|
|
** The calling routine must open a read/write cursor for pTab with
|
|
** cursor number "baseCur". All indices of pTab must also have open
|
|
** read/write cursors with cursor number baseCur+i for the i-th cursor.
|
|
** Except, if there is no possibility of a REPLACE action then
|
|
** cursors do not need to be open for indices where aRegIdx[i]==0.
|
|
*/
|
|
void sqlite3GenerateConstraintChecks(
|
|
Parse *pParse, /* The parser context */
|
|
Table *pTab, /* the table into which we are inserting */
|
|
int baseCur, /* Index of a read/write cursor pointing at pTab */
|
|
int regRowid, /* Index of the range of input registers */
|
|
int *aRegIdx, /* Register used by each index. 0 for unused indices */
|
|
int rowidChng, /* True if the rowid might collide with existing entry */
|
|
int isUpdate, /* True for UPDATE, False for INSERT */
|
|
int overrideError, /* Override onError to this if not OE_Default */
|
|
int ignoreDest /* Jump to this label on an OE_Ignore resolution */
|
|
){
|
|
int i;
|
|
Vdbe *v;
|
|
int nCol;
|
|
int onError;
|
|
int j1, j2, j3; /* Addresses of jump instructions */
|
|
int regData; /* Register containing first data column */
|
|
int iCur;
|
|
Index *pIdx;
|
|
int seenReplace = 0;
|
|
int hasTwoRowids = (isUpdate && rowidChng);
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
|
nCol = pTab->nCol;
|
|
regData = regRowid + 1;
|
|
|
|
|
|
/* Test all NOT NULL constraints.
|
|
*/
|
|
for(i=0; i<nCol; i++){
|
|
if( i==pTab->iPKey ){
|
|
continue;
|
|
}
|
|
onError = pTab->aCol[i].notNull;
|
|
if( onError==OE_None ) continue;
|
|
if( overrideError!=OE_Default ){
|
|
onError = overrideError;
|
|
}else if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
|
|
onError = OE_Abort;
|
|
}
|
|
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
|
|
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|
|
|| onError==OE_Ignore || onError==OE_Replace );
|
|
switch( onError ){
|
|
case OE_Rollback:
|
|
case OE_Abort:
|
|
case OE_Fail: {
|
|
char *zMsg;
|
|
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
|
|
zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
|
|
pTab->zName, pTab->aCol[i].zName);
|
|
sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
|
|
break;
|
|
}
|
|
case OE_Ignore: {
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
|
break;
|
|
}
|
|
case OE_Replace: {
|
|
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
|
|
break;
|
|
}
|
|
}
|
|
sqlite3VdbeJumpHere(v, j1);
|
|
}
|
|
|
|
/* Test all CHECK constraints
|
|
*/
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
|
|
int allOk = sqlite3VdbeMakeLabel(v);
|
|
pParse->ckBase = regData;
|
|
sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
|
|
onError = overrideError!=OE_Default ? overrideError : OE_Abort;
|
|
if( onError==OE_Ignore ){
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
|
|
}
|
|
sqlite3VdbeResolveLabel(v, allOk);
|
|
}
|
|
#endif /* !defined(SQLITE_OMIT_CHECK) */
|
|
|
|
/* If we have an INTEGER PRIMARY KEY, make sure the primary key
|
|
** of the new record does not previously exist. Except, if this
|
|
** is an UPDATE and the primary key is not changing, that is OK.
|
|
*/
|
|
if( rowidChng ){
|
|
onError = pTab->keyConf;
|
|
if( overrideError!=OE_Default ){
|
|
onError = overrideError;
|
|
}else if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
|
|
if( onError!=OE_Replace || pTab->pIndex ){
|
|
if( isUpdate ){
|
|
j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
|
|
}
|
|
j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
|
|
switch( onError ){
|
|
default: {
|
|
onError = OE_Abort;
|
|
/* Fall thru into the next case */
|
|
}
|
|
case OE_Rollback:
|
|
case OE_Abort:
|
|
case OE_Fail: {
|
|
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
|
|
"PRIMARY KEY must be unique", P4_STATIC);
|
|
break;
|
|
}
|
|
case OE_Replace: {
|
|
sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
|
|
seenReplace = 1;
|
|
break;
|
|
}
|
|
case OE_Ignore: {
|
|
assert( seenReplace==0 );
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
|
break;
|
|
}
|
|
}
|
|
sqlite3VdbeJumpHere(v, j3);
|
|
if( isUpdate ){
|
|
sqlite3VdbeJumpHere(v, j2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Test all UNIQUE constraints by creating entries for each UNIQUE
|
|
** index and making sure that duplicate entries do not already exist.
|
|
** Add the new records to the indices as we go.
|
|
*/
|
|
for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
|
|
int regIdx;
|
|
int regR;
|
|
|
|
if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */
|
|
|
|
/* Create a key for accessing the index entry */
|
|
regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
|
|
for(i=0; i<pIdx->nColumn; i++){
|
|
int idx = pIdx->aiColumn[i];
|
|
if( idx==pTab->iPKey ){
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
|
|
}else{
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
|
|
}
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
|
|
sqlite3IndexAffinityStr(v, pIdx);
|
|
sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
|
|
sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
|
|
|
|
/* Find out what action to take in case there is an indexing conflict */
|
|
onError = pIdx->onError;
|
|
if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
|
|
if( overrideError!=OE_Default ){
|
|
onError = overrideError;
|
|
}else if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
if( seenReplace ){
|
|
if( onError==OE_Ignore ) onError = OE_Replace;
|
|
else if( onError==OE_Fail ) onError = OE_Abort;
|
|
}
|
|
|
|
|
|
/* Check to see if the new index entry will be unique */
|
|
j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
|
|
regR = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
|
|
j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
|
|
regR, SQLITE_INT_TO_PTR(aRegIdx[iCur]),
|
|
P4_INT32);
|
|
|
|
/* Generate code that executes if the new index entry is not unique */
|
|
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|
|
|| onError==OE_Ignore || onError==OE_Replace );
|
|
switch( onError ){
|
|
case OE_Rollback:
|
|
case OE_Abort:
|
|
case OE_Fail: {
|
|
int j, n1, n2;
|
|
char zErrMsg[200];
|
|
sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
|
|
pIdx->nColumn>1 ? "columns " : "column ");
|
|
n1 = strlen(zErrMsg);
|
|
for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
|
|
char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
|
|
n2 = strlen(zCol);
|
|
if( j>0 ){
|
|
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
|
|
n1 += 2;
|
|
}
|
|
if( n1+n2>sizeof(zErrMsg)-30 ){
|
|
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
|
|
n1 += 3;
|
|
break;
|
|
}else{
|
|
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
|
|
n1 += n2;
|
|
}
|
|
}
|
|
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
|
|
pIdx->nColumn>1 ? " are not unique" : " is not unique");
|
|
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
|
|
break;
|
|
}
|
|
case OE_Ignore: {
|
|
assert( seenReplace==0 );
|
|
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
|
break;
|
|
}
|
|
case OE_Replace: {
|
|
sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
|
|
seenReplace = 1;
|
|
break;
|
|
}
|
|
}
|
|
sqlite3VdbeJumpHere(v, j2);
|
|
sqlite3VdbeJumpHere(v, j3);
|
|
sqlite3ReleaseTempReg(pParse, regR);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This routine generates code to finish the INSERT or UPDATE operation
|
|
** that was started by a prior call to sqlite3GenerateConstraintChecks.
|
|
** A consecutive range of registers starting at regRowid contains the
|
|
** rowid and the content to be inserted.
|
|
**
|
|
** The arguments to this routine should be the same as the first six
|
|
** arguments to sqlite3GenerateConstraintChecks.
|
|
*/
|
|
void sqlite3CompleteInsertion(
|
|
Parse *pParse, /* The parser context */
|
|
Table *pTab, /* the table into which we are inserting */
|
|
int baseCur, /* Index of a read/write cursor pointing at pTab */
|
|
int regRowid, /* Range of content */
|
|
int *aRegIdx, /* Register used by each index. 0 for unused indices */
|
|
int rowidChng, /* True if the record number will change */
|
|
int isUpdate, /* True for UPDATE, False for INSERT */
|
|
int newIdx, /* Index of NEW table for triggers. -1 if none */
|
|
int appendBias /* True if this is likely to be an append */
|
|
){
|
|
int i;
|
|
Vdbe *v;
|
|
int nIdx;
|
|
Index *pIdx;
|
|
int pik_flags;
|
|
int regData;
|
|
int regRec;
|
|
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
|
for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
|
|
for(i=nIdx-1; i>=0; i--){
|
|
if( aRegIdx[i]==0 ) continue;
|
|
sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
|
|
}
|
|
regData = regRowid + 1;
|
|
regRec = sqlite3GetTempReg(pParse);
|
|
sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
|
|
sqlite3TableAffinityStr(v, pTab);
|
|
sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
|
|
#ifndef SQLITE_OMIT_TRIGGER
|
|
if( newIdx>=0 ){
|
|
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
|
|
}
|
|
#endif
|
|
if( pParse->nested ){
|
|
pik_flags = 0;
|
|
}else{
|
|
pik_flags = OPFLAG_NCHANGE;
|
|
pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
|
|
}
|
|
if( appendBias ){
|
|
pik_flags |= OPFLAG_APPEND;
|
|
}
|
|
sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
|
|
if( !pParse->nested ){
|
|
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
|
|
}
|
|
sqlite3VdbeChangeP5(v, pik_flags);
|
|
}
|
|
|
|
/*
|
|
** Generate code that will open cursors for a table and for all
|
|
** indices of that table. The "baseCur" parameter is the cursor number used
|
|
** for the table. Indices are opened on subsequent cursors.
|
|
**
|
|
** Return the number of indices on the table.
|
|
*/
|
|
int sqlite3OpenTableAndIndices(
|
|
Parse *pParse, /* Parsing context */
|
|
Table *pTab, /* Table to be opened */
|
|
int baseCur, /* Cursor number assigned to the table */
|
|
int op /* OP_OpenRead or OP_OpenWrite */
|
|
){
|
|
int i;
|
|
int iDb;
|
|
Index *pIdx;
|
|
Vdbe *v;
|
|
|
|
if( IsVirtual(pTab) ) return 0;
|
|
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
|
v = sqlite3GetVdbe(pParse);
|
|
assert( v!=0 );
|
|
sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
|
|
for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
|
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
|
assert( pIdx->pSchema==pTab->pSchema );
|
|
sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
|
|
(char*)pKey, P4_KEYINFO_HANDOFF);
|
|
VdbeComment((v, "%s", pIdx->zName));
|
|
}
|
|
if( pParse->nTab<=baseCur+i ){
|
|
pParse->nTab = baseCur+i;
|
|
}
|
|
return i-1;
|
|
}
|
|
|
|
|
|
#ifdef SQLITE_TEST
|
|
/*
|
|
** The following global variable is incremented whenever the
|
|
** transfer optimization is used. This is used for testing
|
|
** purposes only - to make sure the transfer optimization really
|
|
** is happening when it is suppose to.
|
|
*/
|
|
int sqlite3_xferopt_count;
|
|
#endif /* SQLITE_TEST */
|
|
|
|
|
|
#ifndef SQLITE_OMIT_XFER_OPT
|
|
/*
|
|
** Check to collation names to see if they are compatible.
|
|
*/
|
|
static int xferCompatibleCollation(const char *z1, const char *z2){
|
|
if( z1==0 ){
|
|
return z2==0;
|
|
}
|
|
if( z2==0 ){
|
|
return 0;
|
|
}
|
|
return sqlite3StrICmp(z1, z2)==0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Check to see if index pSrc is compatible as a source of data
|
|
** for index pDest in an insert transfer optimization. The rules
|
|
** for a compatible index:
|
|
**
|
|
** * The index is over the same set of columns
|
|
** * The same DESC and ASC markings occurs on all columns
|
|
** * The same onError processing (OE_Abort, OE_Ignore, etc)
|
|
** * The same collating sequence on each column
|
|
*/
|
|
static int xferCompatibleIndex(Index *pDest, Index *pSrc){
|
|
int i;
|
|
assert( pDest && pSrc );
|
|
assert( pDest->pTable!=pSrc->pTable );
|
|
if( pDest->nColumn!=pSrc->nColumn ){
|
|
return 0; /* Different number of columns */
|
|
}
|
|
if( pDest->onError!=pSrc->onError ){
|
|
return 0; /* Different conflict resolution strategies */
|
|
}
|
|
for(i=0; i<pSrc->nColumn; i++){
|
|
if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
|
|
return 0; /* Different columns indexed */
|
|
}
|
|
if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
|
|
return 0; /* Different sort orders */
|
|
}
|
|
if( pSrc->azColl[i]!=pDest->azColl[i] ){
|
|
return 0; /* Different collating sequences */
|
|
}
|
|
}
|
|
|
|
/* If no test above fails then the indices must be compatible */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
** Attempt the transfer optimization on INSERTs of the form
|
|
**
|
|
** INSERT INTO tab1 SELECT * FROM tab2;
|
|
**
|
|
** This optimization is only attempted if
|
|
**
|
|
** (1) tab1 and tab2 have identical schemas including all the
|
|
** same indices and constraints
|
|
**
|
|
** (2) tab1 and tab2 are different tables
|
|
**
|
|
** (3) There must be no triggers on tab1
|
|
**
|
|
** (4) The result set of the SELECT statement is "*"
|
|
**
|
|
** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
|
|
** or LIMIT clause.
|
|
**
|
|
** (6) The SELECT statement is a simple (not a compound) select that
|
|
** contains only tab2 in its FROM clause
|
|
**
|
|
** This method for implementing the INSERT transfers raw records from
|
|
** tab2 over to tab1. The columns are not decoded. Raw records from
|
|
** the indices of tab2 are transfered to tab1 as well. In so doing,
|
|
** the resulting tab1 has much less fragmentation.
|
|
**
|
|
** This routine returns TRUE if the optimization is attempted. If any
|
|
** of the conditions above fail so that the optimization should not
|
|
** be attempted, then this routine returns FALSE.
|
|
*/
|
|
static int xferOptimization(
|
|
Parse *pParse, /* Parser context */
|
|
Table *pDest, /* The table we are inserting into */
|
|
Select *pSelect, /* A SELECT statement to use as the data source */
|
|
int onError, /* How to handle constraint errors */
|
|
int iDbDest /* The database of pDest */
|
|
){
|
|
ExprList *pEList; /* The result set of the SELECT */
|
|
Table *pSrc; /* The table in the FROM clause of SELECT */
|
|
Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
|
|
struct SrcList_item *pItem; /* An element of pSelect->pSrc */
|
|
int i; /* Loop counter */
|
|
int iDbSrc; /* The database of pSrc */
|
|
int iSrc, iDest; /* Cursors from source and destination */
|
|
int addr1, addr2; /* Loop addresses */
|
|
int emptyDestTest; /* Address of test for empty pDest */
|
|
int emptySrcTest; /* Address of test for empty pSrc */
|
|
Vdbe *v; /* The VDBE we are building */
|
|
KeyInfo *pKey; /* Key information for an index */
|
|
int regAutoinc; /* Memory register used by AUTOINC */
|
|
int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
|
|
int regData, regRowid; /* Registers holding data and rowid */
|
|
|
|
if( pSelect==0 ){
|
|
return 0; /* Must be of the form INSERT INTO ... SELECT ... */
|
|
}
|
|
if( pDest->pTrigger ){
|
|
return 0; /* tab1 must not have triggers */
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pDest->tabFlags & TF_Virtual ){
|
|
return 0; /* tab1 must not be a virtual table */
|
|
}
|
|
#endif
|
|
if( onError==OE_Default ){
|
|
onError = OE_Abort;
|
|
}
|
|
if( onError!=OE_Abort && onError!=OE_Rollback ){
|
|
return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
|
|
}
|
|
assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
|
|
if( pSelect->pSrc->nSrc!=1 ){
|
|
return 0; /* FROM clause must have exactly one term */
|
|
}
|
|
if( pSelect->pSrc->a[0].pSelect ){
|
|
return 0; /* FROM clause cannot contain a subquery */
|
|
}
|
|
if( pSelect->pWhere ){
|
|
return 0; /* SELECT may not have a WHERE clause */
|
|
}
|
|
if( pSelect->pOrderBy ){
|
|
return 0; /* SELECT may not have an ORDER BY clause */
|
|
}
|
|
/* Do not need to test for a HAVING clause. If HAVING is present but
|
|
** there is no ORDER BY, we will get an error. */
|
|
if( pSelect->pGroupBy ){
|
|
return 0; /* SELECT may not have a GROUP BY clause */
|
|
}
|
|
if( pSelect->pLimit ){
|
|
return 0; /* SELECT may not have a LIMIT clause */
|
|
}
|
|
assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
|
|
if( pSelect->pPrior ){
|
|
return 0; /* SELECT may not be a compound query */
|
|
}
|
|
if( pSelect->selFlags & SF_Distinct ){
|
|
return 0; /* SELECT may not be DISTINCT */
|
|
}
|
|
pEList = pSelect->pEList;
|
|
assert( pEList!=0 );
|
|
if( pEList->nExpr!=1 ){
|
|
return 0; /* The result set must have exactly one column */
|
|
}
|
|
assert( pEList->a[0].pExpr );
|
|
if( pEList->a[0].pExpr->op!=TK_ALL ){
|
|
return 0; /* The result set must be the special operator "*" */
|
|
}
|
|
|
|
/* At this point we have established that the statement is of the
|
|
** correct syntactic form to participate in this optimization. Now
|
|
** we have to check the semantics.
|
|
*/
|
|
pItem = pSelect->pSrc->a;
|
|
pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
|
|
if( pSrc==0 ){
|
|
return 0; /* FROM clause does not contain a real table */
|
|
}
|
|
if( pSrc==pDest ){
|
|
return 0; /* tab1 and tab2 may not be the same table */
|
|
}
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
if( pSrc->tabFlags & TF_Virtual ){
|
|
return 0; /* tab2 must not be a virtual table */
|
|
}
|
|
#endif
|
|
if( pSrc->pSelect ){
|
|
return 0; /* tab2 may not be a view */
|
|
}
|
|
if( pDest->nCol!=pSrc->nCol ){
|
|
return 0; /* Number of columns must be the same in tab1 and tab2 */
|
|
}
|
|
if( pDest->iPKey!=pSrc->iPKey ){
|
|
return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
|
|
}
|
|
for(i=0; i<pDest->nCol; i++){
|
|
if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
|
|
return 0; /* Affinity must be the same on all columns */
|
|
}
|
|
if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
|
|
return 0; /* Collating sequence must be the same on all columns */
|
|
}
|
|
if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
|
|
return 0; /* tab2 must be NOT NULL if tab1 is */
|
|
}
|
|
}
|
|
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
|
|
if( pDestIdx->onError!=OE_None ){
|
|
destHasUniqueIdx = 1;
|
|
}
|
|
for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
|
|
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
|
|
}
|
|
if( pSrcIdx==0 ){
|
|
return 0; /* pDestIdx has no corresponding index in pSrc */
|
|
}
|
|
}
|
|
#ifndef SQLITE_OMIT_CHECK
|
|
if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
|
|
return 0; /* Tables have different CHECK constraints. Ticket #2252 */
|
|
}
|
|
#endif
|
|
|
|
/* If we get this far, it means either:
|
|
**
|
|
** * We can always do the transfer if the table contains an
|
|
** an integer primary key
|
|
**
|
|
** * We can conditionally do the transfer if the destination
|
|
** table is empty.
|
|
*/
|
|
#ifdef SQLITE_TEST
|
|
sqlite3_xferopt_count++;
|
|
#endif
|
|
iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
|
|
v = sqlite3GetVdbe(pParse);
|
|
sqlite3CodeVerifySchema(pParse, iDbSrc);
|
|
iSrc = pParse->nTab++;
|
|
iDest = pParse->nTab++;
|
|
regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
|
|
sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
|
|
if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
|
|
/* If tables do not have an INTEGER PRIMARY KEY and there
|
|
** are indices to be copied and the destination is not empty,
|
|
** we have to disallow the transfer optimization because the
|
|
** the rowids might change which will mess up indexing.
|
|
**
|
|
** Or if the destination has a UNIQUE index and is not empty,
|
|
** we also disallow the transfer optimization because we cannot
|
|
** insure that all entries in the union of DEST and SRC will be
|
|
** unique.
|
|
*/
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
|
|
emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
}else{
|
|
emptyDestTest = 0;
|
|
}
|
|
sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
|
|
emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
|
|
regData = sqlite3GetTempReg(pParse);
|
|
regRowid = sqlite3GetTempReg(pParse);
|
|
if( pDest->iPKey>=0 ){
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
|
|
addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
|
|
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
|
|
"PRIMARY KEY must be unique", P4_STATIC);
|
|
sqlite3VdbeJumpHere(v, addr2);
|
|
autoIncStep(pParse, regAutoinc, regRowid);
|
|
}else if( pDest->pIndex==0 ){
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
|
|
}else{
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
|
|
assert( (pDest->tabFlags & TF_Autoincrement)==0 );
|
|
}
|
|
sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
|
|
sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
|
|
sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
|
|
sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
|
|
autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
|
|
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
|
|
for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
|
|
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
|
|
}
|
|
assert( pSrcIdx );
|
|
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
|
|
pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
|
|
sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
|
|
(char*)pKey, P4_KEYINFO_HANDOFF);
|
|
VdbeComment((v, "%s", pSrcIdx->zName));
|
|
pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
|
|
sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
|
|
(char*)pKey, P4_KEYINFO_HANDOFF);
|
|
VdbeComment((v, "%s", pDestIdx->zName));
|
|
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
|
|
sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
|
|
sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
|
|
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
|
|
sqlite3VdbeJumpHere(v, addr1);
|
|
}
|
|
sqlite3VdbeJumpHere(v, emptySrcTest);
|
|
sqlite3ReleaseTempReg(pParse, regRowid);
|
|
sqlite3ReleaseTempReg(pParse, regData);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
|
|
if( emptyDestTest ){
|
|
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
|
|
sqlite3VdbeJumpHere(v, emptyDestTest);
|
|
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
|
|
return 0;
|
|
}else{
|
|
return 1;
|
|
}
|
|
}
|
|
#endif /* SQLITE_OMIT_XFER_OPT */
|
|
|
|
/* Make sure "isView" gets undefined in case this file becomes part of
|
|
** the amalgamation - so that subsequent files do not see isView as a
|
|
** macro. */
|
|
#undef isView
|