/* ** A utility for printing all or part of an SQLite database file. */ #include #include #define ISDIGIT(X) isdigit((unsigned char)(X)) #define ISPRINT(X) isprint((unsigned char)(X)) #include #include #include #if !defined(_MSC_VER) #include #else #include #endif #include #include #include #include "sqlite3.h" typedef unsigned char u8; /* unsigned 8-bit */ typedef unsigned int u32; /* unsigned 32-bit */ typedef sqlite3_int64 i64; /* signed 64-bit */ typedef sqlite3_uint64 u64; /* unsigned 64-bit */ static struct GlobalData { u32 pagesize; /* Size of a database page */ int dbfd; /* File descriptor for reading the DB */ u32 mxPage; /* Last page number */ int perLine; /* HEX elements to print per line */ int bRaw; /* True to access db file via OS APIs */ sqlite3_file *pFd; /* File descriptor for non-raw mode */ sqlite3 *pDb; /* Database handle that owns pFd */ } g = {1024, -1, 0, 16, 0, 0, 0}; /* ** Convert the var-int format into i64. Return the number of bytes ** in the var-int. Write the var-int value into *pVal. */ static int decodeVarint(const unsigned char *z, i64 *pVal){ i64 v = 0; int i; for(i=0; i<8; i++){ v = (v<<7) + (z[i]&0x7f); if( (z[i]&0x80)==0 ){ *pVal = v; return i+1; } } v = (v<<8) + (z[i]&0xff); *pVal = v; return 9; } /* ** Extract a big-endian 32-bit integer */ static u32 decodeInt32(const u8 *z){ return (z[0]<<24) + (z[1]<<16) + (z[2]<<8) + z[3]; } /* Report an out-of-memory error and die. */ static void out_of_memory(void){ fprintf(stderr,"Out of memory...\n"); exit(1); } /* ** Open a database connection. */ static sqlite3 *openDatabase(const char *zPrg, const char *zName){ sqlite3 *db = 0; int flags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_URI; int rc = sqlite3_open_v2(zName, &db, flags, 0); if( rc!=SQLITE_OK ){ const char *zErr = sqlite3_errmsg(db); fprintf(stderr, "%s: can't open %s (%s)\n", zPrg, zName, zErr); sqlite3_close(db); exit(1); } return db; } /************************************************************************** ** Beginning of low-level file access functions. ** ** All low-level access to the database file read by this program is ** performed using the following four functions: ** ** fileOpen() - open the db file ** fileClose() - close the db file ** fileRead() - read raw data from the db file ** fileGetsize() - return the size of the db file in bytes */ /* ** Open the database file. */ static void fileOpen(const char *zPrg, const char *zName){ assert( g.dbfd<0 ); if( g.bRaw==0 ){ int rc; void *pArg = (void *)(&g.pFd); g.pDb = openDatabase(zPrg, zName); rc = sqlite3_file_control(g.pDb, "main", SQLITE_FCNTL_FILE_POINTER, pArg); if( rc!=SQLITE_OK ){ fprintf(stderr, "%s: failed to obtain fd for %s (SQLite too old?)\n", zPrg, zName ); exit(1); } }else{ g.dbfd = open(zName, O_RDONLY); if( g.dbfd<0 ){ fprintf(stderr,"%s: can't open %s\n", zPrg, zName); exit(1); } } } /* ** Close the database file opened by fileOpen() */ static void fileClose(){ if( g.bRaw==0 ){ sqlite3_close(g.pDb); g.pDb = 0; g.pFd = 0; }else{ close(g.dbfd); g.dbfd = -1; } } /* ** Read content from the file. ** ** Space to hold the content is obtained from sqlite3_malloc() and needs ** to be freed by the caller. */ static unsigned char *fileRead(sqlite3_int64 ofst, int nByte){ unsigned char *aData; int got; aData = sqlite3_malloc64(32+(i64)nByte); if( aData==0 ) out_of_memory(); memset(aData, 0, nByte+32); if( g.bRaw==0 ){ int rc = g.pFd->pMethods->xRead(g.pFd, (void*)aData, nByte, ofst); if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ fprintf(stderr, "error in xRead() - %d\n", rc); exit(1); } }else{ lseek(g.dbfd, (long)ofst, SEEK_SET); got = read(g.dbfd, aData, nByte); if( got>0 && gotpMethods->xFileSize(g.pFd, &res); if( rc!=SQLITE_OK ){ fprintf(stderr, "error in xFileSize() - %d\n", rc); exit(1); } }else{ struct stat sbuf; fstat(g.dbfd, &sbuf); res = (sqlite3_int64)(sbuf.st_size); } return res; } /* ** End of low-level file access functions. **************************************************************************/ /* ** Print a range of bytes as hex and as ascii. */ static unsigned char *print_byte_range( sqlite3_int64 ofst, /* First byte in the range of bytes to print */ int nByte, /* Number of bytes to print */ int printOfst /* Add this amount to the index on the left column */ ){ unsigned char *aData; int i, j; const char *zOfstFmt; if( ((printOfst+nByte)&~0xfff)==0 ){ zOfstFmt = " %03x: "; }else if( ((printOfst+nByte)&~0xffff)==0 ){ zOfstFmt = " %04x: "; }else if( ((printOfst+nByte)&~0xfffff)==0 ){ zOfstFmt = " %05x: "; }else if( ((printOfst+nByte)&~0xffffff)==0 ){ zOfstFmt = " %06x: "; }else{ zOfstFmt = " %08x: "; } aData = fileRead(ofst, nByte); for(i=0; inByte ){ break; } if( aData[i+j] ){ go = 1; break; } } if( !go && i>0 && i+g.perLinenByte ){ fprintf(stdout, " "); }else{ fprintf(stdout,"%02x ", aData[i+j]); } } for(j=0; jnByte ){ fprintf(stdout, " "); }else{ fprintf(stdout,"%c", ISPRINT(aData[i+j]) ? aData[i+j] : '.'); } } fprintf(stdout,"\n"); } return aData; } /* ** Print an entire page of content as hex */ static void print_page(u32 iPg){ i64 iStart; unsigned char *aData; iStart = ((i64)(iPg-1))*g.pagesize; fprintf(stdout, "Page %u: (offsets 0x%llx..0x%llx)\n", iPg, iStart, iStart+g.pagesize-1); aData = print_byte_range(iStart, g.pagesize, 0); sqlite3_free(aData); } /* Print a line of decoded output showing a 4-byte unsigned integer. */ static void print_decode_line( unsigned char *aData, /* Content being decoded */ int ofst, int nByte, /* Start and size of decode */ const char *zMsg /* Message to append */ ){ int i, j; u32 val = aData[ofst]; char zBuf[100]; sprintf(zBuf, " %03x: %02x", ofst, aData[ofst]); i = (int)strlen(zBuf); for(j=1; j<4; j++){ if( j>=nByte ){ sprintf(&zBuf[i], " "); }else{ sprintf(&zBuf[i], " %02x", aData[ofst+j]); val = val*256 + aData[ofst+j]; } i += (int)strlen(&zBuf[i]); } sprintf(&zBuf[i], " %10u", val); printf("%s %s\n", zBuf, zMsg); } /* ** Decode the database header. */ static void print_db_header(void){ unsigned char *aData; aData = print_byte_range(0, 100, 0); printf("Decoded:\n"); print_decode_line(aData, 16, 2, "Database page size"); print_decode_line(aData, 18, 1, "File format write version"); print_decode_line(aData, 19, 1, "File format read version"); print_decode_line(aData, 20, 1, "Reserved space at end of page"); print_decode_line(aData, 24, 4, "File change counter"); print_decode_line(aData, 28, 4, "Size of database in pages"); print_decode_line(aData, 32, 4, "Page number of first freelist page"); print_decode_line(aData, 36, 4, "Number of freelist pages"); print_decode_line(aData, 40, 4, "Schema cookie"); print_decode_line(aData, 44, 4, "Schema format version"); print_decode_line(aData, 48, 4, "Default page cache size"); print_decode_line(aData, 52, 4, "Largest auto-vac root page"); print_decode_line(aData, 56, 4, "Text encoding"); print_decode_line(aData, 60, 4, "User version"); print_decode_line(aData, 64, 4, "Incremental-vacuum mode"); print_decode_line(aData, 68, 4, "Application ID"); print_decode_line(aData, 72, 4, "meta[8]"); print_decode_line(aData, 76, 4, "meta[9]"); print_decode_line(aData, 80, 4, "meta[10]"); print_decode_line(aData, 84, 4, "meta[11]"); print_decode_line(aData, 88, 4, "meta[12]"); print_decode_line(aData, 92, 4, "Change counter for version number"); print_decode_line(aData, 96, 4, "SQLite version number"); sqlite3_free(aData); } /* ** Describe cell content. */ static i64 describeContent( unsigned char *a, /* Cell content */ i64 nLocal, /* Bytes in a[] */ char *zDesc /* Write description here */ ){ i64 nDesc = 0; int n, j; i64 i, x, v; const unsigned char *pData; const unsigned char *pLimit; char sep = ' '; pLimit = &a[nLocal]; n = decodeVarint(a, &x); pData = &a[x]; a += n; i = x - n; while( i>0 && pData<=pLimit ){ n = decodeVarint(a, &x); a += n; i -= n; nLocal -= n; zDesc[0] = sep; sep = ','; nDesc++; zDesc++; if( x==0 ){ sprintf(zDesc, "*"); /* NULL is a "*" */ }else if( x>=1 && x<=6 ){ v = (signed char)pData[0]; pData++; switch( x ){ case 6: v = (v<<16) + (pData[0]<<8) + pData[1]; pData += 2; case 5: v = (v<<16) + (pData[0]<<8) + pData[1]; pData += 2; case 4: v = (v<<8) + pData[0]; pData++; case 3: v = (v<<8) + pData[0]; pData++; case 2: v = (v<<8) + pData[0]; pData++; } sprintf(zDesc, "%lld", v); }else if( x==7 ){ sprintf(zDesc, "real"); pData += 8; }else if( x==8 ){ sprintf(zDesc, "0"); }else if( x==9 ){ sprintf(zDesc, "1"); }else if( x>=12 ){ i64 size = (x-12)/2; if( (x&1)==0 ){ sprintf(zDesc, "blob(%lld)", size); }else{ sprintf(zDesc, "txt(%lld)", size); } pData += size; } j = (int)strlen(zDesc); zDesc += j; nDesc += j; } return nDesc; } /* ** Compute the local payload size given the total payload size and ** the page size. */ static i64 localPayload(i64 nPayload, char cType){ i64 maxLocal; i64 minLocal; i64 surplus; i64 nLocal; if( cType==13 ){ /* Table leaf */ maxLocal = g.pagesize-35; minLocal = (g.pagesize-12)*32/255-23; }else{ maxLocal = (g.pagesize-12)*64/255-23; minLocal = (g.pagesize-12)*32/255-23; } if( nPayload>maxLocal ){ surplus = minLocal + (nPayload-minLocal)%(g.pagesize-4); if( surplus<=maxLocal ){ nLocal = surplus; }else{ nLocal = minLocal; } }else{ nLocal = nPayload; } return nLocal; } /* ** Create a description for a single cell. ** ** The return value is the local cell size. */ static i64 describeCell( unsigned char cType, /* Page type */ unsigned char *a, /* Cell content */ int showCellContent, /* Show cell content if true */ char **pzDesc /* Store description here */ ){ int i; i64 nDesc = 0; int n = 0; u32 leftChild; i64 nPayload; i64 rowid; i64 nLocal; static char zDesc[1000]; i = 0; if( cType<=5 ){ leftChild = ((a[0]*256 + a[1])*256 + a[2])*256 + a[3]; a += 4; n += 4; sprintf(zDesc, "lx: %u ", leftChild); nDesc = strlen(zDesc); } if( cType!=5 ){ i = decodeVarint(a, &nPayload); a += i; n += i; sprintf(&zDesc[nDesc], "n: %lld ", nPayload); nDesc += strlen(&zDesc[nDesc]); nLocal = localPayload(nPayload, cType); }else{ nPayload = nLocal = 0; } if( cType==5 || cType==13 ){ i = decodeVarint(a, &rowid); a += i; n += i; sprintf(&zDesc[nDesc], "r: %lld ", rowid); nDesc += strlen(&zDesc[nDesc]); } if( nLocal=nByte ){ printf(" "); }else{ printf("%02x ", aStart[j]); } } } /* ** Write a full decode on stdout for the cell at a[ofst]. ** Assume the page contains a header of size szPgHdr bytes. */ static void decodeCell( unsigned char *a, /* Page content (without the page-1 header) */ unsigned pgno, /* Page number */ int iCell, /* Cell index */ int szPgHdr, /* Size of the page header. 0 or 100 */ int ofst /* Cell begins at a[ofst] */ ){ int i, j = 0; u32 leftChild; i64 k; i64 nPayload; i64 rowid; i64 nHdr; i64 iType; i64 nLocal; unsigned char *x = a + ofst; unsigned char *end; unsigned char cType = a[0]; int nCol = 0; int szCol[2000]; int ofstCol[2000]; int typeCol[2000]; printf("Cell[%d]:\n", iCell); if( cType<=5 ){ leftChild = ((x[0]*256 + x[1])*256 + x[2])*256 + x[3]; printBytes(a, x, 4); printf("left child page:: %u\n", leftChild); x += 4; } if( cType!=5 ){ i = decodeVarint(x, &nPayload); printBytes(a, x, i); nLocal = localPayload(nPayload, cType); if( nLocal==nPayload ){ printf("payload-size: %lld\n", nPayload); }else{ printf("payload-size: %lld (%lld local, %lld overflow)\n", nPayload, nLocal, nPayload-nLocal); } x += i; }else{ nPayload = nLocal = 0; } end = x + nLocal; if( cType==5 || cType==13 ){ i = decodeVarint(x, &rowid); printBytes(a, x, i); printf("rowid: %lld\n", rowid); x += i; } if( nLocal>0 ){ i = decodeVarint(x, &nHdr); printBytes(a, x, i); printf("record-header-size: %d\n", (int)nHdr); j = i; nCol = 0; k = nHdr; while( x+j<=end && j=nCell ){ printf("Page %d has only %d cells\n", pgno, nCell); return; } printf("Header on btree page %d:\n", pgno); print_decode_line(a, 0, 1, zType); print_decode_line(a, 1, 2, "Offset to first freeblock"); print_decode_line(a, 3, 2, "Number of cells on this page"); print_decode_line(a, 5, 2, "Offset to cell content area"); print_decode_line(a, 7, 1, "Fragmented byte count"); if( a[0]==2 || a[0]==5 ){ print_decode_line(a, 8, 4, "Right child"); } if( cellToDecode==(-2) && nCell>0 ){ printf(" key: lx=left-child n=payload-size r=rowid\n"); } if( showMap ){ zMap = sqlite3_malloc(g.pagesize); memset(zMap, '.', g.pagesize); memset(zMap, '1', hdrSize); memset(&zMap[hdrSize], 'H', iCellPtr); memset(&zMap[hdrSize+iCellPtr], 'P', 2*nCell); } for(i=0; i0 ){ a = fileRead((pgno-1)*g.pagesize, g.pagesize); printf("Decode of freelist trunk page %d:\n", pgno); print_decode_line(a, 0, 4, "Next freelist trunk page"); print_decode_line(a, 4, 4, "Number of entries on this page"); if( detail ){ n = decodeInt32(&a[4]); for(i=0; ig.mxPage ){ printf("ERROR: page %d out of range 1..%u: %s\n", pgno, g.mxPage, zMsg); sqlite3_free(zMsg); return; } if( zPageUse[pgno]!=0 ){ printf("ERROR: page %d used multiple times:\n", pgno); printf("ERROR: previous: %s\n", zPageUse[pgno]); printf("ERROR: current: %s\n", zMsg); sqlite3_free(zPageUse[pgno]); } zPageUse[pgno] = zMsg; } /* ** Find overflow pages of a cell and describe their usage. */ static void page_usage_cell( unsigned char cType, /* Page type */ unsigned char *a, /* Cell content */ u32 pgno, /* page containing the cell */ int cellno /* Index of the cell on the page */ ){ int i; int n = 0; i64 nPayload; i64 rowid; i64 nLocal; i = 0; if( cType<=5 ){ a += 4; n += 4; } if( cType!=5 ){ i = decodeVarint(a, &nPayload); a += i; n += i; nLocal = localPayload(nPayload, cType); }else{ nPayload = nLocal = 0; } if( cType==5 || cType==13 ){ i = decodeVarint(a, &rowid); a += i; n += i; } if( nLocalg.mxPage ) return; a = fileRead((pgno-1)*g.pagesize, g.pagesize); switch( a[hdr] ){ case 0: { if( allZero(a, g.pagesize) ){ zType = "zeroed page"; }else if( parent<0 ){ return; }else{ zType = "corrupt node"; } break; } case 2: zType = "interior node of index"; break; case 5: zType = "interior node of table"; break; case 10: zType = "leaf of index"; break; case 13: zType = "leaf of table"; break; default: { if( parent<0 ) return; zType = "corrupt node"; } } nCell = a[hdr+3]*256 + a[hdr+4]; if( nCell==1 ){ sqlite3_snprintf(sizeof(zEntry),zEntry,"1 row"); }else{ sqlite3_snprintf(sizeof(zEntry),zEntry,"%d rows", nCell); } if( parent>0 ){ page_usage_msg(pgno, "%s [%s], child %d of page %d, %s", zType, zName, idx, parent, zEntry); }else if( parent==0 ){ page_usage_msg(pgno, "root %s [%s], %s", zType, zName, zEntry); }else{ page_usage_msg(pgno, "orphaned %s, %s", zType, zEntry); } if( a[hdr]==2 || a[hdr]==5 ){ int cellstart = hdr+12; u32 child; for(i=0; i= g.pagesize ){ printf("ERROR: page %d too many cells (%d)\n", pgno, nCell); break; } ofst = a[cellidx]*256 + a[cellidx+1]; if( ofst=g.pagesize ){ printf("ERROR: page %d cell %d out of bounds\n", pgno, i); continue; } child = decodeInt32(a+ofst); page_usage_btree(child, pgno, i, zName); } child = decodeInt32(a+cellstart-4); page_usage_btree(child, pgno, i, zName); } if( a[hdr]==2 || a[hdr]==10 || a[hdr]==13 ){ int cellstart = hdr + 8 + 4*(a[hdr]<=5); for(i=0; i0 && pgno<=g.mxPage && (u32)(cnt++)1 ){ if( sqlite3_stricmp("-raw", azArg[1])==0 || sqlite3_stricmp("--raw", azArg[1])==0 ){ g.bRaw = 1; azArg++; nArg--; } } if( nArg<2 ){ usage(zPrg); exit(1); } fileOpen(zPrg, azArg[1]); szFile = fileGetsize(); zPgSz = fileRead(16, 2); g.pagesize = zPgSz[0]*256 + zPgSz[1]*65536; if( g.pagesize==0 ) g.pagesize = 1024; sqlite3_free(zPgSz); printf("Pagesize: %d\n", g.pagesize); g.mxPage = (u32)((szFile+g.pagesize-1)/g.pagesize); printf("Available pages: 1..%u\n", g.mxPage); if( nArg==2 ){ u32 i; for(i=1; i<=g.mxPage; i++) print_page(i); }else{ int i; for(i=2; ig.mxPage ){ fprintf(stderr, "Page argument should be LOWER?..UPPER?. Range 1 to %d\n", g.mxPage); exit(1); } while( iStart<=iEnd ){ print_page(iStart); iStart++; } } } fileClose(); return 0; }