/* ** 2017 April 09 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* */ #include "sqlite3expert.h" #include #include #include typedef sqlite3_int64 i64; typedef sqlite3_uint64 u64; typedef struct IdxColumn IdxColumn; typedef struct IdxConstraint IdxConstraint; typedef struct IdxScan IdxScan; typedef struct IdxStatement IdxStatement; typedef struct IdxTable IdxTable; typedef struct IdxWrite IdxWrite; #define STRLEN (int)strlen /* ** A temp table name that we assume no user database will actually use. ** If this assumption proves incorrect triggers on the table with the ** conflicting name will be ignored. */ #define UNIQUE_TABLE_NAME "t592690916721053953805701627921227776" /* ** A single constraint. Equivalent to either "col = ?" or "col < ?" (or ** any other type of single-ended range constraint on a column). ** ** pLink: ** Used to temporarily link IdxConstraint objects into lists while ** creating candidate indexes. */ struct IdxConstraint { char *zColl; /* Collation sequence */ int bRange; /* True for range, false for eq */ int iCol; /* Constrained table column */ int bFlag; /* Used by idxFindCompatible() */ int bDesc; /* True if ORDER BY DESC */ IdxConstraint *pNext; /* Next constraint in pEq or pRange list */ IdxConstraint *pLink; /* See above */ }; /* ** A single scan of a single table. */ struct IdxScan { IdxTable *pTab; /* Associated table object */ int iDb; /* Database containing table zTable */ i64 covering; /* Mask of columns required for cov. index */ IdxConstraint *pOrder; /* ORDER BY columns */ IdxConstraint *pEq; /* List of == constraints */ IdxConstraint *pRange; /* List of < constraints */ IdxScan *pNextScan; /* Next IdxScan object for same analysis */ }; /* ** Information regarding a single database table. Extracted from ** "PRAGMA table_info" by function idxGetTableInfo(). */ struct IdxColumn { char *zName; char *zColl; int iPk; }; struct IdxTable { int nCol; char *zName; /* Table name */ IdxColumn *aCol; IdxTable *pNext; /* Next table in linked list of all tables */ }; /* ** An object of the following type is created for each unique table/write-op ** seen. The objects are stored in a singly-linked list beginning at ** sqlite3expert.pWrite. */ struct IdxWrite { IdxTable *pTab; int eOp; /* SQLITE_UPDATE, DELETE or INSERT */ IdxWrite *pNext; }; /* ** Each statement being analyzed is represented by an instance of this ** structure. */ struct IdxStatement { int iId; /* Statement number */ char *zSql; /* SQL statement */ char *zIdx; /* Indexes */ char *zEQP; /* Plan */ IdxStatement *pNext; }; /* ** A hash table for storing strings. With space for a payload string ** with each entry. Methods are: ** ** idxHashInit() ** idxHashClear() ** idxHashAdd() ** idxHashSearch() */ #define IDX_HASH_SIZE 1023 typedef struct IdxHashEntry IdxHashEntry; typedef struct IdxHash IdxHash; struct IdxHashEntry { char *zKey; /* nul-terminated key */ char *zVal; /* nul-terminated value string */ char *zVal2; /* nul-terminated value string 2 */ IdxHashEntry *pHashNext; /* Next entry in same hash bucket */ IdxHashEntry *pNext; /* Next entry in hash */ }; struct IdxHash { IdxHashEntry *pFirst; IdxHashEntry *aHash[IDX_HASH_SIZE]; }; /* ** sqlite3expert object. */ struct sqlite3expert { int iSample; /* Percentage of tables to sample for stat1 */ sqlite3 *db; /* User database */ sqlite3 *dbm; /* In-memory db for this analysis */ sqlite3 *dbv; /* Vtab schema for this analysis */ IdxTable *pTable; /* List of all IdxTable objects */ IdxScan *pScan; /* List of scan objects */ IdxWrite *pWrite; /* List of write objects */ IdxStatement *pStatement; /* List of IdxStatement objects */ int bRun; /* True once analysis has run */ char **pzErrmsg; int rc; /* Error code from whereinfo hook */ IdxHash hIdx; /* Hash containing all candidate indexes */ char *zCandidates; /* For EXPERT_REPORT_CANDIDATES */ }; /* ** Allocate and return nByte bytes of zeroed memory using sqlite3_malloc(). ** If the allocation fails, set *pRc to SQLITE_NOMEM and return NULL. */ static void *idxMalloc(int *pRc, int nByte){ void *pRet; assert( *pRc==SQLITE_OK ); assert( nByte>0 ); pRet = sqlite3_malloc(nByte); if( pRet ){ memset(pRet, 0, nByte); }else{ *pRc = SQLITE_NOMEM; } return pRet; } /* ** Initialize an IdxHash hash table. */ static void idxHashInit(IdxHash *pHash){ memset(pHash, 0, sizeof(IdxHash)); } /* ** Reset an IdxHash hash table. */ static void idxHashClear(IdxHash *pHash){ int i; for(i=0; iaHash[i]; pEntry; pEntry=pNext){ pNext = pEntry->pHashNext; sqlite3_free(pEntry->zVal2); sqlite3_free(pEntry); } } memset(pHash, 0, sizeof(IdxHash)); } /* ** Return the index of the hash bucket that the string specified by the ** arguments to this function belongs. */ static int idxHashString(const char *z, int n){ unsigned int ret = 0; int i; for(i=0; i=0 ); for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){ if( STRLEN(pEntry->zKey)==nKey && 0==memcmp(pEntry->zKey, zKey, nKey) ){ return 1; } } pEntry = idxMalloc(pRc, sizeof(IdxHashEntry) + nKey+1 + nVal+1); if( pEntry ){ pEntry->zKey = (char*)&pEntry[1]; memcpy(pEntry->zKey, zKey, nKey); if( zVal ){ pEntry->zVal = &pEntry->zKey[nKey+1]; memcpy(pEntry->zVal, zVal, nVal); } pEntry->pHashNext = pHash->aHash[iHash]; pHash->aHash[iHash] = pEntry; pEntry->pNext = pHash->pFirst; pHash->pFirst = pEntry; } return 0; } /* ** If zKey/nKey is present in the hash table, return a pointer to the ** hash-entry object. */ static IdxHashEntry *idxHashFind(IdxHash *pHash, const char *zKey, int nKey){ int iHash; IdxHashEntry *pEntry; if( nKey<0 ) nKey = STRLEN(zKey); iHash = idxHashString(zKey, nKey); assert( iHash>=0 ); for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){ if( STRLEN(pEntry->zKey)==nKey && 0==memcmp(pEntry->zKey, zKey, nKey) ){ return pEntry; } } return 0; } /* ** If the hash table contains an entry with a key equal to the string ** passed as the final two arguments to this function, return a pointer ** to the payload string. Otherwise, if zKey/nKey is not present in the ** hash table, return NULL. */ static const char *idxHashSearch(IdxHash *pHash, const char *zKey, int nKey){ IdxHashEntry *pEntry = idxHashFind(pHash, zKey, nKey); if( pEntry ) return pEntry->zVal; return 0; } /* ** Allocate and return a new IdxConstraint object. Set the IdxConstraint.zColl ** variable to point to a copy of nul-terminated string zColl. */ static IdxConstraint *idxNewConstraint(int *pRc, const char *zColl){ IdxConstraint *pNew; int nColl = STRLEN(zColl); assert( *pRc==SQLITE_OK ); pNew = (IdxConstraint*)idxMalloc(pRc, sizeof(IdxConstraint) * nColl + 1); if( pNew ){ pNew->zColl = (char*)&pNew[1]; memcpy(pNew->zColl, zColl, nColl+1); } return pNew; } /* ** An error associated with database handle db has just occurred. Pass ** the error message to callback function xOut. */ static void idxDatabaseError( sqlite3 *db, /* Database handle */ char **pzErrmsg /* Write error here */ ){ *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } /* ** Prepare an SQL statement. */ static int idxPrepareStmt( sqlite3 *db, /* Database handle to compile against */ sqlite3_stmt **ppStmt, /* OUT: Compiled SQL statement */ char **pzErrmsg, /* OUT: sqlite3_malloc()ed error message */ const char *zSql /* SQL statement to compile */ ){ int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0); if( rc!=SQLITE_OK ){ *ppStmt = 0; idxDatabaseError(db, pzErrmsg); } return rc; } /* ** Prepare an SQL statement using the results of a printf() formatting. */ static int idxPrintfPrepareStmt( sqlite3 *db, /* Database handle to compile against */ sqlite3_stmt **ppStmt, /* OUT: Compiled SQL statement */ char **pzErrmsg, /* OUT: sqlite3_malloc()ed error message */ const char *zFmt, /* printf() format of SQL statement */ ... /* Trailing printf() arguments */ ){ va_list ap; int rc; char *zSql; va_start(ap, zFmt); zSql = sqlite3_vmprintf(zFmt, ap); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = idxPrepareStmt(db, ppStmt, pzErrmsg, zSql); sqlite3_free(zSql); } va_end(ap); return rc; } /************************************************************************* ** Beginning of virtual table implementation. */ typedef struct ExpertVtab ExpertVtab; struct ExpertVtab { sqlite3_vtab base; IdxTable *pTab; sqlite3expert *pExpert; }; typedef struct ExpertCsr ExpertCsr; struct ExpertCsr { sqlite3_vtab_cursor base; sqlite3_stmt *pData; }; static char *expertDequote(const char *zIn){ int n = STRLEN(zIn); char *zRet = sqlite3_malloc(n); assert( zIn[0]=='\'' ); assert( zIn[n-1]=='\'' ); if( zRet ){ int iOut = 0; int iIn = 0; for(iIn=1; iIn<(n-1); iIn++){ if( zIn[iIn]=='\'' ){ assert( zIn[iIn+1]=='\'' ); iIn++; } zRet[iOut++] = zIn[iIn]; } zRet[iOut] = '\0'; } return zRet; } /* ** This function is the implementation of both the xConnect and xCreate ** methods of the r-tree virtual table. ** ** argv[0] -> module name ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> column names... */ static int expertConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ sqlite3expert *pExpert = (sqlite3expert*)pAux; ExpertVtab *p = 0; int rc; if( argc!=4 ){ *pzErr = sqlite3_mprintf("internal error!"); rc = SQLITE_ERROR; }else{ char *zCreateTable = expertDequote(argv[3]); if( zCreateTable ){ rc = sqlite3_declare_vtab(db, zCreateTable); if( rc==SQLITE_OK ){ p = idxMalloc(&rc, sizeof(ExpertVtab)); } if( rc==SQLITE_OK ){ p->pExpert = pExpert; p->pTab = pExpert->pTable; assert( sqlite3_stricmp(p->pTab->zName, argv[2])==0 ); } sqlite3_free(zCreateTable); }else{ rc = SQLITE_NOMEM; } } *ppVtab = (sqlite3_vtab*)p; return rc; } static int expertDisconnect(sqlite3_vtab *pVtab){ ExpertVtab *p = (ExpertVtab*)pVtab; sqlite3_free(p); return SQLITE_OK; } static int expertBestIndex(sqlite3_vtab *pVtab, sqlite3_index_info *pIdxInfo){ ExpertVtab *p = (ExpertVtab*)pVtab; int rc = SQLITE_OK; int n = 0; IdxScan *pScan; const int opmask = SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_GT | SQLITE_INDEX_CONSTRAINT_LT | SQLITE_INDEX_CONSTRAINT_GE | SQLITE_INDEX_CONSTRAINT_LE; pScan = idxMalloc(&rc, sizeof(IdxScan)); if( pScan ){ int i; /* Link the new scan object into the list */ pScan->pTab = p->pTab; pScan->pNextScan = p->pExpert->pScan; p->pExpert->pScan = pScan; /* Add the constraints to the IdxScan object */ for(i=0; inConstraint; i++){ struct sqlite3_index_constraint *pCons = &pIdxInfo->aConstraint[i]; if( pCons->usable && pCons->iColumn>=0 && p->pTab->aCol[pCons->iColumn].iPk==0 && (pCons->op & opmask) ){ IdxConstraint *pNew; const char *zColl = sqlite3_vtab_collation(pIdxInfo, i); pNew = idxNewConstraint(&rc, zColl); if( pNew ){ pNew->iCol = pCons->iColumn; if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ ){ pNew->pNext = pScan->pEq; pScan->pEq = pNew; }else{ pNew->bRange = 1; pNew->pNext = pScan->pRange; pScan->pRange = pNew; } } n++; pIdxInfo->aConstraintUsage[i].argvIndex = n; } } /* Add the ORDER BY to the IdxScan object */ for(i=pIdxInfo->nOrderBy-1; i>=0; i--){ int iCol = pIdxInfo->aOrderBy[i].iColumn; if( iCol>=0 ){ IdxConstraint *pNew = idxNewConstraint(&rc, p->pTab->aCol[iCol].zColl); if( pNew ){ pNew->iCol = iCol; pNew->bDesc = pIdxInfo->aOrderBy[i].desc; pNew->pNext = pScan->pOrder; pNew->pLink = pScan->pOrder; pScan->pOrder = pNew; n++; } } } } pIdxInfo->estimatedCost = 1000000.0 / (n+1); return rc; } static int expertUpdate( sqlite3_vtab *pVtab, int nData, sqlite3_value **azData, sqlite_int64 *pRowid ){ return SQLITE_OK; } /* ** Virtual table module xOpen method. */ static int expertOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ int rc = SQLITE_OK; ExpertCsr *pCsr; pCsr = idxMalloc(&rc, sizeof(ExpertCsr)); *ppCursor = (sqlite3_vtab_cursor*)pCsr; return rc; } /* ** Virtual table module xClose method. */ static int expertClose(sqlite3_vtab_cursor *cur){ ExpertCsr *pCsr = (ExpertCsr*)cur; sqlite3_finalize(pCsr->pData); sqlite3_free(pCsr); return SQLITE_OK; } /* ** Virtual table module xEof method. ** ** Return non-zero if the cursor does not currently point to a valid ** record (i.e if the scan has finished), or zero otherwise. */ static int expertEof(sqlite3_vtab_cursor *cur){ ExpertCsr *pCsr = (ExpertCsr*)cur; return pCsr->pData==0; } /* ** Virtual table module xNext method. */ static int expertNext(sqlite3_vtab_cursor *cur){ ExpertCsr *pCsr = (ExpertCsr*)cur; int rc = SQLITE_OK; assert( pCsr->pData ); rc = sqlite3_step(pCsr->pData); if( rc!=SQLITE_ROW ){ rc = sqlite3_finalize(pCsr->pData); pCsr->pData = 0; }else{ rc = SQLITE_OK; } return rc; } /* ** Virtual table module xRowid method. */ static int expertRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ *pRowid = 0; return SQLITE_OK; } /* ** Virtual table module xColumn method. */ static int expertColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ ExpertCsr *pCsr = (ExpertCsr*)cur; sqlite3_value *pVal; pVal = sqlite3_column_value(pCsr->pData, i); if( pVal ){ sqlite3_result_value(ctx, pVal); } return SQLITE_OK; } /* ** Virtual table module xFilter method. */ static int expertFilter( sqlite3_vtab_cursor *cur, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ ExpertCsr *pCsr = (ExpertCsr*)cur; ExpertVtab *pVtab = (ExpertVtab*)(cur->pVtab); sqlite3expert *pExpert = pVtab->pExpert; int rc; rc = sqlite3_finalize(pCsr->pData); pCsr->pData = 0; if( rc==SQLITE_OK ){ rc = idxPrintfPrepareStmt(pExpert->db, &pCsr->pData, &pVtab->base.zErrMsg, "SELECT * FROM main.%Q WHERE sample()", pVtab->pTab->zName ); } if( rc==SQLITE_OK ){ rc = expertNext(cur); } return rc; } static int idxRegisterVtab(sqlite3expert *p){ static sqlite3_module expertModule = { 2, /* iVersion */ expertConnect, /* xCreate - create a table */ expertConnect, /* xConnect - connect to an existing table */ expertBestIndex, /* xBestIndex - Determine search strategy */ expertDisconnect, /* xDisconnect - Disconnect from a table */ expertDisconnect, /* xDestroy - Drop a table */ expertOpen, /* xOpen - open a cursor */ expertClose, /* xClose - close a cursor */ expertFilter, /* xFilter - configure scan constraints */ expertNext, /* xNext - advance a cursor */ expertEof, /* xEof */ expertColumn, /* xColumn - read data */ expertRowid, /* xRowid - read data */ expertUpdate, /* xUpdate - write data */ 0, /* xBegin - begin transaction */ 0, /* xSync - sync transaction */ 0, /* xCommit - commit transaction */ 0, /* xRollback - rollback transaction */ 0, /* xFindFunction - function overloading */ 0, /* xRename - rename the table */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ }; return sqlite3_create_module(p->dbv, "expert", &expertModule, (void*)p); } /* ** End of virtual table implementation. *************************************************************************/ /* ** Finalize SQL statement pStmt. If (*pRc) is SQLITE_OK when this function ** is called, set it to the return value of sqlite3_finalize() before ** returning. Otherwise, discard the sqlite3_finalize() return value. */ static void idxFinalize(int *pRc, sqlite3_stmt *pStmt){ int rc = sqlite3_finalize(pStmt); if( *pRc==SQLITE_OK ) *pRc = rc; } /* ** Attempt to allocate an IdxTable structure corresponding to table zTab ** in the main database of connection db. If successful, set (*ppOut) to ** point to the new object and return SQLITE_OK. Otherwise, return an ** SQLite error code and set (*ppOut) to NULL. In this case *pzErrmsg may be ** set to point to an error string. ** ** It is the responsibility of the caller to eventually free either the ** IdxTable object or error message using sqlite3_free(). */ static int idxGetTableInfo( sqlite3 *db, /* Database connection to read details from */ const char *zTab, /* Table name */ IdxTable **ppOut, /* OUT: New object (if successful) */ char **pzErrmsg /* OUT: Error message (if not) */ ){ sqlite3_stmt *p1 = 0; int nCol = 0; int nTab = STRLEN(zTab); int nByte = sizeof(IdxTable) + nTab + 1; IdxTable *pNew = 0; int rc, rc2; char *pCsr = 0; rc = idxPrintfPrepareStmt(db, &p1, pzErrmsg, "PRAGMA table_info=%Q", zTab); while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(p1) ){ const char *zCol = (const char*)sqlite3_column_text(p1, 1); nByte += 1 + STRLEN(zCol); rc = sqlite3_table_column_metadata( db, "main", zTab, zCol, 0, &zCol, 0, 0, 0 ); nByte += 1 + STRLEN(zCol); nCol++; } rc2 = sqlite3_reset(p1); if( rc==SQLITE_OK ) rc = rc2; nByte += sizeof(IdxColumn) * nCol; if( rc==SQLITE_OK ){ pNew = idxMalloc(&rc, nByte); } if( rc==SQLITE_OK ){ pNew->aCol = (IdxColumn*)&pNew[1]; pNew->nCol = nCol; pCsr = (char*)&pNew->aCol[nCol]; } nCol = 0; while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(p1) ){ const char *zCol = (const char*)sqlite3_column_text(p1, 1); int nCopy = STRLEN(zCol) + 1; pNew->aCol[nCol].zName = pCsr; pNew->aCol[nCol].iPk = sqlite3_column_int(p1, 5); memcpy(pCsr, zCol, nCopy); pCsr += nCopy; rc = sqlite3_table_column_metadata( db, "main", zTab, zCol, 0, &zCol, 0, 0, 0 ); if( rc==SQLITE_OK ){ nCopy = STRLEN(zCol) + 1; pNew->aCol[nCol].zColl = pCsr; memcpy(pCsr, zCol, nCopy); pCsr += nCopy; } nCol++; } idxFinalize(&rc, p1); if( rc!=SQLITE_OK ){ sqlite3_free(pNew); pNew = 0; }else{ pNew->zName = pCsr; memcpy(pNew->zName, zTab, nTab+1); } *ppOut = pNew; return rc; } /* ** This function is a no-op if *pRc is set to anything other than ** SQLITE_OK when it is called. ** ** If *pRc is initially set to SQLITE_OK, then the text specified by ** the printf() style arguments is appended to zIn and the result returned ** in a buffer allocated by sqlite3_malloc(). sqlite3_free() is called on ** zIn before returning. */ static char *idxAppendText(int *pRc, char *zIn, const char *zFmt, ...){ va_list ap; char *zAppend = 0; char *zRet = 0; int nIn = zIn ? STRLEN(zIn) : 0; int nAppend = 0; va_start(ap, zFmt); if( *pRc==SQLITE_OK ){ zAppend = sqlite3_vmprintf(zFmt, ap); if( zAppend ){ nAppend = STRLEN(zAppend); zRet = (char*)sqlite3_malloc(nIn + nAppend + 1); } if( zAppend && zRet ){ if( nIn ) memcpy(zRet, zIn, nIn); memcpy(&zRet[nIn], zAppend, nAppend+1); }else{ sqlite3_free(zRet); zRet = 0; *pRc = SQLITE_NOMEM; } sqlite3_free(zAppend); sqlite3_free(zIn); } va_end(ap); return zRet; } /* ** Return true if zId must be quoted in order to use it as an SQL ** identifier, or false otherwise. */ static int idxIdentifierRequiresQuotes(const char *zId){ int i; for(i=0; zId[i]; i++){ if( !(zId[i]=='_') && !(zId[i]>='0' && zId[i]<='9') && !(zId[i]>='a' && zId[i]<='z') && !(zId[i]>='A' && zId[i]<='Z') ){ return 1; } } return 0; } /* ** This function appends an index column definition suitable for constraint ** pCons to the string passed as zIn and returns the result. */ static char *idxAppendColDefn( int *pRc, /* IN/OUT: Error code */ char *zIn, /* Column defn accumulated so far */ IdxTable *pTab, /* Table index will be created on */ IdxConstraint *pCons ){ char *zRet = zIn; IdxColumn *p = &pTab->aCol[pCons->iCol]; if( zRet ) zRet = idxAppendText(pRc, zRet, ", "); if( idxIdentifierRequiresQuotes(p->zName) ){ zRet = idxAppendText(pRc, zRet, "%Q", p->zName); }else{ zRet = idxAppendText(pRc, zRet, "%s", p->zName); } if( sqlite3_stricmp(p->zColl, pCons->zColl) ){ if( idxIdentifierRequiresQuotes(pCons->zColl) ){ zRet = idxAppendText(pRc, zRet, " COLLATE %Q", pCons->zColl); }else{ zRet = idxAppendText(pRc, zRet, " COLLATE %s", pCons->zColl); } } if( pCons->bDesc ){ zRet = idxAppendText(pRc, zRet, " DESC"); } return zRet; } /* ** Search database dbm for an index compatible with the one idxCreateFromCons() ** would create from arguments pScan, pEq and pTail. If no error occurs and ** such an index is found, return non-zero. Or, if no such index is found, ** return zero. ** ** If an error occurs, set *pRc to an SQLite error code and return zero. */ static int idxFindCompatible( int *pRc, /* OUT: Error code */ sqlite3* dbm, /* Database to search */ IdxScan *pScan, /* Scan for table to search for index on */ IdxConstraint *pEq, /* List of == constraints */ IdxConstraint *pTail /* List of range constraints */ ){ const char *zTbl = pScan->pTab->zName; sqlite3_stmt *pIdxList = 0; IdxConstraint *pIter; int nEq = 0; /* Number of elements in pEq */ int rc; /* Count the elements in list pEq */ for(pIter=pEq; pIter; pIter=pIter->pLink) nEq++; rc = idxPrintfPrepareStmt(dbm, &pIdxList, 0, "PRAGMA index_list=%Q", zTbl); while( rc==SQLITE_OK && sqlite3_step(pIdxList)==SQLITE_ROW ){ int bMatch = 1; IdxConstraint *pT = pTail; sqlite3_stmt *pInfo = 0; const char *zIdx = (const char*)sqlite3_column_text(pIdxList, 1); /* Zero the IdxConstraint.bFlag values in the pEq list */ for(pIter=pEq; pIter; pIter=pIter->pLink) pIter->bFlag = 0; rc = idxPrintfPrepareStmt(dbm, &pInfo, 0, "PRAGMA index_xInfo=%Q", zIdx); while( rc==SQLITE_OK && sqlite3_step(pInfo)==SQLITE_ROW ){ int iIdx = sqlite3_column_int(pInfo, 0); int iCol = sqlite3_column_int(pInfo, 1); const char *zColl = (const char*)sqlite3_column_text(pInfo, 4); if( iIdxpLink){ if( pIter->bFlag ) continue; if( pIter->iCol!=iCol ) continue; if( sqlite3_stricmp(pIter->zColl, zColl) ) continue; pIter->bFlag = 1; break; } if( pIter==0 ){ bMatch = 0; break; } }else{ if( pT ){ if( pT->iCol!=iCol || sqlite3_stricmp(pT->zColl, zColl) ){ bMatch = 0; break; } pT = pT->pLink; } } } idxFinalize(&rc, pInfo); if( rc==SQLITE_OK && bMatch ){ sqlite3_finalize(pIdxList); return 1; } } idxFinalize(&rc, pIdxList); *pRc = rc; return 0; } static int idxCreateFromCons( sqlite3expert *p, IdxScan *pScan, IdxConstraint *pEq, IdxConstraint *pTail ){ sqlite3 *dbm = p->dbm; int rc = SQLITE_OK; if( (pEq || pTail) && 0==idxFindCompatible(&rc, dbm, pScan, pEq, pTail) ){ IdxTable *pTab = pScan->pTab; char *zCols = 0; char *zIdx = 0; IdxConstraint *pCons; unsigned int h = 0; const char *zFmt; for(pCons=pEq; pCons; pCons=pCons->pLink){ zCols = idxAppendColDefn(&rc, zCols, pTab, pCons); } for(pCons=pTail; pCons; pCons=pCons->pLink){ zCols = idxAppendColDefn(&rc, zCols, pTab, pCons); } if( rc==SQLITE_OK ){ /* Hash the list of columns to come up with a name for the index */ const char *zTable = pScan->pTab->zName; char *zName; /* Index name */ int i; for(i=0; zCols[i]; i++){ h += ((h<<3) + zCols[i]); } zName = sqlite3_mprintf("%s_idx_%08x", zTable, h); if( zName==0 ){ rc = SQLITE_NOMEM; }else{ if( idxIdentifierRequiresQuotes(zTable) ){ zFmt = "CREATE INDEX '%q' ON %Q(%s)"; }else{ zFmt = "CREATE INDEX %s ON %s(%s)"; } zIdx = sqlite3_mprintf(zFmt, zName, zTable, zCols); if( !zIdx ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_exec(dbm, zIdx, 0, 0, p->pzErrmsg); idxHashAdd(&rc, &p->hIdx, zName, zIdx); } sqlite3_free(zName); sqlite3_free(zIdx); } } sqlite3_free(zCols); } return rc; } /* ** Return true if list pList (linked by IdxConstraint.pLink) contains ** a constraint compatible with *p. Otherwise return false. */ static int idxFindConstraint(IdxConstraint *pList, IdxConstraint *p){ IdxConstraint *pCmp; for(pCmp=pList; pCmp; pCmp=pCmp->pLink){ if( p->iCol==pCmp->iCol ) return 1; } return 0; } static int idxCreateFromWhere( sqlite3expert *p, IdxScan *pScan, /* Create indexes for this scan */ IdxConstraint *pTail /* range/ORDER BY constraints for inclusion */ ){ IdxConstraint *p1 = 0; IdxConstraint *pCon; int rc; /* Gather up all the == constraints. */ for(pCon=pScan->pEq; pCon; pCon=pCon->pNext){ if( !idxFindConstraint(p1, pCon) && !idxFindConstraint(pTail, pCon) ){ pCon->pLink = p1; p1 = pCon; } } /* Create an index using the == constraints collected above. And the ** range constraint/ORDER BY terms passed in by the caller, if any. */ rc = idxCreateFromCons(p, pScan, p1, pTail); /* If no range/ORDER BY passed by the caller, create a version of the ** index for each range constraint. */ if( pTail==0 ){ for(pCon=pScan->pRange; rc==SQLITE_OK && pCon; pCon=pCon->pNext){ assert( pCon->pLink==0 ); if( !idxFindConstraint(p1, pCon) && !idxFindConstraint(pTail, pCon) ){ rc = idxCreateFromCons(p, pScan, p1, pCon); } } } return rc; } /* ** Create candidate indexes in database [dbm] based on the data in ** linked-list pScan. */ static int idxCreateCandidates(sqlite3expert *p, char **pzErr){ int rc = SQLITE_OK; IdxScan *pIter; for(pIter=p->pScan; pIter && rc==SQLITE_OK; pIter=pIter->pNextScan){ rc = idxCreateFromWhere(p, pIter, 0); if( rc==SQLITE_OK && pIter->pOrder ){ rc = idxCreateFromWhere(p, pIter, pIter->pOrder); } } return rc; } /* ** Free all elements of the linked list starting at pConstraint. */ static void idxConstraintFree(IdxConstraint *pConstraint){ IdxConstraint *pNext; IdxConstraint *p; for(p=pConstraint; p; p=pNext){ pNext = p->pNext; sqlite3_free(p); } } /* ** Free all elements of the linked list starting from pScan up until pLast ** (pLast is not freed). */ static void idxScanFree(IdxScan *pScan, IdxScan *pLast){ IdxScan *p; IdxScan *pNext; for(p=pScan; p!=pLast; p=pNext){ pNext = p->pNextScan; idxConstraintFree(p->pOrder); idxConstraintFree(p->pEq); idxConstraintFree(p->pRange); sqlite3_free(p); } } /* ** Free all elements of the linked list starting from pStatement up ** until pLast (pLast is not freed). */ static void idxStatementFree(IdxStatement *pStatement, IdxStatement *pLast){ IdxStatement *p; IdxStatement *pNext; for(p=pStatement; p!=pLast; p=pNext){ pNext = p->pNext; sqlite3_free(p->zEQP); sqlite3_free(p->zIdx); sqlite3_free(p); } } /* ** Free the linked list of IdxTable objects starting at pTab. */ static void idxTableFree(IdxTable *pTab){ IdxTable *pIter; IdxTable *pNext; for(pIter=pTab; pIter; pIter=pNext){ pNext = pIter->pNext; sqlite3_free(pIter); } } /* ** Free the linked list of IdxWrite objects starting at pTab. */ static void idxWriteFree(IdxWrite *pTab){ IdxWrite *pIter; IdxWrite *pNext; for(pIter=pTab; pIter; pIter=pNext){ pNext = pIter->pNext; sqlite3_free(pIter); } } /* ** This function is called after candidate indexes have been created. It ** runs all the queries to see which indexes they prefer, and populates ** IdxStatement.zIdx and IdxStatement.zEQP with the results. */ int idxFindIndexes( sqlite3expert *p, char **pzErr /* OUT: Error message (sqlite3_malloc) */ ){ IdxStatement *pStmt; sqlite3 *dbm = p->dbm; int rc = SQLITE_OK; IdxHash hIdx; idxHashInit(&hIdx); for(pStmt=p->pStatement; rc==SQLITE_OK && pStmt; pStmt=pStmt->pNext){ IdxHashEntry *pEntry; sqlite3_stmt *pExplain = 0; idxHashClear(&hIdx); rc = idxPrintfPrepareStmt(dbm, &pExplain, pzErr, "EXPLAIN QUERY PLAN %s", pStmt->zSql ); while( rc==SQLITE_OK && sqlite3_step(pExplain)==SQLITE_ROW ){ int iSelectid = sqlite3_column_int(pExplain, 0); int iOrder = sqlite3_column_int(pExplain, 1); int iFrom = sqlite3_column_int(pExplain, 2); const char *zDetail = (const char*)sqlite3_column_text(pExplain, 3); int nDetail = STRLEN(zDetail); int i; for(i=0; ihIdx, zIdx, nIdx); if( zSql ){ idxHashAdd(&rc, &hIdx, zSql, 0); if( rc ) goto find_indexes_out; } break; } } pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%d|%d|%d|%s\n", iSelectid, iOrder, iFrom, zDetail ); } for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){ pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey); } idxFinalize(&rc, pExplain); } find_indexes_out: idxHashClear(&hIdx); return rc; } static int idxAuthCallback( void *pCtx, int eOp, const char *z3, const char *z4, const char *zDb, const char *zTrigger ){ int rc = SQLITE_OK; if( eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE || eOp==SQLITE_DELETE ){ if( sqlite3_stricmp(zDb, "main")==0 ){ sqlite3expert *p = (sqlite3expert*)pCtx; IdxTable *pTab; for(pTab=p->pTable; pTab; pTab=pTab->pNext){ if( 0==sqlite3_stricmp(z3, pTab->zName) ) break; } if( pTab ){ IdxWrite *pWrite; for(pWrite=p->pWrite; pWrite; pWrite=pWrite->pNext){ if( pWrite->pTab==pTab && pWrite->eOp==eOp ) break; } if( pWrite==0 ){ pWrite = idxMalloc(&rc, sizeof(IdxWrite)); if( rc==SQLITE_OK ){ pWrite->pTab = pTab; pWrite->eOp = eOp; pWrite->pNext = p->pWrite; p->pWrite = pWrite; } } } } } return rc; } static int idxProcessOneTrigger( sqlite3expert *p, IdxWrite *pWrite, char **pzErr ){ static const char *zInt = UNIQUE_TABLE_NAME; static const char *zDrop = "DROP TABLE " UNIQUE_TABLE_NAME; IdxTable *pTab = pWrite->pTab; const char *zTab = pTab->zName; const char *zSql = "SELECT 'CREATE TEMP' || substr(sql, 7) FROM sqlite_master " "WHERE tbl_name = %Q AND type IN ('table', 'trigger') " "ORDER BY type;"; sqlite3_stmt *pSelect = 0; int rc = SQLITE_OK; char *zWrite = 0; /* Create the table and its triggers in the temp schema */ rc = idxPrintfPrepareStmt(p->db, &pSelect, pzErr, zSql, zTab, zTab); while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSelect) ){ const char *zCreate = (const char*)sqlite3_column_text(pSelect, 0); rc = sqlite3_exec(p->dbv, zCreate, 0, 0, pzErr); } idxFinalize(&rc, pSelect); /* Rename the table in the temp schema to zInt */ if( rc==SQLITE_OK ){ char *z = sqlite3_mprintf("ALTER TABLE temp.%Q RENAME TO %Q", zTab, zInt); if( z==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_exec(p->dbv, z, 0, 0, pzErr); sqlite3_free(z); } } switch( pWrite->eOp ){ case SQLITE_INSERT: { int i; zWrite = idxAppendText(&rc, zWrite, "INSERT INTO %Q VALUES(", zInt); for(i=0; inCol; i++){ zWrite = idxAppendText(&rc, zWrite, "%s?", i==0 ? "" : ", "); } zWrite = idxAppendText(&rc, zWrite, ")"); break; } case SQLITE_UPDATE: { int i; zWrite = idxAppendText(&rc, zWrite, "UPDATE %Q SET ", zInt); for(i=0; inCol; i++){ zWrite = idxAppendText(&rc, zWrite, "%s%Q=?", i==0 ? "" : ", ", pTab->aCol[i].zName ); } break; } default: { assert( pWrite->eOp==SQLITE_DELETE ); if( rc==SQLITE_OK ){ zWrite = sqlite3_mprintf("DELETE FROM %Q", zInt); if( zWrite==0 ) rc = SQLITE_NOMEM; } } } if( rc==SQLITE_OK ){ sqlite3_stmt *pX = 0; rc = sqlite3_prepare_v2(p->dbv, zWrite, -1, &pX, 0); idxFinalize(&rc, pX); if( rc!=SQLITE_OK ){ idxDatabaseError(p->dbv, pzErr); } } sqlite3_free(zWrite); if( rc==SQLITE_OK ){ rc = sqlite3_exec(p->dbv, zDrop, 0, 0, pzErr); } return rc; } static int idxProcessTriggers(sqlite3expert *p, char **pzErr){ int rc = SQLITE_OK; IdxWrite *pEnd = 0; IdxWrite *pFirst = p->pWrite; while( rc==SQLITE_OK && pFirst!=pEnd ){ IdxWrite *pIter; for(pIter=pFirst; rc==SQLITE_OK && pIter!=pEnd; pIter=pIter->pNext){ rc = idxProcessOneTrigger(p, pIter, pzErr); } pEnd = pFirst; pFirst = p->pWrite; } return rc; } static int idxCreateVtabSchema(sqlite3expert *p, char **pzErrmsg){ int rc = idxRegisterVtab(p); sqlite3_stmt *pSchema = 0; /* For each table in the main db schema: ** ** 1) Add an entry to the p->pTable list, and ** 2) Create the equivalent virtual table in dbv. */ rc = idxPrepareStmt(p->db, &pSchema, pzErrmsg, "SELECT type, name, sql, 1 FROM sqlite_master " "WHERE type IN ('table','view') AND name NOT LIKE 'sqlite_%%' " " UNION ALL " "SELECT type, name, sql, 2 FROM sqlite_master " "WHERE type = 'trigger'" " AND tbl_name IN(SELECT name FROM sqlite_master WHERE type = 'view') " "ORDER BY 4, 1" ); while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSchema) ){ const char *zType = (const char*)sqlite3_column_text(pSchema, 0); const char *zName = (const char*)sqlite3_column_text(pSchema, 1); const char *zSql = (const char*)sqlite3_column_text(pSchema, 2); if( zType[0]=='v' || zType[1]=='r' ){ rc = sqlite3_exec(p->dbv, zSql, 0, 0, pzErrmsg); }else{ IdxTable *pTab; rc = idxGetTableInfo(p->db, zName, &pTab, pzErrmsg); if( rc==SQLITE_OK ){ int i; char *zInner = 0; char *zOuter = 0; pTab->pNext = p->pTable; p->pTable = pTab; /* The statement the vtab will pass to sqlite3_declare_vtab() */ zInner = idxAppendText(&rc, 0, "CREATE TABLE x("); for(i=0; inCol; i++){ zInner = idxAppendText(&rc, zInner, "%s%Q COLLATE %s", (i==0 ? "" : ", "), pTab->aCol[i].zName, pTab->aCol[i].zColl ); } zInner = idxAppendText(&rc, zInner, ")"); /* The CVT statement to create the vtab */ zOuter = idxAppendText(&rc, 0, "CREATE VIRTUAL TABLE %Q USING expert(%Q)", zName, zInner ); if( rc==SQLITE_OK ){ rc = sqlite3_exec(p->dbv, zOuter, 0, 0, pzErrmsg); } sqlite3_free(zInner); sqlite3_free(zOuter); } } } idxFinalize(&rc, pSchema); return rc; } struct IdxSampleCtx { int iTarget; double target; /* Target nRet/nRow value */ double nRow; /* Number of rows seen */ double nRet; /* Number of rows returned */ }; static void idxSampleFunc( sqlite3_context *pCtx, int argc, sqlite3_value **argv ){ struct IdxSampleCtx *p = (struct IdxSampleCtx*)sqlite3_user_data(pCtx); int bRet; assert( argc==0 ); if( p->nRow==0.0 ){ bRet = 1; }else{ bRet = (p->nRet / p->nRow) <= p->target; if( bRet==0 ){ unsigned short rnd; sqlite3_randomness(2, (void*)&rnd); bRet = ((int)rnd % 100) <= p->iTarget; } } sqlite3_result_int(pCtx, bRet); p->nRow += 1.0; p->nRet += (double)bRet; } struct IdxRemCtx { int nSlot; struct IdxRemSlot { int eType; /* SQLITE_NULL, INTEGER, REAL, TEXT, BLOB */ i64 iVal; /* SQLITE_INTEGER value */ double rVal; /* SQLITE_FLOAT value */ int nByte; /* Bytes of space allocated at z */ int n; /* Size of buffer z */ char *z; /* SQLITE_TEXT/BLOB value */ } aSlot[1]; }; /* ** Implementation of scalar function rem(). */ static void idxRemFunc( sqlite3_context *pCtx, int argc, sqlite3_value **argv ){ struct IdxRemCtx *p = (struct IdxRemCtx*)sqlite3_user_data(pCtx); struct IdxRemSlot *pSlot; int iSlot; assert( argc==2 ); iSlot = sqlite3_value_int(argv[0]); assert( iSlot<=p->nSlot ); pSlot = &p->aSlot[iSlot]; switch( pSlot->eType ){ case SQLITE_NULL: /* no-op */ break; case SQLITE_INTEGER: sqlite3_result_int64(pCtx, pSlot->iVal); break; case SQLITE_FLOAT: sqlite3_result_double(pCtx, pSlot->rVal); break; case SQLITE_BLOB: sqlite3_result_blob(pCtx, pSlot->z, pSlot->n, SQLITE_TRANSIENT); break; case SQLITE_TEXT: sqlite3_result_text(pCtx, pSlot->z, pSlot->n, SQLITE_TRANSIENT); break; } pSlot->eType = sqlite3_value_type(argv[1]); switch( pSlot->eType ){ case SQLITE_NULL: /* no-op */ break; case SQLITE_INTEGER: pSlot->iVal = sqlite3_value_int64(argv[1]); break; case SQLITE_FLOAT: pSlot->rVal = sqlite3_value_double(argv[1]); break; case SQLITE_BLOB: case SQLITE_TEXT: { int nByte = sqlite3_value_bytes(argv[1]); if( nByte>pSlot->nByte ){ char *zNew = (char*)sqlite3_realloc(pSlot->z, nByte*2); if( zNew==0 ){ sqlite3_result_error_nomem(pCtx); return; } pSlot->nByte = nByte*2; pSlot->z = zNew; } pSlot->n = nByte; if( pSlot->eType==SQLITE_BLOB ){ memcpy(pSlot->z, sqlite3_value_blob(argv[1]), nByte); }else{ memcpy(pSlot->z, sqlite3_value_text(argv[1]), nByte); } break; } } } static int idxLargestIndex(sqlite3 *db, int *pnMax, char **pzErr){ int rc = SQLITE_OK; const char *zMax = "SELECT max(i.seqno) FROM " " sqlite_master AS s, " " pragma_index_list(s.name) AS l, " " pragma_index_info(l.name) AS i " "WHERE s.type = 'table'"; sqlite3_stmt *pMax = 0; *pnMax = 0; rc = idxPrepareStmt(db, &pMax, pzErr, zMax); if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){ *pnMax = sqlite3_column_int(pMax, 0) + 1; } idxFinalize(&rc, pMax); return rc; } static int idxPopulateOneStat1( sqlite3expert *p, sqlite3_stmt *pIndexXInfo, sqlite3_stmt *pWriteStat, const char *zTab, const char *zIdx, char **pzErr ){ char *zCols = 0; char *zOrder = 0; char *zQuery = 0; int nCol = 0; int i; sqlite3_stmt *pQuery = 0; int *aStat = 0; int rc = SQLITE_OK; assert( p->iSample>0 ); /* Formulate the query text */ sqlite3_bind_text(pIndexXInfo, 1, zIdx, -1, SQLITE_STATIC); while( SQLITE_OK==rc && SQLITE_ROW==sqlite3_step(pIndexXInfo) ){ const char *zComma = zCols==0 ? "" : ", "; const char *zName = (const char*)sqlite3_column_text(pIndexXInfo, 0); const char *zColl = (const char*)sqlite3_column_text(pIndexXInfo, 1); zCols = idxAppendText(&rc, zCols, "%sx.%Q IS rem(%d, x.%Q) COLLATE %s", zComma, zName, nCol, zName, zColl ); zOrder = idxAppendText(&rc, zOrder, "%s%d", zComma, ++nCol); } if( rc==SQLITE_OK ){ if( p->iSample==100 ){ zQuery = sqlite3_mprintf( "SELECT %s FROM %Q x ORDER BY %s", zCols, zTab, zOrder ); }else{ zQuery = sqlite3_mprintf( "SELECT %s FROM temp."UNIQUE_TABLE_NAME" x ORDER BY %s", zCols, zOrder ); } } sqlite3_free(zCols); sqlite3_free(zOrder); /* Formulate the query text */ if( rc==SQLITE_OK ){ sqlite3 *dbrem = (p->iSample==100 ? p->db : p->dbv); rc = idxPrepareStmt(dbrem, &pQuery, pzErr, zQuery); } sqlite3_free(zQuery); if( rc==SQLITE_OK ){ aStat = (int*)idxMalloc(&rc, sizeof(int)*(nCol+1)); } if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pQuery) ){ IdxHashEntry *pEntry; char *zStat = 0; for(i=0; i<=nCol; i++) aStat[i] = 1; while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pQuery) ){ aStat[0]++; for(i=0; ihIdx, zIdx, STRLEN(zIdx)); if( pEntry ){ assert( pEntry->zVal2==0 ); pEntry->zVal2 = zStat; }else{ sqlite3_free(zStat); } } sqlite3_free(aStat); idxFinalize(&rc, pQuery); return rc; } static int idxBuildSampleTable(sqlite3expert *p, const char *zTab){ int rc; char *zSql; rc = sqlite3_exec(p->dbv,"DROP TABLE IF EXISTS temp."UNIQUE_TABLE_NAME,0,0,0); if( rc!=SQLITE_OK ) return rc; zSql = sqlite3_mprintf( "CREATE TABLE temp." UNIQUE_TABLE_NAME " AS SELECT * FROM %Q", zTab ); if( zSql==0 ) return SQLITE_NOMEM; rc = sqlite3_exec(p->dbv, zSql, 0, 0, 0); sqlite3_free(zSql); return rc; } /* ** This function is called as part of sqlite3_expert_analyze(). Candidate ** indexes have already been created in database sqlite3expert.dbm, this ** function populates sqlite_stat1 table in the same database. ** ** The stat1 data is generated by querying the */ static int idxPopulateStat1(sqlite3expert *p, char **pzErr){ int rc = SQLITE_OK; int nMax =0; struct IdxRemCtx *pCtx = 0; struct IdxSampleCtx samplectx; int i; i64 iPrev = -100000; sqlite3_stmt *pAllIndex = 0; sqlite3_stmt *pIndexXInfo = 0; sqlite3_stmt *pWrite = 0; const char *zAllIndex = "SELECT s.rowid, s.name, l.name FROM " " sqlite_master AS s, " " pragma_index_list(s.name) AS l " "WHERE s.type = 'table'"; const char *zIndexXInfo = "SELECT name, coll FROM pragma_index_xinfo(?) WHERE key"; const char *zWrite = "INSERT INTO sqlite_stat1 VALUES(?, ?, ?)"; /* If iSample==0, no sqlite_stat1 data is required. */ if( p->iSample==0 ) return SQLITE_OK; rc = idxLargestIndex(p->dbm, &nMax, pzErr); if( nMax<=0 || rc!=SQLITE_OK ) return rc; rc = sqlite3_exec(p->dbm, "ANALYZE; PRAGMA writable_schema=1", 0, 0, 0); if( rc==SQLITE_OK ){ int nByte = sizeof(struct IdxRemCtx) + (sizeof(struct IdxRemSlot) * nMax); pCtx = (struct IdxRemCtx*)idxMalloc(&rc, nByte); } if( rc==SQLITE_OK ){ sqlite3 *dbrem = (p->iSample==100 ? p->db : p->dbv); rc = sqlite3_create_function( dbrem, "rem", 2, SQLITE_UTF8, (void*)pCtx, idxRemFunc, 0, 0 ); } if( rc==SQLITE_OK ){ rc = sqlite3_create_function( p->db, "sample", 0, SQLITE_UTF8, (void*)&samplectx, idxSampleFunc, 0, 0 ); } if( rc==SQLITE_OK ){ pCtx->nSlot = nMax+1; rc = idxPrepareStmt(p->dbm, &pAllIndex, pzErr, zAllIndex); } if( rc==SQLITE_OK ){ rc = idxPrepareStmt(p->dbm, &pIndexXInfo, pzErr, zIndexXInfo); } if( rc==SQLITE_OK ){ rc = idxPrepareStmt(p->dbm, &pWrite, pzErr, zWrite); } while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pAllIndex) ){ i64 iRowid = sqlite3_column_int64(pAllIndex, 0); const char *zTab = (const char*)sqlite3_column_text(pAllIndex, 1); const char *zIdx = (const char*)sqlite3_column_text(pAllIndex, 2); if( p->iSample<100 && iPrev!=iRowid ){ samplectx.target = (double)p->iSample / 100.0; samplectx.iTarget = p->iSample; samplectx.nRow = 0.0; samplectx.nRet = 0.0; rc = idxBuildSampleTable(p, zTab); if( rc!=SQLITE_OK ) break; } rc = idxPopulateOneStat1(p, pIndexXInfo, pWrite, zTab, zIdx, pzErr); iPrev = iRowid; } if( rc==SQLITE_OK && p->iSample<100 ){ rc = sqlite3_exec(p->dbv, "DROP TABLE IF EXISTS temp." UNIQUE_TABLE_NAME, 0,0,0 ); } idxFinalize(&rc, pAllIndex); idxFinalize(&rc, pIndexXInfo); idxFinalize(&rc, pWrite); for(i=0; inSlot; i++){ sqlite3_free(pCtx->aSlot[i].z); } sqlite3_free(pCtx); if( rc==SQLITE_OK ){ rc = sqlite3_exec(p->dbm, "ANALYZE sqlite_master", 0, 0, 0); } sqlite3_exec(p->db, "DROP TABLE IF EXISTS temp."UNIQUE_TABLE_NAME,0,0,0); return rc; } /* ** Allocate a new sqlite3expert object. */ sqlite3expert *sqlite3_expert_new(sqlite3 *db, char **pzErrmsg){ int rc = SQLITE_OK; sqlite3expert *pNew; pNew = (sqlite3expert*)idxMalloc(&rc, sizeof(sqlite3expert)); /* Open two in-memory databases to work with. The "vtab database" (dbv) ** will contain a virtual table corresponding to each real table in ** the user database schema, and a copy of each view. It is used to ** collect information regarding the WHERE, ORDER BY and other clauses ** of the user's query. */ if( rc==SQLITE_OK ){ pNew->db = db; pNew->iSample = 100; rc = sqlite3_open(":memory:", &pNew->dbv); } if( rc==SQLITE_OK ){ rc = sqlite3_open(":memory:", &pNew->dbm); if( rc==SQLITE_OK ){ sqlite3_db_config(pNew->dbm, SQLITE_DBCONFIG_TRIGGER_EQP, 1, (int*)0); } } /* Copy the entire schema of database [db] into [dbm]. */ if( rc==SQLITE_OK ){ sqlite3_stmt *pSql; rc = idxPrintfPrepareStmt(pNew->db, &pSql, pzErrmsg, "SELECT sql FROM sqlite_master WHERE name NOT LIKE 'sqlite_%%'" " AND sql NOT LIKE 'CREATE VIRTUAL %%'" ); while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSql) ){ const char *zSql = (const char*)sqlite3_column_text(pSql, 0); rc = sqlite3_exec(pNew->dbm, zSql, 0, 0, pzErrmsg); } idxFinalize(&rc, pSql); } /* Create the vtab schema */ if( rc==SQLITE_OK ){ rc = idxCreateVtabSchema(pNew, pzErrmsg); } /* Register the auth callback with dbv */ if( rc==SQLITE_OK ){ sqlite3_set_authorizer(pNew->dbv, idxAuthCallback, (void*)pNew); } /* If an error has occurred, free the new object and reutrn NULL. Otherwise, ** return the new sqlite3expert handle. */ if( rc!=SQLITE_OK ){ sqlite3_expert_destroy(pNew); pNew = 0; } return pNew; } /* ** Configure an sqlite3expert object. */ int sqlite3_expert_config(sqlite3expert *p, int op, ...){ int rc = SQLITE_OK; va_list ap; va_start(ap, op); switch( op ){ case EXPERT_CONFIG_SAMPLE: { int iVal = va_arg(ap, int); if( iVal<0 ) iVal = 0; if( iVal>100 ) iVal = 100; p->iSample = iVal; break; } default: rc = SQLITE_NOTFOUND; break; } va_end(ap); return rc; } /* ** Add an SQL statement to the analysis. */ int sqlite3_expert_sql( sqlite3expert *p, /* From sqlite3_expert_new() */ const char *zSql, /* SQL statement to add */ char **pzErr /* OUT: Error message (if any) */ ){ IdxScan *pScanOrig = p->pScan; IdxStatement *pStmtOrig = p->pStatement; int rc = SQLITE_OK; const char *zStmt = zSql; if( p->bRun ) return SQLITE_MISUSE; while( rc==SQLITE_OK && zStmt && zStmt[0] ){ sqlite3_stmt *pStmt = 0; rc = sqlite3_prepare_v2(p->dbv, zStmt, -1, &pStmt, &zStmt); if( rc==SQLITE_OK ){ if( pStmt ){ IdxStatement *pNew; const char *z = sqlite3_sql(pStmt); int n = STRLEN(z); pNew = (IdxStatement*)idxMalloc(&rc, sizeof(IdxStatement) + n+1); if( rc==SQLITE_OK ){ pNew->zSql = (char*)&pNew[1]; memcpy(pNew->zSql, z, n+1); pNew->pNext = p->pStatement; if( p->pStatement ) pNew->iId = p->pStatement->iId+1; p->pStatement = pNew; } sqlite3_finalize(pStmt); } }else{ idxDatabaseError(p->dbv, pzErr); } } if( rc!=SQLITE_OK ){ idxScanFree(p->pScan, pScanOrig); idxStatementFree(p->pStatement, pStmtOrig); p->pScan = pScanOrig; p->pStatement = pStmtOrig; } return rc; } int sqlite3_expert_analyze(sqlite3expert *p, char **pzErr){ int rc; IdxHashEntry *pEntry; /* Do trigger processing to collect any extra IdxScan structures */ rc = idxProcessTriggers(p, pzErr); /* Create candidate indexes within the in-memory database file */ if( rc==SQLITE_OK ){ rc = idxCreateCandidates(p, pzErr); } /* Generate the stat1 data */ if( rc==SQLITE_OK ){ rc = idxPopulateStat1(p, pzErr); } /* Formulate the EXPERT_REPORT_CANDIDATES text */ for(pEntry=p->hIdx.pFirst; pEntry; pEntry=pEntry->pNext){ p->zCandidates = idxAppendText(&rc, p->zCandidates, "%s;%s%s\n", pEntry->zVal, pEntry->zVal2 ? " -- stat1: " : "", pEntry->zVal2 ); } /* Figure out which of the candidate indexes are preferred by the query ** planner and report the results to the user. */ if( rc==SQLITE_OK ){ rc = idxFindIndexes(p, pzErr); } if( rc==SQLITE_OK ){ p->bRun = 1; } return rc; } /* ** Return the total number of statements that have been added to this ** sqlite3expert using sqlite3_expert_sql(). */ int sqlite3_expert_count(sqlite3expert *p){ int nRet = 0; if( p->pStatement ) nRet = p->pStatement->iId+1; return nRet; } /* ** Return a component of the report. */ const char *sqlite3_expert_report(sqlite3expert *p, int iStmt, int eReport){ const char *zRet = 0; IdxStatement *pStmt; if( p->bRun==0 ) return 0; for(pStmt=p->pStatement; pStmt && pStmt->iId!=iStmt; pStmt=pStmt->pNext); switch( eReport ){ case EXPERT_REPORT_SQL: if( pStmt ) zRet = pStmt->zSql; break; case EXPERT_REPORT_INDEXES: if( pStmt ) zRet = pStmt->zIdx; break; case EXPERT_REPORT_PLAN: if( pStmt ) zRet = pStmt->zEQP; break; case EXPERT_REPORT_CANDIDATES: zRet = p->zCandidates; break; } return zRet; } /* ** Free an sqlite3expert object. */ void sqlite3_expert_destroy(sqlite3expert *p){ if( p ){ sqlite3_close(p->dbm); sqlite3_close(p->dbv); idxScanFree(p->pScan, 0); idxStatementFree(p->pStatement, 0); idxTableFree(p->pTable); idxWriteFree(p->pWrite); idxHashClear(&p->hIdx); sqlite3_free(p->zCandidates); sqlite3_free(p); } }