/* ** 2016 February 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* */ #if !defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHEREINFO_HOOK) #include "sqlite3expert.h" #include #include #include typedef sqlite3_int64 i64; typedef sqlite3_uint64 u64; typedef struct IdxConstraint IdxConstraint; typedef struct IdxScan IdxScan; typedef struct IdxStatement IdxStatement; typedef struct IdxWhere IdxWhere; typedef struct IdxColumn IdxColumn; typedef struct IdxTable IdxTable; /* ** A single constraint. Equivalent to either "col = ?" or "col < ?". ** ** pLink: ** Used to temporarily link IdxConstraint objects into lists while ** creating candidate indexes. */ struct IdxConstraint { char *zColl; /* Collation sequence */ int bRange; /* True for range, false for eq */ int iCol; /* Constrained table column */ i64 depmask; /* Dependency mask */ int bFlag; /* Used by idxFindCompatible() */ int bDesc; /* True if ORDER BY DESC */ IdxConstraint *pNext; /* Next constraint in pEq or pRange list */ IdxConstraint *pLink; /* See above */ }; /* ** A WHERE clause. Made up of IdxConstraint objects. Example WHERE clause: ** ** a=? AND b=? AND c=? AND d=? AND e>? AND f0 ); pRet = sqlite3_malloc(nByte); if( pRet ){ memset(pRet, 0, nByte); }else{ *pRc = SQLITE_NOMEM; } return pRet; } /************************************************************************* ** Start of hash table implementations. */ typedef struct IdxHash64Entry IdxHash64Entry; typedef struct IdxHash64 IdxHash64; struct IdxHash64Entry { u64 iVal; IdxHash64Entry *pNext; /* Next entry in hash table */ IdxHash64Entry *pHashNext; /* Next entry in same hash bucket */ }; struct IdxHash64 { IdxHash64Entry *pFirst; /* Most recently added entry in hash table */ IdxHash64Entry *aHash[IDX_HASH_SIZE]; }; static void idxHash64Init(IdxHash64 *pHash){ memset(pHash, 0, sizeof(IdxHash64)); } static void idxHash64Clear(IdxHash64 *pHash){ IdxHash64Entry *pEntry; IdxHash64Entry *pNext; for(pEntry=pHash->pFirst; pEntry; pEntry=pNext){ pNext = pEntry->pNext; sqlite3_free(pEntry); } memset(pHash, 0, sizeof(IdxHash64)); } static void idxHash64Add(int *pRc, IdxHash64 *pHash, u64 iVal){ int iHash = (int)((iVal*7) % IDX_HASH_SIZE); IdxHash64Entry *pEntry; assert( iHash>=0 ); for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){ if( pEntry->iVal==iVal ) return; } pEntry = idxMalloc(pRc, sizeof(IdxHash64Entry)); if( pEntry ){ pEntry->iVal = iVal; pEntry->pHashNext = pHash->aHash[iHash]; pHash->aHash[iHash] = pEntry; pEntry->pNext = pHash->pFirst; pHash->pFirst = pEntry; } } static void idxHashInit(IdxHash *pHash){ memset(pHash, 0, sizeof(IdxHash)); } static void idxHashClear(IdxHash *pHash){ int i; for(i=0; iaHash[i]; pEntry; pEntry=pNext){ pNext = pEntry->pHashNext; sqlite3_free(pEntry); } } memset(pHash, 0, sizeof(IdxHash)); } static int idxHashString(const char *z, int n){ unsigned int ret = 0; int i; for(i=0; i=0 ); for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){ if( strlen(pEntry->zKey)==nKey && 0==memcmp(pEntry->zKey, zKey, nKey) ){ return 1; } } pEntry = idxMalloc(pRc, sizeof(IdxHashEntry) + nKey+1 + nVal+1); if( pEntry ){ pEntry->zKey = (char*)&pEntry[1]; memcpy(pEntry->zKey, zKey, nKey); if( zVal ){ pEntry->zVal = &pEntry->zKey[nKey+1]; memcpy(pEntry->zVal, zVal, nVal); } pEntry->pHashNext = pHash->aHash[iHash]; pHash->aHash[iHash] = pEntry; pEntry->pNext = pHash->pFirst; pHash->pFirst = pEntry; } return 0; } static const char *idxHashSearch(IdxHash *pHash, const char *zKey, int nKey){ int iHash; IdxHashEntry *pEntry; if( nKey<0 ) nKey = strlen(zKey); iHash = idxHashString(zKey, nKey); assert( iHash>=0 ); for(pEntry=pHash->aHash[iHash]; pEntry; pEntry=pEntry->pHashNext){ if( strlen(pEntry->zKey)==nKey && 0==memcmp(pEntry->zKey, zKey, nKey) ){ return pEntry->zVal; } } return 0; } /* ** End of hash table implementations. **************************************************************************/ /* ** Allocate and return a new IdxConstraint object. Set the IdxConstraint.zColl ** variable to point to a copy of nul-terminated string zColl. */ static IdxConstraint *idxNewConstraint(int *pRc, const char *zColl){ IdxConstraint *pNew; int nColl = strlen(zColl); assert( *pRc==SQLITE_OK ); pNew = (IdxConstraint*)idxMalloc(pRc, sizeof(IdxConstraint) * nColl + 1); if( pNew ){ pNew->zColl = (char*)&pNew[1]; memcpy(pNew->zColl, zColl, nColl+1); } return pNew; } /* ** sqlite3_whereinfo_hook() callback. */ static void idxWhereInfo( void *pCtx, /* Pointer to sqlite3expert structure */ int eOp, const char *zVal, int iVal, u64 mask ){ sqlite3expert *p = (sqlite3expert*)pCtx; #if 0 const char *zOp = eOp==SQLITE_WHEREINFO_TABLE ? "TABLE" : eOp==SQLITE_WHEREINFO_EQUALS ? "EQUALS" : eOp==SQLITE_WHEREINFO_RANGE ? "RANGE" : eOp==SQLITE_WHEREINFO_ORDERBY ? "ORDERBY" : "!error!"; printf("op=%s zVal=%s iVal=%d mask=%llx\n", zOp, zVal, iVal, mask); #endif if( p->rc==SQLITE_OK ){ assert( eOp==SQLITE_WHEREINFO_TABLE || p->pScan!=0 ); switch( eOp ){ case SQLITE_WHEREINFO_TABLE: { int nVal = strlen(zVal); IdxScan *pNew = (IdxScan*)idxMalloc(&p->rc, sizeof(IdxScan) + nVal + 1); if( !pNew ) return; pNew->zTable = (char*)&pNew[1]; memcpy(pNew->zTable, zVal, nVal+1); pNew->pNextScan = p->pScan; pNew->covering = mask; p->pScan = pNew; break; } case SQLITE_WHEREINFO_ORDERBY: { IdxConstraint *pNew = idxNewConstraint(&p->rc, zVal); if( pNew==0 ) return; pNew->iCol = iVal; pNew->bDesc = (int)mask; if( p->pScan->pOrder==0 ){ p->pScan->pOrder = pNew; }else{ IdxConstraint *pIter; for(pIter=p->pScan->pOrder; pIter->pNext; pIter=pIter->pNext); pIter->pNext = pNew; pIter->pLink = pNew; } break; } case SQLITE_WHEREINFO_EQUALS: case SQLITE_WHEREINFO_RANGE: { IdxConstraint *pNew = idxNewConstraint(&p->rc, zVal); if( pNew==0 ) return; pNew->iCol = iVal; pNew->depmask = mask; if( eOp==SQLITE_WHEREINFO_RANGE ){ pNew->pNext = p->pScan->where.pRange; p->pScan->where.pRange = pNew; }else{ pNew->pNext = p->pScan->where.pEq; p->pScan->where.pEq = pNew; } break; } } } } /* ** An error associated with database handle db has just occurred. Pass ** the error message to callback function xOut. */ static void idxDatabaseError( sqlite3 *db, /* Database handle */ char **pzErrmsg /* Write error here */ ){ *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } static int idxPrepareStmt( sqlite3 *db, /* Database handle to compile against */ sqlite3_stmt **ppStmt, /* OUT: Compiled SQL statement */ char **pzErrmsg, /* OUT: sqlite3_malloc()ed error message */ const char *zSql /* SQL statement to compile */ ){ int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0); if( rc!=SQLITE_OK ){ *ppStmt = 0; idxDatabaseError(db, pzErrmsg); } return rc; } static int idxPrintfPrepareStmt( sqlite3 *db, /* Database handle to compile against */ sqlite3_stmt **ppStmt, /* OUT: Compiled SQL statement */ char **pzErrmsg, /* OUT: sqlite3_malloc()ed error message */ const char *zFmt, /* printf() format of SQL statement */ ... /* Trailing printf() arguments */ ){ va_list ap; int rc; char *zSql; va_start(ap, zFmt); zSql = sqlite3_vmprintf(zFmt, ap); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = idxPrepareStmt(db, ppStmt, pzErrmsg, zSql); sqlite3_free(zSql); } va_end(ap); return rc; } static void idxFinalize(int *pRc, sqlite3_stmt *pStmt){ int rc = sqlite3_finalize(pStmt); if( *pRc==SQLITE_OK ) *pRc = rc; } static int idxGetTableInfo( sqlite3 *db, IdxScan *pScan, char **pzErrmsg ){ const char *zTbl = pScan->zTable; sqlite3_stmt *p1 = 0; int nCol = 0; int nByte = sizeof(IdxTable); IdxTable *pNew = 0; int rc, rc2; char *pCsr; rc = idxPrintfPrepareStmt(db, &p1, pzErrmsg, "PRAGMA table_info=%Q", zTbl); while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(p1) ){ const char *zCol = (const char*)sqlite3_column_text(p1, 1); nByte += 1 + strlen(zCol); rc = sqlite3_table_column_metadata( db, "main", zTbl, zCol, 0, &zCol, 0, 0, 0 ); nByte += 1 + strlen(zCol); nCol++; } rc2 = sqlite3_reset(p1); if( rc==SQLITE_OK ) rc = rc2; nByte += sizeof(IdxColumn) * nCol; if( rc==SQLITE_OK ){ pNew = idxMalloc(&rc, nByte); } if( rc==SQLITE_OK ){ pNew->aCol = (IdxColumn*)&pNew[1]; pNew->nCol = nCol; pCsr = (char*)&pNew->aCol[nCol]; } nCol = 0; while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(p1) ){ const char *zCol = (const char*)sqlite3_column_text(p1, 1); int nCopy = strlen(zCol) + 1; pNew->aCol[nCol].zName = pCsr; pNew->aCol[nCol].iPk = sqlite3_column_int(p1, 5); memcpy(pCsr, zCol, nCopy); pCsr += nCopy; rc = sqlite3_table_column_metadata( db, "main", zTbl, zCol, 0, &zCol, 0, 0, 0 ); if( rc==SQLITE_OK ){ nCopy = strlen(zCol) + 1; pNew->aCol[nCol].zColl = pCsr; memcpy(pCsr, zCol, nCopy); pCsr += nCopy; } nCol++; } idxFinalize(&rc, p1); if( rc==SQLITE_OK ){ pScan->pTable = pNew; }else{ sqlite3_free(pNew); } return rc; } /* ** This function is a no-op if *pRc is set to anything other than ** SQLITE_OK when it is called. ** ** If *pRc is initially set to SQLITE_OK, then the text specified by ** the printf() style arguments is appended to zIn and the result returned ** in a buffer allocated by sqlite3_malloc(). sqlite3_free() is called on ** zIn before returning. */ static char *idxAppendText(int *pRc, char *zIn, const char *zFmt, ...){ va_list ap; char *zAppend = 0; char *zRet = 0; int nIn = zIn ? strlen(zIn) : 0; int nAppend = 0; va_start(ap, zFmt); if( *pRc==SQLITE_OK ){ zAppend = sqlite3_vmprintf(zFmt, ap); if( zAppend ){ nAppend = strlen(zAppend); zRet = (char*)sqlite3_malloc(nIn + nAppend + 1); } if( zAppend && zRet ){ memcpy(zRet, zIn, nIn); memcpy(&zRet[nIn], zAppend, nAppend+1); }else{ sqlite3_free(zRet); zRet = 0; *pRc = SQLITE_NOMEM; } sqlite3_free(zAppend); sqlite3_free(zIn); } va_end(ap); return zRet; } static int idxIdentifierRequiresQuotes(const char *zId){ int i; for(i=0; zId[i]; i++){ if( !(zId[i]=='_') && !(zId[i]>='0' && zId[i]<='9') && !(zId[i]>='a' && zId[i]<='z') && !(zId[i]>='A' && zId[i]<='Z') ){ return 1; } } return 0; } static char *idxAppendColDefn( int *pRc, char *zIn, IdxTable *pTab, IdxConstraint *pCons ){ char *zRet = zIn; IdxColumn *p = &pTab->aCol[pCons->iCol]; if( zRet ) zRet = idxAppendText(pRc, zRet, ", "); if( idxIdentifierRequiresQuotes(p->zName) ){ zRet = idxAppendText(pRc, zRet, "%Q", p->zName); }else{ zRet = idxAppendText(pRc, zRet, "%s", p->zName); } if( sqlite3_stricmp(p->zColl, pCons->zColl) ){ if( idxIdentifierRequiresQuotes(pCons->zColl) ){ zRet = idxAppendText(pRc, zRet, " COLLATE %Q", pCons->zColl); }else{ zRet = idxAppendText(pRc, zRet, " COLLATE %s", pCons->zColl); } } if( pCons->bDesc ){ zRet = idxAppendText(pRc, zRet, " DESC"); } return zRet; } /* ** Search database dbm for an index compatible with the one idxCreateFromCons() ** would create from arguments pScan, pEq and pTail. If no error occurs and ** such an index is found, return non-zero. Or, if no such index is found, ** return zero. ** ** If an error occurs, set *pRc to an SQLite error code and return zero. */ static int idxFindCompatible( int *pRc, /* OUT: Error code */ sqlite3* dbm, /* Database to search */ IdxScan *pScan, /* Scan for table to search for index on */ IdxConstraint *pEq, /* List of == constraints */ IdxConstraint *pTail /* List of range constraints */ ){ const char *zTbl = pScan->zTable; sqlite3_stmt *pIdxList = 0; IdxConstraint *pIter; int nEq = 0; /* Number of elements in pEq */ int rc; /* Count the elements in list pEq */ for(pIter=pEq; pIter; pIter=pIter->pLink) nEq++; rc = idxPrintfPrepareStmt(dbm, &pIdxList, 0, "PRAGMA index_list=%Q", zTbl); while( rc==SQLITE_OK && sqlite3_step(pIdxList)==SQLITE_ROW ){ int bMatch = 1; IdxConstraint *pT = pTail; sqlite3_stmt *pInfo = 0; const char *zIdx = (const char*)sqlite3_column_text(pIdxList, 1); /* Zero the IdxConstraint.bFlag values in the pEq list */ for(pIter=pEq; pIter; pIter=pIter->pLink) pIter->bFlag = 0; rc = idxPrintfPrepareStmt(dbm, &pInfo, 0, "PRAGMA index_xInfo=%Q", zIdx); while( rc==SQLITE_OK && sqlite3_step(pInfo)==SQLITE_ROW ){ int iIdx = sqlite3_column_int(pInfo, 0); int iCol = sqlite3_column_int(pInfo, 1); const char *zColl = (const char*)sqlite3_column_text(pInfo, 4); if( iIdxpLink){ if( pIter->bFlag ) continue; if( pIter->iCol!=iCol ) continue; if( sqlite3_stricmp(pIter->zColl, zColl) ) continue; pIter->bFlag = 1; break; } if( pIter==0 ){ bMatch = 0; break; } }else{ if( pT ){ if( pT->iCol!=iCol || sqlite3_stricmp(pT->zColl, zColl) ){ bMatch = 0; break; } pT = pT->pLink; } } } idxFinalize(&rc, pInfo); if( rc==SQLITE_OK && bMatch ){ sqlite3_finalize(pIdxList); return 1; } } idxFinalize(&rc, pIdxList); *pRc = rc; return 0; } static int idxCreateFromCons( sqlite3expert *p, IdxScan *pScan, IdxConstraint *pEq, IdxConstraint *pTail ){ sqlite3 *dbm = p->dbm; int rc = SQLITE_OK; if( (pEq || pTail) && 0==idxFindCompatible(&rc, dbm, pScan, pEq, pTail) ){ IdxTable *pTab = pScan->pTable; char *zCols = 0; char *zIdx = 0; IdxConstraint *pCons; int h = 0; const char *zFmt; for(pCons=pEq; pCons; pCons=pCons->pLink){ zCols = idxAppendColDefn(&rc, zCols, pTab, pCons); } for(pCons=pTail; pCons; pCons=pCons->pLink){ zCols = idxAppendColDefn(&rc, zCols, pTab, pCons); } if( rc==SQLITE_OK ){ /* Hash the list of columns to come up with a name for the index */ char *zName; /* Index name */ int i; for(i=0; zCols[i]; i++){ h += ((h<<3) + zCols[i]); } zName = sqlite3_mprintf("%s_idx_%08x", pScan->zTable, h); if( zName==0 ){ rc = SQLITE_NOMEM; }else{ if( idxIdentifierRequiresQuotes(pScan->zTable) ){ zFmt = "CREATE INDEX '%q' ON %Q(%s)"; }else{ zFmt = "CREATE INDEX %s ON %s(%s)"; } zIdx = sqlite3_mprintf(zFmt, zName, pScan->zTable, zCols); if( !zIdx ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_exec(dbm, zIdx, 0, 0, p->pzErrmsg); idxHashAdd(&rc, &p->hIdx, zName, zIdx); } sqlite3_free(zName); sqlite3_free(zIdx); } } sqlite3_free(zCols); } return rc; } /* ** Return true if list pList (linked by IdxConstraint.pLink) contains ** a constraint compatible with *p. Otherwise return false. */ static int idxFindConstraint(IdxConstraint *pList, IdxConstraint *p){ IdxConstraint *pCmp; for(pCmp=pList; pCmp; pCmp=pCmp->pLink){ if( p->iCol==pCmp->iCol ) return 1; } return 0; } static int idxCreateFromWhere( sqlite3expert *p, i64 mask, /* Consider only these constraints */ IdxScan *pScan, /* Create indexes for this scan */ IdxWhere *pWhere, /* Read constraints from here */ IdxConstraint *pEq, /* == constraints for inclusion */ IdxConstraint *pTail /* range/ORDER BY constraints for inclusion */ ){ IdxConstraint *p1 = pEq; IdxConstraint *pCon; int rc; /* Gather up all the == constraints that match the mask. */ for(pCon=pWhere->pEq; pCon; pCon=pCon->pNext){ if( (mask & pCon->depmask)==pCon->depmask && idxFindConstraint(p1, pCon)==0 && idxFindConstraint(pTail, pCon)==0 ){ pCon->pLink = p1; p1 = pCon; } } /* Create an index using the == constraints collected above. And the ** range constraint/ORDER BY terms passed in by the caller, if any. */ rc = idxCreateFromCons(p, pScan, p1, pTail); /* If no range/ORDER BY passed by the caller, create a version of the ** index for each range constraint that matches the mask. */ if( pTail==0 ){ for(pCon=pWhere->pRange; rc==SQLITE_OK && pCon; pCon=pCon->pNext){ assert( pCon->pLink==0 ); if( (mask & pCon->depmask)==pCon->depmask && idxFindConstraint(pEq, pCon)==0 && idxFindConstraint(pTail, pCon)==0 ){ rc = idxCreateFromCons(p, pScan, p1, pCon); } } } return rc; } /* ** Create candidate indexes in database [dbm] based on the data in ** linked-list pScan. */ static int idxCreateCandidates(sqlite3expert *p, char **pzErr){ int rc = SQLITE_OK; IdxScan *pIter; IdxHash64 hMask; idxHash64Init(&hMask); for(pIter=p->pScan; pIter && rc==SQLITE_OK; pIter=pIter->pNextScan){ IdxHash64Entry *pEntry; IdxWhere *pWhere = &pIter->where; IdxConstraint *pCons; idxHash64Add(&rc, &hMask, 0); for(pCons=pIter->where.pEq; pCons; pCons=pCons->pNext){ for(pEntry=hMask.pFirst; pEntry; pEntry=pEntry->pNext){ idxHash64Add(&rc, &hMask, pEntry->iVal | (u64)pCons->depmask); } } for(pEntry=hMask.pFirst; pEntry; pEntry=pEntry->pNext){ i64 mask = (i64)pEntry->iVal; rc = idxCreateFromWhere(p, mask, pIter, pWhere, 0, 0); if( rc==SQLITE_OK && pIter->pOrder ){ rc = idxCreateFromWhere(p, mask, pIter, pWhere, 0, pIter->pOrder); } } idxHash64Clear(&hMask); } return rc; } static void idxConstraintFree(IdxConstraint *pConstraint){ IdxConstraint *pNext; IdxConstraint *p; for(p=pConstraint; p; p=pNext){ pNext = p->pNext; sqlite3_free(p); } } /* ** Free all elements of the linked list starting from pScan up until pLast ** (pLast is not freed). */ static void idxScanFree(IdxScan *pScan, IdxScan *pLast){ IdxScan *p; IdxScan *pNext; for(p=pScan; p!=pLast; p=pNext){ pNext = p->pNextScan; idxConstraintFree(p->pOrder); idxConstraintFree(p->where.pEq); idxConstraintFree(p->where.pRange); sqlite3_free(p->pTable); sqlite3_free(p); } } /* ** Free all elements of the linked list starting from pStatement up ** until pLast (pLast is not freed). */ static void idxStatementFree(IdxStatement *pStatement, IdxStatement *pLast){ IdxStatement *p; IdxStatement *pNext; for(p=pStatement; p!=pLast; p=pNext){ pNext = p->pNext; sqlite3_free(p->zEQP); sqlite3_free(p->zIdx); sqlite3_free(p); } } int idxFindIndexes( sqlite3expert *p, char **pzErr /* OUT: Error message (sqlite3_malloc) */ ){ IdxStatement *pStmt; sqlite3 *dbm = p->dbm; int rc = SQLITE_OK; IdxHash hIdx; idxHashInit(&hIdx); for(pStmt=p->pStatement; rc==SQLITE_OK && pStmt; pStmt=pStmt->pNext){ IdxHashEntry *pEntry; sqlite3_stmt *pExplain = 0; idxHashClear(&hIdx); rc = idxPrintfPrepareStmt(dbm, &pExplain, pzErr, "EXPLAIN QUERY PLAN %s", pStmt->zSql ); while( rc==SQLITE_OK && sqlite3_step(pExplain)==SQLITE_ROW ){ int iSelectid = sqlite3_column_int(pExplain, 0); int iOrder = sqlite3_column_int(pExplain, 1); int iFrom = sqlite3_column_int(pExplain, 2); const char *zDetail = (const char*)sqlite3_column_text(pExplain, 3); int nDetail = strlen(zDetail); int i; for(i=0; ihIdx, zIdx, nIdx); if( zSql ){ idxHashAdd(&rc, &hIdx, zSql, 0); if( rc ) goto find_indexes_out; } break; } } pStmt->zEQP = idxAppendText(&rc, pStmt->zEQP, "%d|%d|%d|%s\n", iSelectid, iOrder, iFrom, zDetail ); } for(pEntry=hIdx.pFirst; pEntry; pEntry=pEntry->pNext){ pStmt->zIdx = idxAppendText(&rc, pStmt->zIdx, "%s;\n", pEntry->zKey); } if( pStmt->zIdx==0 ){ pStmt->zIdx = idxAppendText(&rc, 0, "(no new indexes)\n"); } idxFinalize(&rc, pExplain); } find_indexes_out: idxHashClear(&hIdx); return rc; } /* ** Allocate a new sqlite3expert object. */ sqlite3expert *sqlite3_expert_new(sqlite3 *db, char **pzErrmsg){ int rc = SQLITE_OK; sqlite3expert *pNew; pNew = (sqlite3expert*)idxMalloc(&rc, sizeof(sqlite3expert)); pNew->db = db; /* Open an in-memory database to work with. The main in-memory ** database schema contains tables similar to those in the users ** database (handle db). */ rc = sqlite3_open(":memory:", &pNew->dbm); /* Copy the entire schema of database [db] into [dbm]. */ if( rc==SQLITE_OK ){ sqlite3_stmt *pSql; rc = idxPrintfPrepareStmt(pNew->db, &pSql, pzErrmsg, "SELECT sql FROM sqlite_master WHERE name NOT LIKE 'sqlite_%%'" ); while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSql) ){ const char *zSql = (const char*)sqlite3_column_text(pSql, 0); rc = sqlite3_exec(pNew->dbm, zSql, 0, 0, pzErrmsg); } idxFinalize(&rc, pSql); } /* If an error has occurred, free the new object and reutrn NULL. Otherwise, ** return the new sqlite3expert handle. */ if( rc!=SQLITE_OK ){ sqlite3_expert_destroy(pNew); pNew = 0; } return pNew; } /* ** Add an SQL statement to the analysis. */ int sqlite3_expert_sql( sqlite3expert *p, /* From sqlite3_expert_new() */ const char *zSql, /* SQL statement to add */ char **pzErr /* OUT: Error message (if any) */ ){ IdxScan *pScanOrig = p->pScan; IdxStatement *pStmtOrig = p->pStatement; int rc = SQLITE_OK; const char *zStmt = zSql; if( p->bRun ) return SQLITE_MISUSE; sqlite3_whereinfo_hook(p->db, idxWhereInfo, p); while( rc==SQLITE_OK && zStmt && zStmt[0] ){ sqlite3_stmt *pStmt = 0; rc = sqlite3_prepare_v2(p->db, zStmt, -1, &pStmt, &zStmt); if( rc==SQLITE_OK ){ if( pStmt ){ IdxStatement *pNew; const char *z = sqlite3_sql(pStmt); int n = strlen(z); pNew = (IdxStatement*)idxMalloc(&rc, sizeof(IdxStatement) + n+1); if( rc==SQLITE_OK ){ pNew->zSql = (char*)&pNew[1]; memcpy(pNew->zSql, z, n+1); pNew->pNext = p->pStatement; if( p->pStatement ) pNew->iId = p->pStatement->iId+1; p->pStatement = pNew; } sqlite3_finalize(pStmt); } }else{ idxDatabaseError(p->db, pzErr); } } sqlite3_whereinfo_hook(p->db, 0, 0); if( rc!=SQLITE_OK ){ idxScanFree(p->pScan, pScanOrig); idxStatementFree(p->pStatement, pStmtOrig); p->pScan = pScanOrig; p->pStatement = pStmtOrig; } return rc; } int sqlite3_expert_analyze(sqlite3expert *p, char **pzErr){ int rc = SQLITE_OK; IdxScan *pIter; /* Load IdxTable objects */ for(pIter=p->pScan; pIter && rc==SQLITE_OK; pIter=pIter->pNextScan){ rc = idxGetTableInfo(p->dbm, pIter, pzErr); } /* Create candidate indexes within the in-memory database file */ if( rc==SQLITE_OK ){ rc = idxCreateCandidates(p, pzErr); } /* Figure out which of the candidate indexes are preferred by the query ** planner and report the results to the user. */ if( rc==SQLITE_OK ){ rc = idxFindIndexes(p, pzErr); } if( rc==SQLITE_OK ){ p->bRun = 1; } return rc; } /* ** Return the total number of statements that have been added to this ** sqlite3expert using sqlite3_expert_sql(). */ int sqlite3_expert_count(sqlite3expert *p){ int nRet = 0; if( p->pStatement ) nRet = p->pStatement->iId+1; return nRet; } /* ** Return a component of the report. */ const char *sqlite3_expert_report(sqlite3expert *p, int iStmt, int eReport){ const char *zRet = 0; IdxStatement *pStmt; if( p->bRun==0 ) return 0; for(pStmt=p->pStatement; pStmt && pStmt->iId!=iStmt; pStmt=pStmt->pNext); if( pStmt ){ switch( eReport ){ case EXPERT_REPORT_SQL: zRet = pStmt->zSql; break; case EXPERT_REPORT_INDEXES: zRet = pStmt->zIdx; break; case EXPERT_REPORT_PLAN: zRet = pStmt->zEQP; break; } } return zRet; } /* ** Free an sqlite3expert object. */ void sqlite3_expert_destroy(sqlite3expert *p){ sqlite3_close(p->dbm); idxScanFree(p->pScan, 0); idxStatementFree(p->pStatement, 0); idxHashClear(&p->hIdx); sqlite3_free(p); } #endif /* !defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHEREINFO_HOOK) */