/* ** 2014 August 11 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** */ #include "fts5Int.h" typedef struct Fts5HashEntry Fts5HashEntry; /* ** This file contains the implementation of an in-memory hash table used ** to accumuluate "term -> doclist" content before it is flused to a level-0 ** segment. */ struct Fts5Hash { int eDetail; /* Copy of Fts5Config.eDetail */ int *pnByte; /* Pointer to bytes counter */ int nEntry; /* Number of entries currently in hash */ int nSlot; /* Size of aSlot[] array */ Fts5HashEntry *pScan; /* Current ordered scan item */ Fts5HashEntry **aSlot; /* Array of hash slots */ }; /* ** Each entry in the hash table is represented by an object of the ** following type. Each object, its key (a nul-terminated string) and ** its current data are stored in a single memory allocation. The ** key immediately follows the object in memory. The position list ** data immediately follows the key data in memory. ** ** The data that follows the key is in a similar, but not identical format ** to the doclist data stored in the database. It is: ** ** * Rowid, as a varint ** * Position list, without 0x00 terminator. ** * Size of previous position list and rowid, as a 4 byte ** big-endian integer. ** ** iRowidOff: ** Offset of last rowid written to data area. Relative to first byte of ** structure. ** ** nData: ** Bytes of data written since iRowidOff. */ struct Fts5HashEntry { Fts5HashEntry *pHashNext; /* Next hash entry with same hash-key */ Fts5HashEntry *pScanNext; /* Next entry in sorted order */ int nAlloc; /* Total size of allocation */ int iSzPoslist; /* Offset of space for 4-byte poslist size */ int nData; /* Total bytes of data (incl. structure) */ int nKey; /* Length of key in bytes */ u8 bDel; /* Set delete-flag @ iSzPoslist */ u8 bContent; /* Set content-flag (detail=none mode) */ i16 iCol; /* Column of last value written */ int iPos; /* Position of last value written */ i64 iRowid; /* Rowid of last value written */ }; /* ** Eqivalent to: ** ** char *fts5EntryKey(Fts5HashEntry *pEntry){ return zKey; } */ #define fts5EntryKey(p) ( ((char *)(&(p)[1])) ) /* ** Allocate a new hash table. */ int sqlite3Fts5HashNew(Fts5Config *pConfig, Fts5Hash **ppNew, int *pnByte){ int rc = SQLITE_OK; Fts5Hash *pNew; *ppNew = pNew = (Fts5Hash*)sqlite3_malloc(sizeof(Fts5Hash)); if( pNew==0 ){ rc = SQLITE_NOMEM; }else{ sqlite3_int64 nByte; memset(pNew, 0, sizeof(Fts5Hash)); pNew->pnByte = pnByte; pNew->eDetail = pConfig->eDetail; pNew->nSlot = 1024; nByte = sizeof(Fts5HashEntry*) * pNew->nSlot; pNew->aSlot = (Fts5HashEntry**)sqlite3_malloc64(nByte); if( pNew->aSlot==0 ){ sqlite3_free(pNew); *ppNew = 0; rc = SQLITE_NOMEM; }else{ memset(pNew->aSlot, 0, (size_t)nByte); } } return rc; } /* ** Free a hash table object. */ void sqlite3Fts5HashFree(Fts5Hash *pHash){ if( pHash ){ sqlite3Fts5HashClear(pHash); sqlite3_free(pHash->aSlot); sqlite3_free(pHash); } } /* ** Empty (but do not delete) a hash table. */ void sqlite3Fts5HashClear(Fts5Hash *pHash){ int i; for(i=0; inSlot; i++){ Fts5HashEntry *pNext; Fts5HashEntry *pSlot; for(pSlot=pHash->aSlot[i]; pSlot; pSlot=pNext){ pNext = pSlot->pHashNext; sqlite3_free(pSlot); } } memset(pHash->aSlot, 0, pHash->nSlot * sizeof(Fts5HashEntry*)); pHash->nEntry = 0; } static unsigned int fts5HashKey(int nSlot, const u8 *p, int n){ int i; unsigned int h = 13; for(i=n-1; i>=0; i--){ h = (h << 3) ^ h ^ p[i]; } return (h % nSlot); } static unsigned int fts5HashKey2(int nSlot, u8 b, const u8 *p, int n){ int i; unsigned int h = 13; for(i=n-1; i>=0; i--){ h = (h << 3) ^ h ^ p[i]; } h = (h << 3) ^ h ^ b; return (h % nSlot); } /* ** Resize the hash table by doubling the number of slots. */ static int fts5HashResize(Fts5Hash *pHash){ int nNew = pHash->nSlot*2; int i; Fts5HashEntry **apNew; Fts5HashEntry **apOld = pHash->aSlot; apNew = (Fts5HashEntry**)sqlite3_malloc64(nNew*sizeof(Fts5HashEntry*)); if( !apNew ) return SQLITE_NOMEM; memset(apNew, 0, nNew*sizeof(Fts5HashEntry*)); for(i=0; inSlot; i++){ while( apOld[i] ){ unsigned int iHash; Fts5HashEntry *p = apOld[i]; apOld[i] = p->pHashNext; iHash = fts5HashKey(nNew, (u8*)fts5EntryKey(p), (int)strlen(fts5EntryKey(p))); p->pHashNext = apNew[iHash]; apNew[iHash] = p; } } sqlite3_free(apOld); pHash->nSlot = nNew; pHash->aSlot = apNew; return SQLITE_OK; } static int fts5HashAddPoslistSize( Fts5Hash *pHash, Fts5HashEntry *p, Fts5HashEntry *p2 ){ int nRet = 0; if( p->iSzPoslist ){ u8 *pPtr = p2 ? (u8*)p2 : (u8*)p; int nData = p->nData; if( pHash->eDetail==FTS5_DETAIL_NONE ){ assert( nData==p->iSzPoslist ); if( p->bDel ){ pPtr[nData++] = 0x00; if( p->bContent ){ pPtr[nData++] = 0x00; } } }else{ int nSz = (nData - p->iSzPoslist - 1); /* Size in bytes */ int nPos = nSz*2 + p->bDel; /* Value of nPos field */ assert( p->bDel==0 || p->bDel==1 ); if( nPos<=127 ){ pPtr[p->iSzPoslist] = (u8)nPos; }else{ int nByte = sqlite3Fts5GetVarintLen((u32)nPos); memmove(&pPtr[p->iSzPoslist + nByte], &pPtr[p->iSzPoslist + 1], nSz); sqlite3Fts5PutVarint(&pPtr[p->iSzPoslist], nPos); nData += (nByte-1); } } nRet = nData - p->nData; if( p2==0 ){ p->iSzPoslist = 0; p->bDel = 0; p->bContent = 0; p->nData = nData; } } return nRet; } /* ** Add an entry to the in-memory hash table. The key is the concatenation ** of bByte and (pToken/nToken). The value is (iRowid/iCol/iPos). ** ** (bByte || pToken) -> (iRowid,iCol,iPos) ** ** Or, if iCol is negative, then the value is a delete marker. */ int sqlite3Fts5HashWrite( Fts5Hash *pHash, i64 iRowid, /* Rowid for this entry */ int iCol, /* Column token appears in (-ve -> delete) */ int iPos, /* Position of token within column */ char bByte, /* First byte of token */ const char *pToken, int nToken /* Token to add or remove to or from index */ ){ unsigned int iHash; Fts5HashEntry *p; u8 *pPtr; int nIncr = 0; /* Amount to increment (*pHash->pnByte) by */ int bNew; /* If non-delete entry should be written */ bNew = (pHash->eDetail==FTS5_DETAIL_FULL); /* Attempt to locate an existing hash entry */ iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken); for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){ char *zKey = fts5EntryKey(p); if( zKey[0]==bByte && p->nKey==nToken && memcmp(&zKey[1], pToken, nToken)==0 ){ break; } } /* If an existing hash entry cannot be found, create a new one. */ if( p==0 ){ /* Figure out how much space to allocate */ char *zKey; sqlite3_int64 nByte = sizeof(Fts5HashEntry) + (nToken+1) + 1 + 64; if( nByte<128 ) nByte = 128; /* Grow the Fts5Hash.aSlot[] array if necessary. */ if( (pHash->nEntry*2)>=pHash->nSlot ){ int rc = fts5HashResize(pHash); if( rc!=SQLITE_OK ) return rc; iHash = fts5HashKey2(pHash->nSlot, (u8)bByte, (const u8*)pToken, nToken); } /* Allocate new Fts5HashEntry and add it to the hash table. */ p = (Fts5HashEntry*)sqlite3_malloc64(nByte); if( !p ) return SQLITE_NOMEM; memset(p, 0, sizeof(Fts5HashEntry)); p->nAlloc = (int)nByte; zKey = fts5EntryKey(p); zKey[0] = bByte; memcpy(&zKey[1], pToken, nToken); assert( iHash==fts5HashKey(pHash->nSlot, (u8*)zKey, nToken+1) ); p->nKey = nToken; zKey[nToken+1] = '\0'; p->nData = nToken+1 + 1 + sizeof(Fts5HashEntry); p->pHashNext = pHash->aSlot[iHash]; pHash->aSlot[iHash] = p; pHash->nEntry++; /* Add the first rowid field to the hash-entry */ p->nData += sqlite3Fts5PutVarint(&((u8*)p)[p->nData], iRowid); p->iRowid = iRowid; p->iSzPoslist = p->nData; if( pHash->eDetail!=FTS5_DETAIL_NONE ){ p->nData += 1; p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1); } }else{ /* Appending to an existing hash-entry. Check that there is enough ** space to append the largest possible new entry. Worst case scenario ** is: ** ** + 9 bytes for a new rowid, ** + 4 byte reserved for the "poslist size" varint. ** + 1 byte for a "new column" byte, ** + 3 bytes for a new column number (16-bit max) as a varint, ** + 5 bytes for the new position offset (32-bit max). */ if( (p->nAlloc - p->nData) < (9 + 4 + 1 + 3 + 5) ){ sqlite3_int64 nNew = p->nAlloc * 2; Fts5HashEntry *pNew; Fts5HashEntry **pp; pNew = (Fts5HashEntry*)sqlite3_realloc64(p, nNew); if( pNew==0 ) return SQLITE_NOMEM; pNew->nAlloc = (int)nNew; for(pp=&pHash->aSlot[iHash]; *pp!=p; pp=&(*pp)->pHashNext); *pp = pNew; p = pNew; } nIncr -= p->nData; } assert( (p->nAlloc - p->nData) >= (9 + 4 + 1 + 3 + 5) ); pPtr = (u8*)p; /* If this is a new rowid, append the 4-byte size field for the previous ** entry, and the new rowid for this entry. */ if( iRowid!=p->iRowid ){ u64 iDiff = (u64)iRowid - (u64)p->iRowid; fts5HashAddPoslistSize(pHash, p, 0); p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iDiff); p->iRowid = iRowid; bNew = 1; p->iSzPoslist = p->nData; if( pHash->eDetail!=FTS5_DETAIL_NONE ){ p->nData += 1; p->iCol = (pHash->eDetail==FTS5_DETAIL_FULL ? 0 : -1); p->iPos = 0; } } if( iCol>=0 ){ if( pHash->eDetail==FTS5_DETAIL_NONE ){ p->bContent = 1; }else{ /* Append a new column value, if necessary */ assert( iCol>=p->iCol ); if( iCol!=p->iCol ){ if( pHash->eDetail==FTS5_DETAIL_FULL ){ pPtr[p->nData++] = 0x01; p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iCol); p->iCol = (i16)iCol; p->iPos = 0; }else{ bNew = 1; p->iCol = (i16)(iPos = iCol); } } /* Append the new position offset, if necessary */ if( bNew ){ p->nData += sqlite3Fts5PutVarint(&pPtr[p->nData], iPos - p->iPos + 2); p->iPos = iPos; } } }else{ /* This is a delete. Set the delete flag. */ p->bDel = 1; } nIncr += p->nData; *pHash->pnByte += nIncr; return SQLITE_OK; } /* ** Arguments pLeft and pRight point to linked-lists of hash-entry objects, ** each sorted in key order. This function merges the two lists into a ** single list and returns a pointer to its first element. */ static Fts5HashEntry *fts5HashEntryMerge( Fts5HashEntry *pLeft, Fts5HashEntry *pRight ){ Fts5HashEntry *p1 = pLeft; Fts5HashEntry *p2 = pRight; Fts5HashEntry *pRet = 0; Fts5HashEntry **ppOut = &pRet; while( p1 || p2 ){ if( p1==0 ){ *ppOut = p2; p2 = 0; }else if( p2==0 ){ *ppOut = p1; p1 = 0; }else{ int i = 0; char *zKey1 = fts5EntryKey(p1); char *zKey2 = fts5EntryKey(p2); while( zKey1[i]==zKey2[i] ) i++; if( ((u8)zKey1[i])>((u8)zKey2[i]) ){ /* p2 is smaller */ *ppOut = p2; ppOut = &p2->pScanNext; p2 = p2->pScanNext; }else{ /* p1 is smaller */ *ppOut = p1; ppOut = &p1->pScanNext; p1 = p1->pScanNext; } *ppOut = 0; } } return pRet; } /* ** Extract all tokens from hash table iHash and link them into a list ** in sorted order. The hash table is cleared before returning. It is ** the responsibility of the caller to free the elements of the returned ** list. */ static int fts5HashEntrySort( Fts5Hash *pHash, const char *pTerm, int nTerm, /* Query prefix, if any */ Fts5HashEntry **ppSorted ){ const int nMergeSlot = 32; Fts5HashEntry **ap; Fts5HashEntry *pList; int iSlot; int i; *ppSorted = 0; ap = sqlite3_malloc64(sizeof(Fts5HashEntry*) * nMergeSlot); if( !ap ) return SQLITE_NOMEM; memset(ap, 0, sizeof(Fts5HashEntry*) * nMergeSlot); for(iSlot=0; iSlotnSlot; iSlot++){ Fts5HashEntry *pIter; for(pIter=pHash->aSlot[iSlot]; pIter; pIter=pIter->pHashNext){ if( pTerm==0 || (pIter->nKey+1>=nTerm && 0==memcmp(fts5EntryKey(pIter), pTerm, nTerm)) ){ Fts5HashEntry *pEntry = pIter; pEntry->pScanNext = 0; for(i=0; ap[i]; i++){ pEntry = fts5HashEntryMerge(pEntry, ap[i]); ap[i] = 0; } ap[i] = pEntry; } } } pList = 0; for(i=0; inEntry = 0; sqlite3_free(ap); *ppSorted = pList; return SQLITE_OK; } /* ** Query the hash table for a doclist associated with term pTerm/nTerm. */ int sqlite3Fts5HashQuery( Fts5Hash *pHash, /* Hash table to query */ int nPre, const char *pTerm, int nTerm, /* Query term */ void **ppOut, /* OUT: Pointer to new object */ int *pnDoclist /* OUT: Size of doclist in bytes */ ){ unsigned int iHash = fts5HashKey(pHash->nSlot, (const u8*)pTerm, nTerm); char *zKey = 0; Fts5HashEntry *p; for(p=pHash->aSlot[iHash]; p; p=p->pHashNext){ zKey = fts5EntryKey(p); assert( p->nKey+1==(int)strlen(zKey) ); if( nTerm==p->nKey+1 && memcmp(zKey, pTerm, nTerm)==0 ) break; } if( p ){ int nHashPre = sizeof(Fts5HashEntry) + nTerm + 1; int nList = p->nData - nHashPre; u8 *pRet = (u8*)(*ppOut = sqlite3_malloc64(nPre + nList + 10)); if( pRet ){ Fts5HashEntry *pFaux = (Fts5HashEntry*)&pRet[nPre-nHashPre]; memcpy(&pRet[nPre], &((u8*)p)[nHashPre], nList); nList += fts5HashAddPoslistSize(pHash, p, pFaux); *pnDoclist = nList; }else{ *pnDoclist = 0; return SQLITE_NOMEM; } }else{ *ppOut = 0; *pnDoclist = 0; } return SQLITE_OK; } int sqlite3Fts5HashScanInit( Fts5Hash *p, /* Hash table to query */ const char *pTerm, int nTerm /* Query prefix */ ){ return fts5HashEntrySort(p, pTerm, nTerm, &p->pScan); } void sqlite3Fts5HashScanNext(Fts5Hash *p){ assert( !sqlite3Fts5HashScanEof(p) ); p->pScan = p->pScan->pScanNext; } int sqlite3Fts5HashScanEof(Fts5Hash *p){ return (p->pScan==0); } void sqlite3Fts5HashScanEntry( Fts5Hash *pHash, const char **pzTerm, /* OUT: term (nul-terminated) */ const u8 **ppDoclist, /* OUT: pointer to doclist */ int *pnDoclist /* OUT: size of doclist in bytes */ ){ Fts5HashEntry *p; if( (p = pHash->pScan) ){ char *zKey = fts5EntryKey(p); int nTerm = (int)strlen(zKey); fts5HashAddPoslistSize(pHash, p, 0); *pzTerm = zKey; *ppDoclist = (const u8*)&zKey[nTerm+1]; *pnDoclist = p->nData - (sizeof(Fts5HashEntry) + nTerm + 1); }else{ *pzTerm = 0; *ppDoclist = 0; *pnDoclist = 0; } }