/* ** 2006 Oct 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This is an SQLite module implementing full-text search. */ /* ** The code in this file is only compiled if: ** ** * The FTS3 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS3 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). */ /* The full-text index is stored in a series of b+tree (-like) ** structures called segments which map terms to doclists. The ** structures are like b+trees in layout, but are constructed from the ** bottom up in optimal fashion and are not updatable. Since trees ** are built from the bottom up, things will be described from the ** bottom up. ** ** **** Varints **** ** The basic unit of encoding is a variable-length integer called a ** varint. We encode variable-length integers in little-endian order ** using seven bits * per byte as follows: ** ** KEY: ** A = 0xxxxxxx 7 bits of data and one flag bit ** B = 1xxxxxxx 7 bits of data and one flag bit ** ** 7 bits - A ** 14 bits - BA ** 21 bits - BBA ** and so on. ** ** This is similar in concept to how sqlite encodes "varints" but ** the encoding is not the same. SQLite varints are big-endian ** are are limited to 9 bytes in length whereas FTS3 varints are ** little-endian and can be up to 10 bytes in length (in theory). ** ** Example encodings: ** ** 1: 0x01 ** 127: 0x7f ** 128: 0x81 0x00 ** ** **** Document lists **** ** A doclist (document list) holds a docid-sorted list of hits for a ** given term. Doclists hold docids and associated token positions. ** A docid is the unique integer identifier for a single document. ** A position is the index of a word within the document. The first ** word of the document has a position of 0. ** ** FTS3 used to optionally store character offsets using a compile-time ** option. But that functionality is no longer supported. ** ** A doclist is stored like this: ** ** array { ** varint docid; (delta from previous doclist) ** array { (position list for column 0) ** varint position; (2 more than the delta from previous position) ** } ** array { ** varint POS_COLUMN; (marks start of position list for new column) ** varint column; (index of new column) ** array { ** varint position; (2 more than the delta from previous position) ** } ** } ** varint POS_END; (marks end of positions for this document. ** } ** ** Here, array { X } means zero or more occurrences of X, adjacent in ** memory. A "position" is an index of a token in the token stream ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur ** in the same logical place as the position element, and act as sentinals ** ending a position list array. POS_END is 0. POS_COLUMN is 1. ** The positions numbers are not stored literally but rather as two more ** than the difference from the prior position, or the just the position plus ** 2 for the first position. Example: ** ** label: A B C D E F G H I J K ** value: 123 5 9 1 1 14 35 0 234 72 0 ** ** The 123 value is the first docid. For column zero in this document ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1 ** at D signals the start of a new column; the 1 at E indicates that the ** new column is column number 1. There are two positions at 12 and 45 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The ** 234 at I is the delta to next docid (357). It has one position 70 ** (72-2) and then terminates with the 0 at K. ** ** A "position-list" is the list of positions for multiple columns for ** a single docid. A "column-list" is the set of positions for a single ** column. Hence, a position-list consists of one or more column-lists, ** a document record consists of a docid followed by a position-list and ** a doclist consists of one or more document records. ** ** A bare doclist omits the position information, becoming an ** array of varint-encoded docids. ** **** Segment leaf nodes **** ** Segment leaf nodes store terms and doclists, ordered by term. Leaf ** nodes are written using LeafWriter, and read using LeafReader (to ** iterate through a single leaf node's data) and LeavesReader (to ** iterate through a segment's entire leaf layer). Leaf nodes have ** the format: ** ** varint iHeight; (height from leaf level, always 0) ** varint nTerm; (length of first term) ** char pTerm[nTerm]; (content of first term) ** varint nDoclist; (length of term's associated doclist) ** char pDoclist[nDoclist]; (content of doclist) ** array { ** (further terms are delta-encoded) ** varint nPrefix; (length of prefix shared with previous term) ** varint nSuffix; (length of unshared suffix) ** char pTermSuffix[nSuffix];(unshared suffix of next term) ** varint nDoclist; (length of term's associated doclist) ** char pDoclist[nDoclist]; (content of doclist) ** } ** ** Here, array { X } means zero or more occurrences of X, adjacent in ** memory. ** ** Leaf nodes are broken into blocks which are stored contiguously in ** the %_segments table in sorted order. This means that when the end ** of a node is reached, the next term is in the node with the next ** greater node id. ** ** New data is spilled to a new leaf node when the current node ** exceeds LEAF_MAX bytes (default 2048). New data which itself is ** larger than STANDALONE_MIN (default 1024) is placed in a standalone ** node (a leaf node with a single term and doclist). The goal of ** these settings is to pack together groups of small doclists while ** making it efficient to directly access large doclists. The ** assumption is that large doclists represent terms which are more ** likely to be query targets. ** ** TODO(shess) It may be useful for blocking decisions to be more ** dynamic. For instance, it may make more sense to have a 2.5k leaf ** node rather than splitting into 2k and .5k nodes. My intuition is ** that this might extend through 2x or 4x the pagesize. ** ** **** Segment interior nodes **** ** Segment interior nodes store blockids for subtree nodes and terms ** to describe what data is stored by the each subtree. Interior ** nodes are written using InteriorWriter, and read using ** InteriorReader. InteriorWriters are created as needed when ** SegmentWriter creates new leaf nodes, or when an interior node ** itself grows too big and must be split. The format of interior ** nodes: ** ** varint iHeight; (height from leaf level, always >0) ** varint iBlockid; (block id of node's leftmost subtree) ** optional { ** varint nTerm; (length of first term) ** char pTerm[nTerm]; (content of first term) ** array { ** (further terms are delta-encoded) ** varint nPrefix; (length of shared prefix with previous term) ** varint nSuffix; (length of unshared suffix) ** char pTermSuffix[nSuffix]; (unshared suffix of next term) ** } ** } ** ** Here, optional { X } means an optional element, while array { X } ** means zero or more occurrences of X, adjacent in memory. ** ** An interior node encodes n terms separating n+1 subtrees. The ** subtree blocks are contiguous, so only the first subtree's blockid ** is encoded. The subtree at iBlockid will contain all terms less ** than the first term encoded (or all terms if no term is encoded). ** Otherwise, for terms greater than or equal to pTerm[i] but less ** than pTerm[i+1], the subtree for that term will be rooted at ** iBlockid+i. Interior nodes only store enough term data to ** distinguish adjacent children (if the rightmost term of the left ** child is "something", and the leftmost term of the right child is ** "wicked", only "w" is stored). ** ** New data is spilled to a new interior node at the same height when ** the current node exceeds INTERIOR_MAX bytes (default 2048). ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing ** interior nodes and making the tree too skinny. The interior nodes ** at a given height are naturally tracked by interior nodes at ** height+1, and so on. ** ** **** Segment directory **** ** The segment directory in table %_segdir stores meta-information for ** merging and deleting segments, and also the root node of the ** segment's tree. ** ** The root node is the top node of the segment's tree after encoding ** the entire segment, restricted to ROOT_MAX bytes (default 1024). ** This could be either a leaf node or an interior node. If the top ** node requires more than ROOT_MAX bytes, it is flushed to %_segments ** and a new root interior node is generated (which should always fit ** within ROOT_MAX because it only needs space for 2 varints, the ** height and the blockid of the previous root). ** ** The meta-information in the segment directory is: ** level - segment level (see below) ** idx - index within level ** - (level,idx uniquely identify a segment) ** start_block - first leaf node ** leaves_end_block - last leaf node ** end_block - last block (including interior nodes) ** root - contents of root node ** ** If the root node is a leaf node, then start_block, ** leaves_end_block, and end_block are all 0. ** ** **** Segment merging **** ** To amortize update costs, segments are grouped into levels and ** merged in batches. Each increase in level represents exponentially ** more documents. ** ** New documents (actually, document updates) are tokenized and ** written individually (using LeafWriter) to a level 0 segment, with ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all ** level 0 segments are merged into a single level 1 segment. Level 1 ** is populated like level 0, and eventually MERGE_COUNT level 1 ** segments are merged to a single level 2 segment (representing ** MERGE_COUNT^2 updates), and so on. ** ** A segment merge traverses all segments at a given level in ** parallel, performing a straightforward sorted merge. Since segment ** leaf nodes are written in to the %_segments table in order, this ** merge traverses the underlying sqlite disk structures efficiently. ** After the merge, all segment blocks from the merged level are ** deleted. ** ** MERGE_COUNT controls how often we merge segments. 16 seems to be ** somewhat of a sweet spot for insertion performance. 32 and 64 show ** very similar performance numbers to 16 on insertion, though they're ** a tiny bit slower (perhaps due to more overhead in merge-time ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than ** 16, 2 about 66% slower than 16. ** ** At query time, high MERGE_COUNT increases the number of segments ** which need to be scanned and merged. For instance, with 100k docs ** inserted: ** ** MERGE_COUNT segments ** 16 25 ** 8 12 ** 4 10 ** 2 6 ** ** This appears to have only a moderate impact on queries for very ** frequent terms (which are somewhat dominated by segment merge ** costs), and infrequent and non-existent terms still seem to be fast ** even with many segments. ** ** TODO(shess) That said, it would be nice to have a better query-side ** argument for MERGE_COUNT of 16. Also, it is possible/likely that ** optimizations to things like doclist merging will swing the sweet ** spot around. ** ** ** **** Handling of deletions and updates **** ** Since we're using a segmented structure, with no docid-oriented ** index into the term index, we clearly cannot simply update the term ** index when a document is deleted or updated. For deletions, we ** write an empty doclist (varint(docid) varint(POS_END)), for updates ** we simply write the new doclist. Segment merges overwrite older ** data for a particular docid with newer data, so deletes or updates ** will eventually overtake the earlier data and knock it out. The ** query logic likewise merges doclists so that newer data knocks out ** older data. */ #include "fts3Int.h" #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE) # define SQLITE_CORE 1 #endif #include #include #include #include #include #include #include "fts3.h" #ifndef SQLITE_CORE # include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #endif typedef struct Fts3HashWrapper Fts3HashWrapper; struct Fts3HashWrapper { Fts3Hash hash; /* Hash table */ int nRef; /* Number of pointers to this object */ }; static int fts3EvalNext(Fts3Cursor *pCsr); static int fts3EvalStart(Fts3Cursor *pCsr); static int fts3TermSegReaderCursor( Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **); /* ** This variable is set to false when running tests for which the on disk ** structures should not be corrupt. Otherwise, true. If it is false, extra ** assert() conditions in the fts3 code are activated - conditions that are ** only true if it is guaranteed that the fts3 database is not corrupt. */ #ifdef SQLITE_DEBUG int sqlite3_fts3_may_be_corrupt = 1; #endif /* ** Write a 64-bit variable-length integer to memory starting at p[0]. ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes. ** The number of bytes written is returned. */ int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){ unsigned char *q = (unsigned char *) p; sqlite_uint64 vu = v; do{ *q++ = (unsigned char) ((vu & 0x7f) | 0x80); vu >>= 7; }while( vu!=0 ); q[-1] &= 0x7f; /* turn off high bit in final byte */ assert( q - (unsigned char *)p <= FTS3_VARINT_MAX ); return (int) (q - (unsigned char *)p); } #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \ v = (v & mask1) | ( (*(const unsigned char*)(ptr++)) << shift ); \ if( (v & mask2)==0 ){ var = v; return ret; } #define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \ v = (*ptr++); \ if( (v & mask2)==0 ){ var = v; return ret; } int sqlite3Fts3GetVarintU(const char *pBuf, sqlite_uint64 *v){ const unsigned char *p = (const unsigned char*)pBuf; const unsigned char *pStart = p; u32 a; u64 b; int shift; GETVARINT_INIT(a, p, 0, 0x00, 0x80, *v, 1); GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *v, 2); GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *v, 3); GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4); b = (a & 0x0FFFFFFF ); for(shift=28; shift<=63; shift+=7){ u64 c = *p++; b += (c&0x7F) << shift; if( (c & 0x80)==0 ) break; } *v = b; return (int)(p - pStart); } /* ** Read a 64-bit variable-length integer from memory starting at p[0]. ** Return the number of bytes read, or 0 on error. ** The value is stored in *v. */ int sqlite3Fts3GetVarint(const char *pBuf, sqlite_int64 *v){ return sqlite3Fts3GetVarintU(pBuf, (sqlite3_uint64*)v); } /* ** Read a 64-bit variable-length integer from memory starting at p[0] and ** not extending past pEnd[-1]. ** Return the number of bytes read, or 0 on error. ** The value is stored in *v. */ int sqlite3Fts3GetVarintBounded( const char *pBuf, const char *pEnd, sqlite_int64 *v ){ const unsigned char *p = (const unsigned char*)pBuf; const unsigned char *pStart = p; const unsigned char *pX = (const unsigned char*)pEnd; u64 b = 0; int shift; for(shift=0; shift<=63; shift+=7){ u64 c = p=0 ); return 5; } /* ** Return the number of bytes required to encode v as a varint */ int sqlite3Fts3VarintLen(sqlite3_uint64 v){ int i = 0; do{ i++; v >>= 7; }while( v!=0 ); return i; } /* ** Convert an SQL-style quoted string into a normal string by removing ** the quote characters. The conversion is done in-place. If the ** input does not begin with a quote character, then this routine ** is a no-op. ** ** Examples: ** ** "abc" becomes abc ** 'xyz' becomes xyz ** [pqr] becomes pqr ** `mno` becomes mno ** */ void sqlite3Fts3Dequote(char *z){ char quote; /* Quote character (if any ) */ quote = z[0]; if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){ int iIn = 1; /* Index of next byte to read from input */ int iOut = 0; /* Index of next byte to write to output */ /* If the first byte was a '[', then the close-quote character is a ']' */ if( quote=='[' ) quote = ']'; while( z[iIn] ){ if( z[iIn]==quote ){ if( z[iIn+1]!=quote ) break; z[iOut++] = quote; iIn += 2; }else{ z[iOut++] = z[iIn++]; } } z[iOut] = '\0'; } } /* ** Read a single varint from the doclist at *pp and advance *pp to point ** to the first byte past the end of the varint. Add the value of the varint ** to *pVal. */ static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){ sqlite3_int64 iVal; *pp += sqlite3Fts3GetVarint(*pp, &iVal); *pVal += iVal; } /* ** When this function is called, *pp points to the first byte following a ** varint that is part of a doclist (or position-list, or any other list ** of varints). This function moves *pp to point to the start of that varint, ** and sets *pVal by the varint value. ** ** Argument pStart points to the first byte of the doclist that the ** varint is part of. */ static void fts3GetReverseVarint( char **pp, char *pStart, sqlite3_int64 *pVal ){ sqlite3_int64 iVal; char *p; /* Pointer p now points at the first byte past the varint we are ** interested in. So, unless the doclist is corrupt, the 0x80 bit is ** clear on character p[-1]. */ for(p = (*pp)-2; p>=pStart && *p&0x80; p--); p++; *pp = p; sqlite3Fts3GetVarint(p, &iVal); *pVal = iVal; } /* ** The xDisconnect() virtual table method. */ static int fts3DisconnectMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table *)pVtab; int i; assert( p->nPendingData==0 ); assert( p->pSegments==0 ); /* Free any prepared statements held */ sqlite3_finalize(p->pSeekStmt); for(i=0; iaStmt); i++){ sqlite3_finalize(p->aStmt[i]); } sqlite3_free(p->zSegmentsTbl); sqlite3_free(p->zReadExprlist); sqlite3_free(p->zWriteExprlist); sqlite3_free(p->zContentTbl); sqlite3_free(p->zLanguageid); /* Invoke the tokenizer destructor to free the tokenizer. */ p->pTokenizer->pModule->xDestroy(p->pTokenizer); sqlite3_free(p); return SQLITE_OK; } /* ** Write an error message into *pzErr */ void sqlite3Fts3ErrMsg(char **pzErr, const char *zFormat, ...){ va_list ap; sqlite3_free(*pzErr); va_start(ap, zFormat); *pzErr = sqlite3_vmprintf(zFormat, ap); va_end(ap); } /* ** Construct one or more SQL statements from the format string given ** and then evaluate those statements. The success code is written ** into *pRc. ** ** If *pRc is initially non-zero then this routine is a no-op. */ static void fts3DbExec( int *pRc, /* Success code */ sqlite3 *db, /* Database in which to run SQL */ const char *zFormat, /* Format string for SQL */ ... /* Arguments to the format string */ ){ va_list ap; char *zSql; if( *pRc ) return; va_start(ap, zFormat); zSql = sqlite3_vmprintf(zFormat, ap); va_end(ap); if( zSql==0 ){ *pRc = SQLITE_NOMEM; }else{ *pRc = sqlite3_exec(db, zSql, 0, 0, 0); sqlite3_free(zSql); } } /* ** The xDestroy() virtual table method. */ static int fts3DestroyMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table *)pVtab; int rc = SQLITE_OK; /* Return code */ const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */ sqlite3 *db = p->db; /* Database handle */ /* Drop the shadow tables */ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments';" "DROP TABLE IF EXISTS %Q.'%q_segdir';" "DROP TABLE IF EXISTS %Q.'%q_docsize';" "DROP TABLE IF EXISTS %Q.'%q_stat';" "%s DROP TABLE IF EXISTS %Q.'%q_content';", zDb, p->zName, zDb, p->zName, zDb, p->zName, zDb, p->zName, (p->zContentTbl ? "--" : ""), zDb,p->zName ); /* If everything has worked, invoke fts3DisconnectMethod() to free the ** memory associated with the Fts3Table structure and return SQLITE_OK. ** Otherwise, return an SQLite error code. */ return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc); } /* ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table ** passed as the first argument. This is done as part of the xConnect() ** and xCreate() methods. ** ** If *pRc is non-zero when this function is called, it is a no-op. ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc ** before returning. */ static void fts3DeclareVtab(int *pRc, Fts3Table *p){ if( *pRc==SQLITE_OK ){ int i; /* Iterator variable */ int rc; /* Return code */ char *zSql; /* SQL statement passed to declare_vtab() */ char *zCols; /* List of user defined columns */ const char *zLanguageid; zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid"); sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); /* Create a list of user columns for the virtual table */ zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]); for(i=1; zCols && inColumn; i++){ zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]); } /* Create the whole "CREATE TABLE" statement to pass to SQLite */ zSql = sqlite3_mprintf( "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)", zCols, p->zName, zLanguageid ); if( !zCols || !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_declare_vtab(p->db, zSql); } sqlite3_free(zSql); sqlite3_free(zCols); *pRc = rc; } } /* ** Create the %_stat table if it does not already exist. */ void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){ fts3DbExec(pRc, p->db, "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'" "(id INTEGER PRIMARY KEY, value BLOB);", p->zDb, p->zName ); if( (*pRc)==SQLITE_OK ) p->bHasStat = 1; } /* ** Create the backing store tables (%_content, %_segments and %_segdir) ** required by the FTS3 table passed as the only argument. This is done ** as part of the vtab xCreate() method. ** ** If the p->bHasDocsize boolean is true (indicating that this is an ** FTS4 table, not an FTS3 table) then also create the %_docsize and ** %_stat tables required by FTS4. */ static int fts3CreateTables(Fts3Table *p){ int rc = SQLITE_OK; /* Return code */ int i; /* Iterator variable */ sqlite3 *db = p->db; /* The database connection */ if( p->zContentTbl==0 ){ const char *zLanguageid = p->zLanguageid; char *zContentCols; /* Columns of %_content table */ /* Create a list of user columns for the content table */ zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY"); for(i=0; zContentCols && inColumn; i++){ char *z = p->azColumn[i]; zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z); } if( zLanguageid && zContentCols ){ zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid); } if( zContentCols==0 ) rc = SQLITE_NOMEM; /* Create the content table */ fts3DbExec(&rc, db, "CREATE TABLE %Q.'%q_content'(%s)", p->zDb, p->zName, zContentCols ); sqlite3_free(zContentCols); } /* Create other tables */ fts3DbExec(&rc, db, "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);", p->zDb, p->zName ); fts3DbExec(&rc, db, "CREATE TABLE %Q.'%q_segdir'(" "level INTEGER," "idx INTEGER," "start_block INTEGER," "leaves_end_block INTEGER," "end_block INTEGER," "root BLOB," "PRIMARY KEY(level, idx)" ");", p->zDb, p->zName ); if( p->bHasDocsize ){ fts3DbExec(&rc, db, "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);", p->zDb, p->zName ); } assert( p->bHasStat==p->bFts4 ); if( p->bHasStat ){ sqlite3Fts3CreateStatTable(&rc, p); } return rc; } /* ** Store the current database page-size in bytes in p->nPgsz. ** ** If *pRc is non-zero when this function is called, it is a no-op. ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc ** before returning. */ static void fts3DatabasePageSize(int *pRc, Fts3Table *p){ if( *pRc==SQLITE_OK ){ int rc; /* Return code */ char *zSql; /* SQL text "PRAGMA %Q.page_size" */ sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_step(pStmt); p->nPgsz = sqlite3_column_int(pStmt, 0); rc = sqlite3_finalize(pStmt); }else if( rc==SQLITE_AUTH ){ p->nPgsz = 1024; rc = SQLITE_OK; } } assert( p->nPgsz>0 || rc!=SQLITE_OK ); sqlite3_free(zSql); *pRc = rc; } } /* ** "Special" FTS4 arguments are column specifications of the following form: ** ** = ** ** There may not be whitespace surrounding the "=" character. The ** term may be quoted, but the may not. */ static int fts3IsSpecialColumn( const char *z, int *pnKey, char **pzValue ){ char *zValue; const char *zCsr = z; while( *zCsr!='=' ){ if( *zCsr=='\0' ) return 0; zCsr++; } *pnKey = (int)(zCsr-z); zValue = sqlite3_mprintf("%s", &zCsr[1]); if( zValue ){ sqlite3Fts3Dequote(zValue); } *pzValue = zValue; return 1; } /* ** Append the output of a printf() style formatting to an existing string. */ static void fts3Appendf( int *pRc, /* IN/OUT: Error code */ char **pz, /* IN/OUT: Pointer to string buffer */ const char *zFormat, /* Printf format string to append */ ... /* Arguments for printf format string */ ){ if( *pRc==SQLITE_OK ){ va_list ap; char *z; va_start(ap, zFormat); z = sqlite3_vmprintf(zFormat, ap); va_end(ap); if( z && *pz ){ char *z2 = sqlite3_mprintf("%s%s", *pz, z); sqlite3_free(z); z = z2; } if( z==0 ) *pRc = SQLITE_NOMEM; sqlite3_free(*pz); *pz = z; } } /* ** Return a copy of input string zInput enclosed in double-quotes (") and ** with all double quote characters escaped. For example: ** ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\"" ** ** The pointer returned points to memory obtained from sqlite3_malloc(). It ** is the callers responsibility to call sqlite3_free() to release this ** memory. */ static char *fts3QuoteId(char const *zInput){ sqlite3_int64 nRet; char *zRet; nRet = 2 + (int)strlen(zInput)*2 + 1; zRet = sqlite3_malloc64(nRet); if( zRet ){ int i; char *z = zRet; *(z++) = '"'; for(i=0; zInput[i]; i++){ if( zInput[i]=='"' ) *(z++) = '"'; *(z++) = zInput[i]; } *(z++) = '"'; *(z++) = '\0'; } return zRet; } /* ** Return a list of comma separated SQL expressions and a FROM clause that ** could be used in a SELECT statement such as the following: ** ** SELECT FROM %_content AS x ... ** ** to return the docid, followed by each column of text data in order ** from left to write. If parameter zFunc is not NULL, then instead of ** being returned directly each column of text data is passed to an SQL ** function named zFunc first. For example, if zFunc is "unzip" and the ** table has the three user-defined columns "a", "b", and "c", the following ** string is returned: ** ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x" ** ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It ** is the responsibility of the caller to eventually free it. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and ** a NULL pointer is returned). Otherwise, if an OOM error is encountered ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If ** no error occurs, *pRc is left unmodified. */ static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){ char *zRet = 0; char *zFree = 0; char *zFunction; int i; if( p->zContentTbl==0 ){ if( !zFunc ){ zFunction = ""; }else{ zFree = zFunction = fts3QuoteId(zFunc); } fts3Appendf(pRc, &zRet, "docid"); for(i=0; inColumn; i++){ fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]); } if( p->zLanguageid ){ fts3Appendf(pRc, &zRet, ", x.%Q", "langid"); } sqlite3_free(zFree); }else{ fts3Appendf(pRc, &zRet, "rowid"); for(i=0; inColumn; i++){ fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]); } if( p->zLanguageid ){ fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid); } } fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x", p->zDb, (p->zContentTbl ? p->zContentTbl : p->zName), (p->zContentTbl ? "" : "_content") ); return zRet; } /* ** Return a list of N comma separated question marks, where N is the number ** of columns in the %_content table (one for the docid plus one for each ** user-defined text column). ** ** If argument zFunc is not NULL, then all but the first question mark ** is preceded by zFunc and an open bracket, and followed by a closed ** bracket. For example, if zFunc is "zip" and the FTS3 table has three ** user-defined text columns, the following string is returned: ** ** "?, zip(?), zip(?), zip(?)" ** ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It ** is the responsibility of the caller to eventually free it. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and ** a NULL pointer is returned). Otherwise, if an OOM error is encountered ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If ** no error occurs, *pRc is left unmodified. */ static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){ char *zRet = 0; char *zFree = 0; char *zFunction; int i; if( !zFunc ){ zFunction = ""; }else{ zFree = zFunction = fts3QuoteId(zFunc); } fts3Appendf(pRc, &zRet, "?"); for(i=0; inColumn; i++){ fts3Appendf(pRc, &zRet, ",%s(?)", zFunction); } if( p->zLanguageid ){ fts3Appendf(pRc, &zRet, ", ?"); } sqlite3_free(zFree); return zRet; } /* ** Buffer z contains a positive integer value encoded as utf-8 text. ** Decode this value and store it in *pnOut, returning the number of bytes ** consumed. If an overflow error occurs return a negative value. */ int sqlite3Fts3ReadInt(const char *z, int *pnOut){ u64 iVal = 0; int i; for(i=0; z[i]>='0' && z[i]<='9'; i++){ iVal = iVal*10 + (z[i] - '0'); if( iVal>0x7FFFFFFF ) return -1; } *pnOut = (int)iVal; return i; } /* ** This function interprets the string at (*pp) as a non-negative integer ** value. It reads the integer and sets *pnOut to the value read, then ** sets *pp to point to the byte immediately following the last byte of ** the integer value. ** ** Only decimal digits ('0'..'9') may be part of an integer value. ** ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and ** the output value undefined. Otherwise SQLITE_OK is returned. ** ** This function is used when parsing the "prefix=" FTS4 parameter. */ static int fts3GobbleInt(const char **pp, int *pnOut){ const int MAX_NPREFIX = 10000000; int nInt = 0; /* Output value */ int nByte; nByte = sqlite3Fts3ReadInt(*pp, &nInt); if( nInt>MAX_NPREFIX ){ nInt = 0; } if( nByte==0 ){ return SQLITE_ERROR; } *pnOut = nInt; *pp += nByte; return SQLITE_OK; } /* ** This function is called to allocate an array of Fts3Index structures ** representing the indexes maintained by the current FTS table. FTS tables ** always maintain the main "terms" index, but may also maintain one or ** more "prefix" indexes, depending on the value of the "prefix=" parameter ** (if any) specified as part of the CREATE VIRTUAL TABLE statement. ** ** Argument zParam is passed the value of the "prefix=" option if one was ** specified, or NULL otherwise. ** ** If no error occurs, SQLITE_OK is returned and *apIndex set to point to ** the allocated array. *pnIndex is set to the number of elements in the ** array. If an error does occur, an SQLite error code is returned. ** ** Regardless of whether or not an error is returned, it is the responsibility ** of the caller to call sqlite3_free() on the output array to free it. */ static int fts3PrefixParameter( const char *zParam, /* ABC in prefix=ABC parameter to parse */ int *pnIndex, /* OUT: size of *apIndex[] array */ struct Fts3Index **apIndex /* OUT: Array of indexes for this table */ ){ struct Fts3Index *aIndex; /* Allocated array */ int nIndex = 1; /* Number of entries in array */ if( zParam && zParam[0] ){ const char *p; nIndex++; for(p=zParam; *p; p++){ if( *p==',' ) nIndex++; } } aIndex = sqlite3_malloc64(sizeof(struct Fts3Index) * nIndex); *apIndex = aIndex; if( !aIndex ){ return SQLITE_NOMEM; } memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex); if( zParam ){ const char *p = zParam; int i; for(i=1; i=0 ); if( nPrefix==0 ){ nIndex--; i--; }else{ aIndex[i].nPrefix = nPrefix; } p++; } } *pnIndex = nIndex; return SQLITE_OK; } /* ** This function is called when initializing an FTS4 table that uses the ** content=xxx option. It determines the number of and names of the columns ** of the new FTS4 table. ** ** The third argument passed to this function is the value passed to the ** config=xxx option (i.e. "xxx"). This function queries the database for ** a table of that name. If found, the output variables are populated ** as follows: ** ** *pnCol: Set to the number of columns table xxx has, ** ** *pnStr: Set to the total amount of space required to store a copy ** of each columns name, including the nul-terminator. ** ** *pazCol: Set to point to an array of *pnCol strings. Each string is ** the name of the corresponding column in table xxx. The array ** and its contents are allocated using a single allocation. It ** is the responsibility of the caller to free this allocation ** by eventually passing the *pazCol value to sqlite3_free(). ** ** If the table cannot be found, an error code is returned and the output ** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is ** returned (and the output variables are undefined). */ static int fts3ContentColumns( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */ const char *zTbl, /* Name of content table */ const char ***pazCol, /* OUT: Malloc'd array of column names */ int *pnCol, /* OUT: Size of array *pazCol */ int *pnStr, /* OUT: Bytes of string content */ char **pzErr /* OUT: error message */ ){ int rc = SQLITE_OK; /* Return code */ char *zSql; /* "SELECT *" statement on zTbl */ sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */ zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl); if( !zSql ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ){ sqlite3Fts3ErrMsg(pzErr, "%s", sqlite3_errmsg(db)); } } sqlite3_free(zSql); if( rc==SQLITE_OK ){ const char **azCol; /* Output array */ sqlite3_int64 nStr = 0; /* Size of all column names (incl. 0x00) */ int nCol; /* Number of table columns */ int i; /* Used to iterate through columns */ /* Loop through the returned columns. Set nStr to the number of bytes of ** space required to store a copy of each column name, including the ** nul-terminator byte. */ nCol = sqlite3_column_count(pStmt); for(i=0; i module name ("fts3" or "fts4") ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> "column name" and other module argument fields. */ static int fts3InitVtab( int isCreate, /* True for xCreate, false for xConnect */ sqlite3 *db, /* The SQLite database connection */ void *pAux, /* Hash table containing tokenizers */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ char **pzErr /* Write any error message here */ ){ Fts3Hash *pHash = &((Fts3HashWrapper*)pAux)->hash; Fts3Table *p = 0; /* Pointer to allocated vtab */ int rc = SQLITE_OK; /* Return code */ int i; /* Iterator variable */ sqlite3_int64 nByte; /* Size of allocation used for *p */ int iCol; /* Column index */ int nString = 0; /* Bytes required to hold all column names */ int nCol = 0; /* Number of columns in the FTS table */ char *zCsr; /* Space for holding column names */ int nDb; /* Bytes required to hold database name */ int nName; /* Bytes required to hold table name */ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ const char **aCol; /* Array of column names */ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ int nIndex = 0; /* Size of aIndex[] array */ struct Fts3Index *aIndex = 0; /* Array of indexes for this table */ /* The results of parsing supported FTS4 key=value options: */ int bNoDocsize = 0; /* True to omit %_docsize table */ int bDescIdx = 0; /* True to store descending indexes */ char *zPrefix = 0; /* Prefix parameter value (or NULL) */ char *zCompress = 0; /* compress=? parameter (or NULL) */ char *zUncompress = 0; /* uncompress=? parameter (or NULL) */ char *zContent = 0; /* content=? parameter (or NULL) */ char *zLanguageid = 0; /* languageid=? parameter (or NULL) */ char **azNotindexed = 0; /* The set of notindexed= columns */ int nNotindexed = 0; /* Size of azNotindexed[] array */ assert( strlen(argv[0])==4 ); assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4) || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4) ); nDb = (int)strlen(argv[1]) + 1; nName = (int)strlen(argv[2]) + 1; nByte = sizeof(const char *) * (argc-2); aCol = (const char **)sqlite3_malloc64(nByte); if( aCol ){ memset((void*)aCol, 0, nByte); azNotindexed = (char **)sqlite3_malloc64(nByte); } if( azNotindexed ){ memset(azNotindexed, 0, nByte); } if( !aCol || !azNotindexed ){ rc = SQLITE_NOMEM; goto fts3_init_out; } /* Loop through all of the arguments passed by the user to the FTS3/4 ** module (i.e. all the column names and special arguments). This loop ** does the following: ** ** + Figures out the number of columns the FTSX table will have, and ** the number of bytes of space that must be allocated to store copies ** of the column names. ** ** + If there is a tokenizer specification included in the arguments, ** initializes the tokenizer pTokenizer. */ for(i=3; rc==SQLITE_OK && i8 && 0==sqlite3_strnicmp(z, "tokenize", 8) && 0==sqlite3Fts3IsIdChar(z[8]) ){ rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr); } /* Check if it is an FTS4 special argument. */ else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){ struct Fts4Option { const char *zOpt; int nOpt; } aFts4Opt[] = { { "matchinfo", 9 }, /* 0 -> MATCHINFO */ { "prefix", 6 }, /* 1 -> PREFIX */ { "compress", 8 }, /* 2 -> COMPRESS */ { "uncompress", 10 }, /* 3 -> UNCOMPRESS */ { "order", 5 }, /* 4 -> ORDER */ { "content", 7 }, /* 5 -> CONTENT */ { "languageid", 10 }, /* 6 -> LANGUAGEID */ { "notindexed", 10 } /* 7 -> NOTINDEXED */ }; int iOpt; if( !zVal ){ rc = SQLITE_NOMEM; }else{ for(iOpt=0; iOptnOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){ break; } } switch( iOpt ){ case 0: /* MATCHINFO */ if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){ sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal); rc = SQLITE_ERROR; } bNoDocsize = 1; break; case 1: /* PREFIX */ sqlite3_free(zPrefix); zPrefix = zVal; zVal = 0; break; case 2: /* COMPRESS */ sqlite3_free(zCompress); zCompress = zVal; zVal = 0; break; case 3: /* UNCOMPRESS */ sqlite3_free(zUncompress); zUncompress = zVal; zVal = 0; break; case 4: /* ORDER */ if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3)) && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4)) ){ sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal); rc = SQLITE_ERROR; } bDescIdx = (zVal[0]=='d' || zVal[0]=='D'); break; case 5: /* CONTENT */ sqlite3_free(zContent); zContent = zVal; zVal = 0; break; case 6: /* LANGUAGEID */ assert( iOpt==6 ); sqlite3_free(zLanguageid); zLanguageid = zVal; zVal = 0; break; case 7: /* NOTINDEXED */ azNotindexed[nNotindexed++] = zVal; zVal = 0; break; default: assert( iOpt==SizeofArray(aFts4Opt) ); sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z); rc = SQLITE_ERROR; break; } sqlite3_free(zVal); } } /* Otherwise, the argument is a column name. */ else { nString += (int)(strlen(z) + 1); aCol[nCol++] = z; } } /* If a content=xxx option was specified, the following: ** ** 1. Ignore any compress= and uncompress= options. ** ** 2. If no column names were specified as part of the CREATE VIRTUAL ** TABLE statement, use all columns from the content table. */ if( rc==SQLITE_OK && zContent ){ sqlite3_free(zCompress); sqlite3_free(zUncompress); zCompress = 0; zUncompress = 0; if( nCol==0 ){ sqlite3_free((void*)aCol); aCol = 0; rc = fts3ContentColumns(db, argv[1], zContent,&aCol,&nCol,&nString,pzErr); /* If a languageid= option was specified, remove the language id ** column from the aCol[] array. */ if( rc==SQLITE_OK && zLanguageid ){ int j; for(j=0; jdb = db; p->nColumn = nCol; p->nPendingData = 0; p->azColumn = (char **)&p[1]; p->pTokenizer = pTokenizer; p->nMaxPendingData = FTS3_MAX_PENDING_DATA; p->bHasDocsize = (isFts4 && bNoDocsize==0); p->bHasStat = (u8)isFts4; p->bFts4 = (u8)isFts4; p->bDescIdx = (u8)bDescIdx; p->nAutoincrmerge = 0xff; /* 0xff means setting unknown */ p->zContentTbl = zContent; p->zLanguageid = zLanguageid; zContent = 0; zLanguageid = 0; TESTONLY( p->inTransaction = -1 ); TESTONLY( p->mxSavepoint = -1 ); p->aIndex = (struct Fts3Index *)&p->azColumn[nCol]; memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex); p->nIndex = nIndex; for(i=0; iaIndex[i].hPending, FTS3_HASH_STRING, 1); } p->abNotindexed = (u8 *)&p->aIndex[nIndex]; /* Fill in the zName and zDb fields of the vtab structure. */ zCsr = (char *)&p->abNotindexed[nCol]; p->zName = zCsr; memcpy(zCsr, argv[2], nName); zCsr += nName; p->zDb = zCsr; memcpy(zCsr, argv[1], nDb); zCsr += nDb; /* Fill in the azColumn array */ for(iCol=0; iCol0 ){ memcpy(zCsr, z, n); } zCsr[n] = '\0'; sqlite3Fts3Dequote(zCsr); p->azColumn[iCol] = zCsr; zCsr += n+1; assert( zCsr <= &((char *)p)[nByte] ); } /* Fill in the abNotindexed array */ for(iCol=0; iColazColumn[iCol]); for(i=0; iazColumn[iCol], zNot, n) ){ p->abNotindexed[iCol] = 1; sqlite3_free(zNot); azNotindexed[i] = 0; } } } for(i=0; izReadExprlist = fts3ReadExprList(p, zUncompress, &rc); p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc); if( rc!=SQLITE_OK ) goto fts3_init_out; /* If this is an xCreate call, create the underlying tables in the ** database. TODO: For xConnect(), it could verify that said tables exist. */ if( isCreate ){ rc = fts3CreateTables(p); } /* Check to see if a legacy fts3 table has been "upgraded" by the ** addition of a %_stat table so that it can use incremental merge. */ if( !isFts4 && !isCreate ){ p->bHasStat = 2; } /* Figure out the page-size for the database. This is required in order to ** estimate the cost of loading large doclists from the database. */ fts3DatabasePageSize(&rc, p); p->nNodeSize = p->nPgsz-35; #if defined(SQLITE_DEBUG)||defined(SQLITE_TEST) p->nMergeCount = FTS3_MERGE_COUNT; #endif /* Declare the table schema to SQLite. */ fts3DeclareVtab(&rc, p); fts3_init_out: sqlite3_free(zPrefix); sqlite3_free(aIndex); sqlite3_free(zCompress); sqlite3_free(zUncompress); sqlite3_free(zContent); sqlite3_free(zLanguageid); for(i=0; ipModule->xDestroy(pTokenizer); } }else{ assert( p->pSegments==0 ); *ppVTab = &p->base; } return rc; } /* ** The xConnect() and xCreate() methods for the virtual table. All the ** work is done in function fts3InitVtab(). */ static int fts3ConnectMethod( sqlite3 *db, /* Database connection */ void *pAux, /* Pointer to tokenizer hash table */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ char **pzErr /* OUT: sqlite3_malloc'd error message */ ){ return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr); } static int fts3CreateMethod( sqlite3 *db, /* Database connection */ void *pAux, /* Pointer to tokenizer hash table */ int argc, /* Number of elements in argv array */ const char * const *argv, /* xCreate/xConnect argument array */ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ char **pzErr /* OUT: sqlite3_malloc'd error message */ ){ return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr); } /* ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this ** extension is currently being used by a version of SQLite too old to ** support estimatedRows. In that case this function is a no-op. */ static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){ #if SQLITE_VERSION_NUMBER>=3008002 if( sqlite3_libversion_number()>=3008002 ){ pIdxInfo->estimatedRows = nRow; } #endif } /* ** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this ** extension is currently being used by a version of SQLite too old to ** support index-info flags. In that case this function is a no-op. */ static void fts3SetUniqueFlag(sqlite3_index_info *pIdxInfo){ #if SQLITE_VERSION_NUMBER>=3008012 if( sqlite3_libversion_number()>=3008012 ){ pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE; } #endif } /* ** Implementation of the xBestIndex method for FTS3 tables. There ** are three possible strategies, in order of preference: ** ** 1. Direct lookup by rowid or docid. ** 2. Full-text search using a MATCH operator on a non-docid column. ** 3. Linear scan of %_content table. */ static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ Fts3Table *p = (Fts3Table *)pVTab; int i; /* Iterator variable */ int iCons = -1; /* Index of constraint to use */ int iLangidCons = -1; /* Index of langid=x constraint, if present */ int iDocidGe = -1; /* Index of docid>=x constraint, if present */ int iDocidLe = -1; /* Index of docid<=x constraint, if present */ int iIdx; if( p->bLock ){ return SQLITE_ERROR; } /* By default use a full table scan. This is an expensive option, ** so search through the constraints to see if a more efficient ** strategy is possible. */ pInfo->idxNum = FTS3_FULLSCAN_SEARCH; pInfo->estimatedCost = 5000000; for(i=0; inConstraint; i++){ int bDocid; /* True if this constraint is on docid */ struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i]; if( pCons->usable==0 ){ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ /* There exists an unusable MATCH constraint. This means that if ** the planner does elect to use the results of this call as part ** of the overall query plan the user will see an "unable to use ** function MATCH in the requested context" error. To discourage ** this, return a very high cost here. */ pInfo->idxNum = FTS3_FULLSCAN_SEARCH; pInfo->estimatedCost = 1e50; fts3SetEstimatedRows(pInfo, ((sqlite3_int64)1) << 50); return SQLITE_OK; } continue; } bDocid = (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1); /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */ if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && bDocid ){ pInfo->idxNum = FTS3_DOCID_SEARCH; pInfo->estimatedCost = 1.0; iCons = i; } /* A MATCH constraint. Use a full-text search. ** ** If there is more than one MATCH constraint available, use the first ** one encountered. If there is both a MATCH constraint and a direct ** rowid/docid lookup, prefer the MATCH strategy. This is done even ** though the rowid/docid lookup is faster than a MATCH query, selecting ** it would lead to an "unable to use function MATCH in the requested ** context" error. */ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn ){ pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn; pInfo->estimatedCost = 2.0; iCons = i; } /* Equality constraint on the langid column */ if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && pCons->iColumn==p->nColumn + 2 ){ iLangidCons = i; } if( bDocid ){ switch( pCons->op ){ case SQLITE_INDEX_CONSTRAINT_GE: case SQLITE_INDEX_CONSTRAINT_GT: iDocidGe = i; break; case SQLITE_INDEX_CONSTRAINT_LE: case SQLITE_INDEX_CONSTRAINT_LT: iDocidLe = i; break; } } } /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */ if( pInfo->idxNum==FTS3_DOCID_SEARCH ) fts3SetUniqueFlag(pInfo); iIdx = 1; if( iCons>=0 ){ pInfo->aConstraintUsage[iCons].argvIndex = iIdx++; pInfo->aConstraintUsage[iCons].omit = 1; } if( iLangidCons>=0 ){ pInfo->idxNum |= FTS3_HAVE_LANGID; pInfo->aConstraintUsage[iLangidCons].argvIndex = iIdx++; } if( iDocidGe>=0 ){ pInfo->idxNum |= FTS3_HAVE_DOCID_GE; pInfo->aConstraintUsage[iDocidGe].argvIndex = iIdx++; } if( iDocidLe>=0 ){ pInfo->idxNum |= FTS3_HAVE_DOCID_LE; pInfo->aConstraintUsage[iDocidLe].argvIndex = iIdx++; } /* Regardless of the strategy selected, FTS can deliver rows in rowid (or ** docid) order. Both ascending and descending are possible. */ if( pInfo->nOrderBy==1 ){ struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0]; if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){ if( pOrder->desc ){ pInfo->idxStr = "DESC"; }else{ pInfo->idxStr = "ASC"; } pInfo->orderByConsumed = 1; } } assert( p->pSegments==0 ); return SQLITE_OK; } /* ** Implementation of xOpen method. */ static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ sqlite3_vtab_cursor *pCsr; /* Allocated cursor */ UNUSED_PARAMETER(pVTab); /* Allocate a buffer large enough for an Fts3Cursor structure. If the ** allocation succeeds, zero it and return SQLITE_OK. Otherwise, ** if the allocation fails, return SQLITE_NOMEM. */ *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor)); if( !pCsr ){ return SQLITE_NOMEM; } memset(pCsr, 0, sizeof(Fts3Cursor)); return SQLITE_OK; } /* ** Finalize the statement handle at pCsr->pStmt. ** ** Or, if that statement handle is one created by fts3CursorSeekStmt(), ** and the Fts3Table.pSeekStmt slot is currently NULL, save the statement ** pointer there instead of finalizing it. */ static void fts3CursorFinalizeStmt(Fts3Cursor *pCsr){ if( pCsr->bSeekStmt ){ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; if( p->pSeekStmt==0 ){ p->pSeekStmt = pCsr->pStmt; sqlite3_reset(pCsr->pStmt); pCsr->pStmt = 0; } pCsr->bSeekStmt = 0; } sqlite3_finalize(pCsr->pStmt); } /* ** Free all resources currently held by the cursor passed as the only ** argument. */ static void fts3ClearCursor(Fts3Cursor *pCsr){ fts3CursorFinalizeStmt(pCsr); sqlite3Fts3FreeDeferredTokens(pCsr); sqlite3_free(pCsr->aDoclist); sqlite3Fts3MIBufferFree(pCsr->pMIBuffer); sqlite3Fts3ExprFree(pCsr->pExpr); memset(&(&pCsr->base)[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor)); } /* ** Close the cursor. For additional information see the documentation ** on the xClose method of the virtual table interface. */ static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); fts3ClearCursor(pCsr); assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); sqlite3_free(pCsr); return SQLITE_OK; } /* ** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then ** compose and prepare an SQL statement of the form: ** ** "SELECT FROM %_content WHERE rowid = ?" ** ** (or the equivalent for a content=xxx table) and set pCsr->pStmt to ** it. If an error occurs, return an SQLite error code. */ static int fts3CursorSeekStmt(Fts3Cursor *pCsr){ int rc = SQLITE_OK; if( pCsr->pStmt==0 ){ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; char *zSql; if( p->pSeekStmt ){ pCsr->pStmt = p->pSeekStmt; p->pSeekStmt = 0; }else{ zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist); if( !zSql ) return SQLITE_NOMEM; p->bLock++; rc = sqlite3_prepare_v3( p->db, zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0 ); p->bLock--; sqlite3_free(zSql); } if( rc==SQLITE_OK ) pCsr->bSeekStmt = 1; } return rc; } /* ** Position the pCsr->pStmt statement so that it is on the row ** of the %_content table that contains the last match. Return ** SQLITE_OK on success. */ static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){ int rc = SQLITE_OK; if( pCsr->isRequireSeek ){ rc = fts3CursorSeekStmt(pCsr); if( rc==SQLITE_OK ){ Fts3Table *pTab = (Fts3Table*)pCsr->base.pVtab; pTab->bLock++; sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId); pCsr->isRequireSeek = 0; if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){ pTab->bLock--; return SQLITE_OK; }else{ pTab->bLock--; rc = sqlite3_reset(pCsr->pStmt); if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){ /* If no row was found and no error has occurred, then the %_content ** table is missing a row that is present in the full-text index. ** The data structures are corrupt. */ rc = FTS_CORRUPT_VTAB; pCsr->isEof = 1; } } } } if( rc!=SQLITE_OK && pContext ){ sqlite3_result_error_code(pContext, rc); } return rc; } /* ** This function is used to process a single interior node when searching ** a b-tree for a term or term prefix. The node data is passed to this ** function via the zNode/nNode parameters. The term to search for is ** passed in zTerm/nTerm. ** ** If piFirst is not NULL, then this function sets *piFirst to the blockid ** of the child node that heads the sub-tree that may contain the term. ** ** If piLast is not NULL, then *piLast is set to the right-most child node ** that heads a sub-tree that may contain a term for which zTerm/nTerm is ** a prefix. ** ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK. */ static int fts3ScanInteriorNode( const char *zTerm, /* Term to select leaves for */ int nTerm, /* Size of term zTerm in bytes */ const char *zNode, /* Buffer containing segment interior node */ int nNode, /* Size of buffer at zNode */ sqlite3_int64 *piFirst, /* OUT: Selected child node */ sqlite3_int64 *piLast /* OUT: Selected child node */ ){ int rc = SQLITE_OK; /* Return code */ const char *zCsr = zNode; /* Cursor to iterate through node */ const char *zEnd = &zCsr[nNode];/* End of interior node buffer */ char *zBuffer = 0; /* Buffer to load terms into */ i64 nAlloc = 0; /* Size of allocated buffer */ int isFirstTerm = 1; /* True when processing first term on page */ u64 iChild; /* Block id of child node to descend to */ int nBuffer = 0; /* Total term size */ /* Skip over the 'height' varint that occurs at the start of every ** interior node. Then load the blockid of the left-child of the b-tree ** node into variable iChild. ** ** Even if the data structure on disk is corrupted, this (reading two ** varints from the buffer) does not risk an overread. If zNode is a ** root node, then the buffer comes from a SELECT statement. SQLite does ** not make this guarantee explicitly, but in practice there are always ** either more than 20 bytes of allocated space following the nNode bytes of ** contents, or two zero bytes. Or, if the node is read from the %_segments ** table, then there are always 20 bytes of zeroed padding following the ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details). */ zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild); zCsr += sqlite3Fts3GetVarintU(zCsr, &iChild); if( zCsr>zEnd ){ return FTS_CORRUPT_VTAB; } while( zCsrnBuffer ){ rc = FTS_CORRUPT_VTAB; goto finish_scan; } } isFirstTerm = 0; zCsr += fts3GetVarint32(zCsr, &nSuffix); assert( nPrefix>=0 && nSuffix>=0 ); if( nPrefix>zCsr-zNode || nSuffix>zEnd-zCsr || nSuffix==0 ){ rc = FTS_CORRUPT_VTAB; goto finish_scan; } if( (i64)nPrefix+nSuffix>nAlloc ){ char *zNew; nAlloc = ((i64)nPrefix+nSuffix) * 2; zNew = (char *)sqlite3_realloc64(zBuffer, nAlloc); if( !zNew ){ rc = SQLITE_NOMEM; goto finish_scan; } zBuffer = zNew; } assert( zBuffer ); memcpy(&zBuffer[nPrefix], zCsr, nSuffix); nBuffer = nPrefix + nSuffix; zCsr += nSuffix; /* Compare the term we are searching for with the term just loaded from ** the interior node. If the specified term is greater than or equal ** to the term from the interior node, then all terms on the sub-tree ** headed by node iChild are smaller than zTerm. No need to search ** iChild. ** ** If the interior node term is larger than the specified term, then ** the tree headed by iChild may contain the specified term. */ cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer)); if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){ *piFirst = (i64)iChild; piFirst = 0; } if( piLast && cmp<0 ){ *piLast = (i64)iChild; piLast = 0; } iChild++; }; if( piFirst ) *piFirst = (i64)iChild; if( piLast ) *piLast = (i64)iChild; finish_scan: sqlite3_free(zBuffer); return rc; } /* ** The buffer pointed to by argument zNode (size nNode bytes) contains an ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes) ** contains a term. This function searches the sub-tree headed by the zNode ** node for the range of leaf nodes that may contain the specified term ** or terms for which the specified term is a prefix. ** ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the ** left-most leaf node in the tree that may contain the specified term. ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the ** right-most leaf node that may contain a term for which the specified ** term is a prefix. ** ** It is possible that the range of returned leaf nodes does not contain ** the specified term or any terms for which it is a prefix. However, if the ** segment does contain any such terms, they are stored within the identified ** range. Because this function only inspects interior segment nodes (and ** never loads leaf nodes into memory), it is not possible to be sure. ** ** If an error occurs, an error code other than SQLITE_OK is returned. */ static int fts3SelectLeaf( Fts3Table *p, /* Virtual table handle */ const char *zTerm, /* Term to select leaves for */ int nTerm, /* Size of term zTerm in bytes */ const char *zNode, /* Buffer containing segment interior node */ int nNode, /* Size of buffer at zNode */ sqlite3_int64 *piLeaf, /* Selected leaf node */ sqlite3_int64 *piLeaf2 /* Selected leaf node */ ){ int rc = SQLITE_OK; /* Return code */ int iHeight; /* Height of this node in tree */ assert( piLeaf || piLeaf2 ); fts3GetVarint32(zNode, &iHeight); rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2); assert_fts3_nc( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) ); if( rc==SQLITE_OK && iHeight>1 ){ char *zBlob = 0; /* Blob read from %_segments table */ int nBlob = 0; /* Size of zBlob in bytes */ if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){ rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0); if( rc==SQLITE_OK ){ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0); } sqlite3_free(zBlob); piLeaf = 0; zBlob = 0; } if( rc==SQLITE_OK ){ rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0); } if( rc==SQLITE_OK ){ int iNewHeight = 0; fts3GetVarint32(zBlob, &iNewHeight); if( iNewHeight>=iHeight ){ rc = FTS_CORRUPT_VTAB; }else{ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2); } } sqlite3_free(zBlob); } return rc; } /* ** This function is used to create delta-encoded serialized lists of FTS3 ** varints. Each call to this function appends a single varint to a list. */ static void fts3PutDeltaVarint( char **pp, /* IN/OUT: Output pointer */ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ sqlite3_int64 iVal /* Write this value to the list */ ){ assert_fts3_nc( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) ); *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev); *piPrev = iVal; } /* ** When this function is called, *ppPoslist is assumed to point to the ** start of a position-list. After it returns, *ppPoslist points to the ** first byte after the position-list. ** ** A position list is list of positions (delta encoded) and columns for ** a single document record of a doclist. So, in other words, this ** routine advances *ppPoslist so that it points to the next docid in ** the doclist, or to the first byte past the end of the doclist. ** ** If pp is not NULL, then the contents of the position list are copied ** to *pp. *pp is set to point to the first byte past the last byte copied ** before this function returns. */ static void fts3PoslistCopy(char **pp, char **ppPoslist){ char *pEnd = *ppPoslist; char c = 0; /* The end of a position list is marked by a zero encoded as an FTS3 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail ** of some other, multi-byte, value. ** ** The following while-loop moves pEnd to point to the first byte that is not ** immediately preceded by a byte with the 0x80 bit set. Then increments ** pEnd once more so that it points to the byte immediately following the ** last byte in the position-list. */ while( *pEnd | c ){ c = *pEnd++ & 0x80; testcase( c!=0 && (*pEnd)==0 ); } pEnd++; /* Advance past the POS_END terminator byte */ if( pp ){ int n = (int)(pEnd - *ppPoslist); char *p = *pp; memcpy(p, *ppPoslist, n); p += n; *pp = p; } *ppPoslist = pEnd; } /* ** When this function is called, *ppPoslist is assumed to point to the ** start of a column-list. After it returns, *ppPoslist points to the ** to the terminator (POS_COLUMN or POS_END) byte of the column-list. ** ** A column-list is list of delta-encoded positions for a single column ** within a single document within a doclist. ** ** The column-list is terminated either by a POS_COLUMN varint (1) or ** a POS_END varint (0). This routine leaves *ppPoslist pointing to ** the POS_COLUMN or POS_END that terminates the column-list. ** ** If pp is not NULL, then the contents of the column-list are copied ** to *pp. *pp is set to point to the first byte past the last byte copied ** before this function returns. The POS_COLUMN or POS_END terminator ** is not copied into *pp. */ static void fts3ColumnlistCopy(char **pp, char **ppPoslist){ char *pEnd = *ppPoslist; char c = 0; /* A column-list is terminated by either a 0x01 or 0x00 byte that is ** not part of a multi-byte varint. */ while( 0xFE & (*pEnd | c) ){ c = *pEnd++ & 0x80; testcase( c!=0 && ((*pEnd)&0xfe)==0 ); } if( pp ){ int n = (int)(pEnd - *ppPoslist); char *p = *pp; memcpy(p, *ppPoslist, n); p += n; *pp = p; } *ppPoslist = pEnd; } /* ** Value used to signify the end of an position-list. This must be ** as large or larger than any value that might appear on the ** position-list, even a position list that has been corrupted. */ #define POSITION_LIST_END LARGEST_INT64 /* ** This function is used to help parse position-lists. When this function is ** called, *pp may point to the start of the next varint in the position-list ** being parsed, or it may point to 1 byte past the end of the position-list ** (in which case **pp will be a terminator bytes POS_END (0) or ** (1)). ** ** If *pp points past the end of the current position-list, set *pi to ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp, ** increment the current value of *pi by the value read, and set *pp to ** point to the next value before returning. ** ** Before calling this routine *pi must be initialized to the value of ** the previous position, or zero if we are reading the first position ** in the position-list. Because positions are delta-encoded, the value ** of the previous position is needed in order to compute the value of ** the next position. */ static void fts3ReadNextPos( char **pp, /* IN/OUT: Pointer into position-list buffer */ sqlite3_int64 *pi /* IN/OUT: Value read from position-list */ ){ if( (**pp)&0xFE ){ int iVal; *pp += fts3GetVarint32((*pp), &iVal); *pi += iVal; *pi -= 2; }else{ *pi = POSITION_LIST_END; } } /* ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by ** the value of iCol encoded as a varint to *pp. This will start a new ** column list. ** ** Set *pp to point to the byte just after the last byte written before ** returning (do not modify it if iCol==0). Return the total number of bytes ** written (0 if iCol==0). */ static int fts3PutColNumber(char **pp, int iCol){ int n = 0; /* Number of bytes written */ if( iCol ){ char *p = *pp; /* Output pointer */ n = 1 + sqlite3Fts3PutVarint(&p[1], iCol); *p = 0x01; *pp = &p[n]; } return n; } /* ** Compute the union of two position lists. The output written ** into *pp contains all positions of both *pp1 and *pp2 in sorted ** order and with any duplicates removed. All pointers are ** updated appropriately. The caller is responsible for insuring ** that there is enough space in *pp to hold the complete output. */ static int fts3PoslistMerge( char **pp, /* Output buffer */ char **pp1, /* Left input list */ char **pp2 /* Right input list */ ){ char *p = *pp; char *p1 = *pp1; char *p2 = *pp2; while( *p1 || *p2 ){ int iCol1; /* The current column index in pp1 */ int iCol2; /* The current column index in pp2 */ if( *p1==POS_COLUMN ){ fts3GetVarint32(&p1[1], &iCol1); if( iCol1==0 ) return FTS_CORRUPT_VTAB; } else if( *p1==POS_END ) iCol1 = 0x7fffffff; else iCol1 = 0; if( *p2==POS_COLUMN ){ fts3GetVarint32(&p2[1], &iCol2); if( iCol2==0 ) return FTS_CORRUPT_VTAB; } else if( *p2==POS_END ) iCol2 = 0x7fffffff; else iCol2 = 0; if( iCol1==iCol2 ){ sqlite3_int64 i1 = 0; /* Last position from pp1 */ sqlite3_int64 i2 = 0; /* Last position from pp2 */ sqlite3_int64 iPrev = 0; int n = fts3PutColNumber(&p, iCol1); p1 += n; p2 += n; /* At this point, both p1 and p2 point to the start of column-lists ** for the same column (the column with index iCol1 and iCol2). ** A column-list is a list of non-negative delta-encoded varints, each ** incremented by 2 before being stored. Each list is terminated by a ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists ** and writes the results to buffer p. p is left pointing to the byte ** after the list written. No terminator (POS_END or POS_COLUMN) is ** written to the output. */ fts3GetDeltaVarint(&p1, &i1); fts3GetDeltaVarint(&p2, &i2); if( i1<2 || i2<2 ){ break; } do { fts3PutDeltaVarint(&p, &iPrev, (i1pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e. ** when the *pp1 token appears before the *pp2 token, but not more than nToken ** slots before it. ** ** e.g. nToken==1 searches for adjacent positions. */ static int fts3PoslistPhraseMerge( char **pp, /* IN/OUT: Preallocated output buffer */ int nToken, /* Maximum difference in token positions */ int isSaveLeft, /* Save the left position */ int isExact, /* If *pp1 is exactly nTokens before *pp2 */ char **pp1, /* IN/OUT: Left input list */ char **pp2 /* IN/OUT: Right input list */ ){ char *p = *pp; char *p1 = *pp1; char *p2 = *pp2; int iCol1 = 0; int iCol2 = 0; /* Never set both isSaveLeft and isExact for the same invocation. */ assert( isSaveLeft==0 || isExact==0 ); assert_fts3_nc( p!=0 && *p1!=0 && *p2!=0 ); if( *p1==POS_COLUMN ){ p1++; p1 += fts3GetVarint32(p1, &iCol1); } if( *p2==POS_COLUMN ){ p2++; p2 += fts3GetVarint32(p2, &iCol2); } while( 1 ){ if( iCol1==iCol2 ){ char *pSave = p; sqlite3_int64 iPrev = 0; sqlite3_int64 iPos1 = 0; sqlite3_int64 iPos2 = 0; if( iCol1 ){ *p++ = POS_COLUMN; p += sqlite3Fts3PutVarint(p, iCol1); } fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; if( iPos1<0 || iPos2<0 ) break; while( 1 ){ if( iPos2==iPos1+nToken || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken) ){ sqlite3_int64 iSave; iSave = isSaveLeft ? iPos1 : iPos2; fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2; pSave = 0; assert( p ); } if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){ if( (*p2&0xFE)==0 ) break; fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; }else{ if( (*p1&0xFE)==0 ) break; fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; } } if( pSave ){ assert( pp && p ); p = pSave; } fts3ColumnlistCopy(0, &p1); fts3ColumnlistCopy(0, &p2); assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 ); if( 0==*p1 || 0==*p2 ) break; p1++; p1 += fts3GetVarint32(p1, &iCol1); p2++; p2 += fts3GetVarint32(p2, &iCol2); } /* Advance pointer p1 or p2 (whichever corresponds to the smaller of ** iCol1 and iCol2) so that it points to either the 0x00 that marks the ** end of the position list, or the 0x01 that precedes the next ** column-number in the position list. */ else if( iCol1=pEnd ){ *pp = 0; }else{ u64 iVal; *pp += sqlite3Fts3GetVarintU(*pp, &iVal); if( bDescIdx ){ *pVal = (i64)((u64)*pVal - iVal); }else{ *pVal = (i64)((u64)*pVal + iVal); } } } /* ** This function is used to write a single varint to a buffer. The varint ** is written to *pp. Before returning, *pp is set to point 1 byte past the ** end of the value written. ** ** If *pbFirst is zero when this function is called, the value written to ** the buffer is that of parameter iVal. ** ** If *pbFirst is non-zero when this function is called, then the value ** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal) ** (if bDescIdx is non-zero). ** ** Before returning, this function always sets *pbFirst to 1 and *piPrev ** to the value of parameter iVal. */ static void fts3PutDeltaVarint3( char **pp, /* IN/OUT: Output pointer */ int bDescIdx, /* True for descending docids */ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ int *pbFirst, /* IN/OUT: True after first int written */ sqlite3_int64 iVal /* Write this value to the list */ ){ sqlite3_uint64 iWrite; if( bDescIdx==0 || *pbFirst==0 ){ assert_fts3_nc( *pbFirst==0 || iVal>=*piPrev ); iWrite = (u64)iVal - (u64)*piPrev; }else{ assert_fts3_nc( *piPrev>=iVal ); iWrite = (u64)*piPrev - (u64)iVal; } assert( *pbFirst || *piPrev==0 ); assert_fts3_nc( *pbFirst==0 || iWrite>0 ); *pp += sqlite3Fts3PutVarint(*pp, iWrite); *piPrev = iVal; *pbFirst = 1; } /* ** This macro is used by various functions that merge doclists. The two ** arguments are 64-bit docid values. If the value of the stack variable ** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2). ** Otherwise, (i2-i1). ** ** Using this makes it easier to write code that can merge doclists that are ** sorted in either ascending or descending order. */ /* #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i64)((u64)i1-i2)) */ #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1>i2?1:((i1==i2)?0:-1))) /* ** This function does an "OR" merge of two doclists (output contains all ** positions contained in either argument doclist). If the docids in the ** input doclists are sorted in ascending order, parameter bDescDoclist ** should be false. If they are sorted in ascending order, it should be ** passed a non-zero value. ** ** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer ** containing the output doclist and SQLITE_OK is returned. In this case ** *pnOut is set to the number of bytes in the output doclist. ** ** If an error occurs, an SQLite error code is returned. The output values ** are undefined in this case. */ static int fts3DoclistOrMerge( int bDescDoclist, /* True if arguments are desc */ char *a1, int n1, /* First doclist */ char *a2, int n2, /* Second doclist */ char **paOut, int *pnOut /* OUT: Malloc'd doclist */ ){ int rc = SQLITE_OK; sqlite3_int64 i1 = 0; sqlite3_int64 i2 = 0; sqlite3_int64 iPrev = 0; char *pEnd1 = &a1[n1]; char *pEnd2 = &a2[n2]; char *p1 = a1; char *p2 = a2; char *p; char *aOut; int bFirstOut = 0; *paOut = 0; *pnOut = 0; /* Allocate space for the output. Both the input and output doclists ** are delta encoded. If they are in ascending order (bDescDoclist==0), ** then the first docid in each list is simply encoded as a varint. For ** each subsequent docid, the varint stored is the difference between the ** current and previous docid (a positive number - since the list is in ** ascending order). ** ** The first docid written to the output is therefore encoded using the ** same number of bytes as it is in whichever of the input lists it is ** read from. And each subsequent docid read from the same input list ** consumes either the same or less bytes as it did in the input (since ** the difference between it and the previous value in the output must ** be a positive value less than or equal to the delta value read from ** the input list). The same argument applies to all but the first docid ** read from the 'other' list. And to the contents of all position lists ** that will be copied and merged from the input to the output. ** ** However, if the first docid copied to the output is a negative number, ** then the encoding of the first docid from the 'other' input list may ** be larger in the output than it was in the input (since the delta value ** may be a larger positive integer than the actual docid). ** ** The space required to store the output is therefore the sum of the ** sizes of the two inputs, plus enough space for exactly one of the input ** docids to grow. ** ** A symetric argument may be made if the doclists are in descending ** order. */ aOut = sqlite3_malloc64((i64)n1+n2+FTS3_VARINT_MAX-1+FTS3_BUFFER_PADDING); if( !aOut ) return SQLITE_NOMEM; p = aOut; fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); while( p1 || p2 ){ sqlite3_int64 iDiff = DOCID_CMP(i1, i2); if( p2 && p1 && iDiff==0 ){ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); rc = fts3PoslistMerge(&p, &p1, &p2); if( rc ) break; fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); }else if( !p2 || (p1 && iDiff<0) ){ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); fts3PoslistCopy(&p, &p1); fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); }else{ fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2); fts3PoslistCopy(&p, &p2); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); } assert( (p-aOut)<=((p1?(p1-a1):n1)+(p2?(p2-a2):n2)+FTS3_VARINT_MAX-1) ); } if( rc!=SQLITE_OK ){ sqlite3_free(aOut); p = aOut = 0; }else{ assert( (p-aOut)<=n1+n2+FTS3_VARINT_MAX-1 ); memset(&aOut[(p-aOut)], 0, FTS3_BUFFER_PADDING); } *paOut = aOut; *pnOut = (int)(p-aOut); return rc; } /* ** This function does a "phrase" merge of two doclists. In a phrase merge, ** the output contains a copy of each position from the right-hand input ** doclist for which there is a position in the left-hand input doclist ** exactly nDist tokens before it. ** ** If the docids in the input doclists are sorted in ascending order, ** parameter bDescDoclist should be false. If they are sorted in ascending ** order, it should be passed a non-zero value. ** ** The right-hand input doclist is overwritten by this function. */ static int fts3DoclistPhraseMerge( int bDescDoclist, /* True if arguments are desc */ int nDist, /* Distance from left to right (1=adjacent) */ char *aLeft, int nLeft, /* Left doclist */ char **paRight, int *pnRight /* IN/OUT: Right/output doclist */ ){ sqlite3_int64 i1 = 0; sqlite3_int64 i2 = 0; sqlite3_int64 iPrev = 0; char *aRight = *paRight; char *pEnd1 = &aLeft[nLeft]; char *pEnd2 = &aRight[*pnRight]; char *p1 = aLeft; char *p2 = aRight; char *p; int bFirstOut = 0; char *aOut; assert( nDist>0 ); if( bDescDoclist ){ aOut = sqlite3_malloc64((sqlite3_int64)*pnRight + FTS3_VARINT_MAX); if( aOut==0 ) return SQLITE_NOMEM; }else{ aOut = aRight; } p = aOut; fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); while( p1 && p2 ){ sqlite3_int64 iDiff = DOCID_CMP(i1, i2); if( iDiff==0 ){ char *pSave = p; sqlite3_int64 iPrevSave = iPrev; int bFirstOutSave = bFirstOut; fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){ p = pSave; iPrev = iPrevSave; bFirstOut = bFirstOutSave; } fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); }else if( iDiff<0 ){ fts3PoslistCopy(0, &p1); fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); }else{ fts3PoslistCopy(0, &p2); fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); } } *pnRight = (int)(p - aOut); if( bDescDoclist ){ sqlite3_free(aRight); *paRight = aOut; } return SQLITE_OK; } /* ** Argument pList points to a position list nList bytes in size. This ** function checks to see if the position list contains any entries for ** a token in position 0 (of any column). If so, it writes argument iDelta ** to the output buffer pOut, followed by a position list consisting only ** of the entries from pList at position 0, and terminated by an 0x00 byte. ** The value returned is the number of bytes written to pOut (if any). */ int sqlite3Fts3FirstFilter( sqlite3_int64 iDelta, /* Varint that may be written to pOut */ char *pList, /* Position list (no 0x00 term) */ int nList, /* Size of pList in bytes */ char *pOut /* Write output here */ ){ int nOut = 0; int bWritten = 0; /* True once iDelta has been written */ char *p = pList; char *pEnd = &pList[nList]; if( *p!=0x01 ){ if( *p==0x02 ){ nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta); pOut[nOut++] = 0x02; bWritten = 1; } fts3ColumnlistCopy(0, &p); } while( paaOutput); i++){ if( pTS->aaOutput[i] ){ if( !aOut ){ aOut = pTS->aaOutput[i]; nOut = pTS->anOutput[i]; pTS->aaOutput[i] = 0; }else{ int nNew; char *aNew; int rc = fts3DoclistOrMerge(p->bDescIdx, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew ); if( rc!=SQLITE_OK ){ sqlite3_free(aOut); return rc; } sqlite3_free(pTS->aaOutput[i]); sqlite3_free(aOut); pTS->aaOutput[i] = 0; aOut = aNew; nOut = nNew; } } } pTS->aaOutput[0] = aOut; pTS->anOutput[0] = nOut; return SQLITE_OK; } /* ** Merge the doclist aDoclist/nDoclist into the TermSelect object passed ** as the first argument. The merge is an "OR" merge (see function ** fts3DoclistOrMerge() for details). ** ** This function is called with the doclist for each term that matches ** a queried prefix. It merges all these doclists into one, the doclist ** for the specified prefix. Since there can be a very large number of ** doclists to merge, the merging is done pair-wise using the TermSelect ** object. ** ** This function returns SQLITE_OK if the merge is successful, or an ** SQLite error code (SQLITE_NOMEM) if an error occurs. */ static int fts3TermSelectMerge( Fts3Table *p, /* FTS table handle */ TermSelect *pTS, /* TermSelect object to merge into */ char *aDoclist, /* Pointer to doclist */ int nDoclist /* Size of aDoclist in bytes */ ){ if( pTS->aaOutput[0]==0 ){ /* If this is the first term selected, copy the doclist to the output ** buffer using memcpy(). ** ** Add FTS3_VARINT_MAX bytes of unused space to the end of the ** allocation. This is so as to ensure that the buffer is big enough ** to hold the current doclist AND'd with any other doclist. If the ** doclists are stored in order=ASC order, this padding would not be ** required (since the size of [doclistA AND doclistB] is always less ** than or equal to the size of [doclistA] in that case). But this is ** not true for order=DESC. For example, a doclist containing (1, -1) ** may be smaller than (-1), as in the first example the -1 may be stored ** as a single-byte delta, whereas in the second it must be stored as a ** FTS3_VARINT_MAX byte varint. ** ** Similar padding is added in the fts3DoclistOrMerge() function. */ pTS->aaOutput[0] = sqlite3_malloc(nDoclist + FTS3_VARINT_MAX + 1); pTS->anOutput[0] = nDoclist; if( pTS->aaOutput[0] ){ memcpy(pTS->aaOutput[0], aDoclist, nDoclist); memset(&pTS->aaOutput[0][nDoclist], 0, FTS3_VARINT_MAX); }else{ return SQLITE_NOMEM; } }else{ char *aMerge = aDoclist; int nMerge = nDoclist; int iOut; for(iOut=0; iOutaaOutput); iOut++){ if( pTS->aaOutput[iOut]==0 ){ assert( iOut>0 ); pTS->aaOutput[iOut] = aMerge; pTS->anOutput[iOut] = nMerge; break; }else{ char *aNew; int nNew; int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge, pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew ); if( rc!=SQLITE_OK ){ if( aMerge!=aDoclist ) sqlite3_free(aMerge); return rc; } if( aMerge!=aDoclist ) sqlite3_free(aMerge); sqlite3_free(pTS->aaOutput[iOut]); pTS->aaOutput[iOut] = 0; aMerge = aNew; nMerge = nNew; if( (iOut+1)==SizeofArray(pTS->aaOutput) ){ pTS->aaOutput[iOut] = aMerge; pTS->anOutput[iOut] = nMerge; } } } } return SQLITE_OK; } /* ** Append SegReader object pNew to the end of the pCsr->apSegment[] array. */ static int fts3SegReaderCursorAppend( Fts3MultiSegReader *pCsr, Fts3SegReader *pNew ){ if( (pCsr->nSegment%16)==0 ){ Fts3SegReader **apNew; sqlite3_int64 nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*); apNew = (Fts3SegReader **)sqlite3_realloc64(pCsr->apSegment, nByte); if( !apNew ){ sqlite3Fts3SegReaderFree(pNew); return SQLITE_NOMEM; } pCsr->apSegment = apNew; } pCsr->apSegment[pCsr->nSegment++] = pNew; return SQLITE_OK; } /* ** Add seg-reader objects to the Fts3MultiSegReader object passed as the ** 8th argument. ** ** This function returns SQLITE_OK if successful, or an SQLite error code ** otherwise. */ static int fts3SegReaderCursor( Fts3Table *p, /* FTS3 table handle */ int iLangid, /* Language id */ int iIndex, /* Index to search (from 0 to p->nIndex-1) */ int iLevel, /* Level of segments to scan */ const char *zTerm, /* Term to query for */ int nTerm, /* Size of zTerm in bytes */ int isPrefix, /* True for a prefix search */ int isScan, /* True to scan from zTerm to EOF */ Fts3MultiSegReader *pCsr /* Cursor object to populate */ ){ int rc = SQLITE_OK; /* Error code */ sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */ int rc2; /* Result of sqlite3_reset() */ /* If iLevel is less than 0 and this is not a scan, include a seg-reader ** for the pending-terms. If this is a scan, then this call must be being ** made by an fts4aux module, not an FTS table. In this case calling ** Fts3SegReaderPending might segfault, as the data structures used by ** fts4aux are not completely populated. So it's easiest to filter these ** calls out here. */ if( iLevel<0 && p->aIndex && p->iPrevLangid==iLangid ){ Fts3SegReader *pSeg = 0; rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix||isScan, &pSeg); if( rc==SQLITE_OK && pSeg ){ rc = fts3SegReaderCursorAppend(pCsr, pSeg); } } if( iLevel!=FTS3_SEGCURSOR_PENDING ){ if( rc==SQLITE_OK ){ rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt); } while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ Fts3SegReader *pSeg = 0; /* Read the values returned by the SELECT into local variables. */ sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1); sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2); sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3); int nRoot = sqlite3_column_bytes(pStmt, 4); char const *zRoot = sqlite3_column_blob(pStmt, 4); /* If zTerm is not NULL, and this segment is not stored entirely on its ** root node, the range of leaves scanned can be reduced. Do this. */ if( iStartBlock && zTerm && zRoot ){ sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0); rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi); if( rc!=SQLITE_OK ) goto finished; if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock; } rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1, (isPrefix==0 && isScan==0), iStartBlock, iLeavesEndBlock, iEndBlock, zRoot, nRoot, &pSeg ); if( rc!=SQLITE_OK ) goto finished; rc = fts3SegReaderCursorAppend(pCsr, pSeg); } } finished: rc2 = sqlite3_reset(pStmt); if( rc==SQLITE_DONE ) rc = rc2; return rc; } /* ** Set up a cursor object for iterating through a full-text index or a ** single level therein. */ int sqlite3Fts3SegReaderCursor( Fts3Table *p, /* FTS3 table handle */ int iLangid, /* Language-id to search */ int iIndex, /* Index to search (from 0 to p->nIndex-1) */ int iLevel, /* Level of segments to scan */ const char *zTerm, /* Term to query for */ int nTerm, /* Size of zTerm in bytes */ int isPrefix, /* True for a prefix search */ int isScan, /* True to scan from zTerm to EOF */ Fts3MultiSegReader *pCsr /* Cursor object to populate */ ){ assert( iIndex>=0 && iIndexnIndex ); assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel==FTS3_SEGCURSOR_PENDING || iLevel>=0 ); assert( iLevelbase.pVtab; if( isPrefix ){ for(i=1; bFound==0 && inIndex; i++){ if( p->aIndex[i].nPrefix==nTerm ){ bFound = 1; rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr ); pSegcsr->bLookup = 1; } } for(i=1; bFound==0 && inIndex; i++){ if( p->aIndex[i].nPrefix==nTerm+1 ){ bFound = 1; rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr ); if( rc==SQLITE_OK ){ rc = fts3SegReaderCursorAddZero( p, pCsr->iLangid, zTerm, nTerm, pSegcsr ); } } } } if( bFound==0 ){ rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr ); pSegcsr->bLookup = !isPrefix; } } *ppSegcsr = pSegcsr; return rc; } /* ** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor(). */ static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){ sqlite3Fts3SegReaderFinish(pSegcsr); sqlite3_free(pSegcsr); } /* ** This function retrieves the doclist for the specified term (or term ** prefix) from the database. */ static int fts3TermSelect( Fts3Table *p, /* Virtual table handle */ Fts3PhraseToken *pTok, /* Token to query for */ int iColumn, /* Column to query (or -ve for all columns) */ int *pnOut, /* OUT: Size of buffer at *ppOut */ char **ppOut /* OUT: Malloced result buffer */ ){ int rc; /* Return code */ Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */ TermSelect tsc; /* Object for pair-wise doclist merging */ Fts3SegFilter filter; /* Segment term filter configuration */ pSegcsr = pTok->pSegcsr; memset(&tsc, 0, sizeof(TermSelect)); filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0) | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0) | (iColumnnColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0); filter.iCol = iColumn; filter.zTerm = pTok->z; filter.nTerm = pTok->n; rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter); while( SQLITE_OK==rc && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr)) ){ rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist); } if( rc==SQLITE_OK ){ rc = fts3TermSelectFinishMerge(p, &tsc); } if( rc==SQLITE_OK ){ *ppOut = tsc.aaOutput[0]; *pnOut = tsc.anOutput[0]; }else{ int i; for(i=0; ipSegcsr = 0; return rc; } /* ** This function counts the total number of docids in the doclist stored ** in buffer aList[], size nList bytes. ** ** If the isPoslist argument is true, then it is assumed that the doclist ** contains a position-list following each docid. Otherwise, it is assumed ** that the doclist is simply a list of docids stored as delta encoded ** varints. */ static int fts3DoclistCountDocids(char *aList, int nList){ int nDoc = 0; /* Return value */ if( aList ){ char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */ char *p = aList; /* Cursor */ while( peSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){ Fts3Table *pTab = (Fts3Table*)pCursor->pVtab; pTab->bLock++; if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){ pCsr->isEof = 1; rc = sqlite3_reset(pCsr->pStmt); }else{ pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0); rc = SQLITE_OK; } pTab->bLock--; }else{ rc = fts3EvalNext((Fts3Cursor *)pCursor); } assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); return rc; } /* ** If the numeric type of argument pVal is "integer", then return it ** converted to a 64-bit signed integer. Otherwise, return a copy of ** the second parameter, iDefault. */ static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){ if( pVal ){ int eType = sqlite3_value_numeric_type(pVal); if( eType==SQLITE_INTEGER ){ return sqlite3_value_int64(pVal); } } return iDefault; } /* ** This is the xFilter interface for the virtual table. See ** the virtual table xFilter method documentation for additional ** information. ** ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against ** the %_content table. ** ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry ** in the %_content table. ** ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The ** column on the left-hand side of the MATCH operator is column ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand ** side of the MATCH operator. */ static int fts3FilterMethod( sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, /* Strategy index */ const char *idxStr, /* Unused */ int nVal, /* Number of elements in apVal */ sqlite3_value **apVal /* Arguments for the indexing scheme */ ){ int rc = SQLITE_OK; char *zSql; /* SQL statement used to access %_content */ int eSearch; Fts3Table *p = (Fts3Table *)pCursor->pVtab; Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; sqlite3_value *pCons = 0; /* The MATCH or rowid constraint, if any */ sqlite3_value *pLangid = 0; /* The "langid = ?" constraint, if any */ sqlite3_value *pDocidGe = 0; /* The "docid >= ?" constraint, if any */ sqlite3_value *pDocidLe = 0; /* The "docid <= ?" constraint, if any */ int iIdx; UNUSED_PARAMETER(idxStr); UNUSED_PARAMETER(nVal); if( p->bLock ){ return SQLITE_ERROR; } eSearch = (idxNum & 0x0000FFFF); assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) ); assert( p->pSegments==0 ); /* Collect arguments into local variables */ iIdx = 0; if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++]; if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++]; if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++]; if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++]; assert( iIdx==nVal ); /* In case the cursor has been used before, clear it now. */ fts3ClearCursor(pCsr); /* Set the lower and upper bounds on docids to return */ pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64); pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64); if( idxStr ){ pCsr->bDesc = (idxStr[0]=='D'); }else{ pCsr->bDesc = p->bDescIdx; } pCsr->eSearch = (i16)eSearch; if( eSearch!=FTS3_DOCID_SEARCH && eSearch!=FTS3_FULLSCAN_SEARCH ){ int iCol = eSearch-FTS3_FULLTEXT_SEARCH; const char *zQuery = (const char *)sqlite3_value_text(pCons); if( zQuery==0 && sqlite3_value_type(pCons)!=SQLITE_NULL ){ return SQLITE_NOMEM; } pCsr->iLangid = 0; if( pLangid ) pCsr->iLangid = sqlite3_value_int(pLangid); assert( p->base.zErrMsg==0 ); rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid, p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr, &p->base.zErrMsg ); if( rc!=SQLITE_OK ){ return rc; } rc = fts3EvalStart(pCsr); sqlite3Fts3SegmentsClose(p); if( rc!=SQLITE_OK ) return rc; pCsr->pNextId = pCsr->aDoclist; pCsr->iPrevId = 0; } /* Compile a SELECT statement for this cursor. For a full-table-scan, the ** statement loops through all rows of the %_content table. For a ** full-text query or docid lookup, the statement retrieves a single ** row by docid. */ if( eSearch==FTS3_FULLSCAN_SEARCH ){ if( pDocidGe || pDocidLe ){ zSql = sqlite3_mprintf( "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s", p->zReadExprlist, pCsr->iMinDocid, pCsr->iMaxDocid, (pCsr->bDesc ? "DESC" : "ASC") ); }else{ zSql = sqlite3_mprintf("SELECT %s ORDER BY rowid %s", p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC") ); } if( zSql ){ p->bLock++; rc = sqlite3_prepare_v3( p->db,zSql,-1,SQLITE_PREPARE_PERSISTENT,&pCsr->pStmt,0 ); p->bLock--; sqlite3_free(zSql); }else{ rc = SQLITE_NOMEM; } }else if( eSearch==FTS3_DOCID_SEARCH ){ rc = fts3CursorSeekStmt(pCsr); if( rc==SQLITE_OK ){ rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons); } } if( rc!=SQLITE_OK ) return rc; return fts3NextMethod(pCursor); } /* ** This is the xEof method of the virtual table. SQLite calls this ** routine to find out if it has reached the end of a result set. */ static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){ Fts3Cursor *pCsr = (Fts3Cursor*)pCursor; if( pCsr->isEof ){ fts3ClearCursor(pCsr); pCsr->isEof = 1; } return pCsr->isEof; } /* ** This is the xRowid method. The SQLite core calls this routine to ** retrieve the rowid for the current row of the result set. fts3 ** exposes %_content.docid as the rowid for the virtual table. The ** rowid should be written to *pRowid. */ static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; *pRowid = pCsr->iPrevId; return SQLITE_OK; } /* ** This is the xColumn method, called by SQLite to request a value from ** the row that the supplied cursor currently points to. ** ** If: ** ** (iCol < p->nColumn) -> The value of the iCol'th user column. ** (iCol == p->nColumn) -> Magic column with the same name as the table. ** (iCol == p->nColumn+1) -> Docid column ** (iCol == p->nColumn+2) -> Langid column */ static int fts3ColumnMethod( sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */ int iCol /* Index of column to read value from */ ){ int rc = SQLITE_OK; /* Return Code */ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; Fts3Table *p = (Fts3Table *)pCursor->pVtab; /* The column value supplied by SQLite must be in range. */ assert( iCol>=0 && iCol<=p->nColumn+2 ); switch( iCol-p->nColumn ){ case 0: /* The special 'table-name' column */ sqlite3_result_pointer(pCtx, pCsr, "fts3cursor", 0); break; case 1: /* The docid column */ sqlite3_result_int64(pCtx, pCsr->iPrevId); break; case 2: if( pCsr->pExpr ){ sqlite3_result_int64(pCtx, pCsr->iLangid); break; }else if( p->zLanguageid==0 ){ sqlite3_result_int(pCtx, 0); break; }else{ iCol = p->nColumn; /* no break */ deliberate_fall_through } default: /* A user column. Or, if this is a full-table scan, possibly the ** language-id column. Seek the cursor. */ rc = fts3CursorSeek(0, pCsr); if( rc==SQLITE_OK && sqlite3_data_count(pCsr->pStmt)-1>iCol ){ sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1)); } break; } assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); return rc; } /* ** This function is the implementation of the xUpdate callback used by ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be ** inserted, updated or deleted. */ static int fts3UpdateMethod( sqlite3_vtab *pVtab, /* Virtual table handle */ int nArg, /* Size of argument array */ sqlite3_value **apVal, /* Array of arguments */ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ ){ return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid); } /* ** Implementation of xSync() method. Flush the contents of the pending-terms ** hash-table to the database. */ static int fts3SyncMethod(sqlite3_vtab *pVtab){ /* Following an incremental-merge operation, assuming that the input ** segments are not completely consumed (the usual case), they are updated ** in place to remove the entries that have already been merged. This ** involves updating the leaf block that contains the smallest unmerged ** entry and each block (if any) between the leaf and the root node. So ** if the height of the input segment b-trees is N, and input segments ** are merged eight at a time, updating the input segments at the end ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually ** small - often between 0 and 2. So the overhead of the incremental ** merge is somewhere between 8 and 24 blocks. To avoid this overhead ** dwarfing the actual productive work accomplished, the incremental merge ** is only attempted if it will write at least 64 leaf blocks. Hence ** nMinMerge. ** ** Of course, updating the input segments also involves deleting a bunch ** of blocks from the segments table. But this is not considered overhead ** as it would also be required by a crisis-merge that used the same input ** segments. */ const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */ Fts3Table *p = (Fts3Table*)pVtab; int rc; i64 iLastRowid = sqlite3_last_insert_rowid(p->db); rc = sqlite3Fts3PendingTermsFlush(p); if( rc==SQLITE_OK && p->nLeafAdd>(nMinMerge/16) && p->nAutoincrmerge && p->nAutoincrmerge!=0xff ){ int mxLevel = 0; /* Maximum relative level value in db */ int A; /* Incr-merge parameter A */ rc = sqlite3Fts3MaxLevel(p, &mxLevel); assert( rc==SQLITE_OK || mxLevel==0 ); A = p->nLeafAdd * mxLevel; A += (A/2); if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, p->nAutoincrmerge); } sqlite3Fts3SegmentsClose(p); sqlite3_set_last_insert_rowid(p->db, iLastRowid); return rc; } /* ** If it is currently unknown whether or not the FTS table has an %_stat ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code ** if an error occurs. */ static int fts3SetHasStat(Fts3Table *p){ int rc = SQLITE_OK; if( p->bHasStat==2 ){ char *zTbl = sqlite3_mprintf("%s_stat", p->zName); if( zTbl ){ int res = sqlite3_table_column_metadata(p->db, p->zDb, zTbl, 0,0,0,0,0,0); sqlite3_free(zTbl); p->bHasStat = (res==SQLITE_OK); }else{ rc = SQLITE_NOMEM; } } return rc; } /* ** Implementation of xBegin() method. */ static int fts3BeginMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table*)pVtab; int rc; UNUSED_PARAMETER(pVtab); assert( p->pSegments==0 ); assert( p->nPendingData==0 ); assert( p->inTransaction!=1 ); p->nLeafAdd = 0; rc = fts3SetHasStat(p); #ifdef SQLITE_DEBUG if( rc==SQLITE_OK ){ p->inTransaction = 1; p->mxSavepoint = -1; } #endif return rc; } /* ** Implementation of xCommit() method. This is a no-op. The contents of ** the pending-terms hash-table have already been flushed into the database ** by fts3SyncMethod(). */ static int fts3CommitMethod(sqlite3_vtab *pVtab){ TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); UNUSED_PARAMETER(pVtab); assert( p->nPendingData==0 ); assert( p->inTransaction!=0 ); assert( p->pSegments==0 ); TESTONLY( p->inTransaction = 0 ); TESTONLY( p->mxSavepoint = -1; ); return SQLITE_OK; } /* ** Implementation of xRollback(). Discard the contents of the pending-terms ** hash-table. Any changes made to the database are reverted by SQLite. */ static int fts3RollbackMethod(sqlite3_vtab *pVtab){ Fts3Table *p = (Fts3Table*)pVtab; sqlite3Fts3PendingTermsClear(p); assert( p->inTransaction!=0 ); TESTONLY( p->inTransaction = 0 ); TESTONLY( p->mxSavepoint = -1; ); return SQLITE_OK; } /* ** When called, *ppPoslist must point to the byte immediately following the ** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function ** moves *ppPoslist so that it instead points to the first byte of the ** same position list. */ static void fts3ReversePoslist(char *pStart, char **ppPoslist){ char *p = &(*ppPoslist)[-2]; char c = 0; /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */ while( p>pStart && (c=*p--)==0 ); /* Search backwards for a varint with value zero (the end of the previous ** poslist). This is an 0x00 byte preceded by some byte that does not ** have the 0x80 bit set. */ while( p>pStart && (*p & 0x80) | c ){ c = *p--; } assert( p==pStart || c==0 ); /* At this point p points to that preceding byte without the 0x80 bit ** set. So to find the start of the poslist, skip forward 2 bytes then ** over a varint. ** ** Normally. The other case is that p==pStart and the poslist to return ** is the first in the doclist. In this case do not skip forward 2 bytes. ** The second part of the if condition (c==0 && *ppPoslist>&p[2]) ** is required for cases where the first byte of a doclist and the ** doclist is empty. For example, if the first docid is 10, a doclist ** that begins with: ** ** 0x0A 0x00 */ if( p>pStart || (c==0 && *ppPoslist>&p[2]) ){ p = &p[2]; } while( *p++&0x80 ); *ppPoslist = p; } /* ** Helper function used by the implementation of the overloaded snippet(), ** offsets() and optimize() SQL functions. ** ** If the value passed as the third argument is a blob of size ** sizeof(Fts3Cursor*), then the blob contents are copied to the ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error ** message is written to context pContext and SQLITE_ERROR returned. The ** string passed via zFunc is used as part of the error message. */ static int fts3FunctionArg( sqlite3_context *pContext, /* SQL function call context */ const char *zFunc, /* Function name */ sqlite3_value *pVal, /* argv[0] passed to function */ Fts3Cursor **ppCsr /* OUT: Store cursor handle here */ ){ int rc; *ppCsr = (Fts3Cursor*)sqlite3_value_pointer(pVal, "fts3cursor"); if( (*ppCsr)!=0 ){ rc = SQLITE_OK; }else{ char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc); sqlite3_result_error(pContext, zErr, -1); sqlite3_free(zErr); rc = SQLITE_ERROR; } return rc; } /* ** Implementation of the snippet() function for FTS3 */ static void fts3SnippetFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of apVal[] array */ sqlite3_value **apVal /* Array of arguments */ ){ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ const char *zStart = ""; const char *zEnd = ""; const char *zEllipsis = "..."; int iCol = -1; int nToken = 15; /* Default number of tokens in snippet */ /* There must be at least one argument passed to this function (otherwise ** the non-overloaded version would have been called instead of this one). */ assert( nVal>=1 ); if( nVal>6 ){ sqlite3_result_error(pContext, "wrong number of arguments to function snippet()", -1); return; } if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return; switch( nVal ){ case 6: nToken = sqlite3_value_int(apVal[5]); /* no break */ deliberate_fall_through case 5: iCol = sqlite3_value_int(apVal[4]); /* no break */ deliberate_fall_through case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]); /* no break */ deliberate_fall_through case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]); /* no break */ deliberate_fall_through case 2: zStart = (const char*)sqlite3_value_text(apVal[1]); } if( !zEllipsis || !zEnd || !zStart ){ sqlite3_result_error_nomem(pContext); }else if( nToken==0 ){ sqlite3_result_text(pContext, "", -1, SQLITE_STATIC); }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken); } } /* ** Implementation of the offsets() function for FTS3 */ static void fts3OffsetsFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of argument array */ sqlite3_value **apVal /* Array of arguments */ ){ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ UNUSED_PARAMETER(nVal); assert( nVal==1 ); if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return; assert( pCsr ); if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ sqlite3Fts3Offsets(pContext, pCsr); } } /* ** Implementation of the special optimize() function for FTS3. This ** function merges all segments in the database to a single segment. ** Example usage is: ** ** SELECT optimize(t) FROM t LIMIT 1; ** ** where 't' is the name of an FTS3 table. */ static void fts3OptimizeFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of argument array */ sqlite3_value **apVal /* Array of arguments */ ){ int rc; /* Return code */ Fts3Table *p; /* Virtual table handle */ Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */ UNUSED_PARAMETER(nVal); assert( nVal==1 ); if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return; p = (Fts3Table *)pCursor->base.pVtab; assert( p ); rc = sqlite3Fts3Optimize(p); switch( rc ){ case SQLITE_OK: sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); break; case SQLITE_DONE: sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC); break; default: sqlite3_result_error_code(pContext, rc); break; } } /* ** Implementation of the matchinfo() function for FTS3 */ static void fts3MatchinfoFunc( sqlite3_context *pContext, /* SQLite function call context */ int nVal, /* Size of argument array */ sqlite3_value **apVal /* Array of arguments */ ){ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ assert( nVal==1 || nVal==2 ); if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){ const char *zArg = 0; if( nVal>1 ){ zArg = (const char *)sqlite3_value_text(apVal[1]); } sqlite3Fts3Matchinfo(pContext, pCsr, zArg); } } /* ** This routine implements the xFindFunction method for the FTS3 ** virtual table. */ static int fts3FindFunctionMethod( sqlite3_vtab *pVtab, /* Virtual table handle */ int nArg, /* Number of SQL function arguments */ const char *zName, /* Name of SQL function */ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */ void **ppArg /* Unused */ ){ struct Overloaded { const char *zName; void (*xFunc)(sqlite3_context*,int,sqlite3_value**); } aOverload[] = { { "snippet", fts3SnippetFunc }, { "offsets", fts3OffsetsFunc }, { "optimize", fts3OptimizeFunc }, { "matchinfo", fts3MatchinfoFunc }, }; int i; /* Iterator variable */ UNUSED_PARAMETER(pVtab); UNUSED_PARAMETER(nArg); UNUSED_PARAMETER(ppArg); for(i=0; idb; /* Database connection */ int rc; /* Return Code */ /* At this point it must be known if the %_stat table exists or not. ** So bHasStat may not be 2. */ rc = fts3SetHasStat(p); /* As it happens, the pending terms table is always empty here. This is ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction ** always opens a savepoint transaction. And the xSavepoint() method ** flushes the pending terms table. But leave the (no-op) call to ** PendingTermsFlush() in in case that changes. */ assert( p->nPendingData==0 ); if( rc==SQLITE_OK ){ rc = sqlite3Fts3PendingTermsFlush(p); } if( p->zContentTbl==0 ){ fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';", p->zDb, p->zName, zName ); } if( p->bHasDocsize ){ fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';", p->zDb, p->zName, zName ); } if( p->bHasStat ){ fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';", p->zDb, p->zName, zName ); } fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';", p->zDb, p->zName, zName ); fts3DbExec(&rc, db, "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';", p->zDb, p->zName, zName ); return rc; } /* ** The xSavepoint() method. ** ** Flush the contents of the pending-terms table to disk. */ static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){ int rc = SQLITE_OK; UNUSED_PARAMETER(iSavepoint); assert( ((Fts3Table *)pVtab)->inTransaction ); assert( ((Fts3Table *)pVtab)->mxSavepoint <= iSavepoint ); TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint ); if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){ rc = fts3SyncMethod(pVtab); } return rc; } /* ** The xRelease() method. ** ** This is a no-op. */ static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){ TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); UNUSED_PARAMETER(iSavepoint); UNUSED_PARAMETER(pVtab); assert( p->inTransaction ); assert( p->mxSavepoint >= iSavepoint ); TESTONLY( p->mxSavepoint = iSavepoint-1 ); return SQLITE_OK; } /* ** The xRollbackTo() method. ** ** Discard the contents of the pending terms table. */ static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){ Fts3Table *p = (Fts3Table*)pVtab; UNUSED_PARAMETER(iSavepoint); assert( p->inTransaction ); TESTONLY( p->mxSavepoint = iSavepoint ); sqlite3Fts3PendingTermsClear(p); return SQLITE_OK; } /* ** Return true if zName is the extension on one of the shadow tables used ** by this module. */ static int fts3ShadowName(const char *zName){ static const char *azName[] = { "content", "docsize", "segdir", "segments", "stat", }; unsigned int i; for(i=0; inRef--; if( pHash->nRef<=0 ){ sqlite3Fts3HashClear(&pHash->hash); sqlite3_free(pHash); } } /* ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c ** respectively. The following three forward declarations are for functions ** declared in these files used to retrieve the respective implementations. ** ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed ** to by the argument to point to the "simple" tokenizer implementation. ** And so on. */ void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); #ifndef SQLITE_DISABLE_FTS3_UNICODE void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule); #endif #ifdef SQLITE_ENABLE_ICU void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); #endif /* ** Initialize the fts3 extension. If this extension is built as part ** of the sqlite library, then this function is called directly by ** SQLite. If fts3 is built as a dynamically loadable extension, this ** function is called by the sqlite3_extension_init() entry point. */ int sqlite3Fts3Init(sqlite3 *db){ int rc = SQLITE_OK; Fts3HashWrapper *pHash = 0; const sqlite3_tokenizer_module *pSimple = 0; const sqlite3_tokenizer_module *pPorter = 0; #ifndef SQLITE_DISABLE_FTS3_UNICODE const sqlite3_tokenizer_module *pUnicode = 0; #endif #ifdef SQLITE_ENABLE_ICU const sqlite3_tokenizer_module *pIcu = 0; sqlite3Fts3IcuTokenizerModule(&pIcu); #endif #ifndef SQLITE_DISABLE_FTS3_UNICODE sqlite3Fts3UnicodeTokenizer(&pUnicode); #endif #ifdef SQLITE_TEST rc = sqlite3Fts3InitTerm(db); if( rc!=SQLITE_OK ) return rc; #endif rc = sqlite3Fts3InitAux(db); if( rc!=SQLITE_OK ) return rc; sqlite3Fts3SimpleTokenizerModule(&pSimple); sqlite3Fts3PorterTokenizerModule(&pPorter); /* Allocate and initialize the hash-table used to store tokenizers. */ pHash = sqlite3_malloc(sizeof(Fts3HashWrapper)); if( !pHash ){ rc = SQLITE_NOMEM; }else{ sqlite3Fts3HashInit(&pHash->hash, FTS3_HASH_STRING, 1); pHash->nRef = 0; } /* Load the built-in tokenizers into the hash table */ if( rc==SQLITE_OK ){ if( sqlite3Fts3HashInsert(&pHash->hash, "simple", 7, (void *)pSimple) || sqlite3Fts3HashInsert(&pHash->hash, "porter", 7, (void *)pPorter) #ifndef SQLITE_DISABLE_FTS3_UNICODE || sqlite3Fts3HashInsert(&pHash->hash, "unicode61", 10, (void *)pUnicode) #endif #ifdef SQLITE_ENABLE_ICU || (pIcu && sqlite3Fts3HashInsert(&pHash->hash, "icu", 4, (void *)pIcu)) #endif ){ rc = SQLITE_NOMEM; } } #ifdef SQLITE_TEST if( rc==SQLITE_OK ){ rc = sqlite3Fts3ExprInitTestInterface(db, &pHash->hash); } #endif /* Create the virtual table wrapper around the hash-table and overload ** the four scalar functions. If this is successful, register the ** module with sqlite. */ if( SQLITE_OK==rc && SQLITE_OK==(rc=sqlite3Fts3InitHashTable(db,&pHash->hash,"fts3_tokenizer")) && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2)) && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1)) ){ pHash->nRef++; rc = sqlite3_create_module_v2( db, "fts3", &fts3Module, (void *)pHash, hashDestroy ); if( rc==SQLITE_OK ){ pHash->nRef++; rc = sqlite3_create_module_v2( db, "fts4", &fts3Module, (void *)pHash, hashDestroy ); } if( rc==SQLITE_OK ){ pHash->nRef++; rc = sqlite3Fts3InitTok(db, (void *)pHash, hashDestroy); } return rc; } /* An error has occurred. Delete the hash table and return the error code. */ assert( rc!=SQLITE_OK ); if( pHash ){ sqlite3Fts3HashClear(&pHash->hash); sqlite3_free(pHash); } return rc; } /* ** Allocate an Fts3MultiSegReader for each token in the expression headed ** by pExpr. ** ** An Fts3SegReader object is a cursor that can seek or scan a range of ** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple ** Fts3SegReader objects internally to provide an interface to seek or scan ** within the union of all segments of a b-tree. Hence the name. ** ** If the allocated Fts3MultiSegReader just seeks to a single entry in a ** segment b-tree (if the term is not a prefix or it is a prefix for which ** there exists prefix b-tree of the right length) then it may be traversed ** and merged incrementally. Otherwise, it has to be merged into an in-memory ** doclist and then traversed. */ static void fts3EvalAllocateReaders( Fts3Cursor *pCsr, /* FTS cursor handle */ Fts3Expr *pExpr, /* Allocate readers for this expression */ int *pnToken, /* OUT: Total number of tokens in phrase. */ int *pnOr, /* OUT: Total number of OR nodes in expr. */ int *pRc /* IN/OUT: Error code */ ){ if( pExpr && SQLITE_OK==*pRc ){ if( pExpr->eType==FTSQUERY_PHRASE ){ int i; int nToken = pExpr->pPhrase->nToken; *pnToken += nToken; for(i=0; ipPhrase->aToken[i]; int rc = fts3TermSegReaderCursor(pCsr, pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr ); if( rc!=SQLITE_OK ){ *pRc = rc; return; } } assert( pExpr->pPhrase->iDoclistToken==0 ); pExpr->pPhrase->iDoclistToken = -1; }else{ *pnOr += (pExpr->eType==FTSQUERY_OR); fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc); fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc); } } } /* ** Arguments pList/nList contain the doclist for token iToken of phrase p. ** It is merged into the main doclist stored in p->doclist.aAll/nAll. ** ** This function assumes that pList points to a buffer allocated using ** sqlite3_malloc(). This function takes responsibility for eventually ** freeing the buffer. ** ** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs. */ static int fts3EvalPhraseMergeToken( Fts3Table *pTab, /* FTS Table pointer */ Fts3Phrase *p, /* Phrase to merge pList/nList into */ int iToken, /* Token pList/nList corresponds to */ char *pList, /* Pointer to doclist */ int nList /* Number of bytes in pList */ ){ int rc = SQLITE_OK; assert( iToken!=p->iDoclistToken ); if( pList==0 ){ sqlite3_free(p->doclist.aAll); p->doclist.aAll = 0; p->doclist.nAll = 0; } else if( p->iDoclistToken<0 ){ p->doclist.aAll = pList; p->doclist.nAll = nList; } else if( p->doclist.aAll==0 ){ sqlite3_free(pList); } else { char *pLeft; char *pRight; int nLeft; int nRight; int nDiff; if( p->iDoclistTokendoclist.aAll; nLeft = p->doclist.nAll; pRight = pList; nRight = nList; nDiff = iToken - p->iDoclistToken; }else{ pRight = p->doclist.aAll; nRight = p->doclist.nAll; pLeft = pList; nLeft = nList; nDiff = p->iDoclistToken - iToken; } rc = fts3DoclistPhraseMerge( pTab->bDescIdx, nDiff, pLeft, nLeft, &pRight, &nRight ); sqlite3_free(pLeft); p->doclist.aAll = pRight; p->doclist.nAll = nRight; } if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken; return rc; } /* ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist ** does not take deferred tokens into account. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3EvalPhraseLoad( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Phrase *p /* Phrase object */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int iToken; int rc = SQLITE_OK; for(iToken=0; rc==SQLITE_OK && iTokennToken; iToken++){ Fts3PhraseToken *pToken = &p->aToken[iToken]; assert( pToken->pDeferred==0 || pToken->pSegcsr==0 ); if( pToken->pSegcsr ){ int nThis = 0; char *pThis = 0; rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis); if( rc==SQLITE_OK ){ rc = fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis); } } assert( pToken->pSegcsr==0 ); } return rc; } #ifndef SQLITE_DISABLE_FTS4_DEFERRED /* ** This function is called on each phrase after the position lists for ** any deferred tokens have been loaded into memory. It updates the phrases ** current position list to include only those positions that are really ** instances of the phrase (after considering deferred tokens). If this ** means that the phrase does not appear in the current row, doclist.pList ** and doclist.nList are both zeroed. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){ int iToken; /* Used to iterate through phrase tokens */ char *aPoslist = 0; /* Position list for deferred tokens */ int nPoslist = 0; /* Number of bytes in aPoslist */ int iPrev = -1; /* Token number of previous deferred token */ assert( pPhrase->doclist.bFreeList==0 ); for(iToken=0; iTokennToken; iToken++){ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken]; Fts3DeferredToken *pDeferred = pToken->pDeferred; if( pDeferred ){ char *pList; int nList; int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList); if( rc!=SQLITE_OK ) return rc; if( pList==0 ){ sqlite3_free(aPoslist); pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; return SQLITE_OK; }else if( aPoslist==0 ){ aPoslist = pList; nPoslist = nList; }else{ char *aOut = pList; char *p1 = aPoslist; char *p2 = aOut; assert( iPrev>=0 ); fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2); sqlite3_free(aPoslist); aPoslist = pList; nPoslist = (int)(aOut - aPoslist); if( nPoslist==0 ){ sqlite3_free(aPoslist); pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; return SQLITE_OK; } } iPrev = iToken; } } if( iPrev>=0 ){ int nMaxUndeferred = pPhrase->iDoclistToken; if( nMaxUndeferred<0 ){ pPhrase->doclist.pList = aPoslist; pPhrase->doclist.nList = nPoslist; pPhrase->doclist.iDocid = pCsr->iPrevId; pPhrase->doclist.bFreeList = 1; }else{ int nDistance; char *p1; char *p2; char *aOut; if( nMaxUndeferred>iPrev ){ p1 = aPoslist; p2 = pPhrase->doclist.pList; nDistance = nMaxUndeferred - iPrev; }else{ p1 = pPhrase->doclist.pList; p2 = aPoslist; nDistance = iPrev - nMaxUndeferred; } aOut = (char *)sqlite3_malloc(nPoslist+8); if( !aOut ){ sqlite3_free(aPoslist); return SQLITE_NOMEM; } pPhrase->doclist.pList = aOut; if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){ pPhrase->doclist.bFreeList = 1; pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList); }else{ sqlite3_free(aOut); pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; } sqlite3_free(aPoslist); } } return SQLITE_OK; } #endif /* SQLITE_DISABLE_FTS4_DEFERRED */ /* ** Maximum number of tokens a phrase may have to be considered for the ** incremental doclists strategy. */ #define MAX_INCR_PHRASE_TOKENS 4 /* ** This function is called for each Fts3Phrase in a full-text query ** expression to initialize the mechanism for returning rows. Once this ** function has been called successfully on an Fts3Phrase, it may be ** used with fts3EvalPhraseNext() to iterate through the matching docids. ** ** If parameter bOptOk is true, then the phrase may (or may not) use the ** incremental loading strategy. Otherwise, the entire doclist is loaded into ** memory within this call. ** ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. */ static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; /* Error code */ int i; /* Determine if doclists may be loaded from disk incrementally. This is ** possible if the bOptOk argument is true, the FTS doclists will be ** scanned in forward order, and the phrase consists of ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first" ** tokens or prefix tokens that cannot use a prefix-index. */ int bHaveIncr = 0; int bIncrOk = (bOptOk && pCsr->bDesc==pTab->bDescIdx && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) && pTab->bNoIncrDoclist==0 #endif ); for(i=0; bIncrOk==1 && inToken; i++){ Fts3PhraseToken *pToken = &p->aToken[i]; if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){ bIncrOk = 0; } if( pToken->pSegcsr ) bHaveIncr = 1; } if( bIncrOk && bHaveIncr ){ /* Use the incremental approach. */ int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn); for(i=0; rc==SQLITE_OK && inToken; i++){ Fts3PhraseToken *pToken = &p->aToken[i]; Fts3MultiSegReader *pSegcsr = pToken->pSegcsr; if( pSegcsr ){ rc = sqlite3Fts3MsrIncrStart(pTab, pSegcsr, iCol, pToken->z, pToken->n); } } p->bIncr = 1; }else{ /* Load the full doclist for the phrase into memory. */ rc = fts3EvalPhraseLoad(pCsr, p); p->bIncr = 0; } assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr ); return rc; } /* ** This function is used to iterate backwards (from the end to start) ** through doclists. It is used by this module to iterate through phrase ** doclists in reverse and by the fts3_write.c module to iterate through ** pending-terms lists when writing to databases with "order=desc". ** ** The doclist may be sorted in ascending (parameter bDescIdx==0) or ** descending (parameter bDescIdx==1) order of docid. Regardless, this ** function iterates from the end of the doclist to the beginning. */ void sqlite3Fts3DoclistPrev( int bDescIdx, /* True if the doclist is desc */ char *aDoclist, /* Pointer to entire doclist */ int nDoclist, /* Length of aDoclist in bytes */ char **ppIter, /* IN/OUT: Iterator pointer */ sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */ int *pnList, /* OUT: List length pointer */ u8 *pbEof /* OUT: End-of-file flag */ ){ char *p = *ppIter; assert( nDoclist>0 ); assert( *pbEof==0 ); assert_fts3_nc( p || *piDocid==0 ); assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) ); if( p==0 ){ sqlite3_int64 iDocid = 0; char *pNext = 0; char *pDocid = aDoclist; char *pEnd = &aDoclist[nDoclist]; int iMul = 1; while( pDocid0 ); assert( *pbEof==0 ); assert_fts3_nc( p || *piDocid==0 ); assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) ); if( p==0 ){ p = aDoclist; p += sqlite3Fts3GetVarint(p, piDocid); }else{ fts3PoslistCopy(0, &p); while( p<&aDoclist[nDoclist] && *p==0 ) p++; if( p>=&aDoclist[nDoclist] ){ *pbEof = 1; }else{ sqlite3_int64 iVar; p += sqlite3Fts3GetVarint(p, &iVar); *piDocid += ((bDescIdx ? -1 : 1) * iVar); } } *ppIter = p; } /* ** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof ** to true if EOF is reached. */ static void fts3EvalDlPhraseNext( Fts3Table *pTab, Fts3Doclist *pDL, u8 *pbEof ){ char *pIter; /* Used to iterate through aAll */ char *pEnd; /* 1 byte past end of aAll */ if( pDL->pNextDocid ){ pIter = pDL->pNextDocid; assert( pDL->aAll!=0 || pIter==0 ); }else{ pIter = pDL->aAll; } if( pIter==0 || pIter>=(pEnd = pDL->aAll + pDL->nAll) ){ /* We have already reached the end of this doclist. EOF. */ *pbEof = 1; }else{ sqlite3_int64 iDelta; pIter += sqlite3Fts3GetVarint(pIter, &iDelta); if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){ pDL->iDocid += iDelta; }else{ pDL->iDocid -= iDelta; } pDL->pList = pIter; fts3PoslistCopy(0, &pIter); pDL->nList = (int)(pIter - pDL->pList); /* pIter now points just past the 0x00 that terminates the position- ** list for document pDL->iDocid. However, if this position-list was ** edited in place by fts3EvalNearTrim(), then pIter may not actually ** point to the start of the next docid value. The following line deals ** with this case by advancing pIter past the zero-padding added by ** fts3EvalNearTrim(). */ while( pIterpNextDocid = pIter; assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter ); *pbEof = 0; } } /* ** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext(). */ typedef struct TokenDoclist TokenDoclist; struct TokenDoclist { int bIgnore; sqlite3_int64 iDocid; char *pList; int nList; }; /* ** Token pToken is an incrementally loaded token that is part of a ** multi-token phrase. Advance it to the next matching document in the ** database and populate output variable *p with the details of the new ** entry. Or, if the iterator has reached EOF, set *pbEof to true. ** ** If an error occurs, return an SQLite error code. Otherwise, return ** SQLITE_OK. */ static int incrPhraseTokenNext( Fts3Table *pTab, /* Virtual table handle */ Fts3Phrase *pPhrase, /* Phrase to advance token of */ int iToken, /* Specific token to advance */ TokenDoclist *p, /* OUT: Docid and doclist for new entry */ u8 *pbEof /* OUT: True if iterator is at EOF */ ){ int rc = SQLITE_OK; if( pPhrase->iDoclistToken==iToken ){ assert( p->bIgnore==0 ); assert( pPhrase->aToken[iToken].pSegcsr==0 ); fts3EvalDlPhraseNext(pTab, &pPhrase->doclist, pbEof); p->pList = pPhrase->doclist.pList; p->nList = pPhrase->doclist.nList; p->iDocid = pPhrase->doclist.iDocid; }else{ Fts3PhraseToken *pToken = &pPhrase->aToken[iToken]; assert( pToken->pDeferred==0 ); assert( pToken->pSegcsr || pPhrase->iDoclistToken>=0 ); if( pToken->pSegcsr ){ assert( p->bIgnore==0 ); rc = sqlite3Fts3MsrIncrNext( pTab, pToken->pSegcsr, &p->iDocid, &p->pList, &p->nList ); if( p->pList==0 ) *pbEof = 1; }else{ p->bIgnore = 1; } } return rc; } /* ** The phrase iterator passed as the second argument: ** ** * features at least one token that uses an incremental doclist, and ** ** * does not contain any deferred tokens. ** ** Advance it to the next matching documnent in the database and populate ** the Fts3Doclist.pList and nList fields. ** ** If there is no "next" entry and no error occurs, then *pbEof is set to ** 1 before returning. Otherwise, if no error occurs and the iterator is ** successfully advanced, *pbEof is set to 0. ** ** If an error occurs, return an SQLite error code. Otherwise, return ** SQLITE_OK. */ static int fts3EvalIncrPhraseNext( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Phrase *p, /* Phrase object to advance to next docid */ u8 *pbEof /* OUT: Set to 1 if EOF */ ){ int rc = SQLITE_OK; Fts3Doclist *pDL = &p->doclist; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; u8 bEof = 0; /* This is only called if it is guaranteed that the phrase has at least ** one incremental token. In which case the bIncr flag is set. */ assert( p->bIncr==1 ); if( p->nToken==1 ){ rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr, &pDL->iDocid, &pDL->pList, &pDL->nList ); if( pDL->pList==0 ) bEof = 1; }else{ int bDescDoclist = pCsr->bDesc; struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS]; memset(a, 0, sizeof(a)); assert( p->nToken<=MAX_INCR_PHRASE_TOKENS ); assert( p->iDoclistTokennToken && bEof==0; i++){ rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof); if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){ iMax = a[i].iDocid; bMaxSet = 1; } } assert( rc!=SQLITE_OK || (p->nToken>=1 && a[p->nToken-1].bIgnore==0) ); assert( rc!=SQLITE_OK || bMaxSet ); /* Keep advancing iterators until they all point to the same document */ for(i=0; inToken; i++){ while( rc==SQLITE_OK && bEof==0 && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0 ){ rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof); if( DOCID_CMP(a[i].iDocid, iMax)>0 ){ iMax = a[i].iDocid; i = 0; } } } /* Check if the current entries really are a phrase match */ if( bEof==0 ){ int nList = 0; int nByte = a[p->nToken-1].nList; char *aDoclist = sqlite3_malloc(nByte+FTS3_BUFFER_PADDING); if( !aDoclist ) return SQLITE_NOMEM; memcpy(aDoclist, a[p->nToken-1].pList, nByte+1); memset(&aDoclist[nByte], 0, FTS3_BUFFER_PADDING); for(i=0; i<(p->nToken-1); i++){ if( a[i].bIgnore==0 ){ char *pL = a[i].pList; char *pR = aDoclist; char *pOut = aDoclist; int nDist = p->nToken-1-i; int res = fts3PoslistPhraseMerge(&pOut, nDist, 0, 1, &pL, &pR); if( res==0 ) break; nList = (int)(pOut - aDoclist); } } if( i==(p->nToken-1) ){ pDL->iDocid = iMax; pDL->pList = aDoclist; pDL->nList = nList; pDL->bFreeList = 1; break; } sqlite3_free(aDoclist); } } } *pbEof = bEof; return rc; } /* ** Attempt to move the phrase iterator to point to the next matching docid. ** If an error occurs, return an SQLite error code. Otherwise, return ** SQLITE_OK. ** ** If there is no "next" entry and no error occurs, then *pbEof is set to ** 1 before returning. Otherwise, if no error occurs and the iterator is ** successfully advanced, *pbEof is set to 0. */ static int fts3EvalPhraseNext( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Phrase *p, /* Phrase object to advance to next docid */ u8 *pbEof /* OUT: Set to 1 if EOF */ ){ int rc = SQLITE_OK; Fts3Doclist *pDL = &p->doclist; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; if( p->bIncr ){ rc = fts3EvalIncrPhraseNext(pCsr, p, pbEof); }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){ sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll, &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof ); pDL->pList = pDL->pNextDocid; }else{ fts3EvalDlPhraseNext(pTab, pDL, pbEof); } return rc; } /* ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, fts3EvalPhraseStart() is called on all phrases within the ** expression. Also the Fts3Expr.bDeferred variable is set to true for any ** expressions for which all descendent tokens are deferred. ** ** If parameter bOptOk is zero, then it is guaranteed that the ** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for ** each phrase in the expression (subject to deferred token processing). ** Or, if bOptOk is non-zero, then one or more tokens within the expression ** may be loaded incrementally, meaning doclist.aAll/nAll is not available. ** ** If an error occurs within this function, *pRc is set to an SQLite error ** code before returning. */ static void fts3EvalStartReaders( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pExpr, /* Expression to initialize phrases in */ int *pRc /* IN/OUT: Error code */ ){ if( pExpr && SQLITE_OK==*pRc ){ if( pExpr->eType==FTSQUERY_PHRASE ){ int nToken = pExpr->pPhrase->nToken; if( nToken ){ int i; for(i=0; ipPhrase->aToken[i].pDeferred==0 ) break; } pExpr->bDeferred = (i==nToken); } *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase); }else{ fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc); fts3EvalStartReaders(pCsr, pExpr->pRight, pRc); pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred); } } } /* ** An array of the following structures is assembled as part of the process ** of selecting tokens to defer before the query starts executing (as part ** of the xFilter() method). There is one element in the array for each ** token in the FTS expression. ** ** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong ** to phrases that are connected only by AND and NEAR operators (not OR or ** NOT). When determining tokens to defer, each AND/NEAR cluster is considered ** separately. The root of a tokens AND/NEAR cluster is stored in ** Fts3TokenAndCost.pRoot. */ typedef struct Fts3TokenAndCost Fts3TokenAndCost; struct Fts3TokenAndCost { Fts3Phrase *pPhrase; /* The phrase the token belongs to */ int iToken; /* Position of token in phrase */ Fts3PhraseToken *pToken; /* The token itself */ Fts3Expr *pRoot; /* Root of NEAR/AND cluster */ int nOvfl; /* Number of overflow pages to load doclist */ int iCol; /* The column the token must match */ }; /* ** This function is used to populate an allocated Fts3TokenAndCost array. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** Otherwise, if an error occurs during execution, *pRc is set to an ** SQLite error code. */ static void fts3EvalTokenCosts( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */ Fts3Expr *pExpr, /* Expression to consider */ Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */ Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */ int *pRc /* IN/OUT: Error code */ ){ if( *pRc==SQLITE_OK ){ if( pExpr->eType==FTSQUERY_PHRASE ){ Fts3Phrase *pPhrase = pExpr->pPhrase; int i; for(i=0; *pRc==SQLITE_OK && inToken; i++){ Fts3TokenAndCost *pTC = (*ppTC)++; pTC->pPhrase = pPhrase; pTC->iToken = i; pTC->pRoot = pRoot; pTC->pToken = &pPhrase->aToken[i]; pTC->iCol = pPhrase->iColumn; *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl); } }else if( pExpr->eType!=FTSQUERY_NOT ){ assert( pExpr->eType==FTSQUERY_OR || pExpr->eType==FTSQUERY_AND || pExpr->eType==FTSQUERY_NEAR ); assert( pExpr->pLeft && pExpr->pRight ); if( pExpr->eType==FTSQUERY_OR ){ pRoot = pExpr->pLeft; **ppOr = pRoot; (*ppOr)++; } fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc); if( pExpr->eType==FTSQUERY_OR ){ pRoot = pExpr->pRight; **ppOr = pRoot; (*ppOr)++; } fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc); } } } /* ** Determine the average document (row) size in pages. If successful, ** write this value to *pnPage and return SQLITE_OK. Otherwise, return ** an SQLite error code. ** ** The average document size in pages is calculated by first calculating ** determining the average size in bytes, B. If B is less than the amount ** of data that will fit on a single leaf page of an intkey table in ** this database, then the average docsize is 1. Otherwise, it is 1 plus ** the number of overflow pages consumed by a record B bytes in size. */ static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){ int rc = SQLITE_OK; if( pCsr->nRowAvg==0 ){ /* The average document size, which is required to calculate the cost ** of each doclist, has not yet been determined. Read the required ** data from the %_stat table to calculate it. ** ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 ** varints, where nCol is the number of columns in the FTS3 table. ** The first varint is the number of documents currently stored in ** the table. The following nCol varints contain the total amount of ** data stored in all rows of each column of the table, from left ** to right. */ Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; sqlite3_stmt *pStmt; sqlite3_int64 nDoc = 0; sqlite3_int64 nByte = 0; const char *pEnd; const char *a; rc = sqlite3Fts3SelectDoctotal(p, &pStmt); if( rc!=SQLITE_OK ) return rc; a = sqlite3_column_blob(pStmt, 0); testcase( a==0 ); /* If %_stat.value set to X'' */ if( a ){ pEnd = &a[sqlite3_column_bytes(pStmt, 0)]; a += sqlite3Fts3GetVarintBounded(a, pEnd, &nDoc); while( anDoc = nDoc; pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz); assert( pCsr->nRowAvg>0 ); rc = sqlite3_reset(pStmt); } *pnPage = pCsr->nRowAvg; return rc; } /* ** This function is called to select the tokens (if any) that will be ** deferred. The array aTC[] has already been populated when this is ** called. ** ** This function is called once for each AND/NEAR cluster in the ** expression. Each invocation determines which tokens to defer within ** the cluster with root node pRoot. See comments above the definition ** of struct Fts3TokenAndCost for more details. ** ** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken() ** called on each token to defer. Otherwise, an SQLite error code is ** returned. */ static int fts3EvalSelectDeferred( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pRoot, /* Consider tokens with this root node */ Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */ int nTC /* Number of entries in aTC[] */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int nDocSize = 0; /* Number of pages per doc loaded */ int rc = SQLITE_OK; /* Return code */ int ii; /* Iterator variable for various purposes */ int nOvfl = 0; /* Total overflow pages used by doclists */ int nToken = 0; /* Total number of tokens in cluster */ int nMinEst = 0; /* The minimum count for any phrase so far. */ int nLoad4 = 1; /* (Phrases that will be loaded)^4. */ /* Tokens are never deferred for FTS tables created using the content=xxx ** option. The reason being that it is not guaranteed that the content ** table actually contains the same data as the index. To prevent this from ** causing any problems, the deferred token optimization is completely ** disabled for content=xxx tables. */ if( pTab->zContentTbl ){ return SQLITE_OK; } /* Count the tokens in this AND/NEAR cluster. If none of the doclists ** associated with the tokens spill onto overflow pages, or if there is ** only 1 token, exit early. No tokens to defer in this case. */ for(ii=0; ii0 ); /* Iterate through all tokens in this AND/NEAR cluster, in ascending order ** of the number of overflow pages that will be loaded by the pager layer ** to retrieve the entire doclist for the token from the full-text index. ** Load the doclists for tokens that are either: ** ** a. The cheapest token in the entire query (i.e. the one visited by the ** first iteration of this loop), or ** ** b. Part of a multi-token phrase. ** ** After each token doclist is loaded, merge it with the others from the ** same phrase and count the number of documents that the merged doclist ** contains. Set variable "nMinEst" to the smallest number of documents in ** any phrase doclist for which 1 or more token doclists have been loaded. ** Let nOther be the number of other phrases for which it is certain that ** one or more tokens will not be deferred. ** ** Then, for each token, defer it if loading the doclist would result in ** loading N or more overflow pages into memory, where N is computed as: ** ** (nMinEst + 4^nOther - 1) / (4^nOther) */ for(ii=0; iinOvfl) ){ pTC = &aTC[iTC]; } } assert( pTC ); if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){ /* The number of overflow pages to load for this (and therefore all ** subsequent) tokens is greater than the estimated number of pages ** that will be loaded if all subsequent tokens are deferred. */ Fts3PhraseToken *pToken = pTC->pToken; rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol); fts3SegReaderCursorFree(pToken->pSegcsr); pToken->pSegcsr = 0; }else{ /* Set nLoad4 to the value of (4^nOther) for the next iteration of the ** for-loop. Except, limit the value to 2^24 to prevent it from ** overflowing the 32-bit integer it is stored in. */ if( ii<12 ) nLoad4 = nLoad4*4; if( ii==0 || (pTC->pPhrase->nToken>1 && ii!=nToken-1) ){ /* Either this is the cheapest token in the entire query, or it is ** part of a multi-token phrase. Either way, the entire doclist will ** (eventually) be loaded into memory. It may as well be now. */ Fts3PhraseToken *pToken = pTC->pToken; int nList = 0; char *pList = 0; rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList); assert( rc==SQLITE_OK || pList==0 ); if( rc==SQLITE_OK ){ rc = fts3EvalPhraseMergeToken( pTab, pTC->pPhrase, pTC->iToken,pList,nList ); } if( rc==SQLITE_OK ){ int nCount; nCount = fts3DoclistCountDocids( pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll ); if( ii==0 || nCountpToken = 0; } return rc; } /* ** This function is called from within the xFilter method. It initializes ** the full-text query currently stored in pCsr->pExpr. To iterate through ** the results of a query, the caller does: ** ** fts3EvalStart(pCsr); ** while( 1 ){ ** fts3EvalNext(pCsr); ** if( pCsr->bEof ) break; ** ... return row pCsr->iPrevId to the caller ... ** } */ static int fts3EvalStart(Fts3Cursor *pCsr){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; int nToken = 0; int nOr = 0; /* Allocate a MultiSegReader for each token in the expression. */ fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc); /* Determine which, if any, tokens in the expression should be deferred. */ #ifndef SQLITE_DISABLE_FTS4_DEFERRED if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){ Fts3TokenAndCost *aTC; aTC = (Fts3TokenAndCost *)sqlite3_malloc64( sizeof(Fts3TokenAndCost) * nToken + sizeof(Fts3Expr *) * nOr * 2 ); if( !aTC ){ rc = SQLITE_NOMEM; }else{ Fts3Expr **apOr = (Fts3Expr **)&aTC[nToken]; int ii; Fts3TokenAndCost *pTC = aTC; Fts3Expr **ppOr = apOr; fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc); nToken = (int)(pTC-aTC); nOr = (int)(ppOr-apOr); if( rc==SQLITE_OK ){ rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken); for(ii=0; rc==SQLITE_OK && iipExpr, &rc); return rc; } /* ** Invalidate the current position list for phrase pPhrase. */ static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){ if( pPhrase->doclist.bFreeList ){ sqlite3_free(pPhrase->doclist.pList); } pPhrase->doclist.pList = 0; pPhrase->doclist.nList = 0; pPhrase->doclist.bFreeList = 0; } /* ** This function is called to edit the position list associated with ** the phrase object passed as the fifth argument according to a NEAR ** condition. For example: ** ** abc NEAR/5 "def ghi" ** ** Parameter nNear is passed the NEAR distance of the expression (5 in ** the example above). When this function is called, *paPoslist points to ** the position list, and *pnToken is the number of phrase tokens in the ** phrase on the other side of the NEAR operator to pPhrase. For example, ** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to ** the position list associated with phrase "abc". ** ** All positions in the pPhrase position list that are not sufficiently ** close to a position in the *paPoslist position list are removed. If this ** leaves 0 positions, zero is returned. Otherwise, non-zero. ** ** Before returning, *paPoslist is set to point to the position lsit ** associated with pPhrase. And *pnToken is set to the number of tokens in ** pPhrase. */ static int fts3EvalNearTrim( int nNear, /* NEAR distance. As in "NEAR/nNear". */ char *aTmp, /* Temporary space to use */ char **paPoslist, /* IN/OUT: Position list */ int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */ Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */ ){ int nParam1 = nNear + pPhrase->nToken; int nParam2 = nNear + *pnToken; int nNew; char *p2; char *pOut; int res; assert( pPhrase->doclist.pList ); p2 = pOut = pPhrase->doclist.pList; res = fts3PoslistNearMerge( &pOut, aTmp, nParam1, nParam2, paPoslist, &p2 ); if( res ){ nNew = (int)(pOut - pPhrase->doclist.pList) - 1; assert_fts3_nc( nNew<=pPhrase->doclist.nList && nNew>0 ); if( nNew>=0 && nNew<=pPhrase->doclist.nList ){ assert( pPhrase->doclist.pList[nNew]=='\0' ); memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew); pPhrase->doclist.nList = nNew; } *paPoslist = pPhrase->doclist.pList; *pnToken = pPhrase->nToken; } return res; } /* ** This function is a no-op if *pRc is other than SQLITE_OK when it is called. ** Otherwise, it advances the expression passed as the second argument to ** point to the next matching row in the database. Expressions iterate through ** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero, ** or descending if it is non-zero. ** ** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if ** successful, the following variables in pExpr are set: ** ** Fts3Expr.bEof (non-zero if EOF - there is no next row) ** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row) ** ** If the expression is of type FTSQUERY_PHRASE, and the expression is not ** at EOF, then the following variables are populated with the position list ** for the phrase for the visited row: ** ** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes) ** FTs3Expr.pPhrase->doclist.pList (pointer to position list) ** ** It says above that this function advances the expression to the next ** matching row. This is usually true, but there are the following exceptions: ** ** 1. Deferred tokens are not taken into account. If a phrase consists ** entirely of deferred tokens, it is assumed to match every row in ** the db. In this case the position-list is not populated at all. ** ** Or, if a phrase contains one or more deferred tokens and one or ** more non-deferred tokens, then the expression is advanced to the ** next possible match, considering only non-deferred tokens. In other ** words, if the phrase is "A B C", and "B" is deferred, the expression ** is advanced to the next row that contains an instance of "A * C", ** where "*" may match any single token. The position list in this case ** is populated as for "A * C" before returning. ** ** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is ** advanced to point to the next row that matches "x AND y". ** ** See sqlite3Fts3EvalTestDeferred() for details on testing if a row is ** really a match, taking into account deferred tokens and NEAR operators. */ static void fts3EvalNextRow( Fts3Cursor *pCsr, /* FTS Cursor handle */ Fts3Expr *pExpr, /* Expr. to advance to next matching row */ int *pRc /* IN/OUT: Error code */ ){ if( *pRc==SQLITE_OK ){ int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */ assert( pExpr->bEof==0 ); pExpr->bStart = 1; switch( pExpr->eType ){ case FTSQUERY_NEAR: case FTSQUERY_AND: { Fts3Expr *pLeft = pExpr->pLeft; Fts3Expr *pRight = pExpr->pRight; assert( !pLeft->bDeferred || !pRight->bDeferred ); if( pLeft->bDeferred ){ /* LHS is entirely deferred. So we assume it matches every row. ** Advance the RHS iterator to find the next row visited. */ fts3EvalNextRow(pCsr, pRight, pRc); pExpr->iDocid = pRight->iDocid; pExpr->bEof = pRight->bEof; }else if( pRight->bDeferred ){ /* RHS is entirely deferred. So we assume it matches every row. ** Advance the LHS iterator to find the next row visited. */ fts3EvalNextRow(pCsr, pLeft, pRc); pExpr->iDocid = pLeft->iDocid; pExpr->bEof = pLeft->bEof; }else{ /* Neither the RHS or LHS are deferred. */ fts3EvalNextRow(pCsr, pLeft, pRc); fts3EvalNextRow(pCsr, pRight, pRc); while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){ sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid); if( iDiff==0 ) break; if( iDiff<0 ){ fts3EvalNextRow(pCsr, pLeft, pRc); }else{ fts3EvalNextRow(pCsr, pRight, pRc); } } pExpr->iDocid = pLeft->iDocid; pExpr->bEof = (pLeft->bEof || pRight->bEof); if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){ assert( pRight->eType==FTSQUERY_PHRASE ); if( pRight->pPhrase->doclist.aAll ){ Fts3Doclist *pDl = &pRight->pPhrase->doclist; while( *pRc==SQLITE_OK && pRight->bEof==0 ){ memset(pDl->pList, 0, pDl->nList); fts3EvalNextRow(pCsr, pRight, pRc); } } if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){ Fts3Doclist *pDl = &pLeft->pPhrase->doclist; while( *pRc==SQLITE_OK && pLeft->bEof==0 ){ memset(pDl->pList, 0, pDl->nList); fts3EvalNextRow(pCsr, pLeft, pRc); } } pRight->bEof = pLeft->bEof = 1; } } break; } case FTSQUERY_OR: { Fts3Expr *pLeft = pExpr->pLeft; Fts3Expr *pRight = pExpr->pRight; sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); assert_fts3_nc( pLeft->bStart || pLeft->iDocid==pRight->iDocid ); assert_fts3_nc( pRight->bStart || pLeft->iDocid==pRight->iDocid ); if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ fts3EvalNextRow(pCsr, pLeft, pRc); }else if( pLeft->bEof || iCmp>0 ){ fts3EvalNextRow(pCsr, pRight, pRc); }else{ fts3EvalNextRow(pCsr, pLeft, pRc); fts3EvalNextRow(pCsr, pRight, pRc); } pExpr->bEof = (pLeft->bEof && pRight->bEof); iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ pExpr->iDocid = pLeft->iDocid; }else{ pExpr->iDocid = pRight->iDocid; } break; } case FTSQUERY_NOT: { Fts3Expr *pLeft = pExpr->pLeft; Fts3Expr *pRight = pExpr->pRight; if( pRight->bStart==0 ){ fts3EvalNextRow(pCsr, pRight, pRc); assert( *pRc!=SQLITE_OK || pRight->bStart ); } fts3EvalNextRow(pCsr, pLeft, pRc); if( pLeft->bEof==0 ){ while( !*pRc && !pRight->bEof && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0 ){ fts3EvalNextRow(pCsr, pRight, pRc); } } pExpr->iDocid = pLeft->iDocid; pExpr->bEof = pLeft->bEof; break; } default: { Fts3Phrase *pPhrase = pExpr->pPhrase; fts3EvalInvalidatePoslist(pPhrase); *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof); pExpr->iDocid = pPhrase->doclist.iDocid; break; } } } } /* ** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR ** cluster, then this function returns 1 immediately. ** ** Otherwise, it checks if the current row really does match the NEAR ** expression, using the data currently stored in the position lists ** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression. ** ** If the current row is a match, the position list associated with each ** phrase in the NEAR expression is edited in place to contain only those ** phrase instances sufficiently close to their peers to satisfy all NEAR ** constraints. In this case it returns 1. If the NEAR expression does not ** match the current row, 0 is returned. The position lists may or may not ** be edited if 0 is returned. */ static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){ int res = 1; /* The following block runs if pExpr is the root of a NEAR query. ** For example, the query: ** ** "w" NEAR "x" NEAR "y" NEAR "z" ** ** which is represented in tree form as: ** ** | ** +--NEAR--+ <-- root of NEAR query ** | | ** +--NEAR--+ "z" ** | | ** +--NEAR--+ "y" ** | | ** "w" "x" ** ** The right-hand child of a NEAR node is always a phrase. The ** left-hand child may be either a phrase or a NEAR node. There are ** no exceptions to this - it's the way the parser in fts3_expr.c works. */ if( *pRc==SQLITE_OK && pExpr->eType==FTSQUERY_NEAR && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) ){ Fts3Expr *p; sqlite3_int64 nTmp = 0; /* Bytes of temp space */ char *aTmp; /* Temp space for PoslistNearMerge() */ /* Allocate temporary working space. */ for(p=pExpr; p->pLeft; p=p->pLeft){ assert( p->pRight->pPhrase->doclist.nList>0 ); nTmp += p->pRight->pPhrase->doclist.nList; } nTmp += p->pPhrase->doclist.nList; aTmp = sqlite3_malloc64(nTmp*2); if( !aTmp ){ *pRc = SQLITE_NOMEM; res = 0; }else{ char *aPoslist = p->pPhrase->doclist.pList; int nToken = p->pPhrase->nToken; for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){ Fts3Phrase *pPhrase = p->pRight->pPhrase; int nNear = p->nNear; res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); } aPoslist = pExpr->pRight->pPhrase->doclist.pList; nToken = pExpr->pRight->pPhrase->nToken; for(p=pExpr->pLeft; p && res; p=p->pLeft){ int nNear; Fts3Phrase *pPhrase; assert( p->pParent && p->pParent->pLeft==p ); nNear = p->pParent->nNear; pPhrase = ( p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase ); res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); } } sqlite3_free(aTmp); } return res; } /* ** This function is a helper function for sqlite3Fts3EvalTestDeferred(). ** Assuming no error occurs or has occurred, It returns non-zero if the ** expression passed as the second argument matches the row that pCsr ** currently points to, or zero if it does not. ** ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. ** If an error occurs during execution of this function, *pRc is set to ** the appropriate SQLite error code. In this case the returned value is ** undefined. */ static int fts3EvalTestExpr( Fts3Cursor *pCsr, /* FTS cursor handle */ Fts3Expr *pExpr, /* Expr to test. May or may not be root. */ int *pRc /* IN/OUT: Error code */ ){ int bHit = 1; /* Return value */ if( *pRc==SQLITE_OK ){ switch( pExpr->eType ){ case FTSQUERY_NEAR: case FTSQUERY_AND: bHit = ( fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) && fts3EvalNearTest(pExpr, pRc) ); /* If the NEAR expression does not match any rows, zero the doclist for ** all phrases involved in the NEAR. This is because the snippet(), ** offsets() and matchinfo() functions are not supposed to recognize ** any instances of phrases that are part of unmatched NEAR queries. ** For example if this expression: ** ** ... MATCH 'a OR (b NEAR c)' ** ** is matched against a row containing: ** ** 'a b d e' ** ** then any snippet() should ony highlight the "a" term, not the "b" ** (as "b" is part of a non-matching NEAR clause). */ if( bHit==0 && pExpr->eType==FTSQUERY_NEAR && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) ){ Fts3Expr *p; for(p=pExpr; p->pPhrase==0; p=p->pLeft){ if( p->pRight->iDocid==pCsr->iPrevId ){ fts3EvalInvalidatePoslist(p->pRight->pPhrase); } } if( p->iDocid==pCsr->iPrevId ){ fts3EvalInvalidatePoslist(p->pPhrase); } } break; case FTSQUERY_OR: { int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc); int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc); bHit = bHit1 || bHit2; break; } case FTSQUERY_NOT: bHit = ( fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) ); break; default: { #ifndef SQLITE_DISABLE_FTS4_DEFERRED if( pCsr->pDeferred && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred) ){ Fts3Phrase *pPhrase = pExpr->pPhrase; assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 ); if( pExpr->bDeferred ){ fts3EvalInvalidatePoslist(pPhrase); } *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase); bHit = (pPhrase->doclist.pList!=0); pExpr->iDocid = pCsr->iPrevId; }else #endif { bHit = ( pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId && pExpr->pPhrase->doclist.nList>0 ); } break; } } } return bHit; } /* ** This function is called as the second part of each xNext operation when ** iterating through the results of a full-text query. At this point the ** cursor points to a row that matches the query expression, with the ** following caveats: ** ** * Up until this point, "NEAR" operators in the expression have been ** treated as "AND". ** ** * Deferred tokens have not yet been considered. ** ** If *pRc is not SQLITE_OK when this function is called, it immediately ** returns 0. Otherwise, it tests whether or not after considering NEAR ** operators and deferred tokens the current row is still a match for the ** expression. It returns 1 if both of the following are true: ** ** 1. *pRc is SQLITE_OK when this function returns, and ** ** 2. After scanning the current FTS table row for the deferred tokens, ** it is determined that the row does *not* match the query. ** ** Or, if no error occurs and it seems the current row does match the FTS ** query, return 0. */ int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc){ int rc = *pRc; int bMiss = 0; if( rc==SQLITE_OK ){ /* If there are one or more deferred tokens, load the current row into ** memory and scan it to determine the position list for each deferred ** token. Then, see if this row is really a match, considering deferred ** tokens and NEAR operators (neither of which were taken into account ** earlier, by fts3EvalNextRow()). */ if( pCsr->pDeferred ){ rc = fts3CursorSeek(0, pCsr); if( rc==SQLITE_OK ){ rc = sqlite3Fts3CacheDeferredDoclists(pCsr); } } bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc)); /* Free the position-lists accumulated for each deferred token above. */ sqlite3Fts3FreeDeferredDoclists(pCsr); *pRc = rc; } return (rc==SQLITE_OK && bMiss); } /* ** Advance to the next document that matches the FTS expression in ** Fts3Cursor.pExpr. */ static int fts3EvalNext(Fts3Cursor *pCsr){ int rc = SQLITE_OK; /* Return Code */ Fts3Expr *pExpr = pCsr->pExpr; assert( pCsr->isEof==0 ); if( pExpr==0 ){ pCsr->isEof = 1; }else{ do { if( pCsr->isRequireSeek==0 ){ sqlite3_reset(pCsr->pStmt); } assert( sqlite3_data_count(pCsr->pStmt)==0 ); fts3EvalNextRow(pCsr, pExpr, &rc); pCsr->isEof = pExpr->bEof; pCsr->isRequireSeek = 1; pCsr->isMatchinfoNeeded = 1; pCsr->iPrevId = pExpr->iDocid; }while( pCsr->isEof==0 && sqlite3Fts3EvalTestDeferred(pCsr, &rc) ); } /* Check if the cursor is past the end of the docid range specified ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */ if( rc==SQLITE_OK && ( (pCsr->bDesc==0 && pCsr->iPrevId>pCsr->iMaxDocid) || (pCsr->bDesc!=0 && pCsr->iPrevIdiMinDocid) )){ pCsr->isEof = 1; } return rc; } /* ** Restart interation for expression pExpr so that the next call to ** fts3EvalNext() visits the first row. Do not allow incremental ** loading or merging of phrase doclists for this iteration. ** ** If *pRc is other than SQLITE_OK when this function is called, it is ** a no-op. If an error occurs within this function, *pRc is set to an ** SQLite error code before returning. */ static void fts3EvalRestart( Fts3Cursor *pCsr, Fts3Expr *pExpr, int *pRc ){ if( pExpr && *pRc==SQLITE_OK ){ Fts3Phrase *pPhrase = pExpr->pPhrase; if( pPhrase ){ fts3EvalInvalidatePoslist(pPhrase); if( pPhrase->bIncr ){ int i; for(i=0; inToken; i++){ Fts3PhraseToken *pToken = &pPhrase->aToken[i]; assert( pToken->pDeferred==0 ); if( pToken->pSegcsr ){ sqlite3Fts3MsrIncrRestart(pToken->pSegcsr); } } *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase); } pPhrase->doclist.pNextDocid = 0; pPhrase->doclist.iDocid = 0; pPhrase->pOrPoslist = 0; } pExpr->iDocid = 0; pExpr->bEof = 0; pExpr->bStart = 0; fts3EvalRestart(pCsr, pExpr->pLeft, pRc); fts3EvalRestart(pCsr, pExpr->pRight, pRc); } } /* ** After allocating the Fts3Expr.aMI[] array for each phrase in the ** expression rooted at pExpr, the cursor iterates through all rows matched ** by pExpr, calling this function for each row. This function increments ** the values in Fts3Expr.aMI[] according to the position-list currently ** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase ** expression nodes. */ static void fts3EvalUpdateCounts(Fts3Expr *pExpr, int nCol){ if( pExpr ){ Fts3Phrase *pPhrase = pExpr->pPhrase; if( pPhrase && pPhrase->doclist.pList ){ int iCol = 0; char *p = pPhrase->doclist.pList; do{ u8 c = 0; int iCnt = 0; while( 0xFE & (*p | c) ){ if( (c&0x80)==0 ) iCnt++; c = *p++ & 0x80; } /* aMI[iCol*3 + 1] = Number of occurrences ** aMI[iCol*3 + 2] = Number of rows containing at least one instance */ pExpr->aMI[iCol*3 + 1] += iCnt; pExpr->aMI[iCol*3 + 2] += (iCnt>0); if( *p==0x00 ) break; p++; p += fts3GetVarint32(p, &iCol); }while( iColpLeft, nCol); fts3EvalUpdateCounts(pExpr->pRight, nCol); } } /* ** Expression pExpr must be of type FTSQUERY_PHRASE. ** ** If it is not already allocated and populated, this function allocates and ** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part ** of a NEAR expression, then it also allocates and populates the same array ** for all other phrases that are part of the NEAR expression. ** ** SQLITE_OK is returned if the aMI[] array is successfully allocated and ** populated. Otherwise, if an error occurs, an SQLite error code is returned. */ static int fts3EvalGatherStats( Fts3Cursor *pCsr, /* Cursor object */ Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */ ){ int rc = SQLITE_OK; /* Return code */ assert( pExpr->eType==FTSQUERY_PHRASE ); if( pExpr->aMI==0 ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; Fts3Expr *pRoot; /* Root of NEAR expression */ Fts3Expr *p; /* Iterator used for several purposes */ sqlite3_int64 iPrevId = pCsr->iPrevId; sqlite3_int64 iDocid; u8 bEof; /* Find the root of the NEAR expression */ pRoot = pExpr; while( pRoot->pParent && pRoot->pParent->eType==FTSQUERY_NEAR ){ pRoot = pRoot->pParent; } iDocid = pRoot->iDocid; bEof = pRoot->bEof; assert( pRoot->bStart ); /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */ for(p=pRoot; p; p=p->pLeft){ Fts3Expr *pE = (p->eType==FTSQUERY_PHRASE?p:p->pRight); assert( pE->aMI==0 ); pE->aMI = (u32 *)sqlite3_malloc64(pTab->nColumn * 3 * sizeof(u32)); if( !pE->aMI ) return SQLITE_NOMEM; memset(pE->aMI, 0, pTab->nColumn * 3 * sizeof(u32)); } fts3EvalRestart(pCsr, pRoot, &rc); while( pCsr->isEof==0 && rc==SQLITE_OK ){ do { /* Ensure the %_content statement is reset. */ if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt); assert( sqlite3_data_count(pCsr->pStmt)==0 ); /* Advance to the next document */ fts3EvalNextRow(pCsr, pRoot, &rc); pCsr->isEof = pRoot->bEof; pCsr->isRequireSeek = 1; pCsr->isMatchinfoNeeded = 1; pCsr->iPrevId = pRoot->iDocid; }while( pCsr->isEof==0 && pRoot->eType==FTSQUERY_NEAR && sqlite3Fts3EvalTestDeferred(pCsr, &rc) ); if( rc==SQLITE_OK && pCsr->isEof==0 ){ fts3EvalUpdateCounts(pRoot, pTab->nColumn); } } pCsr->isEof = 0; pCsr->iPrevId = iPrevId; if( bEof ){ pRoot->bEof = bEof; }else{ /* Caution: pRoot may iterate through docids in ascending or descending ** order. For this reason, even though it seems more defensive, the ** do loop can not be written: ** ** do {...} while( pRoot->iDocidbEof==0 ); if( pRoot->bEof ) rc = FTS_CORRUPT_VTAB; }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK ); } } return rc; } /* ** This function is used by the matchinfo() module to query a phrase ** expression node for the following information: ** ** 1. The total number of occurrences of the phrase in each column of ** the FTS table (considering all rows), and ** ** 2. For each column, the number of rows in the table for which the ** column contains at least one instance of the phrase. ** ** If no error occurs, SQLITE_OK is returned and the values for each column ** written into the array aiOut as follows: ** ** aiOut[iCol*3 + 1] = Number of occurrences ** aiOut[iCol*3 + 2] = Number of rows containing at least one instance ** ** Caveats: ** ** * If a phrase consists entirely of deferred tokens, then all output ** values are set to the number of documents in the table. In other ** words we assume that very common tokens occur exactly once in each ** column of each row of the table. ** ** * If a phrase contains some deferred tokens (and some non-deferred ** tokens), count the potential occurrence identified by considering ** the non-deferred tokens instead of actual phrase occurrences. ** ** * If the phrase is part of a NEAR expression, then only phrase instances ** that meet the NEAR constraint are included in the counts. */ int sqlite3Fts3EvalPhraseStats( Fts3Cursor *pCsr, /* FTS cursor handle */ Fts3Expr *pExpr, /* Phrase expression */ u32 *aiOut /* Array to write results into (see above) */ ){ Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; int rc = SQLITE_OK; int iCol; if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){ assert( pCsr->nDoc>0 ); for(iCol=0; iColnColumn; iCol++){ aiOut[iCol*3 + 1] = (u32)pCsr->nDoc; aiOut[iCol*3 + 2] = (u32)pCsr->nDoc; } }else{ rc = fts3EvalGatherStats(pCsr, pExpr); if( rc==SQLITE_OK ){ assert( pExpr->aMI ); for(iCol=0; iColnColumn; iCol++){ aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1]; aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2]; } } } return rc; } /* ** The expression pExpr passed as the second argument to this function ** must be of type FTSQUERY_PHRASE. ** ** The returned value is either NULL or a pointer to a buffer containing ** a position-list indicating the occurrences of the phrase in column iCol ** of the current row. ** ** More specifically, the returned buffer contains 1 varint for each ** occurrence of the phrase in the column, stored using the normal (delta+2) ** compression and is terminated by either an 0x01 or 0x00 byte. For example, ** if the requested column contains "a b X c d X X" and the position-list ** for 'X' is requested, the buffer returned may contain: ** ** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00 ** ** This function works regardless of whether or not the phrase is deferred, ** incremental, or neither. */ int sqlite3Fts3EvalPhrasePoslist( Fts3Cursor *pCsr, /* FTS3 cursor object */ Fts3Expr *pExpr, /* Phrase to return doclist for */ int iCol, /* Column to return position list for */ char **ppOut /* OUT: Pointer to position list */ ){ Fts3Phrase *pPhrase = pExpr->pPhrase; Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; char *pIter; int iThis; sqlite3_int64 iDocid; /* If this phrase is applies specifically to some column other than ** column iCol, return a NULL pointer. */ *ppOut = 0; assert( iCol>=0 && iColnColumn ); if( (pPhrase->iColumnnColumn && pPhrase->iColumn!=iCol) ){ return SQLITE_OK; } iDocid = pExpr->iDocid; pIter = pPhrase->doclist.pList; if( iDocid!=pCsr->iPrevId || pExpr->bEof ){ int rc = SQLITE_OK; int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */ int bOr = 0; u8 bTreeEof = 0; Fts3Expr *p; /* Used to iterate from pExpr to root */ Fts3Expr *pNear; /* Most senior NEAR ancestor (or pExpr) */ int bMatch; /* Check if this phrase descends from an OR expression node. If not, ** return NULL. Otherwise, the entry that corresponds to docid ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the ** tree that the node is part of has been marked as EOF, but the node ** itself is not EOF, then it may point to an earlier entry. */ pNear = pExpr; for(p=pExpr->pParent; p; p=p->pParent){ if( p->eType==FTSQUERY_OR ) bOr = 1; if( p->eType==FTSQUERY_NEAR ) pNear = p; if( p->bEof ) bTreeEof = 1; } if( bOr==0 ) return SQLITE_OK; /* This is the descendent of an OR node. In this case we cannot use ** an incremental phrase. Load the entire doclist for the phrase ** into memory in this case. */ if( pPhrase->bIncr ){ int bEofSave = pNear->bEof; fts3EvalRestart(pCsr, pNear, &rc); while( rc==SQLITE_OK && !pNear->bEof ){ fts3EvalNextRow(pCsr, pNear, &rc); if( bEofSave==0 && pNear->iDocid==iDocid ) break; } assert( rc!=SQLITE_OK || pPhrase->bIncr==0 ); if( rc==SQLITE_OK && pNear->bEof!=bEofSave ){ rc = FTS_CORRUPT_VTAB; } } if( bTreeEof ){ while( rc==SQLITE_OK && !pNear->bEof ){ fts3EvalNextRow(pCsr, pNear, &rc); } } if( rc!=SQLITE_OK ) return rc; bMatch = 1; for(p=pNear; p; p=p->pLeft){ u8 bEof = 0; Fts3Expr *pTest = p; Fts3Phrase *pPh; assert( pTest->eType==FTSQUERY_NEAR || pTest->eType==FTSQUERY_PHRASE ); if( pTest->eType==FTSQUERY_NEAR ) pTest = pTest->pRight; assert( pTest->eType==FTSQUERY_PHRASE ); pPh = pTest->pPhrase; pIter = pPh->pOrPoslist; iDocid = pPh->iOrDocid; if( pCsr->bDesc==bDescDoclist ){ bEof = !pPh->doclist.nAll || (pIter >= (pPh->doclist.aAll + pPh->doclist.nAll)); while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){ sqlite3Fts3DoclistNext( bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll, &pIter, &iDocid, &bEof ); } }else{ bEof = !pPh->doclist.nAll || (pIter && pIter<=pPh->doclist.aAll); while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){ int dummy; sqlite3Fts3DoclistPrev( bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll, &pIter, &iDocid, &dummy, &bEof ); } } pPh->pOrPoslist = pIter; pPh->iOrDocid = iDocid; if( bEof || iDocid!=pCsr->iPrevId ) bMatch = 0; } if( bMatch ){ pIter = pPhrase->pOrPoslist; }else{ pIter = 0; } } if( pIter==0 ) return SQLITE_OK; if( *pIter==0x01 ){ pIter++; pIter += fts3GetVarint32(pIter, &iThis); }else{ iThis = 0; } while( iThisdoclist, and ** * any Fts3MultiSegReader objects held by phrase tokens. */ void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){ if( pPhrase ){ int i; sqlite3_free(pPhrase->doclist.aAll); fts3EvalInvalidatePoslist(pPhrase); memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist)); for(i=0; inToken; i++){ fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr); pPhrase->aToken[i].pSegcsr = 0; } } } /* ** Return SQLITE_CORRUPT_VTAB. */ #ifdef SQLITE_DEBUG int sqlite3Fts3Corrupt(){ return SQLITE_CORRUPT_VTAB; } #endif #if !SQLITE_CORE /* ** Initialize API pointer table, if required. */ #ifdef _WIN32 __declspec(dllexport) #endif int sqlite3_fts3_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3Fts3Init(db); } #endif #endif