/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code for implementations of the r-tree and r*-tree ** algorithms packaged as an SQLite virtual table module. */ /* ** Database Format of R-Tree Tables ** -------------------------------- ** ** The data structure for a single virtual r-tree table is stored in three ** native SQLite tables declared as follows. In each case, the '%' character ** in the table name is replaced with the user-supplied name of the r-tree ** table. ** ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) ** ** The data for each node of the r-tree structure is stored in the %_node ** table. For each node that is not the root node of the r-tree, there is ** an entry in the %_parent table associating the node with its parent. ** And for each row of data in the table, there is an entry in the %_rowid ** table that maps from the entries rowid to the id of the node that it ** is stored on. If the r-tree contains auxiliary columns, those are stored ** on the end of the %_rowid table. ** ** The root node of an r-tree always exists, even if the r-tree table is ** empty. The nodeno of the root node is always 1. All other nodes in the ** table must be the same size as the root node. The content of each node ** is formatted as follows: ** ** 1. If the node is the root node (node 1), then the first 2 bytes ** of the node contain the tree depth as a big-endian integer. ** For non-root nodes, the first 2 bytes are left unused. ** ** 2. The next 2 bytes contain the number of entries currently ** stored in the node. ** ** 3. The remainder of the node contains the node entries. Each entry ** consists of a single 8-byte integer followed by an even number ** of 4-byte coordinates. For leaf nodes the integer is the rowid ** of a record. For internal nodes it is the node number of a ** child page. */ #if !defined(SQLITE_CORE) \ || (defined(SQLITE_ENABLE_RTREE) && !defined(SQLITE_OMIT_VIRTUALTABLE)) #ifndef SQLITE_CORE #include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #else #include "sqlite3.h" #endif int sqlite3GetToken(const unsigned char*,int*); /* In the SQLite core */ /* ** If building separately, we will need some setup that is normally ** found in sqliteInt.h */ #if !defined(SQLITE_AMALGAMATION) #include "sqlite3rtree.h" typedef sqlite3_int64 i64; typedef sqlite3_uint64 u64; typedef unsigned char u8; typedef unsigned short u16; typedef unsigned int u32; #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) # define NDEBUG 1 #endif #if defined(NDEBUG) && defined(SQLITE_DEBUG) # undef NDEBUG #endif #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST) # define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1 #endif #if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS) # define ALWAYS(X) (1) # define NEVER(X) (0) #elif !defined(NDEBUG) # define ALWAYS(X) ((X)?1:(assert(0),0)) # define NEVER(X) ((X)?(assert(0),1):0) #else # define ALWAYS(X) (X) # define NEVER(X) (X) #endif #endif /* !defined(SQLITE_AMALGAMATION) */ /* Macro to check for 4-byte alignment. Only used inside of assert() */ #ifdef SQLITE_DEBUG # define FOUR_BYTE_ALIGNED(X) ((((char*)(X) - (char*)0) & 3)==0) #endif #include #include #include #include /* The following macro is used to suppress compiler warnings. */ #ifndef UNUSED_PARAMETER # define UNUSED_PARAMETER(x) (void)(x) #endif typedef struct Rtree Rtree; typedef struct RtreeCursor RtreeCursor; typedef struct RtreeNode RtreeNode; typedef struct RtreeCell RtreeCell; typedef struct RtreeConstraint RtreeConstraint; typedef struct RtreeMatchArg RtreeMatchArg; typedef struct RtreeGeomCallback RtreeGeomCallback; typedef union RtreeCoord RtreeCoord; typedef struct RtreeSearchPoint RtreeSearchPoint; /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ #define RTREE_MAX_DIMENSIONS 5 /* Maximum number of auxiliary columns */ #define RTREE_MAX_AUX_COLUMN 100 /* Size of hash table Rtree.aHash. This hash table is not expected to ** ever contain very many entries, so a fixed number of buckets is ** used. */ #define HASHSIZE 97 /* The xBestIndex method of this virtual table requires an estimate of ** the number of rows in the virtual table to calculate the costs of ** various strategies. If possible, this estimate is loaded from the ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum). ** Otherwise, if no sqlite_stat1 entry is available, use ** RTREE_DEFAULT_ROWEST. */ #define RTREE_DEFAULT_ROWEST 1048576 #define RTREE_MIN_ROWEST 100 /* ** An rtree virtual-table object. */ struct Rtree { sqlite3_vtab base; /* Base class. Must be first */ sqlite3 *db; /* Host database connection */ int iNodeSize; /* Size in bytes of each node in the node table */ u8 nDim; /* Number of dimensions */ u8 nDim2; /* Twice the number of dimensions */ u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ u8 nBytesPerCell; /* Bytes consumed per cell */ u8 inWrTrans; /* True if inside write transaction */ u8 nAux; /* # of auxiliary columns in %_rowid */ #ifdef SQLITE_ENABLE_GEOPOLY u8 nAuxNotNull; /* Number of initial not-null aux columns */ #endif #ifdef SQLITE_DEBUG u8 bCorrupt; /* Shadow table corruption detected */ #endif int iDepth; /* Current depth of the r-tree structure */ char *zDb; /* Name of database containing r-tree table */ char *zName; /* Name of r-tree table */ char *zNodeName; /* Name of the %_node table */ u32 nBusy; /* Current number of users of this structure */ i64 nRowEst; /* Estimated number of rows in this table */ u32 nCursor; /* Number of open cursors */ u32 nNodeRef; /* Number RtreeNodes with positive nRef */ char *zReadAuxSql; /* SQL for statement to read aux data */ /* List of nodes removed during a CondenseTree operation. List is ** linked together via the pointer normally used for hash chains - ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree ** headed by the node (leaf nodes have RtreeNode.iNode==0). */ RtreeNode *pDeleted; /* Blob I/O on xxx_node */ sqlite3_blob *pNodeBlob; /* Statements to read/write/delete a record from xxx_node */ sqlite3_stmt *pWriteNode; sqlite3_stmt *pDeleteNode; /* Statements to read/write/delete a record from xxx_rowid */ sqlite3_stmt *pReadRowid; sqlite3_stmt *pWriteRowid; sqlite3_stmt *pDeleteRowid; /* Statements to read/write/delete a record from xxx_parent */ sqlite3_stmt *pReadParent; sqlite3_stmt *pWriteParent; sqlite3_stmt *pDeleteParent; /* Statement for writing to the "aux:" fields, if there are any */ sqlite3_stmt *pWriteAux; RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ }; /* Possible values for Rtree.eCoordType: */ #define RTREE_COORD_REAL32 0 #define RTREE_COORD_INT32 1 /* ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will ** only deal with integer coordinates. No floating point operations ** will be done. */ #ifdef SQLITE_RTREE_INT_ONLY typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ typedef int RtreeValue; /* Low accuracy coordinate */ # define RTREE_ZERO 0 #else typedef double RtreeDValue; /* High accuracy coordinate */ typedef float RtreeValue; /* Low accuracy coordinate */ # define RTREE_ZERO 0.0 #endif /* ** Set the Rtree.bCorrupt flag */ #ifdef SQLITE_DEBUG # define RTREE_IS_CORRUPT(X) ((X)->bCorrupt = 1) #else # define RTREE_IS_CORRUPT(X) #endif /* ** When doing a search of an r-tree, instances of the following structure ** record intermediate results from the tree walk. ** ** The id is always a node-id. For iLevel>=1 the id is the node-id of ** the node that the RtreeSearchPoint represents. When iLevel==0, however, ** the id is of the parent node and the cell that RtreeSearchPoint ** represents is the iCell-th entry in the parent node. */ struct RtreeSearchPoint { RtreeDValue rScore; /* The score for this node. Smallest goes first. */ sqlite3_int64 id; /* Node ID */ u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */ u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */ u8 iCell; /* Cell index within the node */ }; /* ** The minimum number of cells allowed for a node is a third of the ** maximum. In Gutman's notation: ** ** m = M/3 ** ** If an R*-tree "Reinsert" operation is required, the same number of ** cells are removed from the overfull node and reinserted into the tree. */ #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) #define RTREE_REINSERT(p) RTREE_MINCELLS(p) #define RTREE_MAXCELLS 51 /* ** The smallest possible node-size is (512-64)==448 bytes. And the largest ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). ** Therefore all non-root nodes must contain at least 3 entries. Since ** 3^40 is greater than 2^64, an r-tree structure always has a depth of ** 40 or less. */ #define RTREE_MAX_DEPTH 40 /* ** Number of entries in the cursor RtreeNode cache. The first entry is ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining ** entries cache the RtreeNode for the first elements of the priority queue. */ #define RTREE_CACHE_SZ 5 /* ** An rtree cursor object. */ struct RtreeCursor { sqlite3_vtab_cursor base; /* Base class. Must be first */ u8 atEOF; /* True if at end of search */ u8 bPoint; /* True if sPoint is valid */ u8 bAuxValid; /* True if pReadAux is valid */ int iStrategy; /* Copy of idxNum search parameter */ int nConstraint; /* Number of entries in aConstraint */ RtreeConstraint *aConstraint; /* Search constraints. */ int nPointAlloc; /* Number of slots allocated for aPoint[] */ int nPoint; /* Number of slots used in aPoint[] */ int mxLevel; /* iLevel value for root of the tree */ RtreeSearchPoint *aPoint; /* Priority queue for search points */ sqlite3_stmt *pReadAux; /* Statement to read aux-data */ RtreeSearchPoint sPoint; /* Cached next search point */ RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ }; /* Return the Rtree of a RtreeCursor */ #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) /* ** A coordinate can be either a floating point number or a integer. All ** coordinates within a single R-Tree are always of the same time. */ union RtreeCoord { RtreeValue f; /* Floating point value */ int i; /* Integer value */ u32 u; /* Unsigned for byte-order conversions */ }; /* ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord ** formatted as a RtreeDValue (double or int64). This macro assumes that local ** variable pRtree points to the Rtree structure associated with the ** RtreeCoord. */ #ifdef SQLITE_RTREE_INT_ONLY # define DCOORD(coord) ((RtreeDValue)coord.i) #else # define DCOORD(coord) ( \ (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ ((double)coord.f) : \ ((double)coord.i) \ ) #endif /* ** A search constraint. */ struct RtreeConstraint { int iCoord; /* Index of constrained coordinate */ int op; /* Constraining operation */ union { RtreeDValue rValue; /* Constraint value. */ int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*); int (*xQueryFunc)(sqlite3_rtree_query_info*); } u; sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */ }; /* Possible values for RtreeConstraint.op */ #define RTREE_EQ 0x41 /* A */ #define RTREE_LE 0x42 /* B */ #define RTREE_LT 0x43 /* C */ #define RTREE_GE 0x44 /* D */ #define RTREE_GT 0x45 /* E */ #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */ #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */ /* Special operators available only on cursors. Needs to be consecutive ** with the normal values above, but must be less than RTREE_MATCH. These ** are used in the cursor for contraints such as x=NULL (RTREE_FALSE) or ** x<'xyz' (RTREE_TRUE) */ #define RTREE_TRUE 0x3f /* ? */ #define RTREE_FALSE 0x40 /* @ */ /* ** An rtree structure node. */ struct RtreeNode { RtreeNode *pParent; /* Parent node */ i64 iNode; /* The node number */ int nRef; /* Number of references to this node */ int isDirty; /* True if the node needs to be written to disk */ u8 *zData; /* Content of the node, as should be on disk */ RtreeNode *pNext; /* Next node in this hash collision chain */ }; /* Return the number of cells in a node */ #define NCELL(pNode) readInt16(&(pNode)->zData[2]) /* ** A single cell from a node, deserialized */ struct RtreeCell { i64 iRowid; /* Node or entry ID */ RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */ }; /* ** This object becomes the sqlite3_user_data() for the SQL functions ** that are created by sqlite3_rtree_geometry_callback() and ** sqlite3_rtree_query_callback() and which appear on the right of MATCH ** operators in order to constrain a search. ** ** xGeom and xQueryFunc are the callback functions. Exactly one of ** xGeom and xQueryFunc fields is non-NULL, depending on whether the ** SQL function was created using sqlite3_rtree_geometry_callback() or ** sqlite3_rtree_query_callback(). ** ** This object is deleted automatically by the destructor mechanism in ** sqlite3_create_function_v2(). */ struct RtreeGeomCallback { int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); int (*xQueryFunc)(sqlite3_rtree_query_info*); void (*xDestructor)(void*); void *pContext; }; /* ** An instance of this structure (in the form of a BLOB) is returned by ** the SQL functions that sqlite3_rtree_geometry_callback() and ** sqlite3_rtree_query_callback() create, and is read as the right-hand ** operand to the MATCH operator of an R-Tree. */ struct RtreeMatchArg { u32 iSize; /* Size of this object */ RtreeGeomCallback cb; /* Info about the callback functions */ int nParam; /* Number of parameters to the SQL function */ sqlite3_value **apSqlParam; /* Original SQL parameter values */ RtreeDValue aParam[1]; /* Values for parameters to the SQL function */ }; #ifndef MAX # define MAX(x,y) ((x) < (y) ? (y) : (x)) #endif #ifndef MIN # define MIN(x,y) ((x) > (y) ? (y) : (x)) #endif /* What version of GCC is being used. 0 means GCC is not being used . ** Note that the GCC_VERSION macro will also be set correctly when using ** clang, since clang works hard to be gcc compatible. So the gcc ** optimizations will also work when compiling with clang. */ #ifndef GCC_VERSION #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) #else # define GCC_VERSION 0 #endif #endif /* The testcase() macro should already be defined in the amalgamation. If ** it is not, make it a no-op. */ #ifndef SQLITE_AMALGAMATION # if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG) unsigned int sqlite3RtreeTestcase = 0; # define testcase(X) if( X ){ sqlite3RtreeTestcase += __LINE__; } # else # define testcase(X) # endif #endif /* ** Make sure that the compiler intrinsics we desire are enabled when ** compiling with an appropriate version of MSVC unless prevented by ** the SQLITE_DISABLE_INTRINSIC define. */ #if !defined(SQLITE_DISABLE_INTRINSIC) # if defined(_MSC_VER) && _MSC_VER>=1400 # if !defined(_WIN32_WCE) # include # pragma intrinsic(_byteswap_ulong) # pragma intrinsic(_byteswap_uint64) # else # include # endif # endif #endif /* ** Macros to determine whether the machine is big or little endian, ** and whether or not that determination is run-time or compile-time. ** ** For best performance, an attempt is made to guess at the byte-order ** using C-preprocessor macros. If that is unsuccessful, or if ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined ** at run-time. */ #ifndef SQLITE_BYTEORDER /* Replicate changes at tag-20230904a */ # if defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_BIG_ENDIAN__ # define SQLITE_BYTEORDER 4321 # elif defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__ # define SQLITE_BYTEORDER 1234 # elif defined(__BIG_ENDIAN__) && __BIG_ENDIAN__==1 # define SQLITE_BYTEORDER 4321 # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64) # define SQLITE_BYTEORDER 1234 # elif defined(sparc) || defined(__ARMEB__) || defined(__AARCH64EB__) # define SQLITE_BYTEORDER 4321 # else # define SQLITE_BYTEORDER 0 # endif #endif /* What version of MSVC is being used. 0 means MSVC is not being used */ #ifndef MSVC_VERSION #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) # define MSVC_VERSION _MSC_VER #else # define MSVC_VERSION 0 #endif #endif /* ** Functions to deserialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The deserialized value is returned. */ static int readInt16(u8 *p){ return (p[0]<<8) + p[1]; } static void readCoord(u8 *p, RtreeCoord *pCoord){ assert( FOUR_BYTE_ALIGNED(p) ); #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 pCoord->u = _byteswap_ulong(*(u32*)p); #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 pCoord->u = __builtin_bswap32(*(u32*)p); #elif SQLITE_BYTEORDER==4321 pCoord->u = *(u32*)p; #else pCoord->u = ( (((u32)p[0]) << 24) + (((u32)p[1]) << 16) + (((u32)p[2]) << 8) + (((u32)p[3]) << 0) ); #endif } static i64 readInt64(u8 *p){ #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 u64 x; memcpy(&x, p, 8); return (i64)_byteswap_uint64(x); #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 u64 x; memcpy(&x, p, 8); return (i64)__builtin_bswap64(x); #elif SQLITE_BYTEORDER==4321 i64 x; memcpy(&x, p, 8); return x; #else return (i64)( (((u64)p[0]) << 56) + (((u64)p[1]) << 48) + (((u64)p[2]) << 40) + (((u64)p[3]) << 32) + (((u64)p[4]) << 24) + (((u64)p[5]) << 16) + (((u64)p[6]) << 8) + (((u64)p[7]) << 0) ); #endif } /* ** Functions to serialize a 16 bit integer, 32 bit real number and ** 64 bit integer. The value returned is the number of bytes written ** to the argument buffer (always 2, 4 and 8 respectively). */ static void writeInt16(u8 *p, int i){ p[0] = (i>> 8)&0xFF; p[1] = (i>> 0)&0xFF; } static int writeCoord(u8 *p, RtreeCoord *pCoord){ u32 i; assert( FOUR_BYTE_ALIGNED(p) ); assert( sizeof(RtreeCoord)==4 ); assert( sizeof(u32)==4 ); #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 i = __builtin_bswap32(pCoord->u); memcpy(p, &i, 4); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 i = _byteswap_ulong(pCoord->u); memcpy(p, &i, 4); #elif SQLITE_BYTEORDER==4321 i = pCoord->u; memcpy(p, &i, 4); #else i = pCoord->u; p[0] = (i>>24)&0xFF; p[1] = (i>>16)&0xFF; p[2] = (i>> 8)&0xFF; p[3] = (i>> 0)&0xFF; #endif return 4; } static int writeInt64(u8 *p, i64 i){ #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 i = (i64)__builtin_bswap64((u64)i); memcpy(p, &i, 8); #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 i = (i64)_byteswap_uint64((u64)i); memcpy(p, &i, 8); #elif SQLITE_BYTEORDER==4321 memcpy(p, &i, 8); #else p[0] = (i>>56)&0xFF; p[1] = (i>>48)&0xFF; p[2] = (i>>40)&0xFF; p[3] = (i>>32)&0xFF; p[4] = (i>>24)&0xFF; p[5] = (i>>16)&0xFF; p[6] = (i>> 8)&0xFF; p[7] = (i>> 0)&0xFF; #endif return 8; } /* ** Increment the reference count of node p. */ static void nodeReference(RtreeNode *p){ if( p ){ assert( p->nRef>0 ); p->nRef++; } } /* ** Clear the content of node p (set all bytes to 0x00). */ static void nodeZero(Rtree *pRtree, RtreeNode *p){ memset(&p->zData[2], 0, pRtree->iNodeSize-2); p->isDirty = 1; } /* ** Given a node number iNode, return the corresponding key to use ** in the Rtree.aHash table. */ static unsigned int nodeHash(i64 iNode){ return ((unsigned)iNode) % HASHSIZE; } /* ** Search the node hash table for node iNode. If found, return a pointer ** to it. Otherwise, return 0. */ static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ RtreeNode *p; for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); return p; } /* ** Add node pNode to the node hash table. */ static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ int iHash; assert( pNode->pNext==0 ); iHash = nodeHash(pNode->iNode); pNode->pNext = pRtree->aHash[iHash]; pRtree->aHash[iHash] = pNode; } /* ** Remove node pNode from the node hash table. */ static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ RtreeNode **pp; if( pNode->iNode!=0 ){ pp = &pRtree->aHash[nodeHash(pNode->iNode)]; for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } *pp = pNode->pNext; pNode->pNext = 0; } } /* ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), ** indicating that node has not yet been assigned a node number. It is ** assigned a node number when nodeWrite() is called to write the ** node contents out to the database. */ static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ RtreeNode *pNode; pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode) + pRtree->iNodeSize); if( pNode ){ memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pRtree->nNodeRef++; pNode->pParent = pParent; pNode->isDirty = 1; nodeReference(pParent); } return pNode; } /* ** Clear the Rtree.pNodeBlob object */ static void nodeBlobReset(Rtree *pRtree){ sqlite3_blob *pBlob = pRtree->pNodeBlob; pRtree->pNodeBlob = 0; sqlite3_blob_close(pBlob); } /* ** Obtain a reference to an r-tree node. */ static int nodeAcquire( Rtree *pRtree, /* R-tree structure */ i64 iNode, /* Node number to load */ RtreeNode *pParent, /* Either the parent node or NULL */ RtreeNode **ppNode /* OUT: Acquired node */ ){ int rc = SQLITE_OK; RtreeNode *pNode = 0; /* Check if the requested node is already in the hash table. If so, ** increase its reference count and return it. */ if( (pNode = nodeHashLookup(pRtree, iNode))!=0 ){ if( pParent && ALWAYS(pParent!=pNode->pParent) ){ RTREE_IS_CORRUPT(pRtree); return SQLITE_CORRUPT_VTAB; } pNode->nRef++; *ppNode = pNode; return SQLITE_OK; } if( pRtree->pNodeBlob ){ sqlite3_blob *pBlob = pRtree->pNodeBlob; pRtree->pNodeBlob = 0; rc = sqlite3_blob_reopen(pBlob, iNode); pRtree->pNodeBlob = pBlob; if( rc ){ nodeBlobReset(pRtree); if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; } } if( pRtree->pNodeBlob==0 ){ rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, pRtree->zNodeName, "data", iNode, 0, &pRtree->pNodeBlob); } if( rc ){ *ppNode = 0; /* If unable to open an sqlite3_blob on the desired row, that can only ** be because the shadow tables hold erroneous data. */ if( rc==SQLITE_ERROR ){ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); } }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){ pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode)+pRtree->iNodeSize); if( !pNode ){ rc = SQLITE_NOMEM; }else{ pNode->pParent = pParent; pNode->zData = (u8 *)&pNode[1]; pNode->nRef = 1; pRtree->nNodeRef++; pNode->iNode = iNode; pNode->isDirty = 0; pNode->pNext = 0; rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData, pRtree->iNodeSize, 0); } } /* If the root node was just loaded, set pRtree->iDepth to the height ** of the r-tree structure. A height of zero means all data is stored on ** the root node. A height of one means the children of the root node ** are the leaves, and so on. If the depth as specified on the root node ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. */ if( rc==SQLITE_OK && pNode && iNode==1 ){ pRtree->iDepth = readInt16(pNode->zData); if( pRtree->iDepth>RTREE_MAX_DEPTH ){ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); } } /* If no error has occurred so far, check if the "number of entries" ** field on the node is too large. If so, set the return code to ** SQLITE_CORRUPT_VTAB. */ if( pNode && rc==SQLITE_OK ){ if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); } } if( rc==SQLITE_OK ){ if( pNode!=0 ){ nodeReference(pParent); nodeHashInsert(pRtree, pNode); }else{ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); } *ppNode = pNode; }else{ nodeBlobReset(pRtree); if( pNode ){ pRtree->nNodeRef--; sqlite3_free(pNode); } *ppNode = 0; } return rc; } /* ** Overwrite cell iCell of node pNode with the contents of pCell. */ static void nodeOverwriteCell( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* The node into which the cell is to be written */ RtreeCell *pCell, /* The cell to write */ int iCell /* Index into pNode into which pCell is written */ ){ int ii; u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; p += writeInt64(p, pCell->iRowid); for(ii=0; iinDim2; ii++){ p += writeCoord(p, &pCell->aCoord[ii]); } pNode->isDirty = 1; } /* ** Remove the cell with index iCell from node pNode. */ static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; u8 *pSrc = &pDst[pRtree->nBytesPerCell]; int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; memmove(pDst, pSrc, nByte); writeInt16(&pNode->zData[2], NCELL(pNode)-1); pNode->isDirty = 1; } /* ** Insert the contents of cell pCell into node pNode. If the insert ** is successful, return SQLITE_OK. ** ** If there is not enough free space in pNode, return SQLITE_FULL. */ static int nodeInsertCell( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* Write new cell into this node */ RtreeCell *pCell /* The cell to be inserted */ ){ int nCell; /* Current number of cells in pNode */ int nMaxCell; /* Maximum number of cells for pNode */ nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; nCell = NCELL(pNode); assert( nCell<=nMaxCell ); if( nCellzData[2], nCell+1); pNode->isDirty = 1; } return (nCell==nMaxCell); } /* ** If the node is dirty, write it out to the database. */ static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode->isDirty ){ sqlite3_stmt *p = pRtree->pWriteNode; if( pNode->iNode ){ sqlite3_bind_int64(p, 1, pNode->iNode); }else{ sqlite3_bind_null(p, 1); } sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); sqlite3_step(p); pNode->isDirty = 0; rc = sqlite3_reset(p); sqlite3_bind_null(p, 2); if( pNode->iNode==0 && rc==SQLITE_OK ){ pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); nodeHashInsert(pRtree, pNode); } } return rc; } /* ** Release a reference to a node. If the node is dirty and the reference ** count drops to zero, the node data is written to the database. */ static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ int rc = SQLITE_OK; if( pNode ){ assert( pNode->nRef>0 ); assert( pRtree->nNodeRef>0 ); pNode->nRef--; if( pNode->nRef==0 ){ pRtree->nNodeRef--; if( pNode->iNode==1 ){ pRtree->iDepth = -1; } if( pNode->pParent ){ rc = nodeRelease(pRtree, pNode->pParent); } if( rc==SQLITE_OK ){ rc = nodeWrite(pRtree, pNode); } nodeHashDelete(pRtree, pNode); sqlite3_free(pNode); } } return rc; } /* ** Return the 64-bit integer value associated with cell iCell of ** node pNode. If pNode is a leaf node, this is a rowid. If it is ** an internal node, then the 64-bit integer is a child page number. */ static i64 nodeGetRowid( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* The node from which to extract the ID */ int iCell /* The cell index from which to extract the ID */ ){ assert( iCellzData[4 + pRtree->nBytesPerCell*iCell]); } /* ** Return coordinate iCoord from cell iCell in node pNode. */ static void nodeGetCoord( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* The node from which to extract a coordinate */ int iCell, /* The index of the cell within the node */ int iCoord, /* Which coordinate to extract */ RtreeCoord *pCoord /* OUT: Space to write result to */ ){ assert( iCellzData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); } /* ** Deserialize cell iCell of node pNode. Populate the structure pointed ** to by pCell with the results. */ static void nodeGetCell( Rtree *pRtree, /* The overall R-Tree */ RtreeNode *pNode, /* The node containing the cell to be read */ int iCell, /* Index of the cell within the node */ RtreeCell *pCell /* OUT: Write the cell contents here */ ){ u8 *pData; RtreeCoord *pCoord; int ii = 0; pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell); pCoord = pCell->aCoord; do{ readCoord(pData, &pCoord[ii]); readCoord(pData+4, &pCoord[ii+1]); pData += 8; ii += 2; }while( iinDim2 ); } /* Forward declaration for the function that does the work of ** the virtual table module xCreate() and xConnect() methods. */ static int rtreeInit( sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int ); /* ** Rtree virtual table module xCreate method. */ static int rtreeCreate( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); } /* ** Rtree virtual table module xConnect method. */ static int rtreeConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); } /* ** Increment the r-tree reference count. */ static void rtreeReference(Rtree *pRtree){ pRtree->nBusy++; } /* ** Decrement the r-tree reference count. When the reference count reaches ** zero the structure is deleted. */ static void rtreeRelease(Rtree *pRtree){ pRtree->nBusy--; if( pRtree->nBusy==0 ){ pRtree->inWrTrans = 0; assert( pRtree->nCursor==0 ); nodeBlobReset(pRtree); assert( pRtree->nNodeRef==0 || pRtree->bCorrupt ); sqlite3_finalize(pRtree->pWriteNode); sqlite3_finalize(pRtree->pDeleteNode); sqlite3_finalize(pRtree->pReadRowid); sqlite3_finalize(pRtree->pWriteRowid); sqlite3_finalize(pRtree->pDeleteRowid); sqlite3_finalize(pRtree->pReadParent); sqlite3_finalize(pRtree->pWriteParent); sqlite3_finalize(pRtree->pDeleteParent); sqlite3_finalize(pRtree->pWriteAux); sqlite3_free(pRtree->zReadAuxSql); sqlite3_free(pRtree); } } /* ** Rtree virtual table module xDisconnect method. */ static int rtreeDisconnect(sqlite3_vtab *pVtab){ rtreeRelease((Rtree *)pVtab); return SQLITE_OK; } /* ** Rtree virtual table module xDestroy method. */ static int rtreeDestroy(sqlite3_vtab *pVtab){ Rtree *pRtree = (Rtree *)pVtab; int rc; char *zCreate = sqlite3_mprintf( "DROP TABLE '%q'.'%q_node';" "DROP TABLE '%q'.'%q_rowid';" "DROP TABLE '%q'.'%q_parent';", pRtree->zDb, pRtree->zName, pRtree->zDb, pRtree->zName, pRtree->zDb, pRtree->zName ); if( !zCreate ){ rc = SQLITE_NOMEM; }else{ nodeBlobReset(pRtree); rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); sqlite3_free(zCreate); } if( rc==SQLITE_OK ){ rtreeRelease(pRtree); } return rc; } /* ** Rtree virtual table module xOpen method. */ static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ int rc = SQLITE_NOMEM; Rtree *pRtree = (Rtree *)pVTab; RtreeCursor *pCsr; pCsr = (RtreeCursor *)sqlite3_malloc64(sizeof(RtreeCursor)); if( pCsr ){ memset(pCsr, 0, sizeof(RtreeCursor)); pCsr->base.pVtab = pVTab; rc = SQLITE_OK; pRtree->nCursor++; } *ppCursor = (sqlite3_vtab_cursor *)pCsr; return rc; } /* ** Reset a cursor back to its initial state. */ static void resetCursor(RtreeCursor *pCsr){ Rtree *pRtree = (Rtree *)(pCsr->base.pVtab); int ii; sqlite3_stmt *pStmt; if( pCsr->aConstraint ){ int i; /* Used to iterate through constraint array */ for(i=0; inConstraint; i++){ sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo; if( pInfo ){ if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser); sqlite3_free(pInfo); } } sqlite3_free(pCsr->aConstraint); pCsr->aConstraint = 0; } for(ii=0; iiaNode[ii]); sqlite3_free(pCsr->aPoint); pStmt = pCsr->pReadAux; memset(pCsr, 0, sizeof(RtreeCursor)); pCsr->base.pVtab = (sqlite3_vtab*)pRtree; pCsr->pReadAux = pStmt; } /* ** Rtree virtual table module xClose method. */ static int rtreeClose(sqlite3_vtab_cursor *cur){ Rtree *pRtree = (Rtree *)(cur->pVtab); RtreeCursor *pCsr = (RtreeCursor *)cur; assert( pRtree->nCursor>0 ); resetCursor(pCsr); sqlite3_finalize(pCsr->pReadAux); sqlite3_free(pCsr); pRtree->nCursor--; if( pRtree->nCursor==0 && pRtree->inWrTrans==0 ){ nodeBlobReset(pRtree); } return SQLITE_OK; } /* ** Rtree virtual table module xEof method. ** ** Return non-zero if the cursor does not currently point to a valid ** record (i.e if the scan has finished), or zero otherwise. */ static int rtreeEof(sqlite3_vtab_cursor *cur){ RtreeCursor *pCsr = (RtreeCursor *)cur; return pCsr->atEOF; } /* ** Convert raw bits from the on-disk RTree record into a coordinate value. ** The on-disk format is big-endian and needs to be converted for little- ** endian platforms. The on-disk record stores integer coordinates if ** eInt is true and it stores 32-bit floating point records if eInt is ** false. a[] is the four bytes of the on-disk record to be decoded. ** Store the results in "r". ** ** There are five versions of this macro. The last one is generic. The ** other four are various architectures-specific optimizations. */ #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ c.u = _byteswap_ulong(*(u32*)a); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ c.u = __builtin_bswap32(*(u32*)a); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #elif SQLITE_BYTEORDER==1234 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ memcpy(&c.u,a,4); \ c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \ ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #elif SQLITE_BYTEORDER==4321 #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ memcpy(&c.u,a,4); \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #else #define RTREE_DECODE_COORD(eInt, a, r) { \ RtreeCoord c; /* Coordinate decoded */ \ c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \ +((u32)a[2]<<8) + a[3]; \ r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ } #endif /* ** Check the RTree node or entry given by pCellData and p against the MATCH ** constraint pConstraint. */ static int rtreeCallbackConstraint( RtreeConstraint *pConstraint, /* The constraint to test */ int eInt, /* True if RTree holding integer coordinates */ u8 *pCellData, /* Raw cell content */ RtreeSearchPoint *pSearch, /* Container of this cell */ sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */ int *peWithin /* OUT: visibility of the cell */ ){ sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */ int nCoord = pInfo->nCoord; /* No. of coordinates */ int rc; /* Callback return code */ RtreeCoord c; /* Translator union */ sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */ assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY ); assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 ); if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ pInfo->iRowid = readInt64(pCellData); } pCellData += 8; #ifndef SQLITE_RTREE_INT_ONLY if( eInt==0 ){ switch( nCoord ){ case 10: readCoord(pCellData+36, &c); aCoord[9] = c.f; readCoord(pCellData+32, &c); aCoord[8] = c.f; case 8: readCoord(pCellData+28, &c); aCoord[7] = c.f; readCoord(pCellData+24, &c); aCoord[6] = c.f; case 6: readCoord(pCellData+20, &c); aCoord[5] = c.f; readCoord(pCellData+16, &c); aCoord[4] = c.f; case 4: readCoord(pCellData+12, &c); aCoord[3] = c.f; readCoord(pCellData+8, &c); aCoord[2] = c.f; default: readCoord(pCellData+4, &c); aCoord[1] = c.f; readCoord(pCellData, &c); aCoord[0] = c.f; } }else #endif { switch( nCoord ){ case 10: readCoord(pCellData+36, &c); aCoord[9] = c.i; readCoord(pCellData+32, &c); aCoord[8] = c.i; case 8: readCoord(pCellData+28, &c); aCoord[7] = c.i; readCoord(pCellData+24, &c); aCoord[6] = c.i; case 6: readCoord(pCellData+20, &c); aCoord[5] = c.i; readCoord(pCellData+16, &c); aCoord[4] = c.i; case 4: readCoord(pCellData+12, &c); aCoord[3] = c.i; readCoord(pCellData+8, &c); aCoord[2] = c.i; default: readCoord(pCellData+4, &c); aCoord[1] = c.i; readCoord(pCellData, &c); aCoord[0] = c.i; } } if( pConstraint->op==RTREE_MATCH ){ int eWithin = 0; rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, nCoord, aCoord, &eWithin); if( eWithin==0 ) *peWithin = NOT_WITHIN; *prScore = RTREE_ZERO; }else{ pInfo->aCoord = aCoord; pInfo->iLevel = pSearch->iLevel - 1; pInfo->rScore = pInfo->rParentScore = pSearch->rScore; pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin; rc = pConstraint->u.xQueryFunc(pInfo); if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin; if( pInfo->rScore<*prScore || *prScorerScore; } } return rc; } /* ** Check the internal RTree node given by pCellData against constraint p. ** If this constraint cannot be satisfied by any child within the node, ** set *peWithin to NOT_WITHIN. */ static void rtreeNonleafConstraint( RtreeConstraint *p, /* The constraint to test */ int eInt, /* True if RTree holds integer coordinates */ u8 *pCellData, /* Raw cell content as appears on disk */ int *peWithin /* Adjust downward, as appropriate */ ){ sqlite3_rtree_dbl val; /* Coordinate value convert to a double */ /* p->iCoord might point to either a lower or upper bound coordinate ** in a coordinate pair. But make pCellData point to the lower bound. */ pCellData += 8 + 4*(p->iCoord&0xfe); assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE || p->op==RTREE_FALSE ); assert( FOUR_BYTE_ALIGNED(pCellData) ); switch( p->op ){ case RTREE_TRUE: return; /* Always satisfied */ case RTREE_FALSE: break; /* Never satisfied */ case RTREE_EQ: RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the lower bound of the coordinate pair */ if( p->u.rValue>=val ){ pCellData += 4; RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the upper bound of the coordinate pair */ if( p->u.rValue<=val ) return; } break; case RTREE_LE: case RTREE_LT: RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the lower bound of the coordinate pair */ if( p->u.rValue>=val ) return; break; default: pCellData += 4; RTREE_DECODE_COORD(eInt, pCellData, val); /* val now holds the upper bound of the coordinate pair */ if( p->u.rValue<=val ) return; break; } *peWithin = NOT_WITHIN; } /* ** Check the leaf RTree cell given by pCellData against constraint p. ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN. ** If the constraint is satisfied, leave *peWithin unchanged. ** ** The constraint is of the form: xN op $val ** ** The op is given by p->op. The xN is p->iCoord-th coordinate in ** pCellData. $val is given by p->u.rValue. */ static void rtreeLeafConstraint( RtreeConstraint *p, /* The constraint to test */ int eInt, /* True if RTree holds integer coordinates */ u8 *pCellData, /* Raw cell content as appears on disk */ int *peWithin /* Adjust downward, as appropriate */ ){ RtreeDValue xN; /* Coordinate value converted to a double */ assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE || p->op==RTREE_FALSE ); pCellData += 8 + p->iCoord*4; assert( FOUR_BYTE_ALIGNED(pCellData) ); RTREE_DECODE_COORD(eInt, pCellData, xN); switch( p->op ){ case RTREE_TRUE: return; /* Always satisfied */ case RTREE_FALSE: break; /* Never satisfied */ case RTREE_LE: if( xN <= p->u.rValue ) return; break; case RTREE_LT: if( xN < p->u.rValue ) return; break; case RTREE_GE: if( xN >= p->u.rValue ) return; break; case RTREE_GT: if( xN > p->u.rValue ) return; break; default: if( xN == p->u.rValue ) return; break; } *peWithin = NOT_WITHIN; } /* ** One of the cells in node pNode is guaranteed to have a 64-bit ** integer value equal to iRowid. Return the index of this cell. */ static int nodeRowidIndex( Rtree *pRtree, RtreeNode *pNode, i64 iRowid, int *piIndex ){ int ii; int nCell = NCELL(pNode); assert( nCell<200 ); for(ii=0; iipParent; if( ALWAYS(pParent) ){ return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); }else{ *piIndex = -1; return SQLITE_OK; } } /* ** Compare two search points. Return negative, zero, or positive if the first ** is less than, equal to, or greater than the second. ** ** The rScore is the primary key. Smaller rScore values come first. ** If the rScore is a tie, then use iLevel as the tie breaker with smaller ** iLevel values coming first. In this way, if rScore is the same for all ** SearchPoints, then iLevel becomes the deciding factor and the result ** is a depth-first search, which is the desired default behavior. */ static int rtreeSearchPointCompare( const RtreeSearchPoint *pA, const RtreeSearchPoint *pB ){ if( pA->rScorerScore ) return -1; if( pA->rScore>pB->rScore ) return +1; if( pA->iLeveliLevel ) return -1; if( pA->iLevel>pB->iLevel ) return +1; return 0; } /* ** Interchange two search points in a cursor. */ static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){ RtreeSearchPoint t = p->aPoint[i]; assert( iaPoint[i] = p->aPoint[j]; p->aPoint[j] = t; i++; j++; if( i=RTREE_CACHE_SZ ){ nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); p->aNode[i] = 0; }else{ RtreeNode *pTemp = p->aNode[i]; p->aNode[i] = p->aNode[j]; p->aNode[j] = pTemp; } } } /* ** Return the search point with the lowest current score. */ static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){ return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0; } /* ** Get the RtreeNode for the search point with the lowest score. */ static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){ sqlite3_int64 id; int ii = 1 - pCur->bPoint; assert( ii==0 || ii==1 ); assert( pCur->bPoint || pCur->nPoint ); if( pCur->aNode[ii]==0 ){ assert( pRC!=0 ); id = ii ? pCur->aPoint[0].id : pCur->sPoint.id; *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]); } return pCur->aNode[ii]; } /* ** Push a new element onto the priority queue */ static RtreeSearchPoint *rtreeEnqueue( RtreeCursor *pCur, /* The cursor */ RtreeDValue rScore, /* Score for the new search point */ u8 iLevel /* Level for the new search point */ ){ int i, j; RtreeSearchPoint *pNew; if( pCur->nPoint>=pCur->nPointAlloc ){ int nNew = pCur->nPointAlloc*2 + 8; pNew = sqlite3_realloc64(pCur->aPoint, nNew*sizeof(pCur->aPoint[0])); if( pNew==0 ) return 0; pCur->aPoint = pNew; pCur->nPointAlloc = nNew; } i = pCur->nPoint++; pNew = pCur->aPoint + i; pNew->rScore = rScore; pNew->iLevel = iLevel; assert( iLevel<=RTREE_MAX_DEPTH ); while( i>0 ){ RtreeSearchPoint *pParent; j = (i-1)/2; pParent = pCur->aPoint + j; if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break; rtreeSearchPointSwap(pCur, j, i); i = j; pNew = pParent; } return pNew; } /* ** Allocate a new RtreeSearchPoint and return a pointer to it. Return ** NULL if malloc fails. */ static RtreeSearchPoint *rtreeSearchPointNew( RtreeCursor *pCur, /* The cursor */ RtreeDValue rScore, /* Score for the new search point */ u8 iLevel /* Level for the new search point */ ){ RtreeSearchPoint *pNew, *pFirst; pFirst = rtreeSearchPointFirst(pCur); pCur->anQueue[iLevel]++; if( pFirst==0 || pFirst->rScore>rScore || (pFirst->rScore==rScore && pFirst->iLevel>iLevel) ){ if( pCur->bPoint ){ int ii; pNew = rtreeEnqueue(pCur, rScore, iLevel); if( pNew==0 ) return 0; ii = (int)(pNew - pCur->aPoint) + 1; assert( ii==1 ); if( ALWAYS(iiaNode[ii]==0 ); pCur->aNode[ii] = pCur->aNode[0]; }else{ nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]); } pCur->aNode[0] = 0; *pNew = pCur->sPoint; } pCur->sPoint.rScore = rScore; pCur->sPoint.iLevel = iLevel; pCur->bPoint = 1; return &pCur->sPoint; }else{ return rtreeEnqueue(pCur, rScore, iLevel); } } #if 0 /* Tracing routines for the RtreeSearchPoint queue */ static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){ if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); } printf(" %d.%05lld.%02d %g %d", p->iLevel, p->id, p->iCell, p->rScore, p->eWithin ); idx++; if( idxaNode[idx]); }else{ printf("\n"); } } static void traceQueue(RtreeCursor *pCur, const char *zPrefix){ int ii; printf("=== %9s ", zPrefix); if( pCur->bPoint ){ tracePoint(&pCur->sPoint, -1, pCur); } for(ii=0; iinPoint; ii++){ if( ii>0 || pCur->bPoint ) printf(" "); tracePoint(&pCur->aPoint[ii], ii, pCur); } } # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B) #else # define RTREE_QUEUE_TRACE(A,B) /* no-op */ #endif /* Remove the search point with the lowest current score. */ static void rtreeSearchPointPop(RtreeCursor *p){ int i, j, k, n; i = 1 - p->bPoint; assert( i==0 || i==1 ); if( p->aNode[i] ){ nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); p->aNode[i] = 0; } if( p->bPoint ){ p->anQueue[p->sPoint.iLevel]--; p->bPoint = 0; }else if( ALWAYS(p->nPoint) ){ p->anQueue[p->aPoint[0].iLevel]--; n = --p->nPoint; p->aPoint[0] = p->aPoint[n]; if( naNode[1] = p->aNode[n+1]; p->aNode[n+1] = 0; } i = 0; while( (j = i*2+1)aPoint[k], &p->aPoint[j])<0 ){ if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){ rtreeSearchPointSwap(p, i, k); i = k; }else{ break; } }else{ if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){ rtreeSearchPointSwap(p, i, j); i = j; }else{ break; } } } } } /* ** Continue the search on cursor pCur until the front of the queue ** contains an entry suitable for returning as a result-set row, ** or until the RtreeSearchPoint queue is empty, indicating that the ** query has completed. */ static int rtreeStepToLeaf(RtreeCursor *pCur){ RtreeSearchPoint *p; Rtree *pRtree = RTREE_OF_CURSOR(pCur); RtreeNode *pNode; int eWithin; int rc = SQLITE_OK; int nCell; int nConstraint = pCur->nConstraint; int ii; int eInt; RtreeSearchPoint x; eInt = pRtree->eCoordType==RTREE_COORD_INT32; while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){ u8 *pCellData; pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc); if( rc ) return rc; nCell = NCELL(pNode); assert( nCell<200 ); pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell); while( p->iCellaConstraint + ii; if( pConstraint->op>=RTREE_MATCH ){ rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p, &rScore, &eWithin); if( rc ) return rc; }else if( p->iLevel==1 ){ rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin); }else{ rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin); } if( eWithin==NOT_WITHIN ){ p->iCell++; pCellData += pRtree->nBytesPerCell; break; } } if( eWithin==NOT_WITHIN ) continue; p->iCell++; x.iLevel = p->iLevel - 1; if( x.iLevel ){ x.id = readInt64(pCellData); for(ii=0; iinPoint; ii++){ if( pCur->aPoint[ii].id==x.id ){ RTREE_IS_CORRUPT(pRtree); return SQLITE_CORRUPT_VTAB; } } x.iCell = 0; }else{ x.id = p->id; x.iCell = p->iCell - 1; } if( p->iCell>=nCell ){ RTREE_QUEUE_TRACE(pCur, "POP-S:"); rtreeSearchPointPop(pCur); } if( rScoreeWithin = (u8)eWithin; p->id = x.id; p->iCell = x.iCell; RTREE_QUEUE_TRACE(pCur, "PUSH-S:"); break; } if( p->iCell>=nCell ){ RTREE_QUEUE_TRACE(pCur, "POP-Se:"); rtreeSearchPointPop(pCur); } } pCur->atEOF = p==0; return SQLITE_OK; } /* ** Rtree virtual table module xNext method. */ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; int rc = SQLITE_OK; /* Move to the next entry that matches the configured constraints. */ RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); if( pCsr->bAuxValid ){ pCsr->bAuxValid = 0; sqlite3_reset(pCsr->pReadAux); } rtreeSearchPointPop(pCsr); rc = rtreeStepToLeaf(pCsr); return rc; } /* ** Rtree virtual table module xRowid method. */ static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); int rc = SQLITE_OK; RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); if( rc==SQLITE_OK && ALWAYS(p) ){ if( p->iCell>=NCELL(pNode) ){ rc = SQLITE_ABORT; }else{ *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell); } } return rc; } /* ** Rtree virtual table module xColumn method. */ static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ Rtree *pRtree = (Rtree *)cur->pVtab; RtreeCursor *pCsr = (RtreeCursor *)cur; RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); RtreeCoord c; int rc = SQLITE_OK; RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); if( rc ) return rc; if( NEVER(p==0) ) return SQLITE_OK; if( p->iCell>=NCELL(pNode) ) return SQLITE_ABORT; if( i==0 ){ sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); }else if( i<=pRtree->nDim2 ){ nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c); #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ sqlite3_result_double(ctx, c.f); }else #endif { assert( pRtree->eCoordType==RTREE_COORD_INT32 ); sqlite3_result_int(ctx, c.i); } }else{ if( !pCsr->bAuxValid ){ if( pCsr->pReadAux==0 ){ rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0, &pCsr->pReadAux, 0); if( rc ) return rc; } sqlite3_bind_int64(pCsr->pReadAux, 1, nodeGetRowid(pRtree, pNode, p->iCell)); rc = sqlite3_step(pCsr->pReadAux); if( rc==SQLITE_ROW ){ pCsr->bAuxValid = 1; }else{ sqlite3_reset(pCsr->pReadAux); if( rc==SQLITE_DONE ) rc = SQLITE_OK; return rc; } } sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1)); } return SQLITE_OK; } /* ** Use nodeAcquire() to obtain the leaf node containing the record with ** rowid iRowid. If successful, set *ppLeaf to point to the node and ** return SQLITE_OK. If there is no such record in the table, set ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf ** to zero and return an SQLite error code. */ static int findLeafNode( Rtree *pRtree, /* RTree to search */ i64 iRowid, /* The rowid searching for */ RtreeNode **ppLeaf, /* Write the node here */ sqlite3_int64 *piNode /* Write the node-id here */ ){ int rc; *ppLeaf = 0; sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); if( piNode ) *piNode = iNode; rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); sqlite3_reset(pRtree->pReadRowid); }else{ rc = sqlite3_reset(pRtree->pReadRowid); } return rc; } /* ** This function is called to configure the RtreeConstraint object passed ** as the second argument for a MATCH constraint. The value passed as the ** first argument to this function is the right-hand operand to the MATCH ** operator. */ static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ RtreeMatchArg *pBlob, *pSrc; /* BLOB returned by geometry function */ sqlite3_rtree_query_info *pInfo; /* Callback information */ pSrc = sqlite3_value_pointer(pValue, "RtreeMatchArg"); if( pSrc==0 ) return SQLITE_ERROR; pInfo = (sqlite3_rtree_query_info*) sqlite3_malloc64( sizeof(*pInfo)+pSrc->iSize ); if( !pInfo ) return SQLITE_NOMEM; memset(pInfo, 0, sizeof(*pInfo)); pBlob = (RtreeMatchArg*)&pInfo[1]; memcpy(pBlob, pSrc, pSrc->iSize); pInfo->pContext = pBlob->cb.pContext; pInfo->nParam = pBlob->nParam; pInfo->aParam = pBlob->aParam; pInfo->apSqlParam = pBlob->apSqlParam; if( pBlob->cb.xGeom ){ pCons->u.xGeom = pBlob->cb.xGeom; }else{ pCons->op = RTREE_QUERY; pCons->u.xQueryFunc = pBlob->cb.xQueryFunc; } pCons->pInfo = pInfo; return SQLITE_OK; } /* ** Rtree virtual table module xFilter method. */ static int rtreeFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; RtreeNode *pRoot = 0; int ii; int rc = SQLITE_OK; int iCell = 0; rtreeReference(pRtree); /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ resetCursor(pCsr); pCsr->iStrategy = idxNum; if( idxNum==1 ){ /* Special case - lookup by rowid. */ RtreeNode *pLeaf; /* Leaf on which the required cell resides */ RtreeSearchPoint *p; /* Search point for the leaf */ i64 iRowid = sqlite3_value_int64(argv[0]); i64 iNode = 0; int eType = sqlite3_value_numeric_type(argv[0]); if( eType==SQLITE_INTEGER || (eType==SQLITE_FLOAT && (i64)(sqlite3_value_double(argv[0]))==iRowid && (double)iRowid==sqlite3_value_double(argv[0])) ){ rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); }else{ rc = SQLITE_OK; pLeaf = 0; } if( rc==SQLITE_OK && pLeaf!=0 ){ p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); assert( p!=0 ); /* Always returns pCsr->sPoint */ pCsr->aNode[0] = pLeaf; p->id = iNode; p->eWithin = PARTLY_WITHIN; rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); p->iCell = (u8)iCell; RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); }else{ pCsr->atEOF = 1; } }else{ /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array ** with the configured constraints. */ rc = nodeAcquire(pRtree, 1, 0, &pRoot); if( rc==SQLITE_OK && argc>0 ){ pCsr->aConstraint = sqlite3_malloc64(sizeof(RtreeConstraint)*argc); pCsr->nConstraint = argc; if( !pCsr->aConstraint ){ rc = SQLITE_NOMEM; }else{ memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); assert( (idxStr==0 && argc==0) || (idxStr && (int)strlen(idxStr)==argc*2) ); for(ii=0; iiaConstraint[ii]; int eType = sqlite3_value_numeric_type(argv[ii]); p->op = idxStr[ii*2]; p->iCoord = idxStr[ii*2+1]-'0'; if( p->op>=RTREE_MATCH ){ /* A MATCH operator. The right-hand-side must be a blob that ** can be cast into an RtreeMatchArg object. One created using ** an sqlite3_rtree_geometry_callback() SQL user function. */ rc = deserializeGeometry(argv[ii], p); if( rc!=SQLITE_OK ){ break; } p->pInfo->nCoord = pRtree->nDim2; p->pInfo->anQueue = pCsr->anQueue; p->pInfo->mxLevel = pRtree->iDepth + 1; }else if( eType==SQLITE_INTEGER ){ sqlite3_int64 iVal = sqlite3_value_int64(argv[ii]); #ifdef SQLITE_RTREE_INT_ONLY p->u.rValue = iVal; #else p->u.rValue = (double)iVal; if( iVal>=((sqlite3_int64)1)<<48 || iVal<=-(((sqlite3_int64)1)<<48) ){ if( p->op==RTREE_LT ) p->op = RTREE_LE; if( p->op==RTREE_GT ) p->op = RTREE_GE; } #endif }else if( eType==SQLITE_FLOAT ){ #ifdef SQLITE_RTREE_INT_ONLY p->u.rValue = sqlite3_value_int64(argv[ii]); #else p->u.rValue = sqlite3_value_double(argv[ii]); #endif }else{ p->u.rValue = RTREE_ZERO; if( eType==SQLITE_NULL ){ p->op = RTREE_FALSE; }else if( p->op==RTREE_LT || p->op==RTREE_LE ){ p->op = RTREE_TRUE; }else{ p->op = RTREE_FALSE; } } } } } if( rc==SQLITE_OK ){ RtreeSearchPoint *pNew; assert( pCsr->bPoint==0 ); /* Due to the resetCursor() call above */ pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1)); if( NEVER(pNew==0) ){ /* Because pCsr->bPoint was FALSE */ return SQLITE_NOMEM; } pNew->id = 1; pNew->iCell = 0; pNew->eWithin = PARTLY_WITHIN; assert( pCsr->bPoint==1 ); pCsr->aNode[0] = pRoot; pRoot = 0; RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); rc = rtreeStepToLeaf(pCsr); } } nodeRelease(pRtree, pRoot); rtreeRelease(pRtree); return rc; } /* ** Rtree virtual table module xBestIndex method. There are three ** table scan strategies to choose from (in order from most to ** least desirable): ** ** idxNum idxStr Strategy ** ------------------------------------------------ ** 1 Unused Direct lookup by rowid. ** 2 See below R-tree query or full-table scan. ** ------------------------------------------------ ** ** If strategy 1 is used, then idxStr is not meaningful. If strategy ** 2 is used, idxStr is formatted to contain 2 bytes for each ** constraint used. The first two bytes of idxStr correspond to ** the constraint in sqlite3_index_info.aConstraintUsage[] with ** (argvIndex==1) etc. ** ** The first of each pair of bytes in idxStr identifies the constraint ** operator as follows: ** ** Operator Byte Value ** ---------------------- ** = 0x41 ('A') ** <= 0x42 ('B') ** < 0x43 ('C') ** >= 0x44 ('D') ** > 0x45 ('E') ** MATCH 0x46 ('F') ** ---------------------- ** ** The second of each pair of bytes identifies the coordinate column ** to which the constraint applies. The leftmost coordinate column ** is 'a', the second from the left 'b' etc. */ static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ Rtree *pRtree = (Rtree*)tab; int rc = SQLITE_OK; int ii; int bMatch = 0; /* True if there exists a MATCH constraint */ i64 nRow; /* Estimated rows returned by this scan */ int iIdx = 0; char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; memset(zIdxStr, 0, sizeof(zIdxStr)); /* Check if there exists a MATCH constraint - even an unusable one. If there ** is, do not consider the lookup-by-rowid plan as using such a plan would ** require the VDBE to evaluate the MATCH constraint, which is not currently ** possible. */ for(ii=0; iinConstraint; ii++){ if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){ bMatch = 1; } } assert( pIdxInfo->idxStr==0 ); for(ii=0; iinConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; if( bMatch==0 && p->usable && p->iColumn<=0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ /* We have an equality constraint on the rowid. Use strategy 1. */ int jj; for(jj=0; jjaConstraintUsage[jj].argvIndex = 0; pIdxInfo->aConstraintUsage[jj].omit = 0; } pIdxInfo->idxNum = 1; pIdxInfo->aConstraintUsage[ii].argvIndex = 1; pIdxInfo->aConstraintUsage[jj].omit = 1; /* This strategy involves a two rowid lookups on an B-Tree structures ** and then a linear search of an R-Tree node. This should be ** considered almost as quick as a direct rowid lookup (for which ** sqlite uses an internal cost of 0.0). It is expected to return ** a single row. */ pIdxInfo->estimatedCost = 30.0; pIdxInfo->estimatedRows = 1; pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE; return SQLITE_OK; } if( p->usable && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2) || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ u8 op; u8 doOmit = 1; switch( p->op ){ case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; doOmit = 0; break; case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; doOmit = 0; break; case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; doOmit = 0; break; case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; case SQLITE_INDEX_CONSTRAINT_MATCH: op = RTREE_MATCH; break; default: op = 0; break; } if( op ){ zIdxStr[iIdx++] = op; zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0'); pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); pIdxInfo->aConstraintUsage[ii].omit = doOmit; } } } pIdxInfo->idxNum = 2; pIdxInfo->needToFreeIdxStr = 1; if( iIdx>0 ){ pIdxInfo->idxStr = sqlite3_malloc( iIdx+1 ); if( pIdxInfo->idxStr==0 ){ return SQLITE_NOMEM; } memcpy(pIdxInfo->idxStr, zIdxStr, iIdx+1); } nRow = pRtree->nRowEst >> (iIdx/2); pIdxInfo->estimatedCost = (double)6.0 * (double)nRow; pIdxInfo->estimatedRows = nRow; return rc; } /* ** Return the N-dimensional volumn of the cell stored in *p. */ static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){ RtreeDValue area = (RtreeDValue)1; assert( pRtree->nDim>=1 && pRtree->nDim<=5 ); #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ switch( pRtree->nDim ){ case 5: area = p->aCoord[9].f - p->aCoord[8].f; case 4: area *= p->aCoord[7].f - p->aCoord[6].f; case 3: area *= p->aCoord[5].f - p->aCoord[4].f; case 2: area *= p->aCoord[3].f - p->aCoord[2].f; default: area *= p->aCoord[1].f - p->aCoord[0].f; } }else #endif { switch( pRtree->nDim ){ case 5: area = (i64)p->aCoord[9].i - (i64)p->aCoord[8].i; case 4: area *= (i64)p->aCoord[7].i - (i64)p->aCoord[6].i; case 3: area *= (i64)p->aCoord[5].i - (i64)p->aCoord[4].i; case 2: area *= (i64)p->aCoord[3].i - (i64)p->aCoord[2].i; default: area *= (i64)p->aCoord[1].i - (i64)p->aCoord[0].i; } } return area; } /* ** Return the margin length of cell p. The margin length is the sum ** of the objects size in each dimension. */ static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){ RtreeDValue margin = 0; int ii = pRtree->nDim2 - 2; do{ margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); ii -= 2; }while( ii>=0 ); return margin; } /* ** Store the union of cells p1 and p2 in p1. */ static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ int ii = 0; if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ do{ p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); ii += 2; }while( iinDim2 ); }else{ do{ p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); ii += 2; }while( iinDim2 ); } } /* ** Return true if the area covered by p2 is a subset of the area covered ** by p1. False otherwise. */ static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ int ii; if( pRtree->eCoordType==RTREE_COORD_INT32 ){ for(ii=0; iinDim2; ii+=2){ RtreeCoord *a1 = &p1->aCoord[ii]; RtreeCoord *a2 = &p2->aCoord[ii]; if( a2[0].ia1[1].i ) return 0; } }else{ for(ii=0; iinDim2; ii+=2){ RtreeCoord *a1 = &p1->aCoord[ii]; RtreeCoord *a2 = &p2->aCoord[ii]; if( a2[0].fa1[1].f ) return 0; } } return 1; } static RtreeDValue cellOverlap( Rtree *pRtree, RtreeCell *p, RtreeCell *aCell, int nCell ){ int ii; RtreeDValue overlap = RTREE_ZERO; for(ii=0; iinDim2; jj+=2){ RtreeDValue x1, x2; x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); if( x2iDepth-iHeight); ii++){ int iCell; sqlite3_int64 iBest = 0; int bFound = 0; RtreeDValue fMinGrowth = RTREE_ZERO; RtreeDValue fMinArea = RTREE_ZERO; int nCell = NCELL(pNode); RtreeNode *pChild = 0; /* First check to see if there is are any cells in pNode that completely ** contains pCell. If two or more cells in pNode completely contain pCell ** then pick the smallest. */ for(iCell=0; iCellpParent ){ RtreeNode *pParent = p->pParent; RtreeCell cell; int iCell; cnt++; if( NEVER(cnt>100) ){ RTREE_IS_CORRUPT(pRtree); return SQLITE_CORRUPT_VTAB; } rc = nodeParentIndex(pRtree, p, &iCell); if( NEVER(rc!=SQLITE_OK) ){ RTREE_IS_CORRUPT(pRtree); return SQLITE_CORRUPT_VTAB; } nodeGetCell(pRtree, pParent, iCell, &cell); if( !cellContains(pRtree, &cell, pCell) ){ cellUnion(pRtree, &cell, pCell); nodeOverwriteCell(pRtree, pParent, &cell, iCell); } p = pParent; } return SQLITE_OK; } /* ** Write mapping (iRowid->iNode) to the _rowid table. */ static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); sqlite3_step(pRtree->pWriteRowid); return sqlite3_reset(pRtree->pWriteRowid); } /* ** Write mapping (iNode->iPar) to the _parent table. */ static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); sqlite3_step(pRtree->pWriteParent); return sqlite3_reset(pRtree->pWriteParent); } static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); /* ** Arguments aIdx, aCell and aSpare all point to arrays of size ** nIdx. The aIdx array contains the set of integers from 0 to ** (nIdx-1) in no particular order. This function sorts the values ** in aIdx according to dimension iDim of the cells in aCell. The ** minimum value of dimension iDim is considered first, the ** maximum used to break ties. ** ** The aSpare array is used as temporary working space by the ** sorting algorithm. */ static void SortByDimension( Rtree *pRtree, int *aIdx, int nIdx, int iDim, RtreeCell *aCell, int *aSpare ){ if( nIdx>1 ){ int iLeft = 0; int iRight = 0; int nLeft = nIdx/2; int nRight = nIdx-nLeft; int *aLeft = aIdx; int *aRight = &aIdx[nLeft]; SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); memcpy(aSpare, aLeft, sizeof(int)*nLeft); aLeft = aSpare; while( iLeftnDim+1)*(sizeof(int*)+nCell*sizeof(int)); aaSorted = (int **)sqlite3_malloc64(nByte); if( !aaSorted ){ return SQLITE_NOMEM; } aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; memset(aaSorted, 0, nByte); for(ii=0; iinDim; ii++){ int jj; aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; for(jj=0; jjnDim; ii++){ RtreeDValue margin = RTREE_ZERO; RtreeDValue fBestOverlap = RTREE_ZERO; RtreeDValue fBestArea = RTREE_ZERO; int iBestLeft = 0; int nLeft; for( nLeft=RTREE_MINCELLS(pRtree); nLeft<=(nCell-RTREE_MINCELLS(pRtree)); nLeft++ ){ RtreeCell left; RtreeCell right; int kk; RtreeDValue overlap; RtreeDValue area; memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); for(kk=1; kk<(nCell-1); kk++){ if( kk0 ){ RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); RtreeNode *p; for(p=pNode; p; p=p->pParent){ if( p==pChild ) return SQLITE_CORRUPT_VTAB; } if( pChild ){ nodeRelease(pRtree, pChild->pParent); nodeReference(pNode); pChild->pParent = pNode; } } if( NEVER(pNode==0) ) return SQLITE_ERROR; return xSetMapping(pRtree, iRowid, pNode->iNode); } static int SplitNode( Rtree *pRtree, RtreeNode *pNode, RtreeCell *pCell, int iHeight ){ int i; int newCellIsRight = 0; int rc = SQLITE_OK; int nCell = NCELL(pNode); RtreeCell *aCell; int *aiUsed; RtreeNode *pLeft = 0; RtreeNode *pRight = 0; RtreeCell leftbbox; RtreeCell rightbbox; /* Allocate an array and populate it with a copy of pCell and ** all cells from node pLeft. Then zero the original node. */ aCell = sqlite3_malloc64((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); if( !aCell ){ rc = SQLITE_NOMEM; goto splitnode_out; } aiUsed = (int *)&aCell[nCell+1]; memset(aiUsed, 0, sizeof(int)*(nCell+1)); for(i=0; iiNode==1 ){ pRight = nodeNew(pRtree, pNode); pLeft = nodeNew(pRtree, pNode); pRtree->iDepth++; pNode->isDirty = 1; writeInt16(pNode->zData, pRtree->iDepth); }else{ pLeft = pNode; pRight = nodeNew(pRtree, pLeft->pParent); pLeft->nRef++; } if( !pLeft || !pRight ){ rc = SQLITE_NOMEM; goto splitnode_out; } memset(pLeft->zData, 0, pRtree->iNodeSize); memset(pRight->zData, 0, pRtree->iNodeSize); rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox); if( rc!=SQLITE_OK ){ goto splitnode_out; } /* Ensure both child nodes have node numbers assigned to them by calling ** nodeWrite(). Node pRight always needs a node number, as it was created ** by nodeNew() above. But node pLeft sometimes already has a node number. ** In this case avoid the all to nodeWrite(). */ if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) ){ goto splitnode_out; } rightbbox.iRowid = pRight->iNode; leftbbox.iRowid = pLeft->iNode; if( pNode->iNode==1 ){ rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); if( rc!=SQLITE_OK ){ goto splitnode_out; } }else{ RtreeNode *pParent = pLeft->pParent; int iCell; rc = nodeParentIndex(pRtree, pLeft, &iCell); if( ALWAYS(rc==SQLITE_OK) ){ nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); rc = AdjustTree(pRtree, pParent, &leftbbox); assert( rc==SQLITE_OK ); } if( NEVER(rc!=SQLITE_OK) ){ goto splitnode_out; } } if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ goto splitnode_out; } for(i=0; iiRowid ){ newCellIsRight = 1; } if( rc!=SQLITE_OK ){ goto splitnode_out; } } if( pNode->iNode==1 ){ for(i=0; iiRowid, pLeft, iHeight); } if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRight); pRight = 0; } if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pLeft); pLeft = 0; } splitnode_out: nodeRelease(pRtree, pRight); nodeRelease(pRtree, pLeft); sqlite3_free(aCell); return rc; } /* ** If node pLeaf is not the root of the r-tree and its pParent pointer is ** still NULL, load all ancestor nodes of pLeaf into memory and populate ** the pLeaf->pParent chain all the way up to the root node. ** ** This operation is required when a row is deleted (or updated - an update ** is implemented as a delete followed by an insert). SQLite provides the ** rowid of the row to delete, which can be used to find the leaf on which ** the entry resides (argument pLeaf). Once the leaf is located, this ** function is called to determine its ancestry. */ static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ int rc = SQLITE_OK; RtreeNode *pChild = pLeaf; while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); rc = sqlite3_step(pRtree->pReadParent); if( rc==SQLITE_ROW ){ RtreeNode *pTest; /* Used to test for reference loops */ i64 iNode; /* Node number of parent node */ /* Before setting pChild->pParent, test that we are not creating a ** loop of references (as we would if, say, pChild==pParent). We don't ** want to do this as it leads to a memory leak when trying to delete ** the referenced counted node structures. */ iNode = sqlite3_column_int64(pRtree->pReadParent, 0); for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); if( pTest==0 ){ rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); } } rc = sqlite3_reset(pRtree->pReadParent); if( rc==SQLITE_OK ) rc = rc2; if( rc==SQLITE_OK && !pChild->pParent ){ RTREE_IS_CORRUPT(pRtree); rc = SQLITE_CORRUPT_VTAB; } pChild = pChild->pParent; } return rc; } static int deleteCell(Rtree *, RtreeNode *, int, int); static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ int rc; int rc2; RtreeNode *pParent = 0; int iCell; assert( pNode->nRef==1 ); /* Remove the entry in the parent cell. */ rc = nodeParentIndex(pRtree, pNode, &iCell); if( rc==SQLITE_OK ){ pParent = pNode->pParent; pNode->pParent = 0; rc = deleteCell(pRtree, pParent, iCell, iHeight+1); testcase( rc!=SQLITE_OK ); } rc2 = nodeRelease(pRtree, pParent); if( rc==SQLITE_OK ){ rc = rc2; } if( rc!=SQLITE_OK ){ return rc; } /* Remove the xxx_node entry. */ sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); sqlite3_step(pRtree->pDeleteNode); if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ return rc; } /* Remove the xxx_parent entry. */ sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); sqlite3_step(pRtree->pDeleteParent); if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ return rc; } /* Remove the node from the in-memory hash table and link it into ** the Rtree.pDeleted list. Its contents will be re-inserted later on. */ nodeHashDelete(pRtree, pNode); pNode->iNode = iHeight; pNode->pNext = pRtree->pDeleted; pNode->nRef++; pRtree->pDeleted = pNode; return SQLITE_OK; } static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ RtreeNode *pParent = pNode->pParent; int rc = SQLITE_OK; if( pParent ){ int ii; int nCell = NCELL(pNode); RtreeCell box; /* Bounding box for pNode */ nodeGetCell(pRtree, pNode, 0, &box); for(ii=1; iiiNode; rc = nodeParentIndex(pRtree, pNode, &ii); if( rc==SQLITE_OK ){ nodeOverwriteCell(pRtree, pParent, &box, ii); rc = fixBoundingBox(pRtree, pParent); } } return rc; } /* ** Delete the cell at index iCell of node pNode. After removing the ** cell, adjust the r-tree data structure if required. */ static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ RtreeNode *pParent; int rc; if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ return rc; } /* Remove the cell from the node. This call just moves bytes around ** the in-memory node image, so it cannot fail. */ nodeDeleteCell(pRtree, pNode, iCell); /* If the node is not the tree root and now has less than the minimum ** number of cells, remove it from the tree. Otherwise, update the ** cell in the parent node so that it tightly contains the updated ** node. */ pParent = pNode->pParent; assert( pParent || pNode->iNode==1 ); if( pParent ){ if( NCELL(pNode)0 ){ RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); if( pChild ){ nodeRelease(pRtree, pChild->pParent); nodeReference(pNode); pChild->pParent = pNode; } } if( nodeInsertCell(pRtree, pNode, pCell) ){ rc = SplitNode(pRtree, pNode, pCell, iHeight); }else{ rc = AdjustTree(pRtree, pNode, pCell); if( ALWAYS(rc==SQLITE_OK) ){ if( iHeight==0 ){ rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); }else{ rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); } } } return rc; } static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ int ii; int rc = SQLITE_OK; int nCell = NCELL(pNode); for(ii=0; rc==SQLITE_OK && iiiNode currently contains ** the height of the sub-tree headed by the cell. */ rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert); if( rc==SQLITE_OK ){ int rc2; rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode); rc2 = nodeRelease(pRtree, pInsert); if( rc==SQLITE_OK ){ rc = rc2; } } } return rc; } /* ** Select a currently unused rowid for a new r-tree record. */ static int rtreeNewRowid(Rtree *pRtree, i64 *piRowid){ int rc; sqlite3_bind_null(pRtree->pWriteRowid, 1); sqlite3_bind_null(pRtree->pWriteRowid, 2); sqlite3_step(pRtree->pWriteRowid); rc = sqlite3_reset(pRtree->pWriteRowid); *piRowid = sqlite3_last_insert_rowid(pRtree->db); return rc; } /* ** Remove the entry with rowid=iDelete from the r-tree structure. */ static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){ int rc; /* Return code */ RtreeNode *pLeaf = 0; /* Leaf node containing record iDelete */ int iCell; /* Index of iDelete cell in pLeaf */ RtreeNode *pRoot = 0; /* Root node of rtree structure */ /* Obtain a reference to the root node to initialize Rtree.iDepth */ rc = nodeAcquire(pRtree, 1, 0, &pRoot); /* Obtain a reference to the leaf node that contains the entry ** about to be deleted. */ if( rc==SQLITE_OK ){ rc = findLeafNode(pRtree, iDelete, &pLeaf, 0); } #ifdef CORRUPT_DB assert( pLeaf!=0 || rc!=SQLITE_OK || CORRUPT_DB ); #endif /* Delete the cell in question from the leaf node. */ if( rc==SQLITE_OK && pLeaf ){ int rc2; rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); if( rc==SQLITE_OK ){ rc = deleteCell(pRtree, pLeaf, iCell, 0); } rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } /* Delete the corresponding entry in the _rowid table. */ if( rc==SQLITE_OK ){ sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); sqlite3_step(pRtree->pDeleteRowid); rc = sqlite3_reset(pRtree->pDeleteRowid); } /* Check if the root node now has exactly one child. If so, remove ** it, schedule the contents of the child for reinsertion and ** reduce the tree height by one. ** ** This is equivalent to copying the contents of the child into ** the root node (the operation that Gutman's paper says to perform ** in this scenario). */ if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ int rc2; RtreeNode *pChild = 0; i64 iChild = nodeGetRowid(pRtree, pRoot, 0); rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); /* tag-20210916a */ if( rc==SQLITE_OK ){ rc = removeNode(pRtree, pChild, pRtree->iDepth-1); } rc2 = nodeRelease(pRtree, pChild); if( rc==SQLITE_OK ) rc = rc2; if( rc==SQLITE_OK ){ pRtree->iDepth--; writeInt16(pRoot->zData, pRtree->iDepth); pRoot->isDirty = 1; } } /* Re-insert the contents of any underfull nodes removed from the tree. */ for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ if( rc==SQLITE_OK ){ rc = reinsertNodeContent(pRtree, pLeaf); } pRtree->pDeleted = pLeaf->pNext; pRtree->nNodeRef--; sqlite3_free(pLeaf); } /* Release the reference to the root node. */ if( rc==SQLITE_OK ){ rc = nodeRelease(pRtree, pRoot); }else{ nodeRelease(pRtree, pRoot); } return rc; } /* ** Rounding constants for float->double conversion. */ #define RNDTOWARDS (1.0 - 1.0/8388608.0) /* Round towards zero */ #define RNDAWAY (1.0 + 1.0/8388608.0) /* Round away from zero */ #if !defined(SQLITE_RTREE_INT_ONLY) /* ** Convert an sqlite3_value into an RtreeValue (presumably a float) ** while taking care to round toward negative or positive, respectively. */ static RtreeValue rtreeValueDown(sqlite3_value *v){ double d = sqlite3_value_double(v); float f = (float)d; if( f>d ){ f = (float)(d*(d<0 ? RNDAWAY : RNDTOWARDS)); } return f; } static RtreeValue rtreeValueUp(sqlite3_value *v){ double d = sqlite3_value_double(v); float f = (float)d; if( fbase.zErrMsg) to an appropriate value and returns ** SQLITE_CONSTRAINT. ** ** Parameter iCol is the index of the leftmost column involved in the ** constraint failure. If it is 0, then the constraint that failed is ** the unique constraint on the id column. Otherwise, it is the rtree ** (c1<=c2) constraint on columns iCol and iCol+1 that has failed. ** ** If an OOM occurs, SQLITE_NOMEM is returned instead of SQLITE_CONSTRAINT. */ static int rtreeConstraintError(Rtree *pRtree, int iCol){ sqlite3_stmt *pStmt = 0; char *zSql; int rc; assert( iCol==0 || iCol%2 ); zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", pRtree->zDb, pRtree->zName); if( zSql ){ rc = sqlite3_prepare_v2(pRtree->db, zSql, -1, &pStmt, 0); }else{ rc = SQLITE_NOMEM; } sqlite3_free(zSql); if( rc==SQLITE_OK ){ if( iCol==0 ){ const char *zCol = sqlite3_column_name(pStmt, 0); pRtree->base.zErrMsg = sqlite3_mprintf( "UNIQUE constraint failed: %s.%s", pRtree->zName, zCol ); }else{ const char *zCol1 = sqlite3_column_name(pStmt, iCol); const char *zCol2 = sqlite3_column_name(pStmt, iCol+1); pRtree->base.zErrMsg = sqlite3_mprintf( "rtree constraint failed: %s.(%s<=%s)", pRtree->zName, zCol1, zCol2 ); } } sqlite3_finalize(pStmt); return (rc==SQLITE_OK ? SQLITE_CONSTRAINT : rc); } /* ** The xUpdate method for rtree module virtual tables. */ static int rtreeUpdate( sqlite3_vtab *pVtab, int nData, sqlite3_value **aData, sqlite_int64 *pRowid ){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_OK; RtreeCell cell; /* New cell to insert if nData>1 */ int bHaveRowid = 0; /* Set to 1 after new rowid is determined */ if( pRtree->nNodeRef ){ /* Unable to write to the btree while another cursor is reading from it, ** since the write might do a rebalance which would disrupt the read ** cursor. */ return SQLITE_LOCKED_VTAB; } rtreeReference(pRtree); assert(nData>=1); memset(&cell, 0, sizeof(cell)); /* Constraint handling. A write operation on an r-tree table may return ** SQLITE_CONSTRAINT for two reasons: ** ** 1. A duplicate rowid value, or ** 2. The supplied data violates the "x2>=x1" constraint. ** ** In the first case, if the conflict-handling mode is REPLACE, then ** the conflicting row can be removed before proceeding. In the second ** case, SQLITE_CONSTRAINT must be returned regardless of the ** conflict-handling mode specified by the user. */ if( nData>1 ){ int ii; int nn = nData - 4; if( nn > pRtree->nDim2 ) nn = pRtree->nDim2; /* Populate the cell.aCoord[] array. The first coordinate is aData[3]. ** ** NB: nData can only be less than nDim*2+3 if the rtree is mis-declared ** with "column" that are interpreted as table constraints. ** Example: CREATE VIRTUAL TABLE bad USING rtree(x,y,CHECK(y>5)); ** This problem was discovered after years of use, so we silently ignore ** these kinds of misdeclared tables to avoid breaking any legacy. */ #ifndef SQLITE_RTREE_INT_ONLY if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ for(ii=0; iicell.aCoord[ii+1].f ){ rc = rtreeConstraintError(pRtree, ii+1); goto constraint; } } }else #endif { for(ii=0; iicell.aCoord[ii+1].i ){ rc = rtreeConstraintError(pRtree, ii+1); goto constraint; } } } /* If a rowid value was supplied, check if it is already present in ** the table. If so, the constraint has failed. */ if( sqlite3_value_type(aData[2])!=SQLITE_NULL ){ cell.iRowid = sqlite3_value_int64(aData[2]); if( sqlite3_value_type(aData[0])==SQLITE_NULL || sqlite3_value_int64(aData[0])!=cell.iRowid ){ int steprc; sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); steprc = sqlite3_step(pRtree->pReadRowid); rc = sqlite3_reset(pRtree->pReadRowid); if( SQLITE_ROW==steprc ){ if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){ rc = rtreeDeleteRowid(pRtree, cell.iRowid); }else{ rc = rtreeConstraintError(pRtree, 0); goto constraint; } } } bHaveRowid = 1; } } /* If aData[0] is not an SQL NULL value, it is the rowid of a ** record to delete from the r-tree table. The following block does ** just that. */ if( sqlite3_value_type(aData[0])!=SQLITE_NULL ){ rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(aData[0])); } /* If the aData[] array contains more than one element, elements ** (aData[2]..aData[argc-1]) contain a new record to insert into ** the r-tree structure. */ if( rc==SQLITE_OK && nData>1 ){ /* Insert the new record into the r-tree */ RtreeNode *pLeaf = 0; /* Figure out the rowid of the new row. */ if( bHaveRowid==0 ){ rc = rtreeNewRowid(pRtree, &cell.iRowid); } *pRowid = cell.iRowid; if( rc==SQLITE_OK ){ rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); } if( rc==SQLITE_OK ){ int rc2; rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); rc2 = nodeRelease(pRtree, pLeaf); if( rc==SQLITE_OK ){ rc = rc2; } } if( rc==SQLITE_OK && pRtree->nAux ){ sqlite3_stmt *pUp = pRtree->pWriteAux; int jj; sqlite3_bind_int64(pUp, 1, *pRowid); for(jj=0; jjnAux; jj++){ sqlite3_bind_value(pUp, jj+2, aData[pRtree->nDim2+3+jj]); } sqlite3_step(pUp); rc = sqlite3_reset(pUp); } } constraint: rtreeRelease(pRtree); return rc; } /* ** Called when a transaction starts. */ static int rtreeBeginTransaction(sqlite3_vtab *pVtab){ Rtree *pRtree = (Rtree *)pVtab; assert( pRtree->inWrTrans==0 ); pRtree->inWrTrans = 1; return SQLITE_OK; } /* ** Called when a transaction completes (either by COMMIT or ROLLBACK). ** The sqlite3_blob object should be released at this point. */ static int rtreeEndTransaction(sqlite3_vtab *pVtab){ Rtree *pRtree = (Rtree *)pVtab; pRtree->inWrTrans = 0; nodeBlobReset(pRtree); return SQLITE_OK; } static int rtreeRollback(sqlite3_vtab *pVtab){ return rtreeEndTransaction(pVtab); } /* ** The xRename method for rtree module virtual tables. */ static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ Rtree *pRtree = (Rtree *)pVtab; int rc = SQLITE_NOMEM; char *zSql = sqlite3_mprintf( "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";" "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";" "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";" , pRtree->zDb, pRtree->zName, zNewName , pRtree->zDb, pRtree->zName, zNewName , pRtree->zDb, pRtree->zName, zNewName ); if( zSql ){ nodeBlobReset(pRtree); rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); sqlite3_free(zSql); } return rc; } /* ** The xSavepoint method. ** ** This module does not need to do anything to support savepoints. However, ** it uses this hook to close any open blob handle. This is done because a ** DROP TABLE command - which fortunately always opens a savepoint - cannot ** succeed if there are any open blob handles. i.e. if the blob handle were ** not closed here, the following would fail: ** ** BEGIN; ** INSERT INTO rtree... ** DROP TABLE ; -- Would fail with SQLITE_LOCKED ** COMMIT; */ static int rtreeSavepoint(sqlite3_vtab *pVtab, int iSavepoint){ Rtree *pRtree = (Rtree *)pVtab; u8 iwt = pRtree->inWrTrans; UNUSED_PARAMETER(iSavepoint); pRtree->inWrTrans = 0; nodeBlobReset(pRtree); pRtree->inWrTrans = iwt; return SQLITE_OK; } /* ** This function populates the pRtree->nRowEst variable with an estimate ** of the number of rows in the virtual table. If possible, this is based ** on sqlite_stat1 data. Otherwise, use RTREE_DEFAULT_ROWEST. */ static int rtreeQueryStat1(sqlite3 *db, Rtree *pRtree){ const char *zFmt = "SELECT stat FROM %Q.sqlite_stat1 WHERE tbl = '%q_rowid'"; char *zSql; sqlite3_stmt *p; int rc; i64 nRow = RTREE_MIN_ROWEST; rc = sqlite3_table_column_metadata( db, pRtree->zDb, "sqlite_stat1",0,0,0,0,0,0 ); if( rc!=SQLITE_OK ){ pRtree->nRowEst = RTREE_DEFAULT_ROWEST; return rc==SQLITE_ERROR ? SQLITE_OK : rc; } zSql = sqlite3_mprintf(zFmt, pRtree->zDb, pRtree->zName); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v2(db, zSql, -1, &p, 0); if( rc==SQLITE_OK ){ if( sqlite3_step(p)==SQLITE_ROW ) nRow = sqlite3_column_int64(p, 0); rc = sqlite3_finalize(p); } sqlite3_free(zSql); } pRtree->nRowEst = MAX(nRow, RTREE_MIN_ROWEST); return rc; } /* ** Return true if zName is the extension on one of the shadow tables used ** by this module. */ static int rtreeShadowName(const char *zName){ static const char *azName[] = { "node", "parent", "rowid" }; unsigned int i; for(i=0; idb = db; if( isCreate ){ char *zCreate; sqlite3_str *p = sqlite3_str_new(db); int ii; sqlite3_str_appendf(p, "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY,nodeno", zDb, zPrefix); for(ii=0; iinAux; ii++){ sqlite3_str_appendf(p,",a%d",ii); } sqlite3_str_appendf(p, ");CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY,data);", zDb, zPrefix); sqlite3_str_appendf(p, "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY,parentnode);", zDb, zPrefix); sqlite3_str_appendf(p, "INSERT INTO \"%w\".\"%w_node\"VALUES(1,zeroblob(%d))", zDb, zPrefix, pRtree->iNodeSize); zCreate = sqlite3_str_finish(p); if( !zCreate ){ return SQLITE_NOMEM; } rc = sqlite3_exec(db, zCreate, 0, 0, 0); sqlite3_free(zCreate); if( rc!=SQLITE_OK ){ return rc; } } appStmt[0] = &pRtree->pWriteNode; appStmt[1] = &pRtree->pDeleteNode; appStmt[2] = &pRtree->pReadRowid; appStmt[3] = &pRtree->pWriteRowid; appStmt[4] = &pRtree->pDeleteRowid; appStmt[5] = &pRtree->pReadParent; appStmt[6] = &pRtree->pWriteParent; appStmt[7] = &pRtree->pDeleteParent; rc = rtreeQueryStat1(db, pRtree); for(i=0; inAux==0 ){ zFormat = azSql[i]; }else { /* An UPSERT is very slightly slower than REPLACE, but it is needed ** if there are auxiliary columns */ zFormat = "INSERT INTO\"%w\".\"%w_rowid\"(rowid,nodeno)VALUES(?1,?2)" "ON CONFLICT(rowid)DO UPDATE SET nodeno=excluded.nodeno"; } zSql = sqlite3_mprintf(zFormat, zDb, zPrefix); if( zSql ){ rc = sqlite3_prepare_v3(db, zSql, -1, f, appStmt[i], 0); }else{ rc = SQLITE_NOMEM; } sqlite3_free(zSql); } if( pRtree->nAux && rc!=SQLITE_NOMEM ){ pRtree->zReadAuxSql = sqlite3_mprintf( "SELECT * FROM \"%w\".\"%w_rowid\" WHERE rowid=?1", zDb, zPrefix); if( pRtree->zReadAuxSql==0 ){ rc = SQLITE_NOMEM; }else{ sqlite3_str *p = sqlite3_str_new(db); int ii; char *zSql; sqlite3_str_appendf(p, "UPDATE \"%w\".\"%w_rowid\"SET ", zDb, zPrefix); for(ii=0; iinAux; ii++){ if( ii ) sqlite3_str_append(p, ",", 1); #ifdef SQLITE_ENABLE_GEOPOLY if( iinAuxNotNull ){ sqlite3_str_appendf(p,"a%d=coalesce(?%d,a%d)",ii,ii+2,ii); }else #endif { sqlite3_str_appendf(p,"a%d=?%d",ii,ii+2); } } sqlite3_str_appendf(p, " WHERE rowid=?1"); zSql = sqlite3_str_finish(p); if( zSql==0 ){ rc = SQLITE_NOMEM; }else{ rc = sqlite3_prepare_v3(db, zSql, -1, f, &pRtree->pWriteAux, 0); sqlite3_free(zSql); } } } return rc; } /* ** The second argument to this function contains the text of an SQL statement ** that returns a single integer value. The statement is compiled and executed ** using database connection db. If successful, the integer value returned ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error ** code is returned and the value of *piVal after returning is not defined. */ static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){ int rc = SQLITE_NOMEM; if( zSql ){ sqlite3_stmt *pStmt = 0; rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pStmt) ){ *piVal = sqlite3_column_int(pStmt, 0); } rc = sqlite3_finalize(pStmt); } } return rc; } /* ** This function is called from within the xConnect() or xCreate() method to ** determine the node-size used by the rtree table being created or connected ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned. ** Otherwise, an SQLite error code is returned. ** ** If this function is being called as part of an xConnect(), then the rtree ** table already exists. In this case the node-size is determined by inspecting ** the root node of the tree. ** ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. ** This ensures that each node is stored on a single database page. If the ** database page-size is so large that more than RTREE_MAXCELLS entries ** would fit in a single node, use a smaller node-size. */ static int getNodeSize( sqlite3 *db, /* Database handle */ Rtree *pRtree, /* Rtree handle */ int isCreate, /* True for xCreate, false for xConnect */ char **pzErr /* OUT: Error message, if any */ ){ int rc; char *zSql; if( isCreate ){ int iPageSize = 0; zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); rc = getIntFromStmt(db, zSql, &iPageSize); if( rc==SQLITE_OK ){ pRtree->iNodeSize = iPageSize-64; if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)iNodeSize ){ pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; } }else{ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); } }else{ zSql = sqlite3_mprintf( "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", pRtree->zDb, pRtree->zName ); rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); if( rc!=SQLITE_OK ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); }else if( pRtree->iNodeSize<(512-64) ){ rc = SQLITE_CORRUPT_VTAB; RTREE_IS_CORRUPT(pRtree); *pzErr = sqlite3_mprintf("undersize RTree blobs in \"%q_node\"", pRtree->zName); } } sqlite3_free(zSql); return rc; } /* ** Return the length of a token */ static int rtreeTokenLength(const char *z){ int dummy = 0; return sqlite3GetToken((const unsigned char*)z,&dummy); } /* ** This function is the implementation of both the xConnect and xCreate ** methods of the r-tree virtual table. ** ** argv[0] -> module name ** argv[1] -> database name ** argv[2] -> table name ** argv[...] -> column names... */ static int rtreeInit( sqlite3 *db, /* Database connection */ void *pAux, /* One of the RTREE_COORD_* constants */ int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ sqlite3_vtab **ppVtab, /* OUT: New virtual table */ char **pzErr, /* OUT: Error message, if any */ int isCreate /* True for xCreate, false for xConnect */ ){ int rc = SQLITE_OK; Rtree *pRtree; int nDb; /* Length of string argv[1] */ int nName; /* Length of string argv[2] */ int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); sqlite3_str *pSql; char *zSql; int ii = 4; int iErr; const char *aErrMsg[] = { 0, /* 0 */ "Wrong number of columns for an rtree table", /* 1 */ "Too few columns for an rtree table", /* 2 */ "Too many columns for an rtree table", /* 3 */ "Auxiliary rtree columns must be last" /* 4 */ }; assert( RTREE_MAX_AUX_COLUMN<256 ); /* Aux columns counted by a u8 */ if( argc<6 || argc>RTREE_MAX_AUX_COLUMN+3 ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[2 + (argc>=6)]); return SQLITE_ERROR; } sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS); /* Allocate the sqlite3_vtab structure */ nDb = (int)strlen(argv[1]); nName = (int)strlen(argv[2]); pRtree = (Rtree *)sqlite3_malloc64(sizeof(Rtree)+nDb+nName*2+8); if( !pRtree ){ return SQLITE_NOMEM; } memset(pRtree, 0, sizeof(Rtree)+nDb+nName*2+8); pRtree->nBusy = 1; pRtree->base.pModule = &rtreeModule; pRtree->zDb = (char *)&pRtree[1]; pRtree->zName = &pRtree->zDb[nDb+1]; pRtree->zNodeName = &pRtree->zName[nName+1]; pRtree->eCoordType = (u8)eCoordType; memcpy(pRtree->zDb, argv[1], nDb); memcpy(pRtree->zName, argv[2], nName); memcpy(pRtree->zNodeName, argv[2], nName); memcpy(&pRtree->zNodeName[nName], "_node", 6); /* Create/Connect to the underlying relational database schema. If ** that is successful, call sqlite3_declare_vtab() to configure ** the r-tree table schema. */ pSql = sqlite3_str_new(db); sqlite3_str_appendf(pSql, "CREATE TABLE x(%.*s INT", rtreeTokenLength(argv[3]), argv[3]); for(ii=4; iinAux++; sqlite3_str_appendf(pSql, ",%.*s", rtreeTokenLength(zArg+1), zArg+1); }else if( pRtree->nAux>0 ){ break; }else{ static const char *azFormat[] = {",%.*s REAL", ",%.*s INT"}; pRtree->nDim2++; sqlite3_str_appendf(pSql, azFormat[eCoordType], rtreeTokenLength(zArg), zArg); } } sqlite3_str_appendf(pSql, ");"); zSql = sqlite3_str_finish(pSql); if( !zSql ){ rc = SQLITE_NOMEM; }else if( iinDim = pRtree->nDim2/2; if( pRtree->nDim<1 ){ iErr = 2; }else if( pRtree->nDim2>RTREE_MAX_DIMENSIONS*2 ){ iErr = 3; }else if( pRtree->nDim2 % 2 ){ iErr = 1; }else{ iErr = 0; } if( iErr ){ *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); goto rtreeInit_fail; } pRtree->nBytesPerCell = 8 + pRtree->nDim2*4; /* Figure out the node size to use. */ rc = getNodeSize(db, pRtree, isCreate, pzErr); if( rc ) goto rtreeInit_fail; rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate); if( rc ){ *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); goto rtreeInit_fail; } *ppVtab = (sqlite3_vtab *)pRtree; return SQLITE_OK; rtreeInit_fail: if( rc==SQLITE_OK ) rc = SQLITE_ERROR; assert( *ppVtab==0 ); assert( pRtree->nBusy==1 ); rtreeRelease(pRtree); return rc; } /* ** Implementation of a scalar function that decodes r-tree nodes to ** human readable strings. This can be used for debugging and analysis. ** ** The scalar function takes two arguments: (1) the number of dimensions ** to the rtree (between 1 and 5, inclusive) and (2) a blob of data containing ** an r-tree node. For a two-dimensional r-tree structure called "rt", to ** deserialize all nodes, a statement like: ** ** SELECT rtreenode(2, data) FROM rt_node; ** ** The human readable string takes the form of a Tcl list with one ** entry for each cell in the r-tree node. Each entry is itself a ** list, containing the 8-byte rowid/pageno followed by the ** *2 coordinates. */ static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ RtreeNode node; Rtree tree; int ii; int nData; int errCode; sqlite3_str *pOut; UNUSED_PARAMETER(nArg); memset(&node, 0, sizeof(RtreeNode)); memset(&tree, 0, sizeof(Rtree)); tree.nDim = (u8)sqlite3_value_int(apArg[0]); if( tree.nDim<1 || tree.nDim>5 ) return; tree.nDim2 = tree.nDim*2; tree.nBytesPerCell = 8 + 8 * tree.nDim; node.zData = (u8 *)sqlite3_value_blob(apArg[1]); if( node.zData==0 ) return; nData = sqlite3_value_bytes(apArg[1]); if( nData<4 ) return; if( nData0 ) sqlite3_str_append(pOut, " ", 1); sqlite3_str_appendf(pOut, "{%lld", cell.iRowid); for(jj=0; jjrc==SQLITE_OK ) pCheck->rc = rc; } /* ** The second and subsequent arguments to this function are a format string ** and printf style arguments. This function formats the string and attempts ** to compile it as an SQL statement. ** ** If successful, a pointer to the new SQL statement is returned. Otherwise, ** NULL is returned and an error code left in RtreeCheck.rc. */ static sqlite3_stmt *rtreeCheckPrepare( RtreeCheck *pCheck, /* RtreeCheck object */ const char *zFmt, ... /* Format string and trailing args */ ){ va_list ap; char *z; sqlite3_stmt *pRet = 0; va_start(ap, zFmt); z = sqlite3_vmprintf(zFmt, ap); if( pCheck->rc==SQLITE_OK ){ if( z==0 ){ pCheck->rc = SQLITE_NOMEM; }else{ pCheck->rc = sqlite3_prepare_v2(pCheck->db, z, -1, &pRet, 0); } } sqlite3_free(z); va_end(ap); return pRet; } /* ** The second and subsequent arguments to this function are a printf() ** style format string and arguments. This function formats the string and ** appends it to the report being accumuated in pCheck. */ static void rtreeCheckAppendMsg(RtreeCheck *pCheck, const char *zFmt, ...){ va_list ap; va_start(ap, zFmt); if( pCheck->rc==SQLITE_OK && pCheck->nErrrc = SQLITE_NOMEM; }else{ pCheck->zReport = sqlite3_mprintf("%z%s%z", pCheck->zReport, (pCheck->zReport ? "\n" : ""), z ); if( pCheck->zReport==0 ){ pCheck->rc = SQLITE_NOMEM; } } pCheck->nErr++; } va_end(ap); } /* ** This function is a no-op if there is already an error code stored ** in the RtreeCheck object indicated by the first argument. NULL is ** returned in this case. ** ** Otherwise, the contents of rtree table node iNode are loaded from ** the database and copied into a buffer obtained from sqlite3_malloc(). ** If no error occurs, a pointer to the buffer is returned and (*pnNode) ** is set to the size of the buffer in bytes. ** ** Or, if an error does occur, NULL is returned and an error code left ** in the RtreeCheck object. The final value of *pnNode is undefined in ** this case. */ static u8 *rtreeCheckGetNode(RtreeCheck *pCheck, i64 iNode, int *pnNode){ u8 *pRet = 0; /* Return value */ if( pCheck->rc==SQLITE_OK && pCheck->pGetNode==0 ){ pCheck->pGetNode = rtreeCheckPrepare(pCheck, "SELECT data FROM %Q.'%q_node' WHERE nodeno=?", pCheck->zDb, pCheck->zTab ); } if( pCheck->rc==SQLITE_OK ){ sqlite3_bind_int64(pCheck->pGetNode, 1, iNode); if( sqlite3_step(pCheck->pGetNode)==SQLITE_ROW ){ int nNode = sqlite3_column_bytes(pCheck->pGetNode, 0); const u8 *pNode = (const u8*)sqlite3_column_blob(pCheck->pGetNode, 0); pRet = sqlite3_malloc64(nNode); if( pRet==0 ){ pCheck->rc = SQLITE_NOMEM; }else{ memcpy(pRet, pNode, nNode); *pnNode = nNode; } } rtreeCheckReset(pCheck, pCheck->pGetNode); if( pCheck->rc==SQLITE_OK && pRet==0 ){ rtreeCheckAppendMsg(pCheck, "Node %lld missing from database", iNode); } } return pRet; } /* ** This function is used to check that the %_parent (if bLeaf==0) or %_rowid ** (if bLeaf==1) table contains a specified entry. The schemas of the ** two tables are: ** ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) ** ** In both cases, this function checks that there exists an entry with ** IPK value iKey and the second column set to iVal. ** */ static void rtreeCheckMapping( RtreeCheck *pCheck, /* RtreeCheck object */ int bLeaf, /* True for a leaf cell, false for interior */ i64 iKey, /* Key for mapping */ i64 iVal /* Expected value for mapping */ ){ int rc; sqlite3_stmt *pStmt; const char *azSql[2] = { "SELECT parentnode FROM %Q.'%q_parent' WHERE nodeno=?1", "SELECT nodeno FROM %Q.'%q_rowid' WHERE rowid=?1" }; assert( bLeaf==0 || bLeaf==1 ); if( pCheck->aCheckMapping[bLeaf]==0 ){ pCheck->aCheckMapping[bLeaf] = rtreeCheckPrepare(pCheck, azSql[bLeaf], pCheck->zDb, pCheck->zTab ); } if( pCheck->rc!=SQLITE_OK ) return; pStmt = pCheck->aCheckMapping[bLeaf]; sqlite3_bind_int64(pStmt, 1, iKey); rc = sqlite3_step(pStmt); if( rc==SQLITE_DONE ){ rtreeCheckAppendMsg(pCheck, "Mapping (%lld -> %lld) missing from %s table", iKey, iVal, (bLeaf ? "%_rowid" : "%_parent") ); }else if( rc==SQLITE_ROW ){ i64 ii = sqlite3_column_int64(pStmt, 0); if( ii!=iVal ){ rtreeCheckAppendMsg(pCheck, "Found (%lld -> %lld) in %s table, expected (%lld -> %lld)", iKey, ii, (bLeaf ? "%_rowid" : "%_parent"), iKey, iVal ); } } rtreeCheckReset(pCheck, pStmt); } /* ** Argument pCell points to an array of coordinates stored on an rtree page. ** This function checks that the coordinates are internally consistent (no ** x1>x2 conditions) and adds an error message to the RtreeCheck object ** if they are not. ** ** Additionally, if pParent is not NULL, then it is assumed to point to ** the array of coordinates on the parent page that bound the page ** containing pCell. In this case it is also verified that the two ** sets of coordinates are mutually consistent and an error message added ** to the RtreeCheck object if they are not. */ static void rtreeCheckCellCoord( RtreeCheck *pCheck, i64 iNode, /* Node id to use in error messages */ int iCell, /* Cell number to use in error messages */ u8 *pCell, /* Pointer to cell coordinates */ u8 *pParent /* Pointer to parent coordinates */ ){ RtreeCoord c1, c2; RtreeCoord p1, p2; int i; for(i=0; inDim; i++){ readCoord(&pCell[4*2*i], &c1); readCoord(&pCell[4*(2*i + 1)], &c2); /* printf("%e, %e\n", c1.u.f, c2.u.f); */ if( pCheck->bInt ? c1.i>c2.i : c1.f>c2.f ){ rtreeCheckAppendMsg(pCheck, "Dimension %d of cell %d on node %lld is corrupt", i, iCell, iNode ); } if( pParent ){ readCoord(&pParent[4*2*i], &p1); readCoord(&pParent[4*(2*i + 1)], &p2); if( (pCheck->bInt ? c1.ibInt ? c2.i>p2.i : c2.f>p2.f) ){ rtreeCheckAppendMsg(pCheck, "Dimension %d of cell %d on node %lld is corrupt relative to parent" , i, iCell, iNode ); } } } } /* ** Run rtreecheck() checks on node iNode, which is at depth iDepth within ** the r-tree structure. Argument aParent points to the array of coordinates ** that bound node iNode on the parent node. ** ** If any problems are discovered, an error message is appended to the ** report accumulated in the RtreeCheck object. */ static void rtreeCheckNode( RtreeCheck *pCheck, int iDepth, /* Depth of iNode (0==leaf) */ u8 *aParent, /* Buffer containing parent coords */ i64 iNode /* Node to check */ ){ u8 *aNode = 0; int nNode = 0; assert( iNode==1 || aParent!=0 ); assert( pCheck->nDim>0 ); aNode = rtreeCheckGetNode(pCheck, iNode, &nNode); if( aNode ){ if( nNode<4 ){ rtreeCheckAppendMsg(pCheck, "Node %lld is too small (%d bytes)", iNode, nNode ); }else{ int nCell; /* Number of cells on page */ int i; /* Used to iterate through cells */ if( aParent==0 ){ iDepth = readInt16(aNode); if( iDepth>RTREE_MAX_DEPTH ){ rtreeCheckAppendMsg(pCheck, "Rtree depth out of range (%d)", iDepth); sqlite3_free(aNode); return; } } nCell = readInt16(&aNode[2]); if( (4 + nCell*(8 + pCheck->nDim*2*4))>nNode ){ rtreeCheckAppendMsg(pCheck, "Node %lld is too small for cell count of %d (%d bytes)", iNode, nCell, nNode ); }else{ for(i=0; inDim*2*4)]; i64 iVal = readInt64(pCell); rtreeCheckCellCoord(pCheck, iNode, i, &pCell[8], aParent); if( iDepth>0 ){ rtreeCheckMapping(pCheck, 0, iVal, iNode); rtreeCheckNode(pCheck, iDepth-1, &pCell[8], iVal); pCheck->nNonLeaf++; }else{ rtreeCheckMapping(pCheck, 1, iVal, iNode); pCheck->nLeaf++; } } } } sqlite3_free(aNode); } } /* ** The second argument to this function must be either "_rowid" or ** "_parent". This function checks that the number of entries in the ** %_rowid or %_parent table is exactly nExpect. If not, it adds ** an error message to the report in the RtreeCheck object indicated ** by the first argument. */ static void rtreeCheckCount(RtreeCheck *pCheck, const char *zTbl, i64 nExpect){ if( pCheck->rc==SQLITE_OK ){ sqlite3_stmt *pCount; pCount = rtreeCheckPrepare(pCheck, "SELECT count(*) FROM %Q.'%q%s'", pCheck->zDb, pCheck->zTab, zTbl ); if( pCount ){ if( sqlite3_step(pCount)==SQLITE_ROW ){ i64 nActual = sqlite3_column_int64(pCount, 0); if( nActual!=nExpect ){ rtreeCheckAppendMsg(pCheck, "Wrong number of entries in %%%s table" " - expected %lld, actual %lld" , zTbl, nExpect, nActual ); } } pCheck->rc = sqlite3_finalize(pCount); } } } /* ** This function does the bulk of the work for the rtree integrity-check. ** It is called by rtreecheck(), which is the SQL function implementation. */ static int rtreeCheckTable( sqlite3 *db, /* Database handle to access db through */ const char *zDb, /* Name of db ("main", "temp" etc.) */ const char *zTab, /* Name of rtree table to check */ char **pzReport /* OUT: sqlite3_malloc'd report text */ ){ RtreeCheck check; /* Common context for various routines */ sqlite3_stmt *pStmt = 0; /* Used to find column count of rtree table */ int nAux = 0; /* Number of extra columns. */ /* Initialize the context object */ memset(&check, 0, sizeof(check)); check.db = db; check.zDb = zDb; check.zTab = zTab; /* Find the number of auxiliary columns */ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.'%q_rowid'", zDb, zTab); if( pStmt ){ nAux = sqlite3_column_count(pStmt) - 2; sqlite3_finalize(pStmt); }else if( check.rc!=SQLITE_NOMEM ){ check.rc = SQLITE_OK; } /* Find number of dimensions in the rtree table. */ pStmt = rtreeCheckPrepare(&check, "SELECT * FROM %Q.%Q", zDb, zTab); if( pStmt ){ int rc; check.nDim = (sqlite3_column_count(pStmt) - 1 - nAux) / 2; if( check.nDim<1 ){ rtreeCheckAppendMsg(&check, "Schema corrupt or not an rtree"); }else if( SQLITE_ROW==sqlite3_step(pStmt) ){ check.bInt = (sqlite3_column_type(pStmt, 1)==SQLITE_INTEGER); } rc = sqlite3_finalize(pStmt); if( rc!=SQLITE_CORRUPT ) check.rc = rc; } /* Do the actual integrity-check */ if( check.nDim>=1 ){ if( check.rc==SQLITE_OK ){ rtreeCheckNode(&check, 0, 0, 1); } rtreeCheckCount(&check, "_rowid", check.nLeaf); rtreeCheckCount(&check, "_parent", check.nNonLeaf); } /* Finalize SQL statements used by the integrity-check */ sqlite3_finalize(check.pGetNode); sqlite3_finalize(check.aCheckMapping[0]); sqlite3_finalize(check.aCheckMapping[1]); *pzReport = check.zReport; return check.rc; } /* ** Implementation of the xIntegrity method for Rtree. */ static int rtreeIntegrity( sqlite3_vtab *pVtab, /* The virtual table to check */ const char *zSchema, /* Schema in which the virtual table lives */ const char *zName, /* Name of the virtual table */ int isQuick, /* True for a quick_check */ char **pzErr /* Write results here */ ){ Rtree *pRtree = (Rtree*)pVtab; int rc; assert( pzErr!=0 && *pzErr==0 ); UNUSED_PARAMETER(zSchema); UNUSED_PARAMETER(zName); UNUSED_PARAMETER(isQuick); rc = rtreeCheckTable(pRtree->db, pRtree->zDb, pRtree->zName, pzErr); if( rc==SQLITE_OK && *pzErr ){ *pzErr = sqlite3_mprintf("In RTree %s.%s:\n%z", pRtree->zDb, pRtree->zName, *pzErr); if( (*pzErr)==0 ) rc = SQLITE_NOMEM; } return rc; } /* ** Usage: ** ** rtreecheck(); ** rtreecheck(, ); ** ** Invoking this SQL function runs an integrity-check on the named rtree ** table. The integrity-check verifies the following: ** ** 1. For each cell in the r-tree structure (%_node table), that: ** ** a) for each dimension, (coord1 <= coord2). ** ** b) unless the cell is on the root node, that the cell is bounded ** by the parent cell on the parent node. ** ** c) for leaf nodes, that there is an entry in the %_rowid ** table corresponding to the cell's rowid value that ** points to the correct node. ** ** d) for cells on non-leaf nodes, that there is an entry in the ** %_parent table mapping from the cell's child node to the ** node that it resides on. ** ** 2. That there are the same number of entries in the %_rowid table ** as there are leaf cells in the r-tree structure, and that there ** is a leaf cell that corresponds to each entry in the %_rowid table. ** ** 3. That there are the same number of entries in the %_parent table ** as there are non-leaf cells in the r-tree structure, and that ** there is a non-leaf cell that corresponds to each entry in the ** %_parent table. */ static void rtreecheck( sqlite3_context *ctx, int nArg, sqlite3_value **apArg ){ if( nArg!=1 && nArg!=2 ){ sqlite3_result_error(ctx, "wrong number of arguments to function rtreecheck()", -1 ); }else{ int rc; char *zReport = 0; const char *zDb = (const char*)sqlite3_value_text(apArg[0]); const char *zTab; if( nArg==1 ){ zTab = zDb; zDb = "main"; }else{ zTab = (const char*)sqlite3_value_text(apArg[1]); } rc = rtreeCheckTable(sqlite3_context_db_handle(ctx), zDb, zTab, &zReport); if( rc==SQLITE_OK ){ sqlite3_result_text(ctx, zReport ? zReport : "ok", -1, SQLITE_TRANSIENT); }else{ sqlite3_result_error_code(ctx, rc); } sqlite3_free(zReport); } } /* Conditionally include the geopoly code */ #ifdef SQLITE_ENABLE_GEOPOLY # include "geopoly.c" #endif /* ** Register the r-tree module with database handle db. This creates the ** virtual table module "rtree" and the debugging/analysis scalar ** function "rtreenode". */ int sqlite3RtreeInit(sqlite3 *db){ const int utf8 = SQLITE_UTF8; int rc; rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3_create_function(db, "rtreecheck", -1, utf8, 0,rtreecheck, 0,0); } if( rc==SQLITE_OK ){ #ifdef SQLITE_RTREE_INT_ONLY void *c = (void *)RTREE_COORD_INT32; #else void *c = (void *)RTREE_COORD_REAL32; #endif rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); } if( rc==SQLITE_OK ){ void *c = (void *)RTREE_COORD_INT32; rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); } #ifdef SQLITE_ENABLE_GEOPOLY if( rc==SQLITE_OK ){ rc = sqlite3_geopoly_init(db); } #endif return rc; } /* ** This routine deletes the RtreeGeomCallback object that was attached ** one of the SQL functions create by sqlite3_rtree_geometry_callback() ** or sqlite3_rtree_query_callback(). In other words, this routine is the ** destructor for an RtreeGeomCallback objecct. This routine is called when ** the corresponding SQL function is deleted. */ static void rtreeFreeCallback(void *p){ RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p; if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext); sqlite3_free(p); } /* ** This routine frees the BLOB that is returned by geomCallback(). */ static void rtreeMatchArgFree(void *pArg){ int i; RtreeMatchArg *p = (RtreeMatchArg*)pArg; for(i=0; inParam; i++){ sqlite3_value_free(p->apSqlParam[i]); } sqlite3_free(p); } /* ** Each call to sqlite3_rtree_geometry_callback() or ** sqlite3_rtree_query_callback() creates an ordinary SQLite ** scalar function that is implemented by this routine. ** ** All this function does is construct an RtreeMatchArg object that ** contains the geometry-checking callback routines and a list of ** parameters to this function, then return that RtreeMatchArg object ** as a BLOB. ** ** The R-Tree MATCH operator will read the returned BLOB, deserialize ** the RtreeMatchArg object, and use the RtreeMatchArg object to figure ** out which elements of the R-Tree should be returned by the query. */ static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); RtreeMatchArg *pBlob; sqlite3_int64 nBlob; int memErr = 0; nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue) + nArg*sizeof(sqlite3_value*); pBlob = (RtreeMatchArg *)sqlite3_malloc64(nBlob); if( !pBlob ){ sqlite3_result_error_nomem(ctx); }else{ int i; pBlob->iSize = nBlob; pBlob->cb = pGeomCtx[0]; pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg]; pBlob->nParam = nArg; for(i=0; iapSqlParam[i] = sqlite3_value_dup(aArg[i]); if( pBlob->apSqlParam[i]==0 ) memErr = 1; #ifdef SQLITE_RTREE_INT_ONLY pBlob->aParam[i] = sqlite3_value_int64(aArg[i]); #else pBlob->aParam[i] = sqlite3_value_double(aArg[i]); #endif } if( memErr ){ sqlite3_result_error_nomem(ctx); rtreeMatchArgFree(pBlob); }else{ sqlite3_result_pointer(ctx, pBlob, "RtreeMatchArg", rtreeMatchArgFree); } } } /* ** Register a new geometry function for use with the r-tree MATCH operator. */ int sqlite3_rtree_geometry_callback( sqlite3 *db, /* Register SQL function on this connection */ const char *zGeom, /* Name of the new SQL function */ int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */ void *pContext /* Extra data associated with the callback */ ){ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ /* Allocate and populate the context object. */ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); if( !pGeomCtx ) return SQLITE_NOMEM; pGeomCtx->xGeom = xGeom; pGeomCtx->xQueryFunc = 0; pGeomCtx->xDestructor = 0; pGeomCtx->pContext = pContext; return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback ); } /* ** Register a new 2nd-generation geometry function for use with the ** r-tree MATCH operator. */ int sqlite3_rtree_query_callback( sqlite3 *db, /* Register SQL function on this connection */ const char *zQueryFunc, /* Name of new SQL function */ int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */ void *pContext, /* Extra data passed into the callback */ void (*xDestructor)(void*) /* Destructor for the extra data */ ){ RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ /* Allocate and populate the context object. */ pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); if( !pGeomCtx ){ if( xDestructor ) xDestructor(pContext); return SQLITE_NOMEM; } pGeomCtx->xGeom = 0; pGeomCtx->xQueryFunc = xQueryFunc; pGeomCtx->xDestructor = xDestructor; pGeomCtx->pContext = pContext; return sqlite3_create_function_v2(db, zQueryFunc, -1, SQLITE_ANY, (void *)pGeomCtx, geomCallback, 0, 0, rtreeFreeCallback ); } #if !SQLITE_CORE #ifdef _WIN32 __declspec(dllexport) #endif int sqlite3_rtree_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3RtreeInit(db); } #endif #endif