/* The author disclaims copyright to this source code. * * This is an SQLite module implementing full-text search. */ /* ** The code in this file is only compiled if: ** ** * The FTS1 module is being built as an extension ** (in which case SQLITE_CORE is not defined), or ** ** * The FTS1 module is being built into the core of ** SQLite (in which case SQLITE_ENABLE_FTS1 is defined). */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) #if defined(SQLITE_ENABLE_FTS1) && !defined(SQLITE_CORE) # define SQLITE_CORE 1 #endif #include #if !defined(__APPLE__) #include #else #include #endif #include #include #include #include "fts1.h" #include "fts1_hash.h" #include "fts1_tokenizer.h" #include "sqlite3.h" #include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #if 0 # define TRACE(A) printf A; fflush(stdout) #else # define TRACE(A) #endif /* utility functions */ typedef struct StringBuffer { int len; /* length, not including null terminator */ int alloced; /* Space allocated for s[] */ char *s; /* Content of the string */ } StringBuffer; static void initStringBuffer(StringBuffer *sb){ sb->len = 0; sb->alloced = 100; sb->s = malloc(100); sb->s[0] = '\0'; } static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ if( sb->len + nFrom >= sb->alloced ){ sb->alloced = sb->len + nFrom + 100; sb->s = realloc(sb->s, sb->alloced+1); if( sb->s==0 ){ initStringBuffer(sb); return; } } memcpy(sb->s + sb->len, zFrom, nFrom); sb->len += nFrom; sb->s[sb->len] = 0; } static void append(StringBuffer *sb, const char *zFrom){ nappend(sb, zFrom, strlen(zFrom)); } /* We encode variable-length integers in little-endian order using seven bits * per byte as follows: ** ** KEY: ** A = 0xxxxxxx 7 bits of data and one flag bit ** B = 1xxxxxxx 7 bits of data and one flag bit ** ** 7 bits - A ** 14 bits - BA ** 21 bits - BBA ** and so on. */ /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ #define VARINT_MAX 10 /* Write a 64-bit variable-length integer to memory starting at p[0]. * The length of data written will be between 1 and VARINT_MAX bytes. * The number of bytes written is returned. */ static int putVarint(char *p, sqlite_int64 v){ unsigned char *q = (unsigned char *) p; sqlite_uint64 vu = v; do{ *q++ = (unsigned char) ((vu & 0x7f) | 0x80); vu >>= 7; }while( vu!=0 ); q[-1] &= 0x7f; /* turn off high bit in final byte */ assert( q - (unsigned char *)p <= VARINT_MAX ); return (int) (q - (unsigned char *)p); } /* Read a 64-bit variable-length integer from memory starting at p[0]. * Return the number of bytes read, or 0 on error. * The value is stored in *v. */ static int getVarint(const char *p, sqlite_int64 *v){ const unsigned char *q = (const unsigned char *) p; sqlite_uint64 x = 0, y = 1; while( (*q & 0x80) == 0x80 ){ x += y * (*q++ & 0x7f); y <<= 7; if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ assert( 0 ); return 0; } } x += y * (*q++); *v = (sqlite_int64) x; return (int) (q - (unsigned char *)p); } static int getVarint32(const char *p, int *pi){ sqlite_int64 i; int ret = getVarint(p, &i); *pi = (int) i; assert( *pi==i ); return ret; } /*** Document lists *** * * A document list holds a sorted list of varint-encoded document IDs. * * A doclist with type DL_POSITIONS_OFFSETS is stored like this: * * array { * varint docid; * array { * varint position; (delta from previous position plus POS_BASE) * varint startOffset; (delta from previous startOffset) * varint endOffset; (delta from startOffset) * } * } * * Here, array { X } means zero or more occurrences of X, adjacent in memory. * * A position list may hold positions for text in multiple columns. A position * POS_COLUMN is followed by a varint containing the index of the column for * following positions in the list. Any positions appearing before any * occurrences of POS_COLUMN are for column 0. * * A doclist with type DL_POSITIONS is like the above, but holds only docids * and positions without offset information. * * A doclist with type DL_DOCIDS is like the above, but holds only docids * without positions or offset information. * * On disk, every document list has positions and offsets, so we don't bother * to serialize a doclist's type. * * We don't yet delta-encode document IDs; doing so will probably be a * modest win. * * NOTE(shess) I've thought of a slightly (1%) better offset encoding. * After the first offset, estimate the next offset by using the * current token position and the previous token position and offset, * offset to handle some variance. So the estimate would be * (iPosition*w->iStartOffset/w->iPosition-64), which is delta-encoded * as normal. Offsets more than 64 chars from the estimate are * encoded as the delta to the previous start offset + 128. An * additional tiny increment can be gained by using the end offset of * the previous token to make the estimate a tiny bit more precise. */ typedef enum DocListType { DL_DOCIDS, /* docids only */ DL_POSITIONS, /* docids + positions */ DL_POSITIONS_OFFSETS /* docids + positions + offsets */ } DocListType; /* ** By default, only positions and not offsets are stored in the doclists. ** To change this so that offsets are stored too, compile with ** ** -DDL_DEFAULT=DL_POSITIONS_OFFSETS ** */ #ifndef DL_DEFAULT # define DL_DEFAULT DL_POSITIONS #endif typedef struct DocList { char *pData; int nData; DocListType iType; int iLastColumn; /* the last column written */ int iLastPos; /* the last position written */ int iLastOffset; /* the last start offset written */ } DocList; enum { POS_END = 0, /* end of this position list */ POS_COLUMN, /* followed by new column number */ POS_BASE }; /* Initialize a new DocList to hold the given data. */ static void docListInit(DocList *d, DocListType iType, const char *pData, int nData){ d->nData = nData; if( nData>0 ){ d->pData = malloc(nData); memcpy(d->pData, pData, nData); } else { d->pData = NULL; } d->iType = iType; d->iLastColumn = 0; d->iLastPos = d->iLastOffset = 0; } /* Create a new dynamically-allocated DocList. */ static DocList *docListNew(DocListType iType){ DocList *d = (DocList *) malloc(sizeof(DocList)); docListInit(d, iType, 0, 0); return d; } static void docListDestroy(DocList *d){ free(d->pData); #ifndef NDEBUG memset(d, 0x55, sizeof(*d)); #endif } static void docListDelete(DocList *d){ docListDestroy(d); free(d); } static char *docListEnd(DocList *d){ return d->pData + d->nData; } /* Append a varint to a DocList's data. */ static void appendVarint(DocList *d, sqlite_int64 i){ char c[VARINT_MAX]; int n = putVarint(c, i); d->pData = realloc(d->pData, d->nData + n); memcpy(d->pData + d->nData, c, n); d->nData += n; } static void docListAddDocid(DocList *d, sqlite_int64 iDocid){ appendVarint(d, iDocid); if( d->iType>=DL_POSITIONS ){ appendVarint(d, POS_END); /* initially empty position list */ d->iLastColumn = 0; d->iLastPos = d->iLastOffset = 0; } } /* helper function for docListAddPos and docListAddPosOffset */ static void addPos(DocList *d, int iColumn, int iPos){ assert( d->nData>0 ); --d->nData; /* remove previous terminator */ if( iColumn!=d->iLastColumn ){ assert( iColumn>d->iLastColumn ); appendVarint(d, POS_COLUMN); appendVarint(d, iColumn); d->iLastColumn = iColumn; d->iLastPos = d->iLastOffset = 0; } assert( iPos>=d->iLastPos ); appendVarint(d, iPos-d->iLastPos+POS_BASE); d->iLastPos = iPos; } /* Add a position to the last position list in a doclist. */ static void docListAddPos(DocList *d, int iColumn, int iPos){ assert( d->iType==DL_POSITIONS ); addPos(d, iColumn, iPos); appendVarint(d, POS_END); /* add new terminator */ } /* ** Add a position and starting and ending offsets to a doclist. ** ** If the doclist is setup to handle only positions, then insert ** the position only and ignore the offsets. */ static void docListAddPosOffset( DocList *d, /* Doclist under construction */ int iColumn, /* Column the inserted term is part of */ int iPos, /* Position of the inserted term */ int iStartOffset, /* Starting offset of inserted term */ int iEndOffset /* Ending offset of inserted term */ ){ assert( d->iType>=DL_POSITIONS ); addPos(d, iColumn, iPos); if( d->iType==DL_POSITIONS_OFFSETS ){ assert( iStartOffset>=d->iLastOffset ); appendVarint(d, iStartOffset-d->iLastOffset); d->iLastOffset = iStartOffset; assert( iEndOffset>=iStartOffset ); appendVarint(d, iEndOffset-iStartOffset); } appendVarint(d, POS_END); /* add new terminator */ } /* ** A DocListReader object is a cursor into a doclist. Initialize ** the cursor to the beginning of the doclist by calling readerInit(). ** Then use routines ** ** peekDocid() ** readDocid() ** readPosition() ** skipPositionList() ** and so forth... ** ** to read information out of the doclist. When we reach the end ** of the doclist, atEnd() returns TRUE. */ typedef struct DocListReader { DocList *pDoclist; /* The document list we are stepping through */ char *p; /* Pointer to next unread byte in the doclist */ int iLastColumn; int iLastPos; /* the last position read, or -1 when not in a position list */ } DocListReader; /* ** Initialize the DocListReader r to point to the beginning of pDoclist. */ static void readerInit(DocListReader *r, DocList *pDoclist){ r->pDoclist = pDoclist; if( pDoclist!=NULL ){ r->p = pDoclist->pData; } r->iLastColumn = -1; r->iLastPos = -1; } /* ** Return TRUE if we have reached then end of pReader and there is ** nothing else left to read. */ static int atEnd(DocListReader *pReader){ return pReader->pDoclist==0 || (pReader->p >= docListEnd(pReader->pDoclist)); } /* Peek at the next docid without advancing the read pointer. */ static sqlite_int64 peekDocid(DocListReader *pReader){ sqlite_int64 ret; assert( !atEnd(pReader) ); assert( pReader->iLastPos==-1 ); getVarint(pReader->p, &ret); return ret; } /* Read the next docid. See also nextDocid(). */ static sqlite_int64 readDocid(DocListReader *pReader){ sqlite_int64 ret; assert( !atEnd(pReader) ); assert( pReader->iLastPos==-1 ); pReader->p += getVarint(pReader->p, &ret); if( pReader->pDoclist->iType>=DL_POSITIONS ){ pReader->iLastColumn = 0; pReader->iLastPos = 0; } return ret; } /* Read the next position and column index from a position list. * Returns the position, or -1 at the end of the list. */ static int readPosition(DocListReader *pReader, int *iColumn){ int i; int iType = pReader->pDoclist->iType; if( pReader->iLastPos==-1 ){ return -1; } assert( !atEnd(pReader) ); if( iTypep += getVarint32(pReader->p, &i); if( i==POS_END ){ pReader->iLastColumn = pReader->iLastPos = -1; *iColumn = -1; return -1; } if( i==POS_COLUMN ){ pReader->p += getVarint32(pReader->p, &pReader->iLastColumn); pReader->iLastPos = 0; pReader->p += getVarint32(pReader->p, &i); assert( i>=POS_BASE ); } pReader->iLastPos += ((int) i)-POS_BASE; if( iType>=DL_POSITIONS_OFFSETS ){ /* Skip over offsets, ignoring them for now. */ int iStart, iEnd; pReader->p += getVarint32(pReader->p, &iStart); pReader->p += getVarint32(pReader->p, &iEnd); } *iColumn = pReader->iLastColumn; return pReader->iLastPos; } /* Skip past the end of a position list. */ static void skipPositionList(DocListReader *pReader){ DocList *p = pReader->pDoclist; if( p && p->iType>=DL_POSITIONS ){ int iColumn; while( readPosition(pReader, &iColumn)!=-1 ){} } } /* Skip over a docid, including its position list if the doclist has * positions. */ static void skipDocument(DocListReader *pReader){ readDocid(pReader); skipPositionList(pReader); } /* Skip past all docids which are less than [iDocid]. Returns 1 if a docid * matching [iDocid] was found. */ static int skipToDocid(DocListReader *pReader, sqlite_int64 iDocid){ sqlite_int64 d = 0; while( !atEnd(pReader) && (d=peekDocid(pReader))iType>=DL_POSITIONS ){ int iPos, iCol; const char *zDiv = ""; printf("("); while( (iPos = readPosition(&r, &iCol))>=0 ){ printf("%s%d:%d", zDiv, iCol, iPos); zDiv = ":"; } printf(")"); } } printf("\n"); fflush(stdout); } #endif /* SQLITE_DEBUG */ /* Trim the given doclist to contain only positions in column * [iRestrictColumn]. */ static void docListRestrictColumn(DocList *in, int iRestrictColumn){ DocListReader r; DocList out; assert( in->iType>=DL_POSITIONS ); readerInit(&r, in); docListInit(&out, DL_POSITIONS, NULL, 0); while( !atEnd(&r) ){ sqlite_int64 iDocid = readDocid(&r); int iPos, iColumn; docListAddDocid(&out, iDocid); while( (iPos = readPosition(&r, &iColumn)) != -1 ){ if( iColumn==iRestrictColumn ){ docListAddPos(&out, iColumn, iPos); } } } docListDestroy(in); *in = out; } /* Trim the given doclist by discarding any docids without any remaining * positions. */ static void docListDiscardEmpty(DocList *in) { DocListReader r; DocList out; /* TODO: It would be nice to implement this operation in place; that * could save a significant amount of memory in queries with long doclists. */ assert( in->iType>=DL_POSITIONS ); readerInit(&r, in); docListInit(&out, DL_POSITIONS, NULL, 0); while( !atEnd(&r) ){ sqlite_int64 iDocid = readDocid(&r); int match = 0; int iPos, iColumn; while( (iPos = readPosition(&r, &iColumn)) != -1 ){ if( !match ){ docListAddDocid(&out, iDocid); match = 1; } docListAddPos(&out, iColumn, iPos); } } docListDestroy(in); *in = out; } /* Helper function for docListUpdate() and docListAccumulate(). ** Splices a doclist element into the doclist represented by r, ** leaving r pointing after the newly spliced element. */ static void docListSpliceElement(DocListReader *r, sqlite_int64 iDocid, const char *pSource, int nSource){ DocList *d = r->pDoclist; char *pTarget; int nTarget, found; found = skipToDocid(r, iDocid); /* Describe slice in d to place pSource/nSource. */ pTarget = r->p; if( found ){ skipDocument(r); nTarget = r->p-pTarget; }else{ nTarget = 0; } /* The sense of the following is that there are three possibilities. ** If nTarget==nSource, we should not move any memory nor realloc. ** If nTarget>nSource, trim target and realloc. ** If nTargetnSource ){ memmove(pTarget+nSource, pTarget+nTarget, docListEnd(d)-(pTarget+nTarget)); } if( nTarget!=nSource ){ int iDoclist = pTarget-d->pData; d->pData = realloc(d->pData, d->nData+nSource-nTarget); pTarget = d->pData+iDoclist; } if( nTargetnData += nSource-nTarget; r->p = pTarget+nSource; } /* Insert/update pUpdate into the doclist. */ static void docListUpdate(DocList *d, DocList *pUpdate){ DocListReader reader; assert( d!=NULL && pUpdate!=NULL ); assert( d->iType==pUpdate->iType); readerInit(&reader, d); docListSpliceElement(&reader, firstDocid(pUpdate), pUpdate->pData, pUpdate->nData); } /* Propagate elements from pUpdate to pAcc, overwriting elements with ** matching docids. */ static void docListAccumulate(DocList *pAcc, DocList *pUpdate){ DocListReader accReader, updateReader; /* Handle edge cases where one doclist is empty. */ assert( pAcc!=NULL ); if( pUpdate==NULL || pUpdate->nData==0 ) return; if( pAcc->nData==0 ){ pAcc->pData = malloc(pUpdate->nData); memcpy(pAcc->pData, pUpdate->pData, pUpdate->nData); pAcc->nData = pUpdate->nData; return; } readerInit(&accReader, pAcc); readerInit(&updateReader, pUpdate); while( !atEnd(&updateReader) ){ char *pSource = updateReader.p; sqlite_int64 iDocid = readDocid(&updateReader); skipPositionList(&updateReader); docListSpliceElement(&accReader, iDocid, pSource, updateReader.p-pSource); } } /* ** Read the next docid off of pIn. Return 0 if we reach the end. * * TODO: This assumes that docids are never 0, but they may actually be 0 since * users can choose docids when inserting into a full-text table. Fix this. */ static sqlite_int64 nextDocid(DocListReader *pIn){ skipPositionList(pIn); return atEnd(pIn) ? 0 : readDocid(pIn); } /* ** pLeft and pRight are two DocListReaders that are pointing to ** positions lists of the same document: iDocid. ** ** If there are no instances in pLeft or pRight where the position ** of pLeft is one less than the position of pRight, then this ** routine adds nothing to pOut. ** ** If there are one or more instances where positions from pLeft ** are exactly one less than positions from pRight, then add a new ** document record to pOut. If pOut wants to hold positions, then ** include the positions from pRight that are one more than a ** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1. ** ** pLeft and pRight are left pointing at the next document record. */ static void mergePosList( DocListReader *pLeft, /* Left position list */ DocListReader *pRight, /* Right position list */ sqlite_int64 iDocid, /* The docid from pLeft and pRight */ DocList *pOut /* Write the merged document record here */ ){ int iLeftCol, iLeftPos = readPosition(pLeft, &iLeftCol); int iRightCol, iRightPos = readPosition(pRight, &iRightCol); int match = 0; /* Loop until we've reached the end of both position lists. */ while( iLeftPos!=-1 && iRightPos!=-1 ){ if( iLeftCol==iRightCol && iLeftPos+1==iRightPos ){ if( !match ){ docListAddDocid(pOut, iDocid); match = 1; } if( pOut->iType>=DL_POSITIONS ){ docListAddPos(pOut, iRightCol, iRightPos); } iLeftPos = readPosition(pLeft, &iLeftCol); iRightPos = readPosition(pRight, &iRightCol); }else if( iRightCol=0 ) skipPositionList(pLeft); if( iRightPos>=0 ) skipPositionList(pRight); } /* We have two doclists: pLeft and pRight. ** Write the phrase intersection of these two doclists into pOut. ** ** A phrase intersection means that two documents only match ** if pLeft.iPos+1==pRight.iPos. ** ** The output pOut may or may not contain positions. If pOut ** does contain positions, they are the positions of pRight. */ static void docListPhraseMerge( DocList *pLeft, /* Doclist resulting from the words on the left */ DocList *pRight, /* Doclist for the next word to the right */ DocList *pOut /* Write the combined doclist here */ ){ DocListReader left, right; sqlite_int64 docidLeft, docidRight; readerInit(&left, pLeft); readerInit(&right, pRight); docidLeft = nextDocid(&left); docidRight = nextDocid(&right); while( docidLeft>0 && docidRight>0 ){ if( docidLeftiType0 && docidRight>0 ){ if( docidLeft0 && docidRight>0 ){ if( docidLeft<=docidRight ){ docListAddDocid(pOut, docidLeft); }else{ docListAddDocid(pOut, docidRight); } priorLeft = docidLeft; if( docidLeft<=docidRight ){ docidLeft = nextDocid(&left); } if( docidRight>0 && docidRight<=priorLeft ){ docidRight = nextDocid(&right); } } while( docidLeft>0 ){ docListAddDocid(pOut, docidLeft); docidLeft = nextDocid(&left); } while( docidRight>0 ){ docListAddDocid(pOut, docidRight); docidRight = nextDocid(&right); } } /* We have two doclists: pLeft and pRight. ** Write into pOut all documents that occur in pLeft but not ** in pRight. ** ** Only docids are matched. Position information is ignored. ** ** The output pOut never holds positions. */ static void docListExceptMerge( DocList *pLeft, /* Doclist resulting from the words on the left */ DocList *pRight, /* Doclist for the next word to the right */ DocList *pOut /* Write the combined doclist here */ ){ DocListReader left, right; sqlite_int64 docidLeft, docidRight, priorLeft; readerInit(&left, pLeft); readerInit(&right, pRight); docidLeft = nextDocid(&left); docidRight = nextDocid(&right); while( docidLeft>0 && docidRight>0 ){ priorLeft = docidLeft; if( docidLeft0 && docidRight<=priorLeft ){ docidRight = nextDocid(&right); } } while( docidLeft>0 ){ docListAddDocid(pOut, docidLeft); docidLeft = nextDocid(&left); } } static char *string_dup_n(const char *s, int n){ char *str = malloc(n + 1); memcpy(str, s, n); str[n] = '\0'; return str; } /* Duplicate a string; the caller must free() the returned string. * (We don't use strdup() since it's not part of the standard C library and * may not be available everywhere.) */ static char *string_dup(const char *s){ return string_dup_n(s, strlen(s)); } /* Format a string, replacing each occurrence of the % character with * zName. This may be more convenient than sqlite_mprintf() * when one string is used repeatedly in a format string. * The caller must free() the returned string. */ static char *string_format(const char *zFormat, const char *zName){ const char *p; size_t len = 0; size_t nName = strlen(zName); char *result; char *r; /* first compute length needed */ for(p = zFormat ; *p ; ++p){ len += (*p=='%' ? nName : 1); } len += 1; /* for null terminator */ r = result = malloc(len); for(p = zFormat; *p; ++p){ if( *p=='%' ){ memcpy(r, zName, nName); r += nName; } else { *r++ = *p; } } *r++ = '\0'; assert( r == result + len ); return result; } static int sql_exec(sqlite3 *db, const char *zName, const char *zFormat){ char *zCommand = string_format(zFormat, zName); int rc; TRACE(("FTS1 sql: %s\n", zCommand)); rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); free(zCommand); return rc; } static int sql_prepare(sqlite3 *db, const char *zName, sqlite3_stmt **ppStmt, const char *zFormat){ char *zCommand = string_format(zFormat, zName); int rc; TRACE(("FTS1 prepare: %s\n", zCommand)); rc = sqlite3_prepare(db, zCommand, -1, ppStmt, NULL); free(zCommand); return rc; } /* end utility functions */ /* Forward reference */ typedef struct fulltext_vtab fulltext_vtab; /* A single term in a query is represented by an instances of ** the following structure. */ typedef struct QueryTerm { short int nPhrase; /* How many following terms are part of the same phrase */ short int iPhrase; /* This is the i-th term of a phrase. */ short int iColumn; /* Column of the index that must match this term */ signed char isOr; /* this term is preceded by "OR" */ signed char isNot; /* this term is preceded by "-" */ char *pTerm; /* text of the term. '\000' terminated. malloced */ int nTerm; /* Number of bytes in pTerm[] */ } QueryTerm; /* A query string is parsed into a Query structure. * * We could, in theory, allow query strings to be complicated * nested expressions with precedence determined by parentheses. * But none of the major search engines do this. (Perhaps the * feeling is that an parenthesized expression is two complex of * an idea for the average user to grasp.) Taking our lead from * the major search engines, we will allow queries to be a list * of terms (with an implied AND operator) or phrases in double-quotes, * with a single optional "-" before each non-phrase term to designate * negation and an optional OR connector. * * OR binds more tightly than the implied AND, which is what the * major search engines seem to do. So, for example: * * [one two OR three] ==> one AND (two OR three) * [one OR two three] ==> (one OR two) AND three * * A "-" before a term matches all entries that lack that term. * The "-" must occur immediately before the term with in intervening * space. This is how the search engines do it. * * A NOT term cannot be the right-hand operand of an OR. If this * occurs in the query string, the NOT is ignored: * * [one OR -two] ==> one OR two * */ typedef struct Query { fulltext_vtab *pFts; /* The full text index */ int nTerms; /* Number of terms in the query */ QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ int nextIsOr; /* Set the isOr flag on the next inserted term */ int nextColumn; /* Next word parsed must be in this column */ int dfltColumn; /* The default column */ } Query; /* ** An instance of the following structure keeps track of generated ** matching-word offset information and snippets. */ typedef struct Snippet { int nMatch; /* Total number of matches */ int nAlloc; /* Space allocated for aMatch[] */ struct snippetMatch { /* One entry for each matching term */ char snStatus; /* Status flag for use while constructing snippets */ short int iCol; /* The column that contains the match */ short int iTerm; /* The index in Query.pTerms[] of the matching term */ short int nByte; /* Number of bytes in the term */ int iStart; /* The offset to the first character of the term */ } *aMatch; /* Points to space obtained from malloc */ char *zOffset; /* Text rendering of aMatch[] */ int nOffset; /* strlen(zOffset) */ char *zSnippet; /* Snippet text */ int nSnippet; /* strlen(zSnippet) */ } Snippet; typedef enum QueryType { QUERY_GENERIC, /* table scan */ QUERY_ROWID, /* lookup by rowid */ QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ } QueryType; /* TODO(shess) CHUNK_MAX controls how much data we allow in segment 0 ** before we start aggregating into larger segments. Lower CHUNK_MAX ** means that for a given input we have more individual segments per ** term, which means more rows in the table and a bigger index (due to ** both more rows and bigger rowids). But it also reduces the average ** cost of adding new elements to the segment 0 doclist, and it seems ** to reduce the number of pages read and written during inserts. 256 ** was chosen by measuring insertion times for a certain input (first ** 10k documents of Enron corpus), though including query performance ** in the decision may argue for a larger value. */ #define CHUNK_MAX 256 typedef enum fulltext_statement { CONTENT_INSERT_STMT, CONTENT_SELECT_STMT, CONTENT_UPDATE_STMT, CONTENT_DELETE_STMT, TERM_SELECT_STMT, TERM_SELECT_ALL_STMT, TERM_INSERT_STMT, TERM_UPDATE_STMT, TERM_DELETE_STMT, MAX_STMT /* Always at end! */ } fulltext_statement; /* These must exactly match the enum above. */ /* TODO(adam): Is there some risk that a statement (in particular, ** pTermSelectStmt) will be used in two cursors at once, e.g. if a ** query joins a virtual table to itself? If so perhaps we should ** move some of these to the cursor object. */ static const char *const fulltext_zStatement[MAX_STMT] = { /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ /* CONTENT_SELECT */ "select * from %_content where rowid = ?", /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ /* CONTENT_DELETE */ "delete from %_content where rowid = ?", /* TERM_SELECT */ "select rowid, doclist from %_term where term = ? and segment = ?", /* TERM_SELECT_ALL */ "select doclist from %_term where term = ? order by segment", /* TERM_INSERT */ "insert into %_term (rowid, term, segment, doclist) values (?, ?, ?, ?)", /* TERM_UPDATE */ "update %_term set doclist = ? where rowid = ?", /* TERM_DELETE */ "delete from %_term where rowid = ?", }; /* ** A connection to a fulltext index is an instance of the following ** structure. The xCreate and xConnect methods create an instance ** of this structure and xDestroy and xDisconnect free that instance. ** All other methods receive a pointer to the structure as one of their ** arguments. */ struct fulltext_vtab { sqlite3_vtab base; /* Base class used by SQLite core */ sqlite3 *db; /* The database connection */ const char *zName; /* virtual table name */ int nColumn; /* number of columns in virtual table */ char **azColumn; /* column names. malloced */ char **azContentColumn; /* column names in content table; malloced */ sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ /* Precompiled statements which we keep as long as the table is ** open. */ sqlite3_stmt *pFulltextStatements[MAX_STMT]; }; /* ** When the core wants to do a query, it create a cursor using a ** call to xOpen. This structure is an instance of a cursor. It ** is destroyed by xClose. */ typedef struct fulltext_cursor { sqlite3_vtab_cursor base; /* Base class used by SQLite core */ QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ int eof; /* True if at End Of Results */ Query q; /* Parsed query string */ Snippet snippet; /* Cached snippet for the current row */ int iColumn; /* Column being searched */ DocListReader result; /* used when iCursorType == QUERY_FULLTEXT */ } fulltext_cursor; static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ return (fulltext_vtab *) c->base.pVtab; } static const sqlite3_module fulltextModule; /* forward declaration */ /* Append a list of strings separated by commas to a StringBuffer. */ static void appendList(StringBuffer *sb, int nString, char **azString){ int i; for(i=0; i0 ) append(sb, ", "); append(sb, azString[i]); } } /* Return a dynamically generated statement of the form * insert into %_content (rowid, ...) values (?, ...) */ static const char *contentInsertStatement(fulltext_vtab *v){ StringBuffer sb; int i; initStringBuffer(&sb); append(&sb, "insert into %_content (rowid, "); appendList(&sb, v->nColumn, v->azContentColumn); append(&sb, ") values (?"); for(i=0; inColumn; ++i) append(&sb, ", ?"); append(&sb, ")"); return sb.s; } /* Return a dynamically generated statement of the form * update %_content set [col_0] = ?, [col_1] = ?, ... * where rowid = ? */ static const char *contentUpdateStatement(fulltext_vtab *v){ StringBuffer sb; int i; initStringBuffer(&sb); append(&sb, "update %_content set "); for(i=0; inColumn; ++i) { if( i>0 ){ append(&sb, ", "); } append(&sb, v->azContentColumn[i]); append(&sb, " = ?"); } append(&sb, " where rowid = ?"); return sb.s; } /* Puts a freshly-prepared statement determined by iStmt in *ppStmt. ** If the indicated statement has never been prepared, it is prepared ** and cached, otherwise the cached version is reset. */ static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, sqlite3_stmt **ppStmt){ assert( iStmtpFulltextStatements[iStmt]==NULL ){ const char *zStmt; int rc; switch( iStmt ){ case CONTENT_INSERT_STMT: zStmt = contentInsertStatement(v); break; case CONTENT_UPDATE_STMT: zStmt = contentUpdateStatement(v); break; default: zStmt = fulltext_zStatement[iStmt]; } rc = sql_prepare(v->db, v->zName, &v->pFulltextStatements[iStmt], zStmt); if( zStmt != fulltext_zStatement[iStmt]) free((void *) zStmt); if( rc!=SQLITE_OK ) return rc; } else { int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); if( rc!=SQLITE_OK ) return rc; } *ppStmt = v->pFulltextStatements[iStmt]; return SQLITE_OK; } /* Step the indicated statement, handling errors SQLITE_BUSY (by ** retrying) and SQLITE_SCHEMA (by re-preparing and transferring ** bindings to the new statement). ** TODO(adam): We should extend this function so that it can work with ** statements declared locally, not only globally cached statements. */ static int sql_step_statement(fulltext_vtab *v, fulltext_statement iStmt, sqlite3_stmt **ppStmt){ int rc; sqlite3_stmt *s = *ppStmt; assert( iStmtpFulltextStatements[iStmt] ); while( (rc=sqlite3_step(s))!=SQLITE_DONE && rc!=SQLITE_ROW ){ sqlite3_stmt *pNewStmt; if( rc==SQLITE_BUSY ) continue; if( rc!=SQLITE_ERROR ) return rc; rc = sqlite3_reset(s); if( rc!=SQLITE_SCHEMA ) return SQLITE_ERROR; v->pFulltextStatements[iStmt] = NULL; /* Still in s */ rc = sql_get_statement(v, iStmt, &pNewStmt); if( rc!=SQLITE_OK ) goto err; *ppStmt = pNewStmt; rc = sqlite3_transfer_bindings(s, pNewStmt); if( rc!=SQLITE_OK ) goto err; rc = sqlite3_finalize(s); if( rc!=SQLITE_OK ) return rc; s = pNewStmt; } return rc; err: sqlite3_finalize(s); return rc; } /* Like sql_step_statement(), but convert SQLITE_DONE to SQLITE_OK. ** Useful for statements like UPDATE, where we expect no results. */ static int sql_single_step_statement(fulltext_vtab *v, fulltext_statement iStmt, sqlite3_stmt **ppStmt){ int rc = sql_step_statement(v, iStmt, ppStmt); return (rc==SQLITE_DONE) ? SQLITE_OK : rc; } /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */ static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, sqlite3_value **pValues){ sqlite3_stmt *s; int i; int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_value(s, 1, rowid); if( rc!=SQLITE_OK ) return rc; for(i=0; inColumn; ++i){ rc = sqlite3_bind_value(s, 2+i, pValues[i]); if( rc!=SQLITE_OK ) return rc; } return sql_single_step_statement(v, CONTENT_INSERT_STMT, &s); } /* update %_content set col0 = pValues[0], col1 = pValues[1], ... * where rowid = [iRowid] */ static int content_update(fulltext_vtab *v, sqlite3_value **pValues, sqlite_int64 iRowid){ sqlite3_stmt *s; int i; int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); if( rc!=SQLITE_OK ) return rc; for(i=0; inColumn; ++i){ rc = sqlite3_bind_value(s, 1+i, pValues[i]); if( rc!=SQLITE_OK ) return rc; } rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid); if( rc!=SQLITE_OK ) return rc; return sql_single_step_statement(v, CONTENT_UPDATE_STMT, &s); } static void freeStringArray(int nString, const char **pString){ int i; for (i=0 ; i < nString ; ++i) { free((void *) pString[i]); } free((void *) pString); } /* select * from %_content where rowid = [iRow] * The caller must delete the returned array and all strings in it. * * TODO: Perhaps we should return pointer/length strings here for consistency * with other code which uses pointer/length. */ static int content_select(fulltext_vtab *v, sqlite_int64 iRow, const char ***pValues){ sqlite3_stmt *s; const char **values; int i; int rc; *pValues = NULL; rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_int64(s, 1, iRow); if( rc!=SQLITE_OK ) return rc; rc = sql_step_statement(v, CONTENT_SELECT_STMT, &s); if( rc!=SQLITE_ROW ) return rc; values = (const char **) malloc(v->nColumn * sizeof(const char *)); for(i=0; inColumn; ++i){ values[i] = string_dup((char*)sqlite3_column_text(s, i)); } /* We expect only one row. We must execute another sqlite3_step() * to complete the iteration; otherwise the table will remain locked. */ rc = sqlite3_step(s); if( rc==SQLITE_DONE ){ *pValues = values; return SQLITE_OK; } freeStringArray(v->nColumn, values); return rc; } /* delete from %_content where rowid = [iRow ] */ static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){ sqlite3_stmt *s; int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_int64(s, 1, iRow); if( rc!=SQLITE_OK ) return rc; return sql_single_step_statement(v, CONTENT_DELETE_STMT, &s); } /* select rowid, doclist from %_term * where term = [pTerm] and segment = [iSegment] * If found, returns SQLITE_ROW; the caller must free the * returned doclist. If no rows found, returns SQLITE_DONE. */ static int term_select(fulltext_vtab *v, const char *pTerm, int nTerm, int iSegment, sqlite_int64 *rowid, DocList *out){ sqlite3_stmt *s; int rc = sql_get_statement(v, TERM_SELECT_STMT, &s); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_text(s, 1, pTerm, nTerm, SQLITE_STATIC); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_int(s, 2, iSegment); if( rc!=SQLITE_OK ) return rc; rc = sql_step_statement(v, TERM_SELECT_STMT, &s); if( rc!=SQLITE_ROW ) return rc; *rowid = sqlite3_column_int64(s, 0); docListInit(out, DL_DEFAULT, sqlite3_column_blob(s, 1), sqlite3_column_bytes(s, 1)); /* We expect only one row. We must execute another sqlite3_step() * to complete the iteration; otherwise the table will remain locked. */ rc = sqlite3_step(s); return rc==SQLITE_DONE ? SQLITE_ROW : rc; } /* Load the segment doclists for term pTerm and merge them in ** appropriate order into out. Returns SQLITE_OK if successful. If ** there are no segments for pTerm, successfully returns an empty ** doclist in out. ** ** Each document consists of 1 or more "columns". The number of ** columns is v->nColumn. If iColumn==v->nColumn, then return ** position information about all columns. If iColumnnColumn, ** then only return position information about the iColumn-th column ** (where the first column is 0). */ static int term_select_all( fulltext_vtab *v, /* The fulltext index we are querying against */ int iColumn, /* If nColumn ){ /* querying a single column */ docListRestrictColumn(&old, iColumn); } /* doclist contains the newer data, so write it over old. Then ** steal accumulated result for doclist. */ docListAccumulate(&old, &doclist); docListDestroy(&doclist); doclist = old; } if( rc!=SQLITE_DONE ){ docListDestroy(&doclist); return rc; } docListDiscardEmpty(&doclist); *out = doclist; return SQLITE_OK; } /* insert into %_term (rowid, term, segment, doclist) values ([piRowid], [pTerm], [iSegment], [doclist]) ** Lets sqlite select rowid if piRowid is NULL, else uses *piRowid. ** ** NOTE(shess) piRowid is IN, with values of "space of int64" plus ** null, it is not used to pass data back to the caller. */ static int term_insert(fulltext_vtab *v, sqlite_int64 *piRowid, const char *pTerm, int nTerm, int iSegment, DocList *doclist){ sqlite3_stmt *s; int rc = sql_get_statement(v, TERM_INSERT_STMT, &s); if( rc!=SQLITE_OK ) return rc; if( piRowid==NULL ){ rc = sqlite3_bind_null(s, 1); }else{ rc = sqlite3_bind_int64(s, 1, *piRowid); } if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_text(s, 2, pTerm, nTerm, SQLITE_STATIC); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_int(s, 3, iSegment); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_blob(s, 4, doclist->pData, doclist->nData, SQLITE_STATIC); if( rc!=SQLITE_OK ) return rc; return sql_single_step_statement(v, TERM_INSERT_STMT, &s); } /* update %_term set doclist = [doclist] where rowid = [rowid] */ static int term_update(fulltext_vtab *v, sqlite_int64 rowid, DocList *doclist){ sqlite3_stmt *s; int rc = sql_get_statement(v, TERM_UPDATE_STMT, &s); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_blob(s, 1, doclist->pData, doclist->nData, SQLITE_STATIC); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_int64(s, 2, rowid); if( rc!=SQLITE_OK ) return rc; return sql_single_step_statement(v, TERM_UPDATE_STMT, &s); } static int term_delete(fulltext_vtab *v, sqlite_int64 rowid){ sqlite3_stmt *s; int rc = sql_get_statement(v, TERM_DELETE_STMT, &s); if( rc!=SQLITE_OK ) return rc; rc = sqlite3_bind_int64(s, 1, rowid); if( rc!=SQLITE_OK ) return rc; return sql_single_step_statement(v, TERM_DELETE_STMT, &s); } /* ** Free the memory used to contain a fulltext_vtab structure. */ static void fulltext_vtab_destroy(fulltext_vtab *v){ int iStmt, i; TRACE(("FTS1 Destroy %p\n", v)); for( iStmt=0; iStmtpFulltextStatements[iStmt]!=NULL ){ sqlite3_finalize(v->pFulltextStatements[iStmt]); v->pFulltextStatements[iStmt] = NULL; } } if( v->pTokenizer!=NULL ){ v->pTokenizer->pModule->xDestroy(v->pTokenizer); v->pTokenizer = NULL; } free(v->azColumn); for(i = 0; i < v->nColumn; ++i) { sqlite3_free(v->azContentColumn[i]); } free(v->azContentColumn); free(v); } /* ** Token types for parsing the arguments to xConnect or xCreate. */ #define TOKEN_EOF 0 /* End of file */ #define TOKEN_SPACE 1 /* Any kind of whitespace */ #define TOKEN_ID 2 /* An identifier */ #define TOKEN_STRING 3 /* A string literal */ #define TOKEN_PUNCT 4 /* A single punctuation character */ /* ** If X is a character that can be used in an identifier then ** IdChar(X) will be true. Otherwise it is false. ** ** For ASCII, any character with the high-order bit set is ** allowed in an identifier. For 7-bit characters, ** sqlite3IsIdChar[X] must be 1. ** ** Ticket #1066. the SQL standard does not allow '$' in the ** middle of identfiers. But many SQL implementations do. ** SQLite will allow '$' in identifiers for compatibility. ** But the feature is undocumented. */ static const char isIdChar[] = { /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ }; #define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20])) /* ** Return the length of the token that begins at z[0]. ** Store the token type in *tokenType before returning. */ static int getToken(const char *z, int *tokenType){ int i, c; switch( *z ){ case 0: { *tokenType = TOKEN_EOF; return 0; } case ' ': case '\t': case '\n': case '\f': case '\r': { for(i=1; isspace(z[i]); i++){} *tokenType = TOKEN_SPACE; return i; } case '\'': case '"': { int delim = z[0]; for(i=1; (c=z[i])!=0; i++){ if( c==delim ){ if( z[i+1]==delim ){ i++; }else{ break; } } } *tokenType = TOKEN_STRING; return i + (c!=0); } case '[': { for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} *tokenType = TOKEN_ID; return i; } default: { if( !IdChar(*z) ){ break; } for(i=1; IdChar(z[i]); i++){} *tokenType = TOKEN_ID; return i; } } *tokenType = TOKEN_PUNCT; return 1; } /* ** A token extracted from a string is an instance of the following ** structure. */ typedef struct Token { const char *z; /* Pointer to token text. Not '\000' terminated */ short int n; /* Length of the token text in bytes. */ } Token; /* ** Given a input string (which is really one of the argv[] parameters ** passed into xConnect or xCreate) split the string up into tokens. ** Return an array of pointers to '\000' terminated strings, one string ** for each non-whitespace token. ** ** The returned array is terminated by a single NULL pointer. ** ** Space to hold the returned array is obtained from a single ** malloc and should be freed by passing the return value to free(). ** The individual strings within the token list are all a part of ** the single memory allocation and will all be freed at once. */ static char **tokenizeString(const char *z, int *pnToken){ int nToken = 0; Token *aToken = malloc( strlen(z) * sizeof(aToken[0]) ); int n = 1; int e, i; int totalSize = 0; char **azToken; char *zCopy; while( n>0 ){ n = getToken(z, &e); if( e!=TOKEN_SPACE ){ aToken[nToken].z = z; aToken[nToken].n = n; nToken++; totalSize += n+1; } z += n; } azToken = (char**)malloc( nToken*sizeof(char*) + totalSize ); zCopy = (char*)&azToken[nToken]; nToken--; for(i=0; i=0 ){ azIn[j] = azIn[i]; } j++; } } azIn[j] = 0; } } /* ** Find the first alphanumeric token in the string zIn. Null-terminate ** this token. Remove any quotation marks. And return a pointer to ** the result. */ static char *firstToken(char *zIn, char **pzTail){ int i, n, ttype; i = 0; while(1){ n = getToken(zIn, &ttype); if( ttype==TOKEN_SPACE ){ zIn += n; }else if( ttype==TOKEN_EOF ){ *pzTail = zIn; return 0; }else{ zIn[n] = 0; *pzTail = &zIn[1]; dequoteString(zIn); return zIn; } } /*NOTREACHED*/ } /* Return true if... ** ** * s begins with the string t, ignoring case ** * s is longer than t ** * The first character of s beyond t is not a alphanumeric ** ** Ignore leading space in *s. ** ** To put it another way, return true if the first token of ** s[] is t[]. */ static int startsWith(const char *s, const char *t){ while( isspace(*s) ){ s++; } while( *t ){ if( tolower(*s++)!=tolower(*t++) ) return 0; } return *s!='_' && !isalnum(*s); } /* ** An instance of this structure defines the "spec" of a ** full text index. This structure is populated by parseSpec ** and use by fulltextConnect and fulltextCreate. */ typedef struct TableSpec { const char *zName; /* Name of the full-text index */ int nColumn; /* Number of columns to be indexed */ char **azColumn; /* Original names of columns to be indexed */ char **azContentColumn; /* Column names for %_content */ char **azTokenizer; /* Name of tokenizer and its arguments */ } TableSpec; /* ** Reclaim all of the memory used by a TableSpec */ static void clearTableSpec(TableSpec *p) { free(p->azColumn); free(p->azContentColumn); free(p->azTokenizer); } /* Parse a CREATE VIRTUAL TABLE statement, which looks like this: * * CREATE VIRTUAL TABLE email * USING fts1(subject, body, tokenize mytokenizer(myarg)) * * We return parsed information in a TableSpec structure. * */ static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, char**pzErr){ int i, j, n; char *z, *zDummy; char **azArg; const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ assert( argc>=3 ); /* Current interface: ** argv[0] - module name ** argv[1] - database name ** argv[2] - table name ** argv[3..] - columns, optionally followed by tokenizer specification ** and snippet delimiters specification. */ /* Make a copy of the complete argv[][] array in a single allocation. ** The argv[][] array is read-only and transient. We can write to the ** copy in order to modify things and the copy is persistent. */ memset(pSpec, 0, sizeof(*pSpec)); for(i=n=0; izName = azArg[2]; pSpec->nColumn = 0; pSpec->azColumn = azArg; zTokenizer = "tokenize simple"; for(i=3, j=0; inColumn] = firstToken(azArg[i], &zDummy); pSpec->nColumn++; } } if( pSpec->nColumn==0 ){ azArg[0] = "content"; pSpec->nColumn = 1; } /* ** Construct the list of content column names. ** ** Each content column name will be of the form cNNAAAA ** where NN is the column number and AAAA is the sanitized ** column name. "sanitized" means that special characters are ** converted to "_". The cNN prefix guarantees that all column ** names are unique. ** ** The AAAA suffix is not strictly necessary. It is included ** for the convenience of people who might examine the generated ** %_content table and wonder what the columns are used for. */ pSpec->azContentColumn = malloc( pSpec->nColumn * sizeof(char *) ); if( pSpec->azContentColumn==0 ){ clearTableSpec(pSpec); return SQLITE_NOMEM; } for(i=0; inColumn; i++){ char *p; pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); for (p = pSpec->azContentColumn[i]; *p ; ++p) { if( !isalnum(*p) ) *p = '_'; } } /* ** Parse the tokenizer specification string. */ pSpec->azTokenizer = tokenizeString(zTokenizer, &n); tokenListToIdList(pSpec->azTokenizer); return SQLITE_OK; } /* ** Generate a CREATE TABLE statement that describes the schema of ** the virtual table. Return a pointer to this schema string. ** ** Space is obtained from sqlite3_mprintf() and should be freed ** using sqlite3_free(). */ static char *fulltextSchema( int nColumn, /* Number of columns */ const char *const* azColumn, /* List of columns */ const char *zTableName /* Name of the table */ ){ int i; char *zSchema, *zNext; const char *zSep = "("; zSchema = sqlite3_mprintf("CREATE TABLE x"); for(i=0; ibase */ v->db = db; v->zName = spec->zName; /* Freed when azColumn is freed */ v->nColumn = spec->nColumn; v->azContentColumn = spec->azContentColumn; spec->azContentColumn = 0; v->azColumn = spec->azColumn; spec->azColumn = 0; if( spec->azTokenizer==0 ){ return SQLITE_NOMEM; } /* TODO(shess) For now, add new tokenizers as else if clauses. */ if( spec->azTokenizer[0]==0 || startsWith(spec->azTokenizer[0], "simple") ){ sqlite3Fts1SimpleTokenizerModule(&m); }else if( startsWith(spec->azTokenizer[0], "porter") ){ sqlite3Fts1PorterTokenizerModule(&m); }else{ *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); rc = SQLITE_ERROR; goto err; } for(n=0; spec->azTokenizer[n]; n++){} if( n ){ rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], &v->pTokenizer); }else{ rc = m->xCreate(0, 0, &v->pTokenizer); } if( rc!=SQLITE_OK ) goto err; v->pTokenizer->pModule = m; /* TODO: verify the existence of backing tables foo_content, foo_term */ schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, spec->zName); rc = sqlite3_declare_vtab(db, schema); sqlite3_free(schema); if( rc!=SQLITE_OK ) goto err; memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); *ppVTab = &v->base; TRACE(("FTS1 Connect %p\n", v)); return rc; err: fulltext_vtab_destroy(v); return rc; } static int fulltextConnect( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVTab, char **pzErr ){ TableSpec spec; int rc = parseSpec(&spec, argc, argv, pzErr); if( rc!=SQLITE_OK ) return rc; rc = constructVtab(db, &spec, ppVTab, pzErr); clearTableSpec(&spec); return rc; } /* The %_content table holds the text of each document, with ** the rowid used as the docid. ** ** The %_term table maps each term to a document list blob ** containing elements sorted by ascending docid, each element ** encoded as: ** ** docid varint-encoded ** token elements: ** position+1 varint-encoded as delta from previous position ** start offset varint-encoded as delta from previous start offset ** end offset varint-encoded as delta from start offset ** ** The sentinel position of 0 indicates the end of the token list. ** ** Additionally, doclist blobs are chunked into multiple segments, ** using segment to order the segments. New elements are added to ** the segment at segment 0, until it exceeds CHUNK_MAX. Then ** segment 0 is deleted, and the doclist is inserted at segment 1. ** If there is already a doclist at segment 1, the segment 0 doclist ** is merged with it, the segment 1 doclist is deleted, and the ** merged doclist is inserted at segment 2, repeating those ** operations until an insert succeeds. ** ** Since this structure doesn't allow us to update elements in place ** in case of deletion or update, these are simply written to ** segment 0 (with an empty token list in case of deletion), with ** docListAccumulate() taking care to retain lower-segment ** information in preference to higher-segment information. */ /* TODO(shess) Provide a VACUUM type operation which both removes ** deleted elements which are no longer necessary, and duplicated ** elements. I suspect this will probably not be necessary in ** practice, though. */ static int fulltextCreate(sqlite3 *db, void *pAux, int argc, const char * const *argv, sqlite3_vtab **ppVTab, char **pzErr){ int rc; TableSpec spec; StringBuffer schema; TRACE(("FTS1 Create\n")); rc = parseSpec(&spec, argc, argv, pzErr); if( rc!=SQLITE_OK ) return rc; initStringBuffer(&schema); append(&schema, "CREATE TABLE %_content("); appendList(&schema, spec.nColumn, spec.azContentColumn); append(&schema, ")"); rc = sql_exec(db, spec.zName, schema.s); free(schema.s); if( rc!=SQLITE_OK ) goto out; rc = sql_exec(db, spec.zName, "create table %_term(term text, segment integer, doclist blob, " "primary key(term, segment));"); if( rc!=SQLITE_OK ) goto out; rc = constructVtab(db, &spec, ppVTab, pzErr); out: clearTableSpec(&spec); return rc; } /* Decide how to handle an SQL query. */ static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ int i; TRACE(("FTS1 BestIndex\n")); for(i=0; inConstraint; ++i){ const struct sqlite3_index_constraint *pConstraint; pConstraint = &pInfo->aConstraint[i]; if( pConstraint->usable ) { if( pConstraint->iColumn==-1 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */ TRACE(("FTS1 QUERY_ROWID\n")); } else if( pConstraint->iColumn>=0 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ /* full-text search */ pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; TRACE(("FTS1 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); } else continue; pInfo->aConstraintUsage[i].argvIndex = 1; pInfo->aConstraintUsage[i].omit = 1; /* An arbitrary value for now. * TODO: Perhaps rowid matches should be considered cheaper than * full-text searches. */ pInfo->estimatedCost = 1.0; return SQLITE_OK; } } pInfo->idxNum = QUERY_GENERIC; return SQLITE_OK; } static int fulltextDisconnect(sqlite3_vtab *pVTab){ TRACE(("FTS1 Disconnect %p\n", pVTab)); fulltext_vtab_destroy((fulltext_vtab *)pVTab); return SQLITE_OK; } static int fulltextDestroy(sqlite3_vtab *pVTab){ fulltext_vtab *v = (fulltext_vtab *)pVTab; int rc; TRACE(("FTS1 Destroy %p\n", pVTab)); rc = sql_exec(v->db, v->zName, "drop table if exists %_content;" "drop table if exists %_term;" ); if( rc!=SQLITE_OK ) return rc; fulltext_vtab_destroy((fulltext_vtab *)pVTab); return SQLITE_OK; } static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ fulltext_cursor *c; c = (fulltext_cursor *) calloc(sizeof(fulltext_cursor), 1); /* sqlite will initialize c->base */ *ppCursor = &c->base; TRACE(("FTS1 Open %p: %p\n", pVTab, c)); return SQLITE_OK; } /* Free all of the dynamically allocated memory held by *q */ static void queryClear(Query *q){ int i; for(i = 0; i < q->nTerms; ++i){ free(q->pTerms[i].pTerm); } free(q->pTerms); memset(q, 0, sizeof(*q)); } /* Free all of the dynamically allocated memory held by the ** Snippet */ static void snippetClear(Snippet *p){ free(p->aMatch); free(p->zOffset); free(p->zSnippet); memset(p, 0, sizeof(*p)); } /* ** Append a single entry to the p->aMatch[] log. */ static void snippetAppendMatch( Snippet *p, /* Append the entry to this snippet */ int iCol, int iTerm, /* The column and query term */ int iStart, int nByte /* Offset and size of the match */ ){ int i; struct snippetMatch *pMatch; if( p->nMatch+1>=p->nAlloc ){ p->nAlloc = p->nAlloc*2 + 10; p->aMatch = realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); if( p->aMatch==0 ){ p->nMatch = 0; p->nAlloc = 0; return; } } i = p->nMatch++; pMatch = &p->aMatch[i]; pMatch->iCol = iCol; pMatch->iTerm = iTerm; pMatch->iStart = iStart; pMatch->nByte = nByte; } /* ** Sizing information for the circular buffer used in snippetOffsetsOfColumn() */ #define FTS1_ROTOR_SZ (32) #define FTS1_ROTOR_MASK (FTS1_ROTOR_SZ-1) /* ** Add entries to pSnippet->aMatch[] for every match that occurs against ** document zDoc[0..nDoc-1] which is stored in column iColumn. */ static void snippetOffsetsOfColumn( Query *pQuery, Snippet *pSnippet, int iColumn, const char *zDoc, int nDoc ){ const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ fulltext_vtab *pVtab; /* The full text index */ int nColumn; /* Number of columns in the index */ const QueryTerm *aTerm; /* Query string terms */ int nTerm; /* Number of query string terms */ int i, j; /* Loop counters */ int rc; /* Return code */ unsigned int match, prevMatch; /* Phrase search bitmasks */ const char *zToken; /* Next token from the tokenizer */ int nToken; /* Size of zToken */ int iBegin, iEnd, iPos; /* Offsets of beginning and end */ /* The following variables keep a circular buffer of the last ** few tokens */ unsigned int iRotor = 0; /* Index of current token */ int iRotorBegin[FTS1_ROTOR_SZ]; /* Beginning offset of token */ int iRotorLen[FTS1_ROTOR_SZ]; /* Length of token */ pVtab = pQuery->pFts; nColumn = pVtab->nColumn; pTokenizer = pVtab->pTokenizer; pTModule = pTokenizer->pModule; rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); if( rc ) return; pTCursor->pTokenizer = pTokenizer; aTerm = pQuery->pTerms; nTerm = pQuery->nTerms; if( nTerm>=FTS1_ROTOR_SZ ){ nTerm = FTS1_ROTOR_SZ - 1; } prevMatch = 0; while(1){ rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); if( rc ) break; iRotorBegin[iRotor&FTS1_ROTOR_MASK] = iBegin; iRotorLen[iRotor&FTS1_ROTOR_MASK] = iEnd-iBegin; match = 0; for(i=0; i=0 && iCol1 && (prevMatch & (1<=0; j--){ int k = (iRotor-j) & FTS1_ROTOR_MASK; snippetAppendMatch(pSnippet, iColumn, i-j, iRotorBegin[k], iRotorLen[k]); } } } prevMatch = match<<1; iRotor++; } pTModule->xClose(pTCursor); } /* ** Compute all offsets for the current row of the query. ** If the offsets have already been computed, this routine is a no-op. */ static void snippetAllOffsets(fulltext_cursor *p){ int nColumn; int iColumn, i; int iFirst, iLast; fulltext_vtab *pFts; if( p->snippet.nMatch ) return; if( p->q.nTerms==0 ) return; pFts = p->q.pFts; nColumn = pFts->nColumn; iColumn = p->iCursorType; if( iColumn<0 || iColumn>=nColumn ){ iFirst = 0; iLast = nColumn-1; }else{ iFirst = iColumn; iLast = iColumn; } for(i=iFirst; i<=iLast; i++){ const char *zDoc; int nDoc; zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); nDoc = sqlite3_column_bytes(p->pStmt, i+1); snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); } } /* ** Convert the information in the aMatch[] array of the snippet ** into the string zOffset[0..nOffset-1]. */ static void snippetOffsetText(Snippet *p){ int i; int cnt = 0; StringBuffer sb; char zBuf[200]; if( p->zOffset ) return; initStringBuffer(&sb); for(i=0; inMatch; i++){ struct snippetMatch *pMatch = &p->aMatch[i]; zBuf[0] = ' '; sprintf(&zBuf[cnt>0], "%d %d %d %d", pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); append(&sb, zBuf); cnt++; } p->zOffset = sb.s; p->nOffset = sb.len; } /* ** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set ** of matching words some of which might be in zDoc. zDoc is column ** number iCol. ** ** iBreak is suggested spot in zDoc where we could begin or end an ** excerpt. Return a value similar to iBreak but possibly adjusted ** to be a little left or right so that the break point is better. */ static int wordBoundary( int iBreak, /* The suggested break point */ const char *zDoc, /* Document text */ int nDoc, /* Number of bytes in zDoc[] */ struct snippetMatch *aMatch, /* Matching words */ int nMatch, /* Number of entries in aMatch[] */ int iCol /* The column number for zDoc[] */ ){ int i; if( iBreak<=10 ){ return 0; } if( iBreak>=nDoc-10 ){ return nDoc; } for(i=0; i0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ return aMatch[i-1].iStart; } } for(i=1; i<=10; i++){ if( isspace(zDoc[iBreak-i]) ){ return iBreak - i + 1; } if( isspace(zDoc[iBreak+i]) ){ return iBreak + i + 1; } } return iBreak; } /* ** If the StringBuffer does not end in white space, add a single ** space character to the end. */ static void appendWhiteSpace(StringBuffer *p){ if( p->len==0 ) return; if( isspace(p->s[p->len-1]) ) return; append(p, " "); } /* ** Remove white space from teh end of the StringBuffer */ static void trimWhiteSpace(StringBuffer *p){ while( p->len>0 && isspace(p->s[p->len-1]) ){ p->len--; } } /* ** Allowed values for Snippet.aMatch[].snStatus */ #define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ #define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ /* ** Generate the text of a snippet. */ static void snippetText( fulltext_cursor *pCursor, /* The cursor we need the snippet for */ const char *zStartMark, /* Markup to appear before each match */ const char *zEndMark, /* Markup to appear after each match */ const char *zEllipsis /* Ellipsis mark */ ){ int i, j; struct snippetMatch *aMatch; int nMatch; int nDesired; StringBuffer sb; int tailCol; int tailOffset; int iCol; int nDoc; const char *zDoc; int iStart, iEnd; int tailEllipsis = 0; int iMatch; free(pCursor->snippet.zSnippet); pCursor->snippet.zSnippet = 0; aMatch = pCursor->snippet.aMatch; nMatch = pCursor->snippet.nMatch; initStringBuffer(&sb); for(i=0; iq.nTerms; i++){ for(j=0; j0; i++){ if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; nDesired--; iCol = aMatch[i].iCol; zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); iStart = aMatch[i].iStart - 40; iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); if( iStart<=10 ){ iStart = 0; } if( iCol==tailCol && iStart<=tailOffset+20 ){ iStart = tailOffset; } if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ trimWhiteSpace(&sb); appendWhiteSpace(&sb); append(&sb, zEllipsis); appendWhiteSpace(&sb); } iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); if( iEnd>=nDoc-10 ){ iEnd = nDoc; tailEllipsis = 0; }else{ tailEllipsis = 1; } while( iMatchsnippet.zSnippet = sb.s; pCursor->snippet.nSnippet = sb.len; } /* ** Close the cursor. For additional information see the documentation ** on the xClose method of the virtual table interface. */ static int fulltextClose(sqlite3_vtab_cursor *pCursor){ fulltext_cursor *c = (fulltext_cursor *) pCursor; TRACE(("FTS1 Close %p\n", c)); sqlite3_finalize(c->pStmt); queryClear(&c->q); snippetClear(&c->snippet); if( c->result.pDoclist!=NULL ){ docListDelete(c->result.pDoclist); } free(c); return SQLITE_OK; } static int fulltextNext(sqlite3_vtab_cursor *pCursor){ fulltext_cursor *c = (fulltext_cursor *) pCursor; sqlite_int64 iDocid; int rc; TRACE(("FTS1 Next %p\n", pCursor)); snippetClear(&c->snippet); if( c->iCursorType < QUERY_FULLTEXT ){ /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ rc = sqlite3_step(c->pStmt); switch( rc ){ case SQLITE_ROW: c->eof = 0; return SQLITE_OK; case SQLITE_DONE: c->eof = 1; return SQLITE_OK; default: c->eof = 1; return rc; } } else { /* full-text query */ rc = sqlite3_reset(c->pStmt); if( rc!=SQLITE_OK ) return rc; iDocid = nextDocid(&c->result); if( iDocid==0 ){ c->eof = 1; return SQLITE_OK; } rc = sqlite3_bind_int64(c->pStmt, 1, iDocid); if( rc!=SQLITE_OK ) return rc; /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ rc = sqlite3_step(c->pStmt); if( rc==SQLITE_ROW ){ /* the case we expect */ c->eof = 0; return SQLITE_OK; } /* an error occurred; abort */ return rc==SQLITE_DONE ? SQLITE_ERROR : rc; } } /* Return a DocList corresponding to the query term *pTerm. If *pTerm ** is the first term of a phrase query, go ahead and evaluate the phrase ** query and return the doclist for the entire phrase query. ** ** The result is stored in pTerm->doclist. */ static int docListOfTerm( fulltext_vtab *v, /* The full text index */ int iColumn, /* column to restrict to. No restrition if >=nColumn */ QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ DocList **ppResult /* Write the result here */ ){ DocList *pLeft, *pRight, *pNew; int i, rc; pLeft = docListNew(DL_POSITIONS); rc = term_select_all(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pLeft); if( rc ) return rc; for(i=1; i<=pQTerm->nPhrase; i++){ pRight = docListNew(DL_POSITIONS); rc = term_select_all(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, pRight); if( rc ){ docListDelete(pLeft); return rc; } pNew = docListNew(inPhrase ? DL_POSITIONS : DL_DOCIDS); docListPhraseMerge(pLeft, pRight, pNew); docListDelete(pLeft); docListDelete(pRight); pLeft = pNew; } *ppResult = pLeft; return SQLITE_OK; } /* Add a new term pTerm[0..nTerm-1] to the query *q. */ static void queryAdd(Query *q, const char *pTerm, int nTerm){ QueryTerm *t; ++q->nTerms; q->pTerms = realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); if( q->pTerms==0 ){ q->nTerms = 0; return; } t = &q->pTerms[q->nTerms - 1]; memset(t, 0, sizeof(*t)); t->pTerm = malloc(nTerm+1); memcpy(t->pTerm, pTerm, nTerm); t->pTerm[nTerm] = 0; t->nTerm = nTerm; t->isOr = q->nextIsOr; q->nextIsOr = 0; t->iColumn = q->nextColumn; q->nextColumn = q->dfltColumn; } /* ** Check to see if the string zToken[0...nToken-1] matches any ** column name in the virtual table. If it does, ** return the zero-indexed column number. If not, return -1. */ static int checkColumnSpecifier( fulltext_vtab *pVtab, /* The virtual table */ const char *zToken, /* Text of the token */ int nToken /* Number of characters in the token */ ){ int i; for(i=0; inColumn; i++){ if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 && pVtab->azColumn[i][nToken]==0 ){ return i; } } return -1; } /* ** Parse the text at pSegment[0..nSegment-1]. Add additional terms ** to the query being assemblied in pQuery. ** ** inPhrase is true if pSegment[0..nSegement-1] is contained within ** double-quotes. If inPhrase is true, then the first term ** is marked with the number of terms in the phrase less one and ** OR and "-" syntax is ignored. If inPhrase is false, then every ** term found is marked with nPhrase=0 and OR and "-" syntax is significant. */ static int tokenizeSegment( sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ const char *pSegment, int nSegment, /* Query expression being parsed */ int inPhrase, /* True if within "..." */ Query *pQuery /* Append results here */ ){ const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; sqlite3_tokenizer_cursor *pCursor; int firstIndex = pQuery->nTerms; int iCol; int nTerm = 1; int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); if( rc!=SQLITE_OK ) return rc; pCursor->pTokenizer = pTokenizer; while( 1 ){ const char *pToken; int nToken, iBegin, iEnd, iPos; rc = pModule->xNext(pCursor, &pToken, &nToken, &iBegin, &iEnd, &iPos); if( rc!=SQLITE_OK ) break; if( !inPhrase && pSegment[iEnd]==':' && (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ pQuery->nextColumn = iCol; continue; } if( !inPhrase && pQuery->nTerms>0 && nToken==2 && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){ pQuery->nextIsOr = 1; continue; } queryAdd(pQuery, pToken, nToken); if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ pQuery->pTerms[pQuery->nTerms-1].isNot = 1; } pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; if( inPhrase ){ nTerm++; } } if( inPhrase && pQuery->nTerms>firstIndex ){ pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; } return pModule->xClose(pCursor); } /* Parse a query string, yielding a Query object pQuery. ** ** The calling function will need to queryClear() to clean up ** the dynamically allocated memory held by pQuery. */ static int parseQuery( fulltext_vtab *v, /* The fulltext index */ const char *zInput, /* Input text of the query string */ int nInput, /* Size of the input text */ int dfltColumn, /* Default column of the index to match against */ Query *pQuery /* Write the parse results here. */ ){ int iInput, inPhrase = 0; if( zInput==0 ) nInput = 0; if( nInput<0 ) nInput = strlen(zInput); pQuery->nTerms = 0; pQuery->pTerms = NULL; pQuery->nextIsOr = 0; pQuery->nextColumn = dfltColumn; pQuery->dfltColumn = dfltColumn; pQuery->pFts = v; for(iInput=0; iInputiInput ){ tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, pQuery); } iInput = i; if( i=nColumn ** they are allowed to match against any column. */ static int fulltextQuery( fulltext_vtab *v, /* The full text index */ int iColumn, /* Match against this column by default */ const char *zInput, /* The query string */ int nInput, /* Number of bytes in zInput[] */ DocList **pResult, /* Write the result doclist here */ Query *pQuery /* Put parsed query string here */ ){ int i, iNext, rc; DocList *pLeft = NULL; DocList *pRight, *pNew, *pOr; int nNot = 0; QueryTerm *aTerm; rc = parseQuery(v, zInput, nInput, iColumn, pQuery); if( rc!=SQLITE_OK ) return rc; /* Merge AND terms. */ aTerm = pQuery->pTerms; for(i = 0; inTerms; i=iNext){ if( aTerm[i].isNot ){ /* Handle all NOT terms in a separate pass */ nNot++; iNext = i + aTerm[i].nPhrase+1; continue; } iNext = i + aTerm[i].nPhrase + 1; rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &pRight); if( rc ){ queryClear(pQuery); return rc; } while( iNextnTerms && aTerm[iNext].isOr ){ rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &pOr); iNext += aTerm[iNext].nPhrase + 1; if( rc ){ queryClear(pQuery); return rc; } pNew = docListNew(DL_DOCIDS); docListOrMerge(pRight, pOr, pNew); docListDelete(pRight); docListDelete(pOr); pRight = pNew; } if( pLeft==0 ){ pLeft = pRight; }else{ pNew = docListNew(DL_DOCIDS); docListAndMerge(pLeft, pRight, pNew); docListDelete(pRight); docListDelete(pLeft); pLeft = pNew; } } if( nNot && pLeft==0 ){ /* We do not yet know how to handle a query of only NOT terms */ return SQLITE_ERROR; } /* Do the EXCEPT terms */ for(i=0; inTerms; i += aTerm[i].nPhrase + 1){ if( !aTerm[i].isNot ) continue; rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &pRight); if( rc ){ queryClear(pQuery); docListDelete(pLeft); return rc; } pNew = docListNew(DL_DOCIDS); docListExceptMerge(pLeft, pRight, pNew); docListDelete(pRight); docListDelete(pLeft); pLeft = pNew; } *pResult = pLeft; return rc; } /* ** This is the xFilter interface for the virtual table. See ** the virtual table xFilter method documentation for additional ** information. ** ** If idxNum==QUERY_GENERIC then do a full table scan against ** the %_content table. ** ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry ** in the %_content table. ** ** If idxNum>=QUERY_FULLTEXT then use the full text index. The ** column on the left-hand side of the MATCH operator is column ** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand ** side of the MATCH operator. */ /* TODO(shess) Upgrade the cursor initialization and destruction to ** account for fulltextFilter() being called multiple times on the ** same cursor. The current solution is very fragile. Apply fix to ** fts2 as appropriate. */ static int fulltextFilter( sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ int idxNum, const char *idxStr, /* Which indexing scheme to use */ int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ ){ fulltext_cursor *c = (fulltext_cursor *) pCursor; fulltext_vtab *v = cursor_vtab(c); int rc; char *zSql; TRACE(("FTS1 Filter %p\n",pCursor)); zSql = sqlite3_mprintf("select rowid, * from %%_content %s", idxNum==QUERY_GENERIC ? "" : "where rowid=?"); sqlite3_finalize(c->pStmt); rc = sql_prepare(v->db, v->zName, &c->pStmt, zSql); sqlite3_free(zSql); if( rc!=SQLITE_OK ) return rc; c->iCursorType = idxNum; switch( idxNum ){ case QUERY_GENERIC: break; case QUERY_ROWID: rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); if( rc!=SQLITE_OK ) return rc; break; default: /* full-text search */ { const char *zQuery = (const char *)sqlite3_value_text(argv[0]); DocList *pResult; assert( idxNum<=QUERY_FULLTEXT+v->nColumn); assert( argc==1 ); queryClear(&c->q); rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &pResult, &c->q); if( rc!=SQLITE_OK ) return rc; if( c->result.pDoclist!=NULL ) docListDelete(c->result.pDoclist); readerInit(&c->result, pResult); break; } } return fulltextNext(pCursor); } /* This is the xEof method of the virtual table. The SQLite core ** calls this routine to find out if it has reached the end of ** a query's results set. */ static int fulltextEof(sqlite3_vtab_cursor *pCursor){ fulltext_cursor *c = (fulltext_cursor *) pCursor; return c->eof; } /* This is the xColumn method of the virtual table. The SQLite ** core calls this method during a query when it needs the value ** of a column from the virtual table. This method needs to use ** one of the sqlite3_result_*() routines to store the requested ** value back in the pContext. */ static int fulltextColumn(sqlite3_vtab_cursor *pCursor, sqlite3_context *pContext, int idxCol){ fulltext_cursor *c = (fulltext_cursor *) pCursor; fulltext_vtab *v = cursor_vtab(c); if( idxColnColumn ){ sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); sqlite3_result_value(pContext, pVal); }else if( idxCol==v->nColumn ){ /* The extra column whose name is the same as the table. ** Return a blob which is a pointer to the cursor */ sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); } return SQLITE_OK; } /* This is the xRowid method. The SQLite core calls this routine to ** retrive the rowid for the current row of the result set. The ** rowid should be written to *pRowid. */ static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ fulltext_cursor *c = (fulltext_cursor *) pCursor; *pRowid = sqlite3_column_int64(c->pStmt, 0); return SQLITE_OK; } /* Add all terms in [zText] to the given hash table. If [iColumn] > 0, * we also store positions and offsets in the hash table using the given * column number. */ static int buildTerms(fulltext_vtab *v, fts1Hash *terms, sqlite_int64 iDocid, const char *zText, int iColumn){ sqlite3_tokenizer *pTokenizer = v->pTokenizer; sqlite3_tokenizer_cursor *pCursor; const char *pToken; int nTokenBytes; int iStartOffset, iEndOffset, iPosition; int rc; rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); if( rc!=SQLITE_OK ) return rc; pCursor->pTokenizer = pTokenizer; while( SQLITE_OK==pTokenizer->pModule->xNext(pCursor, &pToken, &nTokenBytes, &iStartOffset, &iEndOffset, &iPosition) ){ DocList *p; /* Positions can't be negative; we use -1 as a terminator internally. */ if( iPosition<0 ){ pTokenizer->pModule->xClose(pCursor); return SQLITE_ERROR; } p = fts1HashFind(terms, pToken, nTokenBytes); if( p==NULL ){ p = docListNew(DL_DEFAULT); docListAddDocid(p, iDocid); fts1HashInsert(terms, pToken, nTokenBytes, p); } if( iColumn>=0 ){ docListAddPosOffset(p, iColumn, iPosition, iStartOffset, iEndOffset); } } /* TODO(shess) Check return? Should this be able to cause errors at ** this point? Actually, same question about sqlite3_finalize(), ** though one could argue that failure there means that the data is ** not durable. *ponder* */ pTokenizer->pModule->xClose(pCursor); return rc; } /* Update the %_terms table to map the term [pTerm] to the given rowid. */ static int index_insert_term(fulltext_vtab *v, const char *pTerm, int nTerm, DocList *d){ sqlite_int64 iIndexRow; DocList doclist; int iSegment = 0, rc; rc = term_select(v, pTerm, nTerm, iSegment, &iIndexRow, &doclist); if( rc==SQLITE_DONE ){ docListInit(&doclist, DL_DEFAULT, 0, 0); docListUpdate(&doclist, d); /* TODO(shess) Consider length(doclist)>CHUNK_MAX? */ rc = term_insert(v, NULL, pTerm, nTerm, iSegment, &doclist); goto err; } if( rc!=SQLITE_ROW ) return SQLITE_ERROR; docListUpdate(&doclist, d); if( doclist.nData<=CHUNK_MAX ){ rc = term_update(v, iIndexRow, &doclist); goto err; } /* Doclist doesn't fit, delete what's there, and accumulate ** forward. */ rc = term_delete(v, iIndexRow); if( rc!=SQLITE_OK ) goto err; /* Try to insert the doclist into a higher segment bucket. On ** failure, accumulate existing doclist with the doclist from that ** bucket, and put results in the next bucket. */ iSegment++; while( (rc=term_insert(v, &iIndexRow, pTerm, nTerm, iSegment, &doclist))!=SQLITE_OK ){ sqlite_int64 iSegmentRow; DocList old; int rc2; /* Retain old error in case the term_insert() error was really an ** error rather than a bounced insert. */ rc2 = term_select(v, pTerm, nTerm, iSegment, &iSegmentRow, &old); if( rc2!=SQLITE_ROW ) goto err; rc = term_delete(v, iSegmentRow); if( rc!=SQLITE_OK ) goto err; /* Reusing lowest-number deleted row keeps the index smaller. */ if( iSegmentRownColumn ; ++i){ char *zText = (char*)sqlite3_value_text(pValues[i]); int rc = buildTerms(v, terms, iRowid, zText, i); if( rc!=SQLITE_OK ) return rc; } return SQLITE_OK; } /* Add empty doclists for all terms in the given row's content to the hash * table [pTerms]. */ static int deleteTerms(fulltext_vtab *v, fts1Hash *pTerms, sqlite_int64 iRowid){ const char **pValues; int i; int rc = content_select(v, iRowid, &pValues); if( rc!=SQLITE_OK ) return rc; for(i = 0 ; i < v->nColumn; ++i) { rc = buildTerms(v, pTerms, iRowid, pValues[i], -1); if( rc!=SQLITE_OK ) break; } freeStringArray(v->nColumn, pValues); return SQLITE_OK; } /* Insert a row into the %_content table; set *piRowid to be the ID of the * new row. Fill [pTerms] with new doclists for the %_term table. */ static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid, sqlite3_value **pValues, sqlite_int64 *piRowid, fts1Hash *pTerms){ int rc; rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */ if( rc!=SQLITE_OK ) return rc; *piRowid = sqlite3_last_insert_rowid(v->db); return insertTerms(v, pTerms, *piRowid, pValues); } /* Delete a row from the %_content table; fill [pTerms] with empty doclists * to be written to the %_term table. */ static int index_delete(fulltext_vtab *v, sqlite_int64 iRow, fts1Hash *pTerms){ int rc = deleteTerms(v, pTerms, iRow); if( rc!=SQLITE_OK ) return rc; return content_delete(v, iRow); /* execute an SQL DELETE */ } /* Update a row in the %_content table; fill [pTerms] with new doclists for the * %_term table. */ static int index_update(fulltext_vtab *v, sqlite_int64 iRow, sqlite3_value **pValues, fts1Hash *pTerms){ /* Generate an empty doclist for each term that previously appeared in this * row. */ int rc = deleteTerms(v, pTerms, iRow); if( rc!=SQLITE_OK ) return rc; /* Now add positions for terms which appear in the updated row. */ rc = insertTerms(v, pTerms, iRow, pValues); if( rc!=SQLITE_OK ) return rc; return content_update(v, pValues, iRow); /* execute an SQL UPDATE */ } /* This function implements the xUpdate callback; it's the top-level entry * point for inserting, deleting or updating a row in a full-text table. */ static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, sqlite_int64 *pRowid){ fulltext_vtab *v = (fulltext_vtab *) pVtab; fts1Hash terms; /* maps term string -> PosList */ int rc; fts1HashElem *e; TRACE(("FTS1 Update %p\n", pVtab)); fts1HashInit(&terms, FTS1_HASH_STRING, 1); if( nArg<2 ){ rc = index_delete(v, sqlite3_value_int64(ppArg[0]), &terms); } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ /* An update: * ppArg[0] = old rowid * ppArg[1] = new rowid * ppArg[2..2+v->nColumn-1] = values * ppArg[2+v->nColumn] = value for magic column (we ignore this) */ sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || sqlite3_value_int64(ppArg[1]) != rowid ){ rc = SQLITE_ERROR; /* we don't allow changing the rowid */ } else { assert( nArg==2+v->nColumn+1); rc = index_update(v, rowid, &ppArg[2], &terms); } } else { /* An insert: * ppArg[1] = requested rowid * ppArg[2..2+v->nColumn-1] = values * ppArg[2+v->nColumn] = value for magic column (we ignore this) */ assert( nArg==2+v->nColumn+1); rc = index_insert(v, ppArg[1], &ppArg[2], pRowid, &terms); } if( rc==SQLITE_OK ){ /* Write updated doclists to disk. */ for(e=fts1HashFirst(&terms); e; e=fts1HashNext(e)){ DocList *p = fts1HashData(e); rc = index_insert_term(v, fts1HashKey(e), fts1HashKeysize(e), p); if( rc!=SQLITE_OK ) break; } } /* clean up */ for(e=fts1HashFirst(&terms); e; e=fts1HashNext(e)){ DocList *p = fts1HashData(e); docListDelete(p); } fts1HashClear(&terms); return rc; } /* ** Implementation of the snippet() function for FTS1 */ static void snippetFunc( sqlite3_context *pContext, int argc, sqlite3_value **argv ){ fulltext_cursor *pCursor; if( argc<1 ) return; if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); }else{ const char *zStart = ""; const char *zEnd = ""; const char *zEllipsis = "..."; memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); if( argc>=2 ){ zStart = (const char*)sqlite3_value_text(argv[1]); if( argc>=3 ){ zEnd = (const char*)sqlite3_value_text(argv[2]); if( argc>=4 ){ zEllipsis = (const char*)sqlite3_value_text(argv[3]); } } } snippetAllOffsets(pCursor); snippetText(pCursor, zStart, zEnd, zEllipsis); sqlite3_result_text(pContext, pCursor->snippet.zSnippet, pCursor->snippet.nSnippet, SQLITE_STATIC); } } /* ** Implementation of the offsets() function for FTS1 */ static void snippetOffsetsFunc( sqlite3_context *pContext, int argc, sqlite3_value **argv ){ fulltext_cursor *pCursor; if( argc<1 ) return; if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ sqlite3_result_error(pContext, "illegal first argument to offsets",-1); }else{ memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); snippetAllOffsets(pCursor); snippetOffsetText(&pCursor->snippet); sqlite3_result_text(pContext, pCursor->snippet.zOffset, pCursor->snippet.nOffset, SQLITE_STATIC); } } /* ** This routine implements the xFindFunction method for the FTS1 ** virtual table. */ static int fulltextFindFunction( sqlite3_vtab *pVtab, int nArg, const char *zName, void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), void **ppArg ){ if( strcmp(zName,"snippet")==0 ){ *pxFunc = snippetFunc; return 1; }else if( strcmp(zName,"offsets")==0 ){ *pxFunc = snippetOffsetsFunc; return 1; } return 0; } static const sqlite3_module fulltextModule = { /* iVersion */ 0, /* xCreate */ fulltextCreate, /* xConnect */ fulltextConnect, /* xBestIndex */ fulltextBestIndex, /* xDisconnect */ fulltextDisconnect, /* xDestroy */ fulltextDestroy, /* xOpen */ fulltextOpen, /* xClose */ fulltextClose, /* xFilter */ fulltextFilter, /* xNext */ fulltextNext, /* xEof */ fulltextEof, /* xColumn */ fulltextColumn, /* xRowid */ fulltextRowid, /* xUpdate */ fulltextUpdate, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ fulltextFindFunction, }; int sqlite3Fts1Init(sqlite3 *db){ sqlite3_overload_function(db, "snippet", -1); sqlite3_overload_function(db, "offsets", -1); return sqlite3_create_module(db, "fts1", &fulltextModule, 0); } #if !SQLITE_CORE int sqlite3_extension_init(sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3Fts1Init(db); } #endif #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */