/* ** 2007 May 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: icu.c,v 1.7 2007/12/13 21:54:11 drh Exp $ ** ** This file implements an integration between the ICU library ** ("International Components for Unicode", an open-source library ** for handling unicode data) and SQLite. The integration uses ** ICU to provide the following to SQLite: ** ** * An implementation of the SQL regexp() function (and hence REGEXP ** operator) using the ICU uregex_XX() APIs. ** ** * Implementations of the SQL scalar upper() and lower() functions ** for case mapping. ** ** * Integration of ICU and SQLite collation sequences. ** ** * An implementation of the LIKE operator that uses ICU to ** provide case-independent matching. */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) /* Include ICU headers */ #include #include #include #include #include #ifndef SQLITE_CORE #include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #else #include "sqlite3.h" #endif /* ** Maximum length (in bytes) of the pattern in a LIKE or GLOB ** operator. */ #ifndef SQLITE_MAX_LIKE_PATTERN_LENGTH # define SQLITE_MAX_LIKE_PATTERN_LENGTH 50000 #endif /* ** Version of sqlite3_free() that is always a function, never a macro. */ static void xFree(void *p){ sqlite3_free(p); } /* ** This lookup table is used to help decode the first byte of ** a multi-byte UTF8 character. It is copied here from SQLite source ** code file utf8.c. */ static const unsigned char icuUtf8Trans1[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, }; #define SQLITE_ICU_READ_UTF8(zIn, c) \ c = *(zIn++); \ if( c>=0xc0 ){ \ c = icuUtf8Trans1[c-0xc0]; \ while( (*zIn & 0xc0)==0x80 ){ \ c = (c<<6) + (0x3f & *(zIn++)); \ } \ } #define SQLITE_ICU_SKIP_UTF8(zIn) \ assert( *zIn ); \ if( *(zIn++)>=0xc0 ){ \ while( (*zIn & 0xc0)==0x80 ){zIn++;} \ } /* ** Compare two UTF-8 strings for equality where the first string is ** a "LIKE" expression. Return true (1) if they are the same and ** false (0) if they are different. */ static int icuLikeCompare( const uint8_t *zPattern, /* LIKE pattern */ const uint8_t *zString, /* The UTF-8 string to compare against */ const UChar32 uEsc /* The escape character */ ){ static const int MATCH_ONE = (UChar32)'_'; static const int MATCH_ALL = (UChar32)'%'; int prevEscape = 0; /* True if the previous character was uEsc */ while( 1 ){ /* Read (and consume) the next character from the input pattern. */ UChar32 uPattern; SQLITE_ICU_READ_UTF8(zPattern, uPattern); if( uPattern==0 ) break; /* There are now 4 possibilities: ** ** 1. uPattern is an unescaped match-all character "%", ** 2. uPattern is an unescaped match-one character "_", ** 3. uPattern is an unescaped escape character, or ** 4. uPattern is to be handled as an ordinary character */ if( !prevEscape && uPattern==MATCH_ALL ){ /* Case 1. */ uint8_t c; /* Skip any MATCH_ALL or MATCH_ONE characters that follow a ** MATCH_ALL. For each MATCH_ONE, skip one character in the ** test string. */ while( (c=*zPattern) == MATCH_ALL || c == MATCH_ONE ){ if( c==MATCH_ONE ){ if( *zString==0 ) return 0; SQLITE_ICU_SKIP_UTF8(zString); } zPattern++; } if( *zPattern==0 ) return 1; while( *zString ){ if( icuLikeCompare(zPattern, zString, uEsc) ){ return 1; } SQLITE_ICU_SKIP_UTF8(zString); } return 0; }else if( !prevEscape && uPattern==MATCH_ONE ){ /* Case 2. */ if( *zString==0 ) return 0; SQLITE_ICU_SKIP_UTF8(zString); }else if( !prevEscape && uPattern==uEsc){ /* Case 3. */ prevEscape = 1; }else{ /* Case 4. */ UChar32 uString; SQLITE_ICU_READ_UTF8(zString, uString); uString = u_foldCase(uString, U_FOLD_CASE_DEFAULT); uPattern = u_foldCase(uPattern, U_FOLD_CASE_DEFAULT); if( uString!=uPattern ){ return 0; } prevEscape = 0; } } return *zString==0; } /* ** Implementation of the like() SQL function. This function implements ** the build-in LIKE operator. The first argument to the function is the ** pattern and the second argument is the string. So, the SQL statements: ** ** A LIKE B ** ** is implemented as like(B, A). If there is an escape character E, ** ** A LIKE B ESCAPE E ** ** is mapped to like(B, A, E). */ static void icuLikeFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *zA = sqlite3_value_text(argv[0]); const unsigned char *zB = sqlite3_value_text(argv[1]); UChar32 uEsc = 0; /* Limit the length of the LIKE or GLOB pattern to avoid problems ** of deep recursion and N*N behavior in patternCompare(). */ if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); return; } if( argc==3 ){ /* The escape character string must consist of a single UTF-8 character. ** Otherwise, return an error. */ int nE= sqlite3_value_bytes(argv[2]); const unsigned char *zE = sqlite3_value_text(argv[2]); int i = 0; if( zE==0 ) return; U8_NEXT(zE, i, nE, uEsc); if( i!=nE){ sqlite3_result_error(context, "ESCAPE expression must be a single character", -1); return; } } if( zA && zB ){ sqlite3_result_int(context, icuLikeCompare(zA, zB, uEsc)); } } /* ** This function is called when an ICU function called from within ** the implementation of an SQL scalar function returns an error. ** ** The scalar function context passed as the first argument is ** loaded with an error message based on the following two args. */ static void icuFunctionError( sqlite3_context *pCtx, /* SQLite scalar function context */ const char *zName, /* Name of ICU function that failed */ UErrorCode e /* Error code returned by ICU function */ ){ char zBuf[128]; sqlite3_snprintf(128, zBuf, "ICU error: %s(): %s", zName, u_errorName(e)); zBuf[127] = '\0'; sqlite3_result_error(pCtx, zBuf, -1); } /* ** Function to delete compiled regexp objects. Registered as ** a destructor function with sqlite3_set_auxdata(). */ static void icuRegexpDelete(void *p){ URegularExpression *pExpr = (URegularExpression *)p; uregex_close(pExpr); } /* ** Implementation of SQLite REGEXP operator. This scalar function takes ** two arguments. The first is a regular expression pattern to compile ** the second is a string to match against that pattern. If either ** argument is an SQL NULL, then NULL Is returned. Otherwise, the result ** is 1 if the string matches the pattern, or 0 otherwise. ** ** SQLite maps the regexp() function to the regexp() operator such ** that the following two are equivalent: ** ** zString REGEXP zPattern ** regexp(zPattern, zString) ** ** Uses the following ICU regexp APIs: ** ** uregex_open() ** uregex_matches() ** uregex_close() */ static void icuRegexpFunc(sqlite3_context *p, int nArg, sqlite3_value **apArg){ UErrorCode status = U_ZERO_ERROR; URegularExpression *pExpr; UBool res; const UChar *zString = sqlite3_value_text16(apArg[1]); (void)nArg; /* Unused parameter */ /* If the left hand side of the regexp operator is NULL, ** then the result is also NULL. */ if( !zString ){ return; } pExpr = sqlite3_get_auxdata(p, 0); if( !pExpr ){ const UChar *zPattern = sqlite3_value_text16(apArg[0]); if( !zPattern ){ return; } pExpr = uregex_open(zPattern, -1, 0, 0, &status); if( U_SUCCESS(status) ){ sqlite3_set_auxdata(p, 0, pExpr, icuRegexpDelete); }else{ assert(!pExpr); icuFunctionError(p, "uregex_open", status); return; } } /* Configure the text that the regular expression operates on. */ uregex_setText(pExpr, zString, -1, &status); if( !U_SUCCESS(status) ){ icuFunctionError(p, "uregex_setText", status); return; } /* Attempt the match */ res = uregex_matches(pExpr, 0, &status); if( !U_SUCCESS(status) ){ icuFunctionError(p, "uregex_matches", status); return; } /* Set the text that the regular expression operates on to a NULL ** pointer. This is not really necessary, but it is tidier than ** leaving the regular expression object configured with an invalid ** pointer after this function returns. */ uregex_setText(pExpr, 0, 0, &status); /* Return 1 or 0. */ sqlite3_result_int(p, res ? 1 : 0); } /* ** Implementations of scalar functions for case mapping - upper() and ** lower(). Function upper() converts its input to upper-case (ABC). ** Function lower() converts to lower-case (abc). ** ** ICU provides two types of case mapping, "general" case mapping and ** "language specific". Refer to ICU documentation for the differences ** between the two. ** ** To utilise "general" case mapping, the upper() or lower() scalar ** functions are invoked with one argument: ** ** upper('ABC') -> 'abc' ** lower('abc') -> 'ABC' ** ** To access ICU "language specific" case mapping, upper() or lower() ** should be invoked with two arguments. The second argument is the name ** of the locale to use. Passing an empty string ("") or SQL NULL value ** as the second argument is the same as invoking the 1 argument version ** of upper() or lower(). ** ** lower('I', 'en_us') -> 'i' ** lower('I', 'tr_tr') -> 'ı' (small dotless i) ** ** http://www.icu-project.org/userguide/posix.html#case_mappings */ static void icuCaseFunc16(sqlite3_context *p, int nArg, sqlite3_value **apArg){ const UChar *zInput; UChar *zOutput; int nInput; int nOutput; UErrorCode status = U_ZERO_ERROR; const char *zLocale = 0; assert(nArg==1 || nArg==2); if( nArg==2 ){ zLocale = (const char *)sqlite3_value_text(apArg[1]); } zInput = sqlite3_value_text16(apArg[0]); if( !zInput ){ return; } nInput = sqlite3_value_bytes16(apArg[0]); nOutput = nInput * 2 + 2; zOutput = sqlite3_malloc(nOutput); if( !zOutput ){ return; } if( sqlite3_user_data(p) ){ u_strToUpper(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status); }else{ u_strToLower(zOutput, nOutput/2, zInput, nInput/2, zLocale, &status); } if( !U_SUCCESS(status) ){ icuFunctionError(p, "u_strToLower()/u_strToUpper", status); return; } sqlite3_result_text16(p, zOutput, -1, xFree); } /* ** Collation sequence destructor function. The pCtx argument points to ** a UCollator structure previously allocated using ucol_open(). */ static void icuCollationDel(void *pCtx){ UCollator *p = (UCollator *)pCtx; ucol_close(p); } /* ** Collation sequence comparison function. The pCtx argument points to ** a UCollator structure previously allocated using ucol_open(). */ static int icuCollationColl( void *pCtx, int nLeft, const void *zLeft, int nRight, const void *zRight ){ UCollationResult res; UCollator *p = (UCollator *)pCtx; res = ucol_strcoll(p, (UChar *)zLeft, nLeft/2, (UChar *)zRight, nRight/2); switch( res ){ case UCOL_LESS: return -1; case UCOL_GREATER: return +1; case UCOL_EQUAL: return 0; } assert(!"Unexpected return value from ucol_strcoll()"); return 0; } /* ** Implementation of the scalar function icu_load_collation(). ** ** This scalar function is used to add ICU collation based collation ** types to an SQLite database connection. It is intended to be called ** as follows: ** ** SELECT icu_load_collation(, ); ** ** Where is a string containing an ICU locale identifier (i.e. ** "en_AU", "tr_TR" etc.) and is the name of the ** collation sequence to create. */ static void icuLoadCollation( sqlite3_context *p, int nArg, sqlite3_value **apArg ){ sqlite3 *db = (sqlite3 *)sqlite3_user_data(p); UErrorCode status = U_ZERO_ERROR; const char *zLocale; /* Locale identifier - (eg. "jp_JP") */ const char *zName; /* SQL Collation sequence name (eg. "japanese") */ UCollator *pUCollator; /* ICU library collation object */ int rc; /* Return code from sqlite3_create_collation_x() */ assert(nArg==2); (void)nArg; /* Unused parameter */ zLocale = (const char *)sqlite3_value_text(apArg[0]); zName = (const char *)sqlite3_value_text(apArg[1]); if( !zLocale || !zName ){ return; } pUCollator = ucol_open(zLocale, &status); if( !U_SUCCESS(status) ){ icuFunctionError(p, "ucol_open", status); return; } assert(p); rc = sqlite3_create_collation_v2(db, zName, SQLITE_UTF16, (void *)pUCollator, icuCollationColl, icuCollationDel ); if( rc!=SQLITE_OK ){ ucol_close(pUCollator); sqlite3_result_error(p, "Error registering collation function", -1); } } /* ** Register the ICU extension functions with database db. */ int sqlite3IcuInit(sqlite3 *db){ struct IcuScalar { const char *zName; /* Function name */ int nArg; /* Number of arguments */ int enc; /* Optimal text encoding */ void *pContext; /* sqlite3_user_data() context */ void (*xFunc)(sqlite3_context*,int,sqlite3_value**); } scalars[] = { {"regexp", 2, SQLITE_ANY, 0, icuRegexpFunc}, {"lower", 1, SQLITE_UTF16, 0, icuCaseFunc16}, {"lower", 2, SQLITE_UTF16, 0, icuCaseFunc16}, {"upper", 1, SQLITE_UTF16, (void*)1, icuCaseFunc16}, {"upper", 2, SQLITE_UTF16, (void*)1, icuCaseFunc16}, {"lower", 1, SQLITE_UTF8, 0, icuCaseFunc16}, {"lower", 2, SQLITE_UTF8, 0, icuCaseFunc16}, {"upper", 1, SQLITE_UTF8, (void*)1, icuCaseFunc16}, {"upper", 2, SQLITE_UTF8, (void*)1, icuCaseFunc16}, {"like", 2, SQLITE_UTF8, 0, icuLikeFunc}, {"like", 3, SQLITE_UTF8, 0, icuLikeFunc}, {"icu_load_collation", 2, SQLITE_UTF8, (void*)db, icuLoadCollation}, }; int rc = SQLITE_OK; int i; for(i=0; rc==SQLITE_OK && i<(int)(sizeof(scalars)/sizeof(scalars[0])); i++){ struct IcuScalar *p = &scalars[i]; rc = sqlite3_create_function( db, p->zName, p->nArg, p->enc, p->pContext, p->xFunc, 0, 0 ); } return rc; } #if !SQLITE_CORE #ifdef _WIN32 __declspec(dllexport) #endif int sqlite3_icu_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3IcuInit(db); } #endif #endif