Merge the word-fuzzer branch into trunk.
FossilOrigin-Name: f77609d44194ee8871b3fb281ea6b90a9182f69f
This commit is contained in:
commit
f5a8a917ee
@ -356,6 +356,7 @@ TESTSRC = \
|
||||
$(TOP)/src/test_demovfs.c \
|
||||
$(TOP)/src/test_devsym.c \
|
||||
$(TOP)/src/test_func.c \
|
||||
$(TOP)/src/test_fuzzer.c \
|
||||
$(TOP)/src/test_hexio.c \
|
||||
$(TOP)/src/test_init.c \
|
||||
$(TOP)/src/test_intarray.c \
|
||||
|
1
main.mk
1
main.mk
@ -237,6 +237,7 @@ TESTSRC = \
|
||||
$(TOP)/src/test_demovfs.c \
|
||||
$(TOP)/src/test_devsym.c \
|
||||
$(TOP)/src/test_func.c \
|
||||
$(TOP)/src/test_fuzzer.c \
|
||||
$(TOP)/src/test_hexio.c \
|
||||
$(TOP)/src/test_init.c \
|
||||
$(TOP)/src/test_intarray.c \
|
||||
|
20
manifest
20
manifest
@ -1,7 +1,7 @@
|
||||
C Changes\sto\swal\stests\sso\sthat\sthey\swork\swith\sDEFAULT_AUTOVACUUM\sdefined.
|
||||
D 2011-04-01T19:14:40.912
|
||||
C Merge\sthe\sword-fuzzer\sbranch\sinto\strunk.
|
||||
D 2011-04-01T20:47:27.009
|
||||
F Makefile.arm-wince-mingw32ce-gcc d6df77f1f48d690bd73162294bbba7f59507c72f
|
||||
F Makefile.in 27701a1653595a1f2187dc61c8117e00a6c1d50f
|
||||
F Makefile.in 6c96e694f446500449f683070b906de9fce17b88
|
||||
F Makefile.linux-gcc 91d710bdc4998cb015f39edf3cb314ec4f4d7e23
|
||||
F Makefile.vxworks c85ec1d8597fe2f7bc225af12ac1666e21379151
|
||||
F README cd04a36fbc7ea56932a4052d7d0b7f09f27c33d6
|
||||
@ -101,7 +101,7 @@ F ext/rtree/tkt3363.test 142ab96eded44a3615ec79fba98c7bde7d0f96de
|
||||
F ext/rtree/viewrtree.tcl eea6224b3553599ae665b239bd827e182b466024
|
||||
F install-sh 9d4de14ab9fb0facae2f48780b874848cbf2f895 x
|
||||
F ltmain.sh 3ff0879076df340d2e23ae905484d8c15d5fdea8
|
||||
F main.mk 7e4d4d0433c9cbfd906c6451a7cc50310a8f4555
|
||||
F main.mk 078e1b601071cc50b4b6ccac9faece349ead1c39
|
||||
F mkdll.sh 7d09b23c05d56532e9d44a50868eb4b12ff4f74a
|
||||
F mkextu.sh 416f9b7089d80e5590a29692c9d9280a10dbad9f
|
||||
F mkextw.sh 4123480947681d9b434a5e7b1ee08135abe409ac
|
||||
@ -184,7 +184,7 @@ F src/sqliteInt.h f8f1d00a22c98fd3f2fbc94da74eeb880879f89f
|
||||
F src/sqliteLimit.h a17dcd3fb775d63b64a43a55c54cb282f9726f44
|
||||
F src/status.c 4997380fbb915426fef9e500b4872e79c99267fc
|
||||
F src/table.c 2cd62736f845d82200acfa1287e33feb3c15d62e
|
||||
F src/tclsqlite.c b020ebf3b4af58cae7875e217efd7ac22f485713
|
||||
F src/tclsqlite.c e8c3bc4662975cf9a8e0280b1703a3cf427f9831
|
||||
F src/test1.c 9ca440e80e16e53920904a0a5ac7feffb9b2c9a1
|
||||
F src/test2.c 80d323d11e909cf0eb1b6fbb4ac22276483bcf31
|
||||
F src/test3.c 056093cfef69ff4227a6bdb9108564dc7f45e4bc
|
||||
@ -202,6 +202,7 @@ F src/test_config.c 62f0f8f934b1d5c7e4cd4f506ae453a1117b47d7
|
||||
F src/test_demovfs.c 0aed671636735116fc872c5b03706fd5612488b5
|
||||
F src/test_devsym.c e7498904e72ba7491d142d5c83b476c4e76993bc
|
||||
F src/test_func.c cbdec5cededa0761daedde5baf06004a9bf416b5
|
||||
F src/test_fuzzer.c f884f6f32e8513d34248d6e1ac8a32047fead254
|
||||
F src/test_hexio.c c4773049603151704a6ab25ac5e936b5109caf5a
|
||||
F src/test_init.c 5d624ffd0409d424cf9adbfe1f056b200270077c
|
||||
F src/test_intarray.c d879bbf8e4ce085ab966d1f3c896a7c8b4f5fc99
|
||||
@ -478,6 +479,7 @@ F test/fuzz2.test 207d0f9d06db3eaf47a6b7bfc835b8e2fc397167
|
||||
F test/fuzz3.test aec64345184d1662bd30e6a17851ff659d596dc5
|
||||
F test/fuzz_common.tcl a87dfbb88c2a6b08a38e9a070dabd129e617b45b
|
||||
F test/fuzz_malloc.test dd7001ac86d09c154a7dff064f4739c60e2b312c
|
||||
F test/fuzzer1.test 3105b5a89a6cb0d475f0877debec942fe4143462
|
||||
F test/hook.test f04c3412463f8ec117c1c704c74ca0f627ce733a
|
||||
F test/icu.test 70df4faca133254c042d02ae342c0a141f2663f4
|
||||
F test/in.test 19b642bb134308980a92249750ea4ce3f6c75c2d
|
||||
@ -923,7 +925,7 @@ F tool/speedtest8.c 2902c46588c40b55661e471d7a86e4dd71a18224
|
||||
F tool/speedtest8inst1.c 293327bc76823f473684d589a8160bde1f52c14e
|
||||
F tool/split-sqlite3c.tcl d9be87f1c340285a3e081eb19b4a247981ed290c
|
||||
F tool/vdbe-compress.tcl d70ea6d8a19e3571d7ab8c9b75cba86d1173ff0f
|
||||
P 2c125710cbf04198464d436b16e5ef37c5b219cf
|
||||
R b73fd492db86ba17fd0ee03f6edbe84f
|
||||
U dan
|
||||
Z 514a0a4f4cb96eef649ff183f226e66c
|
||||
P b477852f82c1fddbda61fad83d55055ad8503dda a6a81d4fdafabba514e8f8e1958d6132b3850772
|
||||
R 8fa020ba89288daa4e980326f651b43c
|
||||
U drh
|
||||
Z f9a8b03fbe76a0642382439288b4d943
|
||||
|
@ -1 +1 @@
|
||||
b477852f82c1fddbda61fad83d55055ad8503dda
|
||||
f77609d44194ee8871b3fb281ea6b90a9182f69f
|
@ -3582,6 +3582,7 @@ static void init_all(Tcl_Interp *interp){
|
||||
extern int Sqlitemultiplex_Init(Tcl_Interp*);
|
||||
extern int SqliteSuperlock_Init(Tcl_Interp*);
|
||||
extern int SqlitetestSyscall_Init(Tcl_Interp*);
|
||||
extern int Sqlitetestfuzzer_Init(Tcl_Interp*);
|
||||
|
||||
#ifdef SQLITE_ENABLE_ZIPVFS
|
||||
extern int Zipvfs_Init(Tcl_Interp*);
|
||||
@ -3620,6 +3621,7 @@ static void init_all(Tcl_Interp *interp){
|
||||
Sqlitemultiplex_Init(interp);
|
||||
SqliteSuperlock_Init(interp);
|
||||
SqlitetestSyscall_Init(interp);
|
||||
Sqlitetestfuzzer_Init(interp);
|
||||
|
||||
Tcl_CreateObjCommand(interp,"load_testfixture_extensions",init_all_cmd,0,0);
|
||||
|
||||
|
944
src/test_fuzzer.c
Normal file
944
src/test_fuzzer.c
Normal file
@ -0,0 +1,944 @@
|
||||
/*
|
||||
** 2011 March 24
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
**
|
||||
** Code for demonstartion virtual table that generates variations
|
||||
** on an input word at increasing edit distances from the original.
|
||||
**
|
||||
** A fuzzer virtual table is created like this:
|
||||
**
|
||||
** CREATE VIRTUAL TABLE temp.f USING fuzzer;
|
||||
**
|
||||
** The name of the new virtual table in the example above is "f".
|
||||
** Note that all fuzzer virtual tables must be TEMP tables. The
|
||||
** "temp." prefix in front of the table name is required when the
|
||||
** table is being created. The "temp." prefix can be omitted when
|
||||
** using the table as long as the name is unambiguous.
|
||||
**
|
||||
** Before being used, the fuzzer needs to be programmed by giving it
|
||||
** character transformations and a cost associated with each transformation.
|
||||
** Examples:
|
||||
**
|
||||
** INSERT INTO f(cFrom,cTo,Cost) VALUES('','a',100);
|
||||
**
|
||||
** The above statement says that the cost of inserting a letter 'a' is
|
||||
** 100. (All costs are integers. We recommend that costs be scaled so
|
||||
** that the average cost is around 100.)
|
||||
**
|
||||
** INSERT INTO f(cFrom,cTo,Cost) VALUES('b','',87);
|
||||
**
|
||||
** The above statement says that the cost of deleting a single letter
|
||||
** 'b' is 87.
|
||||
**
|
||||
** INSERT INTO f(cFrom,cTo,Cost) VALUES('o','oe',38);
|
||||
** INSERT INTO f(cFrom,cTo,Cost) VALUES('oe','o',40);
|
||||
**
|
||||
** This third example says that the cost of transforming the single
|
||||
** letter "o" into the two-letter sequence "oe" is 38 and that the
|
||||
** cost of transforming "oe" back into "o" is 40.
|
||||
**
|
||||
** After all the transformation costs have been set, the fuzzer table
|
||||
** can be queried as follows:
|
||||
**
|
||||
** SELECT word, distance FROM f
|
||||
** WHERE word MATCH 'abcdefg'
|
||||
** AND distance<200;
|
||||
**
|
||||
** This first query outputs the string "abcdefg" and all strings that
|
||||
** can be derived from that string by appling the specified transformations.
|
||||
** The strings are output together with their total transformation cost
|
||||
** (called "distance") and appear in order of increasing cost. No string
|
||||
** is output more than once. If there are multiple ways to transform the
|
||||
** target string into the output string then the lowest cost transform is
|
||||
** the one that is returned. In the example, the search is limited to
|
||||
** strings with a total distance of less than 200.
|
||||
**
|
||||
** It is important to put some kind of a limit on the fuzzer output. This
|
||||
** can be either in the form of a LIMIT clause at the end of the query,
|
||||
** or better, a "distance<NNN" constraint where NNN is some number. The
|
||||
** running time and memory requirement is exponential in the value of NNN
|
||||
** so you want to make sure that NNN is not too big. A value of NNN that
|
||||
** is about twice the average transformation cost seems to give good results.
|
||||
**
|
||||
** The fuzzer table can be useful for tasks such as spelling correction.
|
||||
** Suppose there is a second table vocabulary(w) where the w column contains
|
||||
** all correctly spelled words. Let $word be a word you want to look up.
|
||||
**
|
||||
** SELECT vocabulary.w FROM f, vocabulary
|
||||
** WHERE f.word MATCH $word
|
||||
** AND f.distance<=200
|
||||
** AND f.word=vocabulary.w
|
||||
** LIMIT 20
|
||||
**
|
||||
** The query above gives the 20 closest words to the $word being tested.
|
||||
** (Note that for good performance, the vocubulary.w column should be
|
||||
** indexed.)
|
||||
**
|
||||
** A similar query can be used to find all words in the dictionary that
|
||||
** begin with some prefix $prefix:
|
||||
**
|
||||
** SELECT vocabulary.w FROM f, vocabulary
|
||||
** WHERE f.word MATCH $prefix
|
||||
** AND f.distance<=200
|
||||
** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF')
|
||||
** LIMIT 50
|
||||
**
|
||||
** This last query will show up to 50 words out of the vocabulary that
|
||||
** match or nearly match the $prefix.
|
||||
*/
|
||||
#include "sqlite3.h"
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
|
||||
/*
|
||||
** Forward declaration of objects used by this implementation
|
||||
*/
|
||||
typedef struct fuzzer_vtab fuzzer_vtab;
|
||||
typedef struct fuzzer_cursor fuzzer_cursor;
|
||||
typedef struct fuzzer_rule fuzzer_rule;
|
||||
typedef struct fuzzer_seen fuzzer_seen;
|
||||
typedef struct fuzzer_stem fuzzer_stem;
|
||||
|
||||
/*
|
||||
** Type of the "cost" of an edit operation. Might be changed to
|
||||
** "float" or "double" or "sqlite3_int64" in the future.
|
||||
*/
|
||||
typedef int fuzzer_cost;
|
||||
|
||||
|
||||
/*
|
||||
** Each transformation rule is stored as an instance of this object.
|
||||
** All rules are kept on a linked list sorted by rCost.
|
||||
*/
|
||||
struct fuzzer_rule {
|
||||
fuzzer_rule *pNext; /* Next rule in order of increasing rCost */
|
||||
fuzzer_cost rCost; /* Cost of this transformation */
|
||||
int nFrom, nTo; /* Length of the zFrom and zTo strings */
|
||||
char *zFrom; /* Transform from */
|
||||
char zTo[4]; /* Transform to (extra space appended) */
|
||||
};
|
||||
|
||||
/*
|
||||
** A stem object is used to generate variants. It is also used to record
|
||||
** previously generated outputs.
|
||||
**
|
||||
** Every stem is added to a hash table as it is output. Generation of
|
||||
** duplicate stems is suppressed.
|
||||
**
|
||||
** Active stems (those that might generate new outputs) are kepts on a linked
|
||||
** list sorted by increasing cost. The cost is the sum of rBaseCost and
|
||||
** pRule->rCost.
|
||||
*/
|
||||
struct fuzzer_stem {
|
||||
char *zBasis; /* Word being fuzzed */
|
||||
int nBasis; /* Length of the zBasis string */
|
||||
const fuzzer_rule *pRule; /* Current rule to apply */
|
||||
int n; /* Apply pRule at this character offset */
|
||||
fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */
|
||||
fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */
|
||||
fuzzer_stem *pNext; /* Next stem in rCost order */
|
||||
fuzzer_stem *pHash; /* Next stem with same hash on zBasis */
|
||||
};
|
||||
|
||||
/*
|
||||
** A fuzzer virtual-table object
|
||||
*/
|
||||
struct fuzzer_vtab {
|
||||
sqlite3_vtab base; /* Base class - must be first */
|
||||
char *zClassName; /* Name of this class. Default: "fuzzer" */
|
||||
fuzzer_rule *pRule; /* All active rules in this fuzzer */
|
||||
fuzzer_rule *pNewRule; /* New rules to add when last cursor expires */
|
||||
int nCursor; /* Number of active cursors */
|
||||
};
|
||||
|
||||
#define FUZZER_HASH 4001 /* Hash table size */
|
||||
#define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */
|
||||
|
||||
/* A fuzzer cursor object */
|
||||
struct fuzzer_cursor {
|
||||
sqlite3_vtab_cursor base; /* Base class - must be first */
|
||||
sqlite3_int64 iRowid; /* The rowid of the current word */
|
||||
fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */
|
||||
fuzzer_cost rLimit; /* Maximum cost of any term */
|
||||
fuzzer_stem *pStem; /* Stem with smallest rCostX */
|
||||
fuzzer_stem *pDone; /* Stems already processed to completion */
|
||||
fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */
|
||||
int mxQueue; /* Largest used index in aQueue[] */
|
||||
char *zBuf; /* Temporary use buffer */
|
||||
int nBuf; /* Bytes allocated for zBuf */
|
||||
int nStem; /* Number of stems allocated */
|
||||
fuzzer_rule nullRule; /* Null rule used first */
|
||||
fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */
|
||||
};
|
||||
|
||||
/* Methods for the fuzzer module */
|
||||
static int fuzzerConnect(
|
||||
sqlite3 *db,
|
||||
void *pAux,
|
||||
int argc, const char *const*argv,
|
||||
sqlite3_vtab **ppVtab,
|
||||
char **pzErr
|
||||
){
|
||||
fuzzer_vtab *pNew;
|
||||
int n;
|
||||
if( strcmp(argv[1],"temp")!=0 ){
|
||||
*pzErr = sqlite3_mprintf("%s virtual tables must be TEMP", argv[0]);
|
||||
return SQLITE_ERROR;
|
||||
}
|
||||
n = strlen(argv[0]) + 1;
|
||||
pNew = sqlite3_malloc( sizeof(*pNew) + n );
|
||||
if( pNew==0 ) return SQLITE_NOMEM;
|
||||
pNew->zClassName = (char*)&pNew[1];
|
||||
memcpy(pNew->zClassName, argv[0], n);
|
||||
sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,cFrom,cTo,cost)");
|
||||
memset(pNew, 0, sizeof(*pNew));
|
||||
*ppVtab = &pNew->base;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
/* Note that for this virtual table, the xCreate and xConnect
|
||||
** methods are identical. */
|
||||
|
||||
static int fuzzerDisconnect(sqlite3_vtab *pVtab){
|
||||
fuzzer_vtab *p = (fuzzer_vtab*)pVtab;
|
||||
assert( p->nCursor==0 );
|
||||
do{
|
||||
while( p->pRule ){
|
||||
fuzzer_rule *pRule = p->pRule;
|
||||
p->pRule = pRule->pNext;
|
||||
sqlite3_free(pRule);
|
||||
}
|
||||
p->pRule = p->pNewRule;
|
||||
p->pNewRule = 0;
|
||||
}while( p->pRule );
|
||||
sqlite3_free(p);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
/* The xDisconnect and xDestroy methods are also the same */
|
||||
|
||||
/*
|
||||
** The two input rule lists are both sorted in order of increasing
|
||||
** cost. Merge them together into a single list, sorted by cost, and
|
||||
** return a pointer to the head of that list.
|
||||
*/
|
||||
static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){
|
||||
fuzzer_rule head;
|
||||
fuzzer_rule *pTail;
|
||||
|
||||
pTail = &head;
|
||||
while( pA && pB ){
|
||||
if( pA->rCost<=pB->rCost ){
|
||||
pTail->pNext = pA;
|
||||
pTail = pA;
|
||||
pA = pA->pNext;
|
||||
}else{
|
||||
pTail->pNext = pB;
|
||||
pTail = pB;
|
||||
pB = pB->pNext;
|
||||
}
|
||||
}
|
||||
if( pA==0 ){
|
||||
pTail->pNext = pB;
|
||||
}else{
|
||||
pTail->pNext = pA;
|
||||
}
|
||||
return head.pNext;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Open a new fuzzer cursor.
|
||||
*/
|
||||
static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
|
||||
fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
|
||||
fuzzer_cursor *pCur;
|
||||
pCur = sqlite3_malloc( sizeof(*pCur) );
|
||||
if( pCur==0 ) return SQLITE_NOMEM;
|
||||
memset(pCur, 0, sizeof(*pCur));
|
||||
pCur->pVtab = p;
|
||||
*ppCursor = &pCur->base;
|
||||
if( p->nCursor==0 && p->pNewRule ){
|
||||
unsigned int i;
|
||||
fuzzer_rule *pX;
|
||||
fuzzer_rule *a[15];
|
||||
for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
|
||||
while( (pX = p->pNewRule)!=0 ){
|
||||
p->pNewRule = pX->pNext;
|
||||
pX->pNext = 0;
|
||||
for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
|
||||
pX = fuzzerMergeRules(a[i], pX);
|
||||
a[i] = 0;
|
||||
}
|
||||
a[i] = fuzzerMergeRules(a[i], pX);
|
||||
}
|
||||
for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
|
||||
pX = fuzzerMergeRules(a[i], pX);
|
||||
}
|
||||
p->pRule = fuzzerMergeRules(p->pRule, pX);
|
||||
}
|
||||
p->nCursor++;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free all stems in a list.
|
||||
*/
|
||||
static void fuzzerClearStemList(fuzzer_stem *pStem){
|
||||
while( pStem ){
|
||||
fuzzer_stem *pNext = pStem->pNext;
|
||||
sqlite3_free(pStem);
|
||||
pStem = pNext;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Free up all the memory allocated by a cursor. Set it rLimit to 0
|
||||
** to indicate that it is at EOF.
|
||||
*/
|
||||
static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){
|
||||
int i;
|
||||
fuzzerClearStemList(pCur->pStem);
|
||||
fuzzerClearStemList(pCur->pDone);
|
||||
for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]);
|
||||
pCur->rLimit = (fuzzer_cost)0;
|
||||
if( clearHash && pCur->nStem ){
|
||||
pCur->mxQueue = 0;
|
||||
pCur->pStem = 0;
|
||||
pCur->pDone = 0;
|
||||
memset(pCur->aQueue, 0, sizeof(pCur->aQueue));
|
||||
memset(pCur->apHash, 0, sizeof(pCur->apHash));
|
||||
}
|
||||
pCur->nStem = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Close a fuzzer cursor.
|
||||
*/
|
||||
static int fuzzerClose(sqlite3_vtab_cursor *cur){
|
||||
fuzzer_cursor *pCur = (fuzzer_cursor *)cur;
|
||||
fuzzerClearCursor(pCur, 0);
|
||||
sqlite3_free(pCur->zBuf);
|
||||
pCur->pVtab->nCursor--;
|
||||
sqlite3_free(pCur);
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Compute the current output term for a fuzzer_stem.
|
||||
*/
|
||||
static int fuzzerRender(
|
||||
fuzzer_stem *pStem, /* The stem to be rendered */
|
||||
char **pzBuf, /* Write results into this buffer. realloc if needed */
|
||||
int *pnBuf /* Size of the buffer */
|
||||
){
|
||||
const fuzzer_rule *pRule = pStem->pRule;
|
||||
int n;
|
||||
char *z;
|
||||
|
||||
n = pStem->nBasis + pRule->nTo - pRule->nFrom;
|
||||
if( (*pnBuf)<n+1 ){
|
||||
(*pzBuf) = sqlite3_realloc((*pzBuf), n+100);
|
||||
if( (*pzBuf)==0 ) return SQLITE_NOMEM;
|
||||
(*pnBuf) = n+100;
|
||||
}
|
||||
n = pStem->n;
|
||||
z = *pzBuf;
|
||||
if( n<0 ){
|
||||
memcpy(z, pStem->zBasis, pStem->nBasis+1);
|
||||
}else{
|
||||
memcpy(z, pStem->zBasis, n);
|
||||
memcpy(&z[n], pRule->zTo, pRule->nTo);
|
||||
memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom],
|
||||
pStem->nBasis-n-pRule->nFrom+1);
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Compute a hash on zBasis.
|
||||
*/
|
||||
static unsigned int fuzzerHash(const char *z){
|
||||
unsigned int h = 0;
|
||||
while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); }
|
||||
return h % FUZZER_HASH;
|
||||
}
|
||||
|
||||
/*
|
||||
** Current cost of a stem
|
||||
*/
|
||||
static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){
|
||||
return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost;
|
||||
}
|
||||
|
||||
#if 0
|
||||
/*
|
||||
** Print a description of a fuzzer_stem on stderr.
|
||||
*/
|
||||
static void fuzzerStemPrint(
|
||||
const char *zPrefix,
|
||||
fuzzer_stem *pStem,
|
||||
const char *zSuffix
|
||||
){
|
||||
if( pStem->n<0 ){
|
||||
fprintf(stderr, "%s[%s](%d)-->self%s",
|
||||
zPrefix,
|
||||
pStem->zBasis, pStem->rBaseCost,
|
||||
zSuffix
|
||||
);
|
||||
}else{
|
||||
char *zBuf = 0;
|
||||
int nBuf = 0;
|
||||
if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return;
|
||||
fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s",
|
||||
zPrefix,
|
||||
pStem->zBasis, pStem->rBaseCost, zBuf, pStem->,
|
||||
zSuffix
|
||||
);
|
||||
sqlite3_free(zBuf);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Return 1 if the string to which the cursor is point has already
|
||||
** been emitted. Return 0 if not. Return -1 on a memory allocation
|
||||
** failures.
|
||||
*/
|
||||
static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){
|
||||
unsigned int h;
|
||||
fuzzer_stem *pLookup;
|
||||
|
||||
if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
|
||||
return -1;
|
||||
}
|
||||
h = fuzzerHash(pCur->zBuf);
|
||||
pLookup = pCur->apHash[h];
|
||||
while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){
|
||||
pLookup = pLookup->pHash;
|
||||
}
|
||||
return pLookup!=0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Advance a fuzzer_stem to its next value. Return 0 if there are
|
||||
** no more values that can be generated by this fuzzer_stem. Return
|
||||
** -1 on a memory allocation failure.
|
||||
*/
|
||||
static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){
|
||||
const fuzzer_rule *pRule;
|
||||
while( (pRule = pStem->pRule)!=0 ){
|
||||
while( pStem->n < pStem->nBasis - pRule->nFrom ){
|
||||
pStem->n++;
|
||||
if( pRule->nFrom==0
|
||||
|| memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0
|
||||
){
|
||||
/* Found a rewrite case. Make sure it is not a duplicate */
|
||||
int rc = fuzzerSeen(pCur, pStem);
|
||||
if( rc<0 ) return -1;
|
||||
if( rc==0 ){
|
||||
fuzzerCost(pStem);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
pStem->n = -1;
|
||||
pStem->pRule = pRule->pNext;
|
||||
if( pStem->pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** The two input stem lists are both sorted in order of increasing
|
||||
** rCostX. Merge them together into a single list, sorted by rCostX, and
|
||||
** return a pointer to the head of that new list.
|
||||
*/
|
||||
static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){
|
||||
fuzzer_stem head;
|
||||
fuzzer_stem *pTail;
|
||||
|
||||
pTail = &head;
|
||||
while( pA && pB ){
|
||||
if( pA->rCostX<=pB->rCostX ){
|
||||
pTail->pNext = pA;
|
||||
pTail = pA;
|
||||
pA = pA->pNext;
|
||||
}else{
|
||||
pTail->pNext = pB;
|
||||
pTail = pB;
|
||||
pB = pB->pNext;
|
||||
}
|
||||
}
|
||||
if( pA==0 ){
|
||||
pTail->pNext = pB;
|
||||
}else{
|
||||
pTail->pNext = pA;
|
||||
}
|
||||
return head.pNext;
|
||||
}
|
||||
|
||||
/*
|
||||
** Load pCur->pStem with the lowest-cost stem. Return a pointer
|
||||
** to the lowest-cost stem.
|
||||
*/
|
||||
static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){
|
||||
fuzzer_stem *pBest, *pX;
|
||||
int iBest;
|
||||
int i;
|
||||
|
||||
if( pCur->pStem==0 ){
|
||||
iBest = -1;
|
||||
pBest = 0;
|
||||
for(i=0; i<=pCur->mxQueue; i++){
|
||||
pX = pCur->aQueue[i];
|
||||
if( pX==0 ) continue;
|
||||
if( pBest==0 || pBest->rCostX>pX->rCostX ){
|
||||
pBest = pX;
|
||||
iBest = i;
|
||||
}
|
||||
}
|
||||
if( pBest ){
|
||||
pCur->aQueue[iBest] = pBest->pNext;
|
||||
pBest->pNext = 0;
|
||||
pCur->pStem = pBest;
|
||||
}
|
||||
}
|
||||
return pCur->pStem;
|
||||
}
|
||||
|
||||
/*
|
||||
** Insert pNew into queue of pending stems. Then find the stem
|
||||
** with the lowest rCostX and move it into pCur->pStem.
|
||||
** list. The insert is done such the pNew is in the correct order
|
||||
** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost.
|
||||
*/
|
||||
static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){
|
||||
fuzzer_stem *pX;
|
||||
int i;
|
||||
|
||||
/* If pCur->pStem exists and is greater than pNew, then make pNew
|
||||
** the new pCur->pStem and insert the old pCur->pStem instead.
|
||||
*/
|
||||
if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){
|
||||
pNew->pNext = 0;
|
||||
pCur->pStem = pNew;
|
||||
pNew = pX;
|
||||
}
|
||||
|
||||
/* Insert the new value */
|
||||
pNew->pNext = 0;
|
||||
pX = pNew;
|
||||
for(i=0; i<=pCur->mxQueue; i++){
|
||||
if( pCur->aQueue[i] ){
|
||||
pX = fuzzerMergeStems(pX, pCur->aQueue[i]);
|
||||
pCur->aQueue[i] = 0;
|
||||
}else{
|
||||
pCur->aQueue[i] = pX;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( i>pCur->mxQueue ){
|
||||
if( i<FUZZER_NQUEUE ){
|
||||
pCur->mxQueue = i;
|
||||
pCur->aQueue[i] = pX;
|
||||
}else{
|
||||
assert( pCur->mxQueue==FUZZER_NQUEUE-1 );
|
||||
pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]);
|
||||
pCur->aQueue[FUZZER_NQUEUE-1] = pX;
|
||||
}
|
||||
}
|
||||
|
||||
return fuzzerLowestCostStem(pCur);
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate a new fuzzer_stem. Add it to the hash table but do not
|
||||
** link it into either the pCur->pStem or pCur->pDone lists.
|
||||
*/
|
||||
static fuzzer_stem *fuzzerNewStem(
|
||||
fuzzer_cursor *pCur,
|
||||
const char *zWord,
|
||||
fuzzer_cost rBaseCost
|
||||
){
|
||||
fuzzer_stem *pNew;
|
||||
unsigned int h;
|
||||
|
||||
pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 );
|
||||
if( pNew==0 ) return 0;
|
||||
memset(pNew, 0, sizeof(*pNew));
|
||||
pNew->zBasis = (char*)&pNew[1];
|
||||
pNew->nBasis = strlen(zWord);
|
||||
memcpy(pNew->zBasis, zWord, pNew->nBasis+1);
|
||||
pNew->pRule = pCur->pVtab->pRule;
|
||||
pNew->n = -1;
|
||||
pNew->rBaseCost = pNew->rCostX = rBaseCost;
|
||||
h = fuzzerHash(pNew->zBasis);
|
||||
pNew->pHash = pCur->apHash[h];
|
||||
pCur->apHash[h] = pNew;
|
||||
pCur->nStem++;
|
||||
return pNew;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Advance a cursor to its next row of output
|
||||
*/
|
||||
static int fuzzerNext(sqlite3_vtab_cursor *cur){
|
||||
fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
|
||||
int rc;
|
||||
fuzzer_stem *pStem, *pNew;
|
||||
|
||||
pCur->iRowid++;
|
||||
|
||||
/* Use the element the cursor is currently point to to create
|
||||
** a new stem and insert the new stem into the priority queue.
|
||||
*/
|
||||
pStem = pCur->pStem;
|
||||
if( pStem->rCostX>0 ){
|
||||
rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf);
|
||||
if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
|
||||
pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX);
|
||||
if( pNew ){
|
||||
if( fuzzerAdvance(pCur, pNew)==0 ){
|
||||
pNew->pNext = pCur->pDone;
|
||||
pCur->pDone = pNew;
|
||||
}else{
|
||||
if( fuzzerInsert(pCur, pNew)==pNew ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
}
|
||||
}else{
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
}
|
||||
|
||||
/* Adjust the priority queue so that the first element of the
|
||||
** stem list is the next lowest cost word.
|
||||
*/
|
||||
while( (pStem = pCur->pStem)!=0 ){
|
||||
if( fuzzerAdvance(pCur, pStem) ){
|
||||
pCur->pStem = 0;
|
||||
pStem = fuzzerInsert(pCur, pStem);
|
||||
if( (rc = fuzzerSeen(pCur, pStem))!=0 ){
|
||||
if( rc<0 ) return SQLITE_NOMEM;
|
||||
continue;
|
||||
}
|
||||
return SQLITE_OK; /* New word found */
|
||||
}
|
||||
pCur->pStem = 0;
|
||||
pStem->pNext = pCur->pDone;
|
||||
pCur->pDone = pStem;
|
||||
if( fuzzerLowestCostStem(pCur) ){
|
||||
rc = fuzzerSeen(pCur, pCur->pStem);
|
||||
if( rc<0 ) return SQLITE_NOMEM;
|
||||
if( rc==0 ){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Reach this point only if queue has been exhausted and there is
|
||||
** nothing left to be output. */
|
||||
pCur->rLimit = (fuzzer_cost)0;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Called to "rewind" a cursor back to the beginning so that
|
||||
** it starts its output over again. Always called at least once
|
||||
** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call.
|
||||
*/
|
||||
static int fuzzerFilter(
|
||||
sqlite3_vtab_cursor *pVtabCursor,
|
||||
int idxNum, const char *idxStr,
|
||||
int argc, sqlite3_value **argv
|
||||
){
|
||||
fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor;
|
||||
const char *zWord = 0;
|
||||
fuzzer_stem *pStem;
|
||||
|
||||
fuzzerClearCursor(pCur, 1);
|
||||
pCur->rLimit = 2147483647;
|
||||
if( idxNum==1 ){
|
||||
zWord = (const char*)sqlite3_value_text(argv[0]);
|
||||
}else if( idxNum==2 ){
|
||||
pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[0]);
|
||||
}else if( idxNum==3 ){
|
||||
zWord = (const char*)sqlite3_value_text(argv[0]);
|
||||
pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[1]);
|
||||
}
|
||||
if( zWord==0 ) zWord = "";
|
||||
pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0);
|
||||
if( pStem==0 ) return SQLITE_NOMEM;
|
||||
pCur->nullRule.pNext = pCur->pVtab->pRule;
|
||||
pCur->nullRule.rCost = 0;
|
||||
pCur->nullRule.nFrom = 0;
|
||||
pCur->nullRule.nTo = 0;
|
||||
pCur->nullRule.zFrom = "";
|
||||
pStem->pRule = &pCur->nullRule;
|
||||
pStem->n = pStem->nBasis;
|
||||
pCur->iRowid = 1;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Only the word and distance columns have values. All other columns
|
||||
** return NULL
|
||||
*/
|
||||
static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
|
||||
fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
|
||||
if( i==0 ){
|
||||
/* the "word" column */
|
||||
if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
|
||||
}else if( i==1 ){
|
||||
/* the "distance" column */
|
||||
sqlite3_result_int(ctx, pCur->pStem->rCostX);
|
||||
}else{
|
||||
/* All other columns are NULL */
|
||||
sqlite3_result_null(ctx);
|
||||
}
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** The rowid.
|
||||
*/
|
||||
static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
|
||||
fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
|
||||
*pRowid = pCur->iRowid;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal
|
||||
** that the cursor has nothing more to output.
|
||||
*/
|
||||
static int fuzzerEof(sqlite3_vtab_cursor *cur){
|
||||
fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
|
||||
return pCur->rLimit<=(fuzzer_cost)0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Search for terms of these forms:
|
||||
**
|
||||
** word MATCH $str
|
||||
** distance < $value
|
||||
** distance <= $value
|
||||
**
|
||||
** The distance< and distance<= are both treated as distance<=.
|
||||
** The query plan number is as follows:
|
||||
**
|
||||
** 0: None of the terms above are found
|
||||
** 1: There is a "word MATCH" term with $str in filter.argv[0].
|
||||
** 2: There is a "distance<" term with $value in filter.argv[0].
|
||||
** 3: Both "word MATCH" and "distance<" with $str in argv[0] and
|
||||
** $value in argv[1].
|
||||
*/
|
||||
static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
|
||||
int iPlan = 0;
|
||||
int iDistTerm = -1;
|
||||
int i;
|
||||
const struct sqlite3_index_constraint *pConstraint;
|
||||
pConstraint = pIdxInfo->aConstraint;
|
||||
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
|
||||
if( pConstraint->usable==0 ) continue;
|
||||
if( (iPlan & 1)==0
|
||||
&& pConstraint->iColumn==0
|
||||
&& pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
|
||||
){
|
||||
iPlan |= 1;
|
||||
pIdxInfo->aConstraintUsage[i].argvIndex = 1;
|
||||
pIdxInfo->aConstraintUsage[i].omit = 1;
|
||||
}
|
||||
if( (iPlan & 2)==0
|
||||
&& pConstraint->iColumn==1
|
||||
&& (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
|
||||
|| pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
|
||||
){
|
||||
iPlan |= 2;
|
||||
iDistTerm = i;
|
||||
}
|
||||
}
|
||||
if( iPlan==2 ){
|
||||
pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1;
|
||||
}else if( iPlan==3 ){
|
||||
pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 2;
|
||||
}
|
||||
pIdxInfo->idxNum = iPlan;
|
||||
if( pIdxInfo->nOrderBy==1
|
||||
&& pIdxInfo->aOrderBy[0].iColumn==1
|
||||
&& pIdxInfo->aOrderBy[0].desc==0
|
||||
){
|
||||
pIdxInfo->orderByConsumed = 1;
|
||||
}
|
||||
pIdxInfo->estimatedCost = (double)10000;
|
||||
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Disallow all attempts to DELETE or UPDATE. Only INSERTs are allowed.
|
||||
**
|
||||
** On an insert, the cFrom, cTo, and cost columns are used to construct
|
||||
** a new rule. All other columns are ignored. The rule is ignored
|
||||
** if cFrom and cTo are identical. A NULL value for cFrom or cTo is
|
||||
** interpreted as an empty string. The cost must be positive.
|
||||
*/
|
||||
static int fuzzerUpdate(
|
||||
sqlite3_vtab *pVTab,
|
||||
int argc,
|
||||
sqlite3_value **argv,
|
||||
sqlite_int64 *pRowid
|
||||
){
|
||||
fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
|
||||
fuzzer_rule *pRule;
|
||||
const char *zFrom;
|
||||
int nFrom;
|
||||
const char *zTo;
|
||||
int nTo;
|
||||
fuzzer_cost rCost;
|
||||
if( argc!=7 ){
|
||||
sqlite3_free(pVTab->zErrMsg);
|
||||
pVTab->zErrMsg = sqlite3_mprintf("cannot delete from a %s virtual table",
|
||||
p->zClassName);
|
||||
return SQLITE_CONSTRAINT;
|
||||
}
|
||||
if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){
|
||||
sqlite3_free(pVTab->zErrMsg);
|
||||
pVTab->zErrMsg = sqlite3_mprintf("cannot update a %s virtual table",
|
||||
p->zClassName);
|
||||
return SQLITE_CONSTRAINT;
|
||||
}
|
||||
zFrom = (char*)sqlite3_value_text(argv[4]);
|
||||
if( zFrom==0 ) zFrom = "";
|
||||
zTo = (char*)sqlite3_value_text(argv[5]);
|
||||
if( zTo==0 ) zTo = "";
|
||||
if( strcmp(zFrom,zTo)==0 ){
|
||||
/* Silently ignore null transformations */
|
||||
return SQLITE_OK;
|
||||
}
|
||||
rCost = sqlite3_value_int(argv[6]);
|
||||
if( rCost<=0 ){
|
||||
sqlite3_free(pVTab->zErrMsg);
|
||||
pVTab->zErrMsg = sqlite3_mprintf("cost must be positive");
|
||||
return SQLITE_CONSTRAINT;
|
||||
}
|
||||
nFrom = strlen(zFrom);
|
||||
nTo = strlen(zTo);
|
||||
pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo );
|
||||
if( pRule==0 ){
|
||||
return SQLITE_NOMEM;
|
||||
}
|
||||
pRule->zFrom = &pRule->zTo[nTo+1];
|
||||
pRule->nFrom = nFrom;
|
||||
memcpy(pRule->zFrom, zFrom, nFrom+1);
|
||||
memcpy(pRule->zTo, zTo, nTo+1);
|
||||
pRule->nTo = nTo;
|
||||
pRule->rCost = rCost;
|
||||
pRule->pNext = p->pNewRule;
|
||||
p->pNewRule = pRule;
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** A virtual table module that provides read-only access to a
|
||||
** Tcl global variable namespace.
|
||||
*/
|
||||
static sqlite3_module fuzzerModule = {
|
||||
0, /* iVersion */
|
||||
fuzzerConnect,
|
||||
fuzzerConnect,
|
||||
fuzzerBestIndex,
|
||||
fuzzerDisconnect,
|
||||
fuzzerDisconnect,
|
||||
fuzzerOpen, /* xOpen - open a cursor */
|
||||
fuzzerClose, /* xClose - close a cursor */
|
||||
fuzzerFilter, /* xFilter - configure scan constraints */
|
||||
fuzzerNext, /* xNext - advance a cursor */
|
||||
fuzzerEof, /* xEof - check for end of scan */
|
||||
fuzzerColumn, /* xColumn - read data */
|
||||
fuzzerRowid, /* xRowid - read data */
|
||||
fuzzerUpdate, /* xUpdate - INSERT */
|
||||
0, /* xBegin */
|
||||
0, /* xSync */
|
||||
0, /* xCommit */
|
||||
0, /* xRollback */
|
||||
0, /* xFindMethod */
|
||||
0, /* xRename */
|
||||
};
|
||||
|
||||
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
||||
|
||||
|
||||
/*
|
||||
** Register the fuzzer virtual table
|
||||
*/
|
||||
int fuzzer_register(sqlite3 *db){
|
||||
int rc = SQLITE_OK;
|
||||
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
||||
rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0);
|
||||
#endif
|
||||
return rc;
|
||||
}
|
||||
|
||||
#ifdef SQLITE_TEST
|
||||
#include <tcl.h>
|
||||
/*
|
||||
** Decode a pointer to an sqlite3 object.
|
||||
*/
|
||||
extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb);
|
||||
|
||||
/*
|
||||
** Register the echo virtual table module.
|
||||
*/
|
||||
static int register_fuzzer_module(
|
||||
ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
|
||||
Tcl_Interp *interp, /* The TCL interpreter that invoked this command */
|
||||
int objc, /* Number of arguments */
|
||||
Tcl_Obj *CONST objv[] /* Command arguments */
|
||||
){
|
||||
sqlite3 *db;
|
||||
if( objc!=2 ){
|
||||
Tcl_WrongNumArgs(interp, 1, objv, "DB");
|
||||
return TCL_ERROR;
|
||||
}
|
||||
if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
|
||||
fuzzer_register(db);
|
||||
return TCL_OK;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
** Register commands with the TCL interpreter.
|
||||
*/
|
||||
int Sqlitetestfuzzer_Init(Tcl_Interp *interp){
|
||||
static struct {
|
||||
char *zName;
|
||||
Tcl_ObjCmdProc *xProc;
|
||||
void *clientData;
|
||||
} aObjCmd[] = {
|
||||
{ "register_fuzzer_module", register_fuzzer_module, 0 },
|
||||
};
|
||||
int i;
|
||||
for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
|
||||
Tcl_CreateObjCommand(interp, aObjCmd[i].zName,
|
||||
aObjCmd[i].xProc, aObjCmd[i].clientData, 0);
|
||||
}
|
||||
return TCL_OK;
|
||||
}
|
||||
|
||||
#endif /* SQLITE_TEST */
|
1382
test/fuzzer1.test
Normal file
1382
test/fuzzer1.test
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user