Tables and indices use the same record format. (CVS 1481)

FossilOrigin-Name: ebd564d10b0ecd7ff15cbd6cd2b979c9f767476c
This commit is contained in:
drh 2004-05-28 08:21:02 +00:00
parent 25aa1b4580
commit f3218fea00
5 changed files with 153 additions and 315 deletions

View File

@ -1 +1 @@
2.8.13
3.0.0alpha

View File

@ -1,9 +1,9 @@
C Remove\sthe\sencoding\sargument\sfrom\ssqlite3VdbeSerialGet.\s\sUse\sthe\s32-bit\nversion\sof\ssqlite3GetVarint\sfor\sschema-level\sparameters.\s(CVS\s1480)
D 2004-05-28T01:39:01
C Tables\sand\sindices\suse\sthe\ssame\srecord\sformat.\s(CVS\s1481)
D 2004-05-28T08:21:02
F Makefile.in ab7b0d5118e2da97bac66be8684a1034e3500f5a
F Makefile.linux-gcc b86a99c493a5bfb402d1d9178dcdc4bd4b32f906
F README f1de682fbbd94899d50aca13d387d1b3fd3be2dd
F VERSION 4328de2a5fb5000699b907ca405cb9d84ba4e097
F VERSION 4490ff094970c0e36eff0cbe2adcdb3a701f6ad6
F aclocal.m4 7daea4c35e88de30d5a3f6f7a2ab99720e803bbd
F art/SQLite.eps 9b43cc99cfd2be687d386faea6862ea68d6a72b2
F art/SQLite.gif 1bbb94484963f1382e27e1c5e86dd0c1061eba2b
@ -30,7 +30,7 @@ F src/build.c 35cbeb439b49cca5eb5e8a1de010a5194f4523e8
F src/date.c 0eb922af5c5f5e2455f8dc2f98023ed3e04a857e
F src/delete.c 66c5ab98cbad7e6b315fc997bfe6c8080784a701
F src/encode.c a876af473d1d636faa3dca51c7571f2e007eea37
F src/expr.c 3f43cae2c8cf51ea8ee2abbf4dcc900b1326c5d6
F src/expr.c 1f7b853b097806ff6b0a3edd884c9b6675698745
F src/func.c 1fe0763675eb38b6e3992d3edfbec2271798b658
F src/hash.c 440c2f8cb373ee1b4e13a0988489c7cd95d55b6f
F src/hash.h 762d95f1e567664d1eafc1687de755626be962fb
@ -69,7 +69,7 @@ F src/update.c 96461bcf4e946697e83c09c77c7e61b545a2f66e
F src/utf.c 59b5c8f06a4384a9f64933d6c57a2de02ce3673b
F src/util.c d299404febd509556e720fbecadd880756b0f899
F src/vacuum.c 8734f89742f246abd91dbd3e087fc153bddbfbad
F src/vdbe.c ea44f5bef30c7fd8eeb28fb4aa5f05875566b369
F src/vdbe.c c661752ea19a8b5a041d8c4f234e1524f6b3250e
F src/vdbe.h e73f890e0f2a6c42b183d7d6937947930fe4fdeb
F src/vdbeInt.h 57b649105aeab1e39e77bdb3de3c1560deddc69e
F src/vdbeapi.c b0bb1f98c899ba00c8a5cbca612c2a28a1bb79de
@ -203,7 +203,7 @@ F www/sqlite.tcl 3c83b08cf9f18aa2d69453ff441a36c40e431604
F www/tclsqlite.tcl b9271d44dcf147a93c98f8ecf28c927307abd6da
F www/vdbe.tcl 9b9095d4495f37697fd1935d10e14c6015e80aa1
F www/whentouse.tcl a8335bce47cc2fddb07f19052cb0cb4d9129a8e4
P 203af2b2e3a25f4fe0e128e350c21834cad0bd7f
R 2b74d4b0c22d8325d92f20886c62da43
P 321f8c463520e99681de878b743027c570b73e35
R b41c78025f27adccaab04283941e1081
U drh
Z e19993d4f4e147db54eb88d1ba253c94
Z 03b836ac44307f3719b7ddd6c55ebe4b

View File

@ -1 +1 @@
321f8c463520e99681de878b743027c570b73e35
ebd564d10b0ecd7ff15cbd6cd2b979c9f767476c

View File

@ -12,7 +12,7 @@
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.130 2004/05/27 09:28:42 danielk1977 Exp $
** $Id: expr.c,v 1.131 2004/05/28 08:21:06 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
@ -824,6 +824,7 @@ int sqlite3ExprResolveIds(
keyInfo.aColl[0] = pParse->db->pDfltColl;
sqlite3VdbeOp3(v, OP_OpenTemp, pExpr->iTable, 0, \
(char*)&keyInfo, P3_KEYINFO);
sqlite3VdbeAddOp(v, OP_SetNumColumns, pExpr->iTable, 1);
if( pExpr->pSelect ){
/* Case 1: expr IN (SELECT ...)

View File

@ -43,7 +43,7 @@
** in this file for details. If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.342 2004/05/28 01:39:01 drh Exp $
** $Id: vdbe.c,v 1.343 2004/05/28 08:21:09 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
@ -404,66 +404,6 @@ void prettyPrintMem(Mem *pMem, char *zBuf, int nBuf){
char zGdbBuf[100];
#endif
/*
** Move data out of a btree key or data field and into a Mem structure.
** The data or key is taken from the entry that pCur is currently pointing
** to. offset and amt determine what portion of the data or key to retrieve.
** key is true to get the key or false to get data. The result is written
** into the pMem element.
*/
static int getBtreeMem(
BtCursor *pCur, /* Cursor pointing at record to retrieve. */
int offset, /* Offset from the start of data to return bytes from. */
int amt, /* Number of bytes to return. */
int key, /* If true, retrieve from the btree key, not data. */
Mem *pMem /* OUT: Return data in this Mem structure. */
){
char *zData;
if( key ){
zData = (char *)sqlite3BtreeKeyFetch(pCur, offset+amt);
}else{
zData = (char *)sqlite3BtreeDataFetch(pCur, offset+amt);
}
if( zData ){
pMem->z = &zData[offset];
pMem->n = amt;
pMem->flags = MEM_Blob|MEM_Ephem;
}else{
int rc;
if( amt>NBFS-2 ){
zData = (char *)sqliteMallocRaw(amt+2);
if( !zData ){
return SQLITE_NOMEM;
}
pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
}else{
zData = &(pMem->zShort[0]);
pMem->flags = MEM_Blob|MEM_Short|MEM_Term;
}
pMem->z = zData;
pMem->enc = 0;
pMem->type = SQLITE3_BLOB;
if( key ){
rc = sqlite3BtreeKey(pCur, offset, amt, zData);
}else{
rc = sqlite3BtreeData(pCur, offset, amt, zData);
}
zData[amt] = 0;
zData[amt+1] = 0;
if( rc!=SQLITE_OK ){
if( amt>NBFS ){
sqliteFree(zData);
}
return rc;
}
}
return SQLITE_OK;
}
#ifdef VDBE_PROFILE
/*
@ -1801,6 +1741,11 @@ case OP_SetNumColumns: {
break;
}
/* Opcode: IdxColumn P1 * *
**
** P1 is a cursor opened on an index. Push the first field from the
** current index key onto the stack.
*/
/* Opcode: Column P1 P2 *
**
** Interpret the data that cursor P1 points to as a structure built using
@ -1818,6 +1763,7 @@ case OP_SetNumColumns: {
** stack. The column value is not copied. The number of columns in the
** record is stored on the stack just above the record itself.
*/
case OP_IdxColumn:
case OP_Column: {
int payloadSize; /* Number of bytes in the record */
int p1 = pOp->p1; /* P1 value of the opcode */
@ -1921,7 +1867,7 @@ case OP_Column: {
/* Get the complete header text */
if( !zRec ){
rc = getBtreeMem(pCrsr, 0, szHdr, pC->keyAsData, &sMem);
rc = sqlite3VdbeMemFromBtree(pCrsr, 0, szHdr, pC->keyAsData, &sMem);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
@ -1971,7 +1917,7 @@ case OP_Column: {
zData = &zRec[aOffset[p2]];
}else{
len = sqlite3VdbeSerialTypeLen(aType[p2]);
getBtreeMem(pCrsr, aOffset[p2], len, pC->keyAsData, &sMem);
sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->keyAsData, &sMem);
zData = sMem.z;
}
sqlite3VdbeSerialGet(zData, aType[p2], pTos);
@ -1988,115 +1934,6 @@ case OP_Column: {
break;
}
/* Opcode MakeRecord P1 * P3
**
** Convert the top P1 entries of the stack into a single entry
** suitable for use as a data record in a database table. The
** details of the format are irrelavant as long as the OP_Column
** opcode can decode the record later. Refer to source code
** comments for the details of the record format.
**
** P3 may be a string that is P1 characters long. The nth character of the
** string indicates the column affinity that should be used for the nth
** field of the index key (i.e. the first character of P3 corresponds to the
** lowest element on the stack).
**
** Character Column affinity
** ------------------------------
** 'n' NUMERIC
** 'i' INTEGER
** 't' TEXT
** 'o' NONE
**
** If P3 is NULL then all index fields have the affinity NONE.
*/
case OP_MakeRecord: {
/* Assuming the record contains N fields, the record format looks
** like this:
**
** --------------------------------------------------------------------------
** | header-siz | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
** --------------------------------------------------------------------------
**
** Data(0) is taken from the lowest element of the stack and data(N-1) is
** the top of the stack.
**
** Each type field is a varint representing the serial type of the
** corresponding data element (see sqlite3VdbeSerialType()). The
** num-fields field is also a varint storing N.
**
** TODO: Even when the record is short enough for Mem::zShort, this opcode
** allocates it dynamically.
*/
int nField = pOp->p1;
unsigned char *zNewRecord;
unsigned char *zCsr;
char *zAffinity;
Mem *pRec;
int nData = 0; /* Number of bytes of data space */
int nHdr = 0; /* Number of bytes of header space */
int nByte = 0; /* Space required for this record */
Mem *pData0 = &pTos[1-nField];
assert( pData0>=p->aStack );
zAffinity = pOp->p3;
/* Loop through the elements that will make up the record to figure
** out how much space is required for the new record.
*/
for(pRec=pData0; pRec<=pTos; pRec++){
u32 serial_type;
if( zAffinity ){
applyAffinity(pRec, zAffinity[pRec-pData0], db->enc);
}
serial_type = sqlite3VdbeSerialType(pRec);
nData += sqlite3VdbeSerialTypeLen(serial_type);
nHdr += sqlite3VarintLen(serial_type);
}
nHdr += sqlite3VarintLen(nHdr);
nByte = nHdr+nData;
if( nByte>MAX_BYTES_PER_ROW ){
rc = SQLITE_TOOBIG;
goto abort_due_to_error;
}
/* Allocate space for the new record. */
zNewRecord = sqliteMallocRaw(nByte);
if( !zNewRecord ){
goto no_mem;
}
/* Write the record */
zCsr = zNewRecord;
zCsr += sqlite3PutVarint(zCsr, nHdr);
for(pRec=pData0; pRec<=pTos; pRec++){
u32 serial_type = sqlite3VdbeSerialType(pRec);
zCsr += sqlite3PutVarint(zCsr, serial_type); /* serial type */
}
for(pRec=pData0; pRec<=pTos; pRec++){
zCsr += sqlite3VdbeSerialPut(zCsr, pRec); /* serial data */
}
/* If zCsr has not been advanced exactly nByte bytes, then one
** of the sqlite3PutVarint() or sqlite3VdbeSerialPut() calls above
** failed. This indicates a corrupted memory cell or code bug.
*/
if( zCsr!=(zNewRecord+nByte) ){
rc = SQLITE_INTERNAL;
goto abort_due_to_error;
}
/* Pop nField entries from the stack and push the new entry on */
popStack(&pTos, nField);
pTos++;
pTos->n = nByte;
pTos->z = zNewRecord;
pTos->flags = MEM_Blob | MEM_Dyn;
break;
}
/* Opcode: MakeKey P1 P2 P3
**
** Convert the top P1 entries of the stack into a single entry suitable
@ -2135,40 +1972,71 @@ case OP_MakeRecord: {
**
** If P3 is NULL then datatype coercion occurs.
*/
/* Opcode MakeRecord P1 * P3
**
** Convert the top P1 entries of the stack into a single entry
** suitable for use as a data record in a database table. The
** details of the format are irrelavant as long as the OP_Column
** opcode can decode the record later. Refer to source code
** comments for the details of the record format.
**
** P3 may be a string that is P1 characters long. The nth character of the
** string indicates the column affinity that should be used for the nth
** field of the index key (i.e. the first character of P3 corresponds to the
** lowest element on the stack).
**
** Character Column affinity
** ------------------------------
** 'n' NUMERIC
** 'i' INTEGER
** 't' TEXT
** 'o' NONE
**
** If P3 is NULL then all index fields have the affinity NONE.
*/
case OP_MakeKey:
case OP_MakeIdxKey: {
case OP_MakeIdxKey:
case OP_MakeRecord: {
/* Assuming the record contains N fields, the record format looks
** like this:
**
** --------------------------------------------------------------------------
** | header-siz | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
** --------------------------------------------------------------------------
**
** Data(0) is taken from the lowest element of the stack and data(N-1) is
** the top of the stack.
**
** Each type field is a varint representing the serial type of the
** corresponding data element (see sqlite3VdbeSerialType()). The
** num-fields field is also a varint storing N.
**
** TODO: Even when the record is short enough for Mem::zShort, this opcode
** allocates it dynamically.
*/
int nField = pOp->p1;
unsigned char *zNewRecord;
unsigned char *zCsr;
char *zAffinity;
Mem *pRec;
Mem *pData0;
int nField;
u64 rowid;
int nByte = 0;
int addRowid;
int containsNull = 0;
char *zKey; /* The new key */
int offset = 0;
char *zAffinity = pOp->p3;
nField = pOp->p1;
assert( zAffinity==0 || strlen(zAffinity)>=nField );
pData0 = &pTos[1-nField];
Mem *pRowid;
int nData = 0; /* Number of bytes of data space */
int nHdr = 0; /* Number of bytes of header space */
int nByte = 0; /* Space required for this record */
int addRowid; /* True to append a rowid column at the end */
u32 serial_type; /* Type field */
int containsNull; /* True if any of the data fields are NULL */
Mem *pData0 = &pTos[1-nField];
assert( pData0>=p->aStack );
zAffinity = pOp->p3;
addRowid = pOp->opcode==OP_MakeIdxKey;
containsNull = 0;
addRowid = ((pOp->opcode==OP_MakeIdxKey)?1:0);
/* Loop through the P1 elements that will make up the new index
** key. Call applyAffinity() to perform any conversion required
** the column affinity string P3 to modify stack elements in place.
** Set containsNull to 1 if a NULL value is encountered.
**
** Once the value has been coerced, figure out how much space is required
** to store the coerced values serial-type and blob, and add this
** quantity to nByte.
**
** TODO: Figure out if the in-place coercion causes a problem for
** OP_MakeKey when P2 is 0 (used by DISTINCT).
/* Loop through the elements that will make up the record to figure
** out how much space is required for the new record.
*/
for(pRec=pData0; pRec<=pTos; pRec++){
u32 serial_type;
if( zAffinity ){
applyAffinity(pRec, zAffinity[pRec-pData0], db->enc);
}
@ -2176,8 +2044,8 @@ case OP_MakeIdxKey: {
containsNull = 1;
}
serial_type = sqlite3VdbeSerialType(pRec);
nByte += sqlite3VarintLen(serial_type);
nByte += sqlite3VdbeSerialTypeLen(serial_type);
nData += sqlite3VdbeSerialTypeLen(serial_type);
nHdr += sqlite3VarintLen(serial_type);
}
/* If we have to append a varint rowid to this record, set 'rowid'
@ -2185,45 +2053,63 @@ case OP_MakeIdxKey: {
** required to store it and the 0x00 seperator byte.
*/
if( addRowid ){
pRec = &pTos[0-nField];
assert( pRec>=p->aStack );
Integerify(pRec, db->enc);
rowid = pRec->i;
nByte += sqlite3VarintLen(rowid);
nByte++;
pRowid = &pTos[0-nField];
assert( pRowid>=p->aStack );
Integerify(pRowid, db->enc);
serial_type = sqlite3VdbeSerialType(pRowid);
nData += sqlite3VdbeSerialTypeLen(serial_type);
nHdr += sqlite3VarintLen(serial_type);
}
/* Add the initial header varint and total the size */
nHdr += sqlite3VarintLen(nHdr);
nByte = nHdr+nData;
if( nByte>MAX_BYTES_PER_ROW ){
rc = SQLITE_TOOBIG;
goto abort_due_to_error;
}
/* Allocate space for the new key */
zKey = (char *)sqliteMallocRaw(nByte);
if( !zKey ){
/* Allocate space for the new record. */
zNewRecord = sqliteMallocRaw(nByte);
if( !zNewRecord ){
goto no_mem;
}
/* Build the key in the buffer pointed to by zKey. */
/* Write the record */
zCsr = zNewRecord;
zCsr += sqlite3PutVarint(zCsr, nHdr);
for(pRec=pData0; pRec<=pTos; pRec++){
u32 serial_type = sqlite3VdbeSerialType(pRec);
offset += sqlite3PutVarint(&zKey[offset], serial_type);
offset += sqlite3VdbeSerialPut(&zKey[offset], pRec);
serial_type = sqlite3VdbeSerialType(pRec);
zCsr += sqlite3PutVarint(zCsr, serial_type); /* serial type */
}
if( addRowid ){
zKey[offset++] = '\0';
offset += sqlite3PutVarint(&zKey[offset], rowid);
zCsr += sqlite3PutVarint(zCsr, sqlite3VdbeSerialType(pRowid));
}
for(pRec=pData0; pRec<=pTos; pRec++){
zCsr += sqlite3VdbeSerialPut(zCsr, pRec); /* serial data */
}
if( addRowid ){
zCsr += sqlite3VdbeSerialPut(zCsr, pRowid);
}
assert( offset==nByte );
/* Pop the consumed values off the stack and push on the new key. */
if( addRowid||(pOp->p2==0) ){
/* If zCsr has not been advanced exactly nByte bytes, then one
** of the sqlite3PutVarint() or sqlite3VdbeSerialPut() calls above
** failed. This indicates a corrupted memory cell or code bug.
*/
if( zCsr!=(zNewRecord+nByte) ){
rc = SQLITE_INTERNAL;
goto abort_due_to_error;
}
/* Pop nField entries from the stack and push the new entry on */
if( addRowid || pOp->p2==0 ){
popStack(&pTos, nField+addRowid);
}
pTos++;
pTos->flags = MEM_Blob|MEM_Dyn;
pTos->z = zKey;
pTos->n = nByte;
pTos->z = zNewRecord;
pTos->flags = MEM_Blob | MEM_Dyn;
/* If P2 is non-zero, and if the key contains a NULL value, and if this
** was an OP_MakeIdxKey instruction, not OP_MakeKey, jump to P2.
@ -2842,8 +2728,8 @@ case OP_Found: {
**
** P1 is an index. So it has no data and its key consists of a
** record generated by OP_MakeIdxKey. This key contains one or more
** fields followed by a varint ROWID.
**
** fields followed by a ROWID field.
**
** This instruction asks if there is an entry in P1 where the
** fields matches K but the rowid is different from R.
** If there is no such entry, then there is an immediate
@ -2876,6 +2762,7 @@ case OP_IsUnique: {
char *zKey; /* The value of K */
int nKey; /* Number of bytes in K */
int len; /* Number of bytes in K without the rowid at the end */
int szRowid; /* Size of the rowid column at the end of zKey */
/* Make sure K is a string and make zKey point to K
*/
@ -2883,9 +2770,8 @@ case OP_IsUnique: {
zKey = pNos->z;
nKey = pNos->n;
assert( nKey >= 2 );
len = nKey-2;
while( zKey[len] && --len );
szRowid = sqlite3VdbeIdxRowidLen(nKey, zKey);
len = nKey-szRowid;
/* Search for an entry in P1 where all but the last four bytes match K.
** If there is no such entry, jump immediately to P2.
@ -2909,8 +2795,8 @@ case OP_IsUnique: {
}
/* At this point, pCrsr is pointing to an entry in P1 where all but
** the final varint (the rowid) matches K. Check to see if the
** final varint is different from R. If it equals R then jump
** the final entry (the rowid) matches K. Check to see if the
** final rowid column is different from R. If it equals R then jump
** immediately to P2.
*/
rc = sqlite3VdbeIdxRowid(pCrsr, &v);
@ -3347,57 +3233,6 @@ case OP_Recno: {
break;
}
/* Opcode: IdxColumn P1 * *
**
** P1 is a cursor opened on an index. Push the first field from the
** current index key onto the stack.
*/
case OP_IdxColumn: {
char *zData;
i64 n;
u32 serial_type;
int len;
int freeZData = 0;
BtCursor *pCsr;
assert( 0==p->apCsr[pOp->p1]->intKey );
pCsr = p->apCsr[pOp->p1]->pCursor;
rc = sqlite3BtreeKeySize(pCsr, &n);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
if( n>10 ) n = 10;
zData = (char *)sqlite3BtreeKeyFetch(pCsr, n);
assert( zData );
len = sqlite3GetVarint32(zData, &serial_type);
n = sqlite3VdbeSerialTypeLen(serial_type);
zData = (char *)sqlite3BtreeKeyFetch(pCsr, len+n);
if( !zData ){
zData = (char *)sqliteMalloc(n);
if( !zData ){
goto no_mem;
}
rc = sqlite3BtreeKey(pCsr, len, n, zData);
if( rc!=SQLITE_OK ){
sqliteFree(zData);
goto abort_due_to_error;
}
freeZData = 1;
len = 0;
}
pTos++;
sqlite3VdbeSerialGet(&zData[len], serial_type, pTos);
pTos->enc = db->enc;
if( freeZData ){
sqliteFree(zData);
}
break;
}
/* Opcode: FullKey P1 * *
**
** Extract the complete key from the record that cursor P1 is currently
@ -3592,21 +3427,15 @@ case OP_IdxPut: {
if( pOp->p2 ){
int res;
int len;
u64 n;
/* 'len' is the length of the key minus the rowid at the end */
len = nKey-2;
while( zKey[len] && --len );
len = nKey - sqlite3VdbeIdxRowidLen(nKey, zKey);
rc = sqlite3BtreeMoveto(pCrsr, zKey, len, &res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
while( res!=0 ){
while( res!=0 && !sqlite3BtreeEof(pCrsr) ){
int c;
sqlite3BtreeKeySize(pCrsr, &n);
if( n==nKey &&
sqlite3VdbeIdxKeyCompare(pC, len, zKey, &c)==SQLITE_OK
&& c==0
){
if( sqlite3VdbeIdxKeyCompare(pC, len, zKey, &c)==SQLITE_OK && c==0 ){
rc = SQLITE_CONSTRAINT;
if( pOp->p3 && pOp->p3[0] ){
sqlite3SetString(&p->zErrMsg, pOp->p3, (char*)0);
@ -3723,18 +3552,23 @@ case OP_IdxRecno: {
/* Opcode: IdxGT P1 P2 *
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to. Ignore the ROWID of the
** index entry. If the index entry is greater than the top of the stack
** The top of the stack is an index entry that omits the ROWID. Compare
** the top of stack against the index that P1 is currently pointing to.
** Ignore the ROWID on the P1 index.
**
** The top of the stack might have fewer columns that P1.
**
** If the P1 index entry is greater than the top of the stack
** then jump to P2. Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
*/
/* Opcode: IdxGE P1 P2 P3
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to. Ignore the ROWID of the
** index entry. If the index in the cursor is greater than or equal to
** the top of the stack
** The top of the stack is an index entry that omits the ROWID. Compare
** the top of stack against the index that P1 is currently pointing to.
** Ignore the ROWID on the P1 index.
**
** If the P1 index entry is greater than or equal to the top of the stack
** then jump to P2. Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
**
@ -3747,9 +3581,11 @@ case OP_IdxRecno: {
*/
/* Opcode: IdxLT P1 P2 P3
**
** Compare the top of the stack against the key on the index entry that
** cursor P1 is currently pointing to. Ignore the ROWID of the
** index entry. If the index entry is less than the top of the stack
** The top of the stack is an index entry that omits the ROWID. Compare
** the top of stack against the index that P1 is currently pointing to.
** Ignore the ROWID on the P1 index.
**
** If the P1 index entry is less than the top of the stack
** then jump to P2. Otherwise fall through to the next instruction.
** In either case, the stack is popped once.
**
@ -3770,6 +3606,7 @@ case OP_IdxGE: {
if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
int res, rc;
assert( pTos->flags & MEM_Blob ); /* Created using OP_Make*Key */
Stringify(pTos, db->enc);
assert( pC->deferredMoveto==0 );
*pC->pIncrKey = pOp->p3!=0;
@ -3806,19 +3643,19 @@ case OP_IdxIsNull: {
int i = pOp->p1;
int k, n;
const char *z;
u32 serial_type;
assert( pTos>=p->aStack );
assert( pTos->flags & MEM_Blob );
z = pTos->z;
n = pTos->n;
for(k=0; k<n && i>0; i--){
u32 serial_type;
k = sqlite3GetVarint32(z, &serial_type);
for(; k<n && i>0; i--){
k += sqlite3GetVarint32(&z[k], &serial_type);
if( serial_type==6 ){ /* Serial type 6 is a NULL */
pc = pOp->p2-1;
break;
}
k += sqlite3VdbeSerialTypeLen(serial_type);
}
Release(pTos);
pTos--;