Add new file rtreeA.test, to test that the r-tree extension doesn't crash if it encounters a corrupt or inconsistent database.

FossilOrigin-Name: 68a305fd5ac917317fee2ef6670ac389a120e502
This commit is contained in:
dan 2010-09-22 14:19:53 +00:00
parent 90b1b3a346
commit bd188afd4c
4 changed files with 308 additions and 52 deletions

View File

@ -13,6 +13,45 @@
** algorithms packaged as an SQLite virtual table module.
*/
/*
** Database Format of R-Tree Tables
** --------------------------------
**
** The data structure for a single virtual r-tree table is stored in three
** native SQLite tables declared as follows. In each case, the '%' character
** in the table name is replaced with the user-supplied name of the r-tree
** table.
**
** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER)
**
** The data for each node of the r-tree structure is stored in the %_node
** table. For each node that is not the root node of the r-tree, there is
** an entry in the %_parent table associating the node with its parent.
** And for each row of data in the table, there is an entry in the %_rowid
** table that maps from the entries rowid to the id of the node that it
** is stored on.
**
** The root node of an r-tree always exists, even if the r-tree table is
** empty. The nodeno of the root node is always 1. All other nodes in the
** table must be the same size as the root node. The content of each node
** is formatted as follows:
**
** 1. If the node is the root node (node 1), then the first 2 bytes
** of the node contain the tree depth as a big-endian integer.
** For non-root nodes, the first 2 bytes are left unused.
**
** 2. The next 2 bytes contain the number of entries currently
** stored in the node.
**
** 3. The remainder of the node contains the node entries. Each entry
** consists of a single 8-byte integer followed by an even number
** of 4-byte coordinates. For leaf nodes the integer is the rowid
** of a record. For internal nodes it is the node number of a
** child page.
*/
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)
/*
@ -150,6 +189,15 @@ struct Rtree {
#define RTREE_REINSERT(p) RTREE_MINCELLS(p)
#define RTREE_MAXCELLS 51
/*
** The smallest possible node-size is (512-64)==448 bytes. And the largest
** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
** Therefore all non-root nodes must contain at least 3 entries. Since
** 2^40 is greater than 2^64, an r-tree structure always has a depth of
** 40 or less.
*/
#define RTREE_MAX_DEPTH 40
/*
** An rtree cursor object.
*/
@ -199,21 +247,6 @@ struct RtreeConstraint {
/*
** An rtree structure node.
**
** Data format (RtreeNode.zData):
**
** 1. If the node is the root node (node 1), then the first 2 bytes
** of the node contain the tree depth as a big-endian integer.
** For non-root nodes, the first 2 bytes are left unused.
**
** 2. The next 2 bytes contain the number of entries currently
** stored in the node.
**
** 3. The remainder of the node contains the node entries. Each entry
** consists of a single 8-byte integer followed by an even number
** of 4-byte coordinates. For leaf nodes the integer is the rowid
** of a record. For internal nodes it is the node number of a
** child page.
*/
struct RtreeNode {
RtreeNode *pParent; /* Parent node */
@ -370,7 +403,6 @@ static int nodeHash(i64 iNode){
*/
static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
RtreeNode *p;
assert( iNode!=0 );
for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
return p;
}
@ -446,41 +478,61 @@ nodeAcquire(
return SQLITE_OK;
}
pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
if( !pNode ){
*ppNode = 0;
return SQLITE_NOMEM;
}
pNode->pParent = pParent;
pNode->zData = (u8 *)&pNode[1];
pNode->nRef = 1;
pNode->iNode = iNode;
pNode->isDirty = 0;
pNode->pNext = 0;
sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
rc = sqlite3_step(pRtree->pReadNode);
if( rc==SQLITE_ROW ){
const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
assert( sqlite3_column_bytes(pRtree->pReadNode, 0)==pRtree->iNodeSize );
memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
nodeReference(pParent);
}else{
sqlite3_free(pNode);
pNode = 0;
if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){
pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
if( !pNode ){
rc = SQLITE_NOMEM;
}else{
pNode->pParent = pParent;
pNode->zData = (u8 *)&pNode[1];
pNode->nRef = 1;
pNode->iNode = iNode;
pNode->isDirty = 0;
pNode->pNext = 0;
memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
nodeReference(pParent);
}
}
}
*ppNode = pNode;
rc = sqlite3_reset(pRtree->pReadNode);
/* If the root node was just loaded, set pRtree->iDepth to the height
** of the r-tree structure. A height of zero means all data is stored on
** the root node. A height of one means the children of the root node
** are the leaves, and so on. If the depth as specified on the root node
** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
*/
if( pNode && iNode==1 ){
pRtree->iDepth = readInt16(pNode->zData);
if( pRtree->iDepth>RTREE_MAX_DEPTH ){
rc = SQLITE_CORRUPT;
}
}
if( pNode!=0 ){
nodeHashInsert(pRtree, pNode);
}else if( rc==SQLITE_OK ){
rc = SQLITE_CORRUPT;
/* If no error has occurred so far, check if the "number of entries"
** field on the node is too large. If so, set the return code to
** SQLITE_CORRUPT.
*/
if( pNode && rc==SQLITE_OK ){
if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
rc = SQLITE_CORRUPT;
}
}
if( rc==SQLITE_OK ){
if( pNode!=0 ){
nodeHashInsert(pRtree, pNode);
}else{
rc = SQLITE_CORRUPT;
}
*ppNode = pNode;
}else{
sqlite3_free(pNode);
*ppNode = 0;
}
return rc;
@ -534,8 +586,7 @@ nodeInsertCell(
nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
nCell = NCELL(pNode);
assert(nCell<=nMaxCell);
assert( nCell<=nMaxCell );
if( nCell<nMaxCell ){
nodeOverwriteCell(pRtree, pNode, pCell, nCell);
writeInt16(&pNode->zData[2], nCell+1);
@ -2576,9 +2627,6 @@ static int rtreeUpdate(
rtreeReference(pRtree);
assert(nData>=1);
#if 0
assert(hashIsEmpty(pRtree));
#endif
/* If azData[0] is not an SQL NULL value, it is the rowid of a
** record to delete from the r-tree table. The following block does

207
ext/rtree/rtreeA.test Normal file
View File

@ -0,0 +1,207 @@
# 2010 September 22
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
# This file contains tests for the r-tree module. Specifically, it tests
# that corrupt or inconsistent databases do not cause crashes in the r-tree
# module.
#
if {![info exists testdir]} {
set testdir [file join [file dirname [info script]] .. .. test]
}
source $testdir/tester.tcl
ifcapable !rtree { finish_test ; return }
proc create_t1 {} {
db close
forcedelete test.db
sqlite3 db test.db
execsql {
CREATE VIRTUAL TABLE t1 USING rtree(id, x1, x2, y1, y2);
}
}
proc populate_t1 {} {
execsql BEGIN
for {set i 0} {$i < 500} {incr i} {
set x2 [expr $i+5]
set y2 [expr $i+5]
execsql { INSERT INTO t1 VALUES($i, $i, $x2, $i, $y2) }
}
execsql COMMIT
}
proc truncate_node {nodeno nTrunc} {
set blob [db one {SELECT data FROM t1_node WHERE nodeno=$nodeno}]
if {$nTrunc<0} {set nTrunc "end-$nTrunc"}
set blob [string range $blob 0 $nTrunc]
db eval { UPDATE t1_node SET data = $blob WHERE nodeno=$nodeno }
}
proc set_tree_depth {tbl {newvalue ""}} {
set blob [db one "SELECT data FROM ${tbl}_node WHERE nodeno=1"]
if {$newvalue == ""} {
binary scan $blob Su oldvalue
return $oldvalue
}
set blob [binary format Sua* $newvalue [string range $blob 2 end]]
db eval "UPDATE ${tbl}_node SET data = \$blob WHERE nodeno=1"
return [set_tree_depth $tbl]
}
proc set_entry_count {tbl nodeno {newvalue ""}} {
set blob [db one "SELECT data FROM ${tbl}_node WHERE nodeno=$nodeno"]
if {$newvalue == ""} {
binary scan [string range $blob 2 end] Su oldvalue
return $oldvalue
}
set blob [binary format a*Sua* \
[string range $blob 0 1] $newvalue [string range $blob 4 end]
]
db eval "UPDATE ${tbl}_node SET data = \$blob WHERE nodeno=$nodeno"
return [set_entry_count $tbl $nodeno]
}
proc do_corruption_tests {prefix args} {
set testarray [lindex $args end]
set errormsg {database disk image is malformed}
foreach {z value} [lrange $args 0 end-1] {
set n [string length $z]
if {$n>=2 && [string equal -length $n $z "-error"]} {
set errormsg $value
}
}
foreach {tn sql} $testarray {
do_catchsql_test $prefix.$tn $sql [list 1 $errormsg]
}
}
#-------------------------------------------------------------------------
# Test the libraries response if the %_node table is completely empty
# (i.e. the root node is missing), or has been removed from the database
# entirely.
#
create_t1
populate_t1
do_execsql_test rtreeA-1.0 {
DELETE FROM t1_node;
} {}
do_corruption_tests rtreeA-1.1 {
1 "SELECT * FROM t1"
2 "SELECT * FROM t1 WHERE rowid=5"
3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
4 "SELECT * FROM t1 WHERE x1<10 AND x2>12"
}
do_execsql_test rtreeA-1.2.0 { DROP TABLE t1_node } {}
do_corruption_tests rtreeA-1.2 -error "SQL logic error or missing database" {
1 "SELECT * FROM t1"
2 "SELECT * FROM t1 WHERE rowid=5"
3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
4 "SELECT * FROM t1 WHERE x1<10 AND x2>12"
}
#-------------------------------------------------------------------------
# Test the libraries response if some of the entries in the %_node table
# are the wrong size.
#
create_t1
populate_t1
do_test rtreeA-2.1.0 {
set nodes [db eval {select nodeno FROM t1_node}]
foreach {a b c} $nodes { truncate_node $c 200 }
} {}
do_corruption_tests rtreeA-2.1 {
1 "SELECT * FROM t1"
2 "SELECT * FROM t1 WHERE rowid=5"
3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
4 "SELECT * FROM t1 WHERE x1<10 AND x2>12"
}
create_t1
populate_t1
do_test rtreeA-2.2.0 { truncate_node 1 200 } {}
do_corruption_tests rtreeA-2.2 {
1 "SELECT * FROM t1"
2 "SELECT * FROM t1 WHERE rowid=5"
3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
4 "SELECT * FROM t1 WHERE x1<10 AND x2>12"
}
#-------------------------------------------------------------------------
# Set the "depth" of the tree stored on the root node incorrectly. Test
# that this does not cause any problems.
#
create_t1
populate_t1
do_test rtreeA-3.1.0.1 { set_tree_depth t1 } {1}
do_test rtreeA-3.1.0.2 { set_tree_depth t1 3 } {3}
do_corruption_tests rtreeA-3.1 {
1 "SELECT * FROM t1"
2 "SELECT * FROM t1 WHERE rowid=5"
3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
}
do_test rtreeA-3.2.0 { set_tree_depth t1 1000 } {1000}
do_corruption_tests rtreeA-3.2 {
1 "SELECT * FROM t1"
2 "SELECT * FROM t1 WHERE rowid=5"
3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
}
create_t1
populate_t1
do_test rtreeA-3.3.0 {
execsql { DELETE FROM t1 WHERE rowid = 0 }
set_tree_depth t1 65535
} {65535}
do_corruption_tests rtreeA-3.3 {
1 "SELECT * FROM t1"
2 "SELECT * FROM t1 WHERE rowid=5"
3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
}
#-------------------------------------------------------------------------
# Set the "number of entries" field on some nodes incorrectly.
#
create_t1
populate_t1
do_test rtreeA-4.1.0 {
set_entry_count t1 1 4000
} {4000}
breakpoint
do_corruption_tests rtreeA-4.1 {
1 "SELECT * FROM t1"
2 "SELECT * FROM t1 WHERE rowid=5"
3 "INSERT INTO t1 VALUES(1000, 1, 2, 3, 4)"
4 "SELECT * FROM t1 WHERE x1<10 AND x2>12"
}
#-------------------------------------------------------------------------
# Remove entries from the %_parent table and check that this does not
# cause a crash.
#
create_t1
populate_t1
do_execsql_test rtreeA-5.1.0 { DELETE FROM t1_parent } {}
do_corruption_tests rtreeA-5.1 {
1 "DELETE FROM t1 WHERE rowid = 5"
2 "DELETE FROM t1"
}
finish_test

View File

@ -1,5 +1,5 @@
C Add\snew\sfile\se_delete.test.
D 2010-09-21T19:00:46
C Add\snew\sfile\srtreeA.test,\sto\stest\sthat\sthe\sr-tree\sextension\sdoesn't\scrash\sif\sit\sencounters\sa\scorrupt\sor\sinconsistent\sdatabase.
D 2010-09-22T14:19:53
F Makefile.arm-wince-mingw32ce-gcc d6df77f1f48d690bd73162294bbba7f59507c72f
F Makefile.in c599a15d268b1db2aeadea19df2adc3bf2eb6bee
F Makefile.linux-gcc 91d710bdc4998cb015f39edf3cb314ec4f4d7e23
@ -79,7 +79,7 @@ F ext/icu/README.txt bf8461d8cdc6b8f514c080e4e10dc3b2bbdfefa9
F ext/icu/icu.c 850e9a36567bbcce6bd85a4b68243cad8e3c2de2
F ext/icu/sqliteicu.h 728867a802baa5a96de7495e9689a8e01715ef37
F ext/rtree/README 6315c0d73ebf0ec40dedb5aa0e942bc8b54e3761
F ext/rtree/rtree.c a1a1202ac87be4e17969f1b26ac1bd26a804205f
F ext/rtree/rtree.c 3733ff121035e83b598089d398293015c4102e6d
F ext/rtree/rtree.h 834dbcb82dc85b2481cde6a07cdadfddc99e9b9e
F ext/rtree/rtree1.test dbd4250ac0ad367a262eb9676f7e3080b0368206
F ext/rtree/rtree2.test acbb3a4ce0f4fbc2c304d2b4b784cfa161856bba
@ -90,6 +90,7 @@ F ext/rtree/rtree6.test 1ebe0d632a7501cc80ba5a225f028fd4f0fdda08
F ext/rtree/rtree7.test bcb647b42920b3b5d025846689147778485cc318
F ext/rtree/rtree8.test 9772e16da71e17e02bdebf0a5188590f289ab37d
F ext/rtree/rtree9.test df9843d1a9195249c8d3b4ea6aedda2d5c73e9c2
F ext/rtree/rtreeA.test 2c6c7742957a9970a625762fee625444412b0a89
F ext/rtree/rtree_perf.tcl 6c18c1f23cd48e0f948930c98dfdd37dfccb5195
F ext/rtree/rtree_util.tcl 06aab2ed5b826545bf215fff90ecb9255a8647ea
F ext/rtree/sqlite3rtree.h 1af0899c63a688e272d69d8e746f24e76f10a3f0
@ -862,7 +863,7 @@ F tool/speedtest2.tcl ee2149167303ba8e95af97873c575c3e0fab58ff
F tool/speedtest8.c 2902c46588c40b55661e471d7a86e4dd71a18224
F tool/speedtest8inst1.c 293327bc76823f473684d589a8160bde1f52c14e
F tool/vdbe-compress.tcl d70ea6d8a19e3571d7ab8c9b75cba86d1173ff0f
P 528f71e29c5422af778dbae2c1dce3b0ee289750
R d64850457ce5c89ffc8e7b8d8754b194
P 14e8659e576258b64d67cb3f1222f173089d5127
R f765e03b8b7edfbba31db768fa2c7c43
U dan
Z 698ce76efbb1df140642fe36b4a58abb
Z 161dee882fd7434c2ba579743fed4212

View File

@ -1 +1 @@
14e8659e576258b64d67cb3f1222f173089d5127
68a305fd5ac917317fee2ef6670ac389a120e502