Here is a completely new implementation of the mutex-free-pcache. This

one uses a common code base and automatically selects whether or not to 
use mutexes depending on compile-time and start-time options.

FossilOrigin-Name: d094a1bfb7569a52b637fe9ba5d3fa6ce5ea6d94
This commit is contained in:
drh 2011-01-17 21:32:24 +00:00
parent eee50ca5a7
commit 9f8cf9da27
3 changed files with 224 additions and 134 deletions

View File

@ -1,8 +1,8 @@
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
C Fix\sa\stypo\sin\sthe\sdocumentation\sfor\ssqlite3_stmt_readonly().
D 2011-01-17T18:30:10.560
C Here\sis\sa\scompletely\snew\simplementation\sof\sthe\smutex-free-pcache.\s\sThis\none\suses\sa\scommon\scode\sbase\sand\sautomatically\sselects\swhether\sor\snot\sto\s\nuse\smutexes\sdepending\son\scompile-time\sand\sstart-time\soptions.
D 2011-01-17T21:32:24.379
F Makefile.arm-wince-mingw32ce-gcc d6df77f1f48d690bd73162294bbba7f59507c72f
F Makefile.in de6498556d536ae60bb8bb10e8c1ba011448658c
F Makefile.linux-gcc 91d710bdc4998cb015f39edf3cb314ec4f4d7e23
@ -170,7 +170,7 @@ F src/pager.h 0ea59db2a33bc6c2c02cae34de33367e1effdf76
F src/parse.y 12b7ebd61ea54f0e1b1083ff69cc2c8ce9353d58
F src/pcache.c 09d38c44ab275db581f7a2f6ff8b9bc7f8c0faaa
F src/pcache.h c683390d50f856d4cd8e24342ae62027d1bb6050
F src/pcache1.c 306389ff1a9677fc93533c3100b728c43cc007c0
F src/pcache1.c 35f4d8d3e876708fa5b2174d32ce0b996470c88d
F src/pragma.c 8a6cd3c787f882fa44f6490d2411fc26839ce8f3
F src/prepare.c c8b877b80721d70b68053fd9ae30ec6d63eeeadc
F src/printf.c 37e8bfd4c5a04eae4960adbe776b0f1fc4cad674
@ -899,14 +899,18 @@ F tool/speedtest2.tcl ee2149167303ba8e95af97873c575c3e0fab58ff
F tool/speedtest8.c 2902c46588c40b55661e471d7a86e4dd71a18224
F tool/speedtest8inst1.c 293327bc76823f473684d589a8160bde1f52c14e
F tool/vdbe-compress.tcl d70ea6d8a19e3571d7ab8c9b75cba86d1173ff0f
P 053ce76deb356d31358454507ba94947142e20ca
R f54d561af253c3d1376dc02d1c240211
P 56417a3386fc84dd36bf1488e88149b1ac6a0d02
R 983645a96ff6d3f0292bd851bc48a03a
T *bgcolor * #a8d3c0
T *branch * mutex-free-pcache
T *sym-mutex-free-pcache *
T -sym-trunk *
U drh
Z 8c25e4062798f189ea989bddedbb0345
Z a140fb68339099588b73b5639a289144
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.6 (GNU/Linux)
iD8DBQFNNIq1oxKgR168RlERAhJIAJ41aqeYSwX6tnjlDZCSWspksdAFOACfbM7B
qyqhJCGIuNC0hRiUIh/Gvzw=
=CR8k
iD4DBQFNNLVroxKgR168RlERAujGAJiIbOhYAepMRCuh0ytKZr7hYPulAKCJCvYa
QRfjhT9WvrqQrKNgWqHNNA==
=eKGZ
-----END PGP SIGNATURE-----

View File

@ -1 +1 @@
56417a3386fc84dd36bf1488e88149b1ac6a0d02
d094a1bfb7569a52b637fe9ba5d3fa6ce5ea6d94

View File

@ -22,6 +22,37 @@
typedef struct PCache1 PCache1;
typedef struct PgHdr1 PgHdr1;
typedef struct PgFreeslot PgFreeslot;
typedef struct PGroup PGroup;
/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
** of one or more PCaches that are able to recycle each others unpinned
** pages when they are under memory pressure. A PGroup is an instance of
** the following object.
**
** This page cache implementation works in one of two modes:
**
** (1) Every PCache is the sole member of its own PGroup. There is
** one PGroup per PCache.
**
** (2) There is a single global PGroup that all PCaches are a member
** of.
**
** Mode 1 uses more memory (since PCache instances are not able to rob
** unused pages from other PCaches) but it also operates without a mutex,
** and is therefore often faster. Mode 2 requires a mutex in order to be
** threadsafe, but is able recycle pages more efficient.
**
** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
** PGroup which is the pcache1.grp global variable and its mutex is
** SQLITE_MUTEX_STATIC_LRU.
*/
struct PGroup {
sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
int nMaxPage; /* Sum of nMax for purgeable caches */
int nMinPage; /* Sum of nMin for purgeable caches */
int nCurrentPage; /* Number of purgeable pages allocated */
PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
};
/* Each page cache is an instance of the following object. Every
** open database file (including each in-memory database and each
@ -35,16 +66,16 @@ struct PCache1 {
/* Cache configuration parameters. Page size (szPage) and the purgeable
** flag (bPurgeable) are set when the cache is created. nMax may be
** modified at any time by a call to the pcache1CacheSize() method.
** The global mutex must be held when accessing nMax.
** The PGroup mutex must be held when accessing nMax.
*/
PGroup *pGroup; /* PGroup this cache belongs to */
int szPage; /* Size of allocated pages in bytes */
int bPurgeable; /* True if cache is purgeable */
unsigned int nMin; /* Minimum number of pages reserved */
unsigned int nMax; /* Configured "cache_size" value */
/* Hash table of all pages. The following variables may only be accessed
** when the accessor is holding the global mutex (see pcache1EnterMutex()
** and pcache1LeaveMutex()).
** when the accessor is holding the PGroup mutex.
*/
unsigned int nRecyclable; /* Number of pages in the LRU list */
unsigned int nPage; /* Total number of pages in apHash */
@ -80,21 +111,27 @@ struct PgFreeslot {
** Global data used by this cache.
*/
static SQLITE_WSD struct PCacheGlobal {
sqlite3_mutex *mutex; /* static mutex MUTEX_STATIC_LRU */
PGroup grp; /* The global PGroup for mode (2) */
int nMaxPage; /* Sum of nMaxPage for purgeable caches */
int nMinPage; /* Sum of nMinPage for purgeable caches */
int nCurrentPage; /* Number of purgeable pages allocated */
PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
/* Variables related to SQLITE_CONFIG_PAGECACHE settings. */
int szSlot; /* Size of each free slot */
int nSlot; /* The number of pcache slots */
int nFreeSlot; /* Number of unused pcache slots */
int nReserve; /* Try to keep nFreeSlot above this */
void *pStart, *pEnd; /* Bounds of pagecache malloc range */
PgFreeslot *pFree; /* Free page blocks */
int isInit; /* True if initialized */
/* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
** fixed at sqlite3_initialize() time and do not require mutex protection.
** The nFreeSlot and pFree values do require mutex protection.
*/
int isInit; /* True if initialized */
int szSlot; /* Size of each free slot */
int nSlot; /* The number of pcache slots */
int nReserve; /* Try to keep nFreeSlot above this */
void *pStart, *pEnd; /* Bounds of pagecache malloc range */
/* Above requires no mutex. Use mutex below for variable that follow. */
sqlite3_mutex *mutex; /* Mutex for accessing the following: */
int nFreeSlot; /* Number of unused pcache slots */
PgFreeslot *pFree; /* Free page blocks */
/* The following value requires a mutex to change. We skip the mutex on
** reading because (1) most platforms read a 32-bit integer atomically and
** (2) even if an incorrect value is read, no great harm is done since this
** is really just an optimization. */
int bUnderPressure; /* True if low on PAGECACHE memory */
} pcache1_g;
/*
@ -120,10 +157,10 @@ static SQLITE_WSD struct PCacheGlobal {
#define PAGE_TO_PGHDR1(c, p) (PgHdr1*)(((char*)p) + c->szPage)
/*
** Macros to enter and leave the global LRU mutex.
** Macros to enter and leave the PCache LRU mutex.
*/
#define pcache1EnterMutex() sqlite3_mutex_enter(pcache1.mutex)
#define pcache1LeaveMutex() sqlite3_mutex_leave(pcache1.mutex)
#define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
#define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
/******************************************************************************/
/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
@ -133,6 +170,9 @@ static SQLITE_WSD struct PCacheGlobal {
** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
** verb to sqlite3_config(). Parameter pBuf points to an allocation large
** enough to contain 'n' buffers of 'sz' bytes each.
**
** This routine is called from sqlite3_initialize() and so it is guaranteed
** to be serialized already. There is no need for further mutexing.
*/
void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
if( pcache1.isInit ){
@ -143,6 +183,7 @@ void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
pcache1.pStart = pBuf;
pcache1.pFree = 0;
pcache1.bUnderPressure = 0;
while( n-- ){
p = (PgFreeslot*)pBuf;
p->pNext = pcache1.pFree;
@ -158,29 +199,31 @@ void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
** such buffer exists or there is no space left in it, this function falls
** back to sqlite3Malloc().
**
** Multiple threads can run this routine at the same time. Global variables
** in pcache1 need to be protected via mutex.
*/
static void *pcache1Alloc(int nByte){
void *p;
assert( sqlite3_mutex_held(pcache1.mutex) );
void *p = 0;
assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
if( nByte<=pcache1.szSlot && pcache1.pFree ){
assert( pcache1.isInit );
if( nByte<=pcache1.szSlot ){
sqlite3_mutex_enter(pcache1.mutex);
p = (PgHdr1 *)pcache1.pFree;
pcache1.pFree = pcache1.pFree->pNext;
pcache1.nFreeSlot--;
assert( pcache1.nFreeSlot>=0 );
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
}else{
/* Allocate a new buffer using sqlite3Malloc. Before doing so, exit the
** global pcache mutex and unlock the pager-cache object pCache. This is
** so that if the attempt to allocate a new buffer causes the the
** configured soft-heap-limit to be breached, it will be possible to
** reclaim memory from this pager-cache.
if( p ){
pcache1.pFree = pcache1.pFree->pNext;
pcache1.nFreeSlot--;
pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
assert( pcache1.nFreeSlot>=0 );
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
}
sqlite3_mutex_leave(pcache1.mutex);
}
if( p==0 ){
/* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
** it from sqlite3Malloc instead.
*/
pcache1LeaveMutex();
p = sqlite3Malloc(nByte);
pcache1EnterMutex();
if( p ){
int sz = sqlite3MallocSize(p);
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
@ -194,16 +237,18 @@ static void *pcache1Alloc(int nByte){
** Free an allocated buffer obtained from pcache1Alloc().
*/
static void pcache1Free(void *p){
assert( sqlite3_mutex_held(pcache1.mutex) );
if( p==0 ) return;
if( p>=pcache1.pStart && p<pcache1.pEnd ){
PgFreeslot *pSlot;
sqlite3_mutex_enter(pcache1.mutex);
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
pSlot = (PgFreeslot*)p;
pSlot->pNext = pcache1.pFree;
pcache1.pFree = pSlot;
pcache1.nFreeSlot++;
pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
assert( pcache1.nFreeSlot<=pcache1.nSlot );
sqlite3_mutex_leave(pcache1.mutex);
}else{
int iSize;
assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
@ -219,7 +264,6 @@ static void pcache1Free(void *p){
** Return the size of a pcache allocation
*/
static int pcache1MemSize(void *p){
assert( sqlite3_mutex_held(pcache1.mutex) );
if( p>=pcache1.pStart && p<pcache1.pEnd ){
return pcache1.szSlot;
}else{
@ -243,7 +287,7 @@ static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
if( pPg ){
p = PAGE_TO_PGHDR1(pCache, pPg);
if( pCache->bPurgeable ){
pcache1.nCurrentPage++;
pCache->pGroup->nCurrentPage++;
}
}else{
p = 0;
@ -260,8 +304,9 @@ static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
*/
static void pcache1FreePage(PgHdr1 *p){
if( ALWAYS(p) ){
if( p->pCache->bPurgeable ){
pcache1.nCurrentPage--;
PCache1 *pCache = p->pCache;
if( pCache->bPurgeable ){
pCache->pGroup->nCurrentPage--;
}
pcache1Free(PGHDR1_TO_PAGE(p));
}
@ -273,20 +318,14 @@ static void pcache1FreePage(PgHdr1 *p){
** exists, this function falls back to sqlite3Malloc().
*/
void *sqlite3PageMalloc(int sz){
void *p;
pcache1EnterMutex();
p = pcache1Alloc(sz);
pcache1LeaveMutex();
return p;
return pcache1Alloc(sz);
}
/*
** Free an allocated buffer obtained from sqlite3PageMalloc().
*/
void sqlite3PageFree(void *p){
pcache1EnterMutex();
pcache1Free(p);
pcache1LeaveMutex();
}
@ -307,9 +346,8 @@ void sqlite3PageFree(void *p){
** the heap even further.
*/
static int pcache1UnderMemoryPressure(PCache1 *pCache){
assert( sqlite3_mutex_held(pcache1.mutex) );
if( pcache1.nSlot && pCache->szPage<=pcache1.szSlot ){
return pcache1.nFreeSlot<pcache1.nReserve;
return pcache1.bUnderPressure;
}else{
return sqlite3HeapNearlyFull();
}
@ -322,25 +360,25 @@ static int pcache1UnderMemoryPressure(PCache1 *pCache){
** This function is used to resize the hash table used by the cache passed
** as the first argument.
**
** The global mutex must be held when this function is called.
** The PCache mutex must be held when this function is called.
*/
static int pcache1ResizeHash(PCache1 *p){
PgHdr1 **apNew;
unsigned int nNew;
unsigned int i;
assert( sqlite3_mutex_held(pcache1.mutex) );
assert( sqlite3_mutex_held(p->pGroup->mutex) );
nNew = p->nHash*2;
if( nNew<256 ){
nNew = 256;
}
pcache1LeaveMutex();
pcache1LeaveMutex(p->pGroup);
if( p->nHash ){ sqlite3BeginBenignMalloc(); }
apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew);
if( p->nHash ){ sqlite3EndBenignMalloc(); }
pcache1EnterMutex();
pcache1EnterMutex(p->pGroup);
if( apNew ){
memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
for(i=0; i<p->nHash; i++){
@ -363,25 +401,33 @@ static int pcache1ResizeHash(PCache1 *p){
/*
** This function is used internally to remove the page pPage from the
** global LRU list, if is part of it. If pPage is not part of the global
** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
** LRU list, then this function is a no-op.
**
** The global mutex must be held when this function is called.
** The PGroup mutex must be held when this function is called.
**
** If pPage is NULL then this routine is a no-op.
*/
static void pcache1PinPage(PgHdr1 *pPage){
assert( sqlite3_mutex_held(pcache1.mutex) );
if( pPage && (pPage->pLruNext || pPage==pcache1.pLruTail) ){
PCache1 *pCache;
PGroup *pGroup;
if( pPage==0 ) return;
pCache = pPage->pCache;
pGroup = pCache->pGroup;
assert( sqlite3_mutex_held(pGroup->mutex) );
if( pPage->pLruNext || pPage==pGroup->pLruTail ){
if( pPage->pLruPrev ){
pPage->pLruPrev->pLruNext = pPage->pLruNext;
}
if( pPage->pLruNext ){
pPage->pLruNext->pLruPrev = pPage->pLruPrev;
}
if( pcache1.pLruHead==pPage ){
pcache1.pLruHead = pPage->pLruNext;
if( pGroup->pLruHead==pPage ){
pGroup->pLruHead = pPage->pLruNext;
}
if( pcache1.pLruTail==pPage ){
pcache1.pLruTail = pPage->pLruPrev;
if( pGroup->pLruTail==pPage ){
pGroup->pLruTail = pPage->pLruPrev;
}
pPage->pLruNext = 0;
pPage->pLruPrev = 0;
@ -394,13 +440,14 @@ static void pcache1PinPage(PgHdr1 *pPage){
** Remove the page supplied as an argument from the hash table
** (PCache1.apHash structure) that it is currently stored in.
**
** The global mutex must be held when this function is called.
** The PGroup mutex must be held when this function is called.
*/
static void pcache1RemoveFromHash(PgHdr1 *pPage){
unsigned int h;
PCache1 *pCache = pPage->pCache;
PgHdr1 **pp;
assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
h = pPage->iKey % pCache->nHash;
for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
*pp = (*pp)->pNext;
@ -409,13 +456,14 @@ static void pcache1RemoveFromHash(PgHdr1 *pPage){
}
/*
** If there are currently more than pcache.nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to pcache.nMaxPage.
** If there are currently more than nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to nMaxPage.
*/
static void pcache1EnforceMaxPage(void){
assert( sqlite3_mutex_held(pcache1.mutex) );
while( pcache1.nCurrentPage>pcache1.nMaxPage && pcache1.pLruTail ){
PgHdr1 *p = pcache1.pLruTail;
static void pcache1EnforceMaxPage(PGroup *pGroup){
assert( sqlite3_mutex_held(pGroup->mutex) );
while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
PgHdr1 *p = pGroup->pLruTail;
assert( p->pCache->pGroup==pGroup );
pcache1PinPage(p);
pcache1RemoveFromHash(p);
pcache1FreePage(p);
@ -427,15 +475,15 @@ static void pcache1EnforceMaxPage(void){
** greater than or equal to iLimit. Any pinned pages that meet this
** criteria are unpinned before they are discarded.
**
** The global mutex must be held when this function is called.
** The PCache mutex must be held when this function is called.
*/
static void pcache1TruncateUnsafe(
PCache1 *pCache,
unsigned int iLimit
PCache1 *pCache, /* The cache to truncate */
unsigned int iLimit /* Drop pages with this pgno or larger */
){
TESTONLY( unsigned int nPage = 0; ) /* Used to assert pCache->nPage is correct */
TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */
unsigned int h;
assert( sqlite3_mutex_held(pcache1.mutex) );
assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
for(h=0; h<pCache->nHash; h++){
PgHdr1 **pp = &pCache->apHash[h];
PgHdr1 *pPage;
@ -465,7 +513,8 @@ static int pcache1Init(void *NotUsed){
assert( pcache1.isInit==0 );
memset(&pcache1, 0, sizeof(pcache1));
if( sqlite3GlobalConfig.bCoreMutex ){
pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
}
pcache1.isInit = 1;
return SQLITE_OK;
@ -488,18 +537,45 @@ static void pcache1Shutdown(void *NotUsed){
** Allocate a new cache.
*/
static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){
PCache1 *pCache;
PCache1 *pCache; /* The newly created page cache */
PGroup *pGroup; /* The group the new page cache will belong to */
int sz; /* Bytes of memory required to allocate the new cache */
pCache = (PCache1 *)sqlite3_malloc(sizeof(PCache1));
/*
** The seperateCache variable is true if each PCache has its own private
** PGroup. In other words, separateCache is true for mode (1) where no
** mutexing is required.
**
** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
**
** * Always use a unified cache in single-threaded applications
**
** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
** use separate caches (mode-1)
*/
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
const int separateCache = 0;
#else
int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
#endif
sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
pCache = (PCache1 *)sqlite3_malloc(sz);
if( pCache ){
memset(pCache, 0, sizeof(PCache1));
memset(pCache, 0, sz);
if( separateCache ){
pGroup = (PGroup*)&pCache[1];
}else{
pGroup = &pcache1_g.grp;
}
pCache->pGroup = pGroup;
pCache->szPage = szPage;
pCache->bPurgeable = (bPurgeable ? 1 : 0);
if( bPurgeable ){
pCache->nMin = 10;
pcache1EnterMutex();
pcache1.nMinPage += pCache->nMin;
pcache1LeaveMutex();
pcache1EnterMutex(pGroup);
pGroup->nMinPage += pCache->nMin;
pcache1LeaveMutex(pGroup);
}
}
return (sqlite3_pcache *)pCache;
@ -513,11 +589,12 @@ static sqlite3_pcache *pcache1Create(int szPage, int bPurgeable){
static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
PCache1 *pCache = (PCache1 *)p;
if( pCache->bPurgeable ){
pcache1EnterMutex();
pcache1.nMaxPage += (nMax - pCache->nMax);
PGroup *pGroup = pCache->pGroup;
pcache1EnterMutex(pGroup);
pGroup->nMaxPage += (nMax - pCache->nMax);
pCache->nMax = nMax;
pcache1EnforceMaxPage();
pcache1LeaveMutex();
pcache1EnforceMaxPage(pGroup);
pcache1LeaveMutex(pGroup);
}
}
@ -526,9 +603,10 @@ static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
*/
static int pcache1Pagecount(sqlite3_pcache *p){
int n;
pcache1EnterMutex();
n = ((PCache1 *)p)->nPage;
pcache1LeaveMutex();
PCache1 *pCache = (PCache1*)p;
pcache1EnterMutex(pCache->pGroup);
n = pCache->nPage;
pcache1LeaveMutex(pCache->pGroup);
return n;
}
@ -589,10 +667,11 @@ static int pcache1Pagecount(sqlite3_pcache *p){
static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
unsigned int nPinned;
PCache1 *pCache = (PCache1 *)p;
PGroup *pGroup = pCache->pGroup;
PgHdr1 *pPage = 0;
assert( pCache->bPurgeable || createFlag!=1 );
pcache1EnterMutex();
pcache1EnterMutex(pGroup);
if( createFlag==1 ) sqlite3BeginBenignMalloc();
/* Search the hash table for an existing entry. */
@ -609,7 +688,7 @@ static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
/* Step 3 of header comment. */
nPinned = pCache->nPage - pCache->nRecyclable;
if( createFlag==1 && (
nPinned>=(pcache1.nMaxPage+pCache->nMin-pcache1.nMinPage)
nPinned>=(pGroup->nMaxPage+pCache->nMin-pGroup->nMinPage)
|| nPinned>=(pCache->nMax * 9 / 10)
|| pcache1UnderMemoryPressure(pCache)
)){
@ -621,19 +700,20 @@ static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
}
/* Step 4. Try to recycle a page buffer if appropriate. */
if( pCache->bPurgeable && pcache1.pLruTail && (
if( pCache->bPurgeable && pGroup->pLruTail && (
(pCache->nPage+1>=pCache->nMax)
|| pcache1.nCurrentPage>=pcache1.nMaxPage
|| pGroup->nCurrentPage>=pGroup->nMaxPage
|| pcache1UnderMemoryPressure(pCache)
)){
pPage = pcache1.pLruTail;
pPage = pGroup->pLruTail;
pcache1RemoveFromHash(pPage);
pcache1PinPage(pPage);
if( pPage->pCache->szPage!=pCache->szPage ){
pcache1FreePage(pPage);
pPage = 0;
}else{
pcache1.nCurrentPage -= (pPage->pCache->bPurgeable - pCache->bPurgeable);
pGroup->nCurrentPage -=
(pPage->pCache->bPurgeable - pCache->bPurgeable);
}
}
@ -641,7 +721,9 @@ static void *pcache1Fetch(sqlite3_pcache *p, unsigned int iKey, int createFlag){
** attempt to allocate a new one.
*/
if( !pPage ){
pcache1LeaveMutex(pGroup);
pPage = pcache1AllocPage(pCache);
pcache1EnterMutex(pGroup);
}
if( pPage ){
@ -661,7 +743,7 @@ fetch_out:
pCache->iMaxKey = iKey;
}
if( createFlag==1 ) sqlite3EndBenignMalloc();
pcache1LeaveMutex();
pcache1LeaveMutex(pGroup);
return (pPage ? PGHDR1_TO_PAGE(pPage) : 0);
}
@ -674,33 +756,34 @@ fetch_out:
static void pcache1Unpin(sqlite3_pcache *p, void *pPg, int reuseUnlikely){
PCache1 *pCache = (PCache1 *)p;
PgHdr1 *pPage = PAGE_TO_PGHDR1(pCache, pPg);
PGroup *pGroup = pCache->pGroup;
assert( pPage->pCache==pCache );
pcache1EnterMutex();
pcache1EnterMutex(pGroup);
/* It is an error to call this function if the page is already
** part of the global LRU list.
** part of the PGroup LRU list.
*/
assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
assert( pcache1.pLruHead!=pPage && pcache1.pLruTail!=pPage );
assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
if( reuseUnlikely || pcache1.nCurrentPage>pcache1.nMaxPage ){
if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
pcache1RemoveFromHash(pPage);
pcache1FreePage(pPage);
}else{
/* Add the page to the global LRU list. */
if( pcache1.pLruHead ){
pcache1.pLruHead->pLruPrev = pPage;
pPage->pLruNext = pcache1.pLruHead;
pcache1.pLruHead = pPage;
/* Add the page to the PGroup LRU list. */
if( pGroup->pLruHead ){
pGroup->pLruHead->pLruPrev = pPage;
pPage->pLruNext = pGroup->pLruHead;
pGroup->pLruHead = pPage;
}else{
pcache1.pLruTail = pPage;
pcache1.pLruHead = pPage;
pGroup->pLruTail = pPage;
pGroup->pLruHead = pPage;
}
pCache->nRecyclable++;
}
pcache1LeaveMutex();
pcache1LeaveMutex(pCache->pGroup);
}
/*
@ -719,7 +802,7 @@ static void pcache1Rekey(
assert( pPage->iKey==iOld );
assert( pPage->pCache==pCache );
pcache1EnterMutex();
pcache1EnterMutex(pCache->pGroup);
h = iOld%pCache->nHash;
pp = &pCache->apHash[h];
@ -736,7 +819,7 @@ static void pcache1Rekey(
pCache->iMaxKey = iNew;
}
pcache1LeaveMutex();
pcache1LeaveMutex(pCache->pGroup);
}
/*
@ -748,12 +831,12 @@ static void pcache1Rekey(
*/
static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
PCache1 *pCache = (PCache1 *)p;
pcache1EnterMutex();
pcache1EnterMutex(pCache->pGroup);
if( iLimit<=pCache->iMaxKey ){
pcache1TruncateUnsafe(pCache, iLimit);
pCache->iMaxKey = iLimit-1;
}
pcache1LeaveMutex();
pcache1LeaveMutex(pCache->pGroup);
}
/*
@ -763,13 +846,14 @@ static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
*/
static void pcache1Destroy(sqlite3_pcache *p){
PCache1 *pCache = (PCache1 *)p;
PGroup *pGroup = pCache->pGroup;
assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
pcache1EnterMutex();
pcache1EnterMutex(pGroup);
pcache1TruncateUnsafe(pCache, 0);
pcache1.nMaxPage -= pCache->nMax;
pcache1.nMinPage -= pCache->nMin;
pcache1EnforceMaxPage();
pcache1LeaveMutex();
pGroup->nMaxPage -= pCache->nMax;
pGroup->nMinPage -= pCache->nMin;
pcache1EnforceMaxPage(pGroup);
pcache1LeaveMutex(pGroup);
sqlite3_free(pCache->apHash);
sqlite3_free(pCache);
}
@ -808,16 +892,18 @@ void sqlite3PCacheSetDefault(void){
*/
int sqlite3PcacheReleaseMemory(int nReq){
int nFree = 0;
assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
assert( sqlite3_mutex_notheld(pcache1.mutex) );
if( pcache1.pStart==0 ){
PgHdr1 *p;
pcache1EnterMutex();
while( (nReq<0 || nFree<nReq) && ((p=pcache1.pLruTail)!=0) ){
pcache1EnterMutex(&pcache1.grp);
while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
nFree += pcache1MemSize(PGHDR1_TO_PAGE(p));
pcache1PinPage(p);
pcache1RemoveFromHash(p);
pcache1FreePage(p);
}
pcache1LeaveMutex();
pcache1LeaveMutex(&pcache1.grp);
}
return nFree;
}
@ -836,12 +922,12 @@ void sqlite3PcacheStats(
){
PgHdr1 *p;
int nRecyclable = 0;
for(p=pcache1.pLruHead; p; p=p->pLruNext){
for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
nRecyclable++;
}
*pnCurrent = pcache1.nCurrentPage;
*pnMax = pcache1.nMaxPage;
*pnMin = pcache1.nMinPage;
*pnCurrent = pcache1.grp.nCurrentPage;
*pnMax = pcache1.grp.nMaxPage;
*pnMin = pcache1.grp.nMinPage;
*pnRecyclable = nRecyclable;
}
#endif