Added an experimental malloc-free memory allocation subsystem, intended

for use on embedded systems.  Runs 7% faster than when using system
malloc() on Linux. (CVS 4493)

FossilOrigin-Name: 8487ca82fade60b9fa63abf74e10f6ebcb48b98e
This commit is contained in:
drh 2007-10-19 17:47:24 +00:00
parent f1bfe9a8bd
commit 9c7a60dfb2
10 changed files with 787 additions and 35 deletions

View File

@ -123,7 +123,7 @@ TCC += -DSQLITE_OMIT_LOAD_EXTENSION=1
LIBOBJ = alter.lo analyze.lo attach.lo auth.lo btmutex.lo btree.lo build.lo \
callback.lo complete.lo date.lo \
delete.lo expr.lo func.lo hash.lo journal.lo insert.lo loadext.lo \
main.lo malloc.lo mem1.lo mem2.lo mutex.lo \
main.lo malloc.lo mem1.lo mem2.lo mem3.lo mutex.lo \
mutex_os2.lo mutex_unix.lo mutex_w32.lo \
opcodes.lo os.lo os_unix.lo os_win.lo os_os2.lo \
pager.lo parse.lo pragma.lo prepare.lo printf.lo random.lo \
@ -159,6 +159,7 @@ SRC = \
$(TOP)/src/malloc.c \
$(TOP)/src/mem1.c \
$(TOP)/src/mem2.c \
$(TOP)/src/mem3.c \
$(TOP)/src/mutex.c \
$(TOP)/src/mutex_os2.c \
$(TOP)/src/mutex_unix.c \
@ -411,6 +412,9 @@ mem1.lo: $(TOP)/src/mem1.c $(HDR)
mem2.lo: $(TOP)/src/mem2.c $(HDR)
$(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/mem2.c
mem3.lo: $(TOP)/src/mem3.c $(HDR)
$(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/mem3.c
mutex.lo: $(TOP)/src/mutex.c $(HDR)
$(LTCOMPILE) $(TEMP_STORE) -c $(TOP)/src/mutex.c

View File

@ -51,7 +51,7 @@ TCCX = $(TCC) $(OPTS) -I. -I$(TOP)/src
LIBOBJ+= alter.o analyze.o attach.o auth.o btmutex.o btree.o build.o \
callback.o complete.o date.o delete.o \
expr.o func.o hash.o insert.o journal.o loadext.o \
main.o malloc.o mem1.o mem2.o mutex.o mutex_os2.o \
main.o malloc.o mem1.o mem2.o mem3.o mutex.o mutex_os2.o \
mutex_unix.o mutex_w32.o \
opcodes.o os.o os_os2.o os_unix.o os_win.o \
pager.o parse.o pragma.o prepare.o printf.o random.o \
@ -106,6 +106,7 @@ SRC = \
$(TOP)/src/malloc.c \
$(TOP)/src/mem1.c \
$(TOP)/src/mem2.c \
$(TOP)/src/mem3.c \
$(TOP)/src/mutex.c \
$(TOP)/src/mutex.h \
$(TOP)/src/mutex_os2.c \

View File

@ -1,6 +1,6 @@
C Reorder\ssome\stests\sat\sthe\sbeginning\sof\ssqlite3_step()\sto\swork\saround\nmisuse\sby\spython.\s\sTicket\s#2732.\s(CVS\s4492)
D 2007-10-17T01:44:21
F Makefile.in 75b729d562e9525d57d9890ec598b38e1a8b02bc
C Added\san\sexperimental\smalloc-free\smemory\sallocation\ssubsystem,\sintended\nfor\suse\son\sembedded\ssystems.\s\sRuns\s7%\sfaster\sthan\swhen\susing\ssystem\nmalloc()\son\sLinux.\s(CVS\s4493)
D 2007-10-19T17:47:25
F Makefile.in 30c7e3ba426ddb253b8ef037d1873425da6009a8
F Makefile.linux-gcc 65241babba6faf1152bf86574477baab19190499
F README 9c4e2d6706bdcc3efdd773ce752a8cdab4f90028
F VERSION 873b19f713b5e7481dd12648f2fa3178058dee00
@ -63,7 +63,7 @@ F ext/icu/README.txt 3b130aa66e7a681136f6add198b076a2f90d1e33
F ext/icu/icu.c 61a345d8126686aa3487aa8d2d0f68abd655f7a4
F install-sh 9d4de14ab9fb0facae2f48780b874848cbf2f895
F ltmain.sh 56abb507100ed2d4261f6dd1653dec3cf4066387
F main.mk b260a68e26e9553afe8568bbf5554443858e7c49
F main.mk 53f2973d5a5bf78bedabf6a881ea594ee4730975
F mkdll.sh 37fa8a7412e51b5ab2bc6d4276135f022a0feffb
F mkextu.sh 416f9b7089d80e5590a29692c9d9280a10dbad9f
F mkextw.sh 1a866b53637dab137191341cc875575a5ca110fb
@ -102,8 +102,9 @@ F src/loadext.c 124e566563d1c03e68e1396cb44df9870612c6e9
F src/main.c 994a6b6914d91dc6dea5012667ec0a52e74d3bca
F src/malloc.c de4e77fe70a9a0ac47a1c3a874422b107231bf31
F src/md5.c c5fdfa5c2593eaee2e32a5ce6c6927c986eaf217
F src/mem1.c 232075b7da8c9b7f23159bbda25c7407168ab9db
F src/mem2.c 8651e5306c1d5c0a7ab91c027a653ced1ca3e6d6
F src/mem1.c cacb202bc379da10d69aa66d497c0ea7bd9cd8a5
F src/mem2.c 3f669b5e20975a5a2ca392aca891cd686e22b097
F src/mem3.c 6c3cc2d3894acdc2eef5d65960a3bd4c8ba3aed7
F src/mutex.c 3259f62c2429967aee6dc112117a6d2f499ef061
F src/mutex.h 079fa6fe9da18ceb89e79012c010594c6672addb
F src/mutex_os2.c 7fe4773e98ed74a63b2e54fc557929eb155f6269
@ -148,10 +149,10 @@ F src/test9.c b46c8fe02ac7cca1a7316436d8d38d50c66f4b2f
F src/test_async.c c5ea222c2bb0c3c33ab910d1b82622655dd50684
F src/test_autoext.c 855157d97aa28cf84233847548bfacda21807436
F src/test_btree.c c1308ba0b88ab577fa56c9e493a09829dfcded9c
F src/test_config.c 6fb459214b27952b143f45e35200d94096d54cc6
F src/test_hexio.c 94a1efec4b19311eb7c4dc40e8496a3d8eadf18a
F src/test_config.c fd6ba4c62dd943e794f00f6ea1e9e32d97bf27f1
F src/test_hexio.c 1a1cd8324d57585ea86b922f609fa1fbaaf9662d
F src/test_loadext.c 22065d601a18878e5542191001f0eaa5d77c0ed8
F src/test_malloc.c c34e7696dc4a5150c82452be28b87c7e38ba15ad
F src/test_malloc.c 72ceed192f7b229db34a2869ff9285b41a5cb796
F src/test_md5.c 34599caee5b1c73dcf86ca31f55846fab8c19ef7
F src/test_onefile.c d877baba46837587345933376c00c656f58d6fb6
F src/test_schema.c 12c9de7661d6294eec2d57afbb52e2af1128084f
@ -581,7 +582,7 @@ F www/tclsqlite.tcl 8be95ee6dba05eabcd27a9d91331c803f2ce2130
F www/vdbe.tcl 87a31ace769f20d3627a64fa1fade7fed47b90d0
F www/version3.tcl 890248cf7b70e60c383b0e84d77d5132b3ead42b
F www/whentouse.tcl fc46eae081251c3c181bd79c5faef8195d7991a5
P 329dd014b0d851f21ff6690b6149e9d73c92302d
R bf9fb86ed107ca6e77e9b8d6a0ec33f6
P e8d591e8c369794921a4acbba5b17fddca730ee7
R 57568b40e30acc759ef65998fb849eb6
U drh
Z 091afaa93f86f18bd96775701cef18ed
Z ffa57053e998becc58e159cdcfc3c99d

View File

@ -1 +1 @@
e8d591e8c369794921a4acbba5b17fddca730ee7
8487ca82fade60b9fa63abf74e10f6ebcb48b98e

View File

@ -12,7 +12,7 @@
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
** $Id: mem1.c,v 1.11 2007/10/06 01:40:35 drh Exp $
** $Id: mem1.c,v 1.12 2007/10/19 17:47:25 drh Exp $
*/
/*
@ -20,7 +20,8 @@
** used when no other memory allocator is specified using compile-time
** macros.
*/
#if !defined(SQLITE_MEMDEBUG) && !defined(SQLITE_OMIT_MEMORY_ALLOCATION)
#if !defined(SQLITE_MEMDEBUG) && !defined(SQLITE_OMIT_MEMORY_ALLOCATION) \
&& !defined(SQLITE_MEMORY_SIZE)
/*
** We will eventually construct multiple memory allocation subsystems

View File

@ -12,7 +12,7 @@
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
** $Id: mem2.c,v 1.15 2007/10/15 19:34:32 drh Exp $
** $Id: mem2.c,v 1.16 2007/10/19 17:47:25 drh Exp $
*/
/*
@ -20,7 +20,8 @@
** SQLITE_MEMDEBUG macro is defined and SQLITE_OMIT_MEMORY_ALLOCATION
** is not defined.
*/
#if defined(SQLITE_MEMDEBUG) && !defined(SQLITE_OMIT_MEMORY_ALLOCATION)
#if defined(SQLITE_MEMDEBUG) && !defined(SQLITE_OMIT_MEMORY_ALLOCATION) \
&& !defined(SQLITE_MEMORY_SIZE)
/*
** We will eventually construct multiple memory allocation subsystems
@ -87,7 +88,7 @@ struct MemBlockHdr {
/*
** Number of malloc size increments to track.
*/
#define NCSIZE 500
#define NCSIZE 1000
/*
** All of the static variables used by this module are collected
@ -156,9 +157,9 @@ static struct {
/*
** Gather statistics on the sizes of memory allocations.
** sizeCnt[i] is the number of allocation attempts of i*4
** sizeCnt[i] is the number of allocation attempts of i*8
** bytes. i==NCSIZE is the number of allocation attempts for
** sizes more than NCSIZE*4 bytes.
** sizes more than NCSIZE*8 bytes.
*/
int sizeCnt[NCSIZE];

636
src/mem3.c Normal file
View File

@ -0,0 +1,636 @@
/*
** 2007 October 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
** This version of the memory allocation subsystem omits all
** use of malloc(). All dynamically allocatable memory is
** contained in a static array, mem.aPool[]. The size of this
** fixed memory pool is SQLITE_MEMORY_SIZE bytes.
**
** This version of the memory allocation subsystem is used if
** and only if SQLITE_MEMORY_SIZE is defined.
**
** $Id: mem3.c,v 1.1 2007/10/19 17:47:25 drh Exp $
*/
/*
** This version of the memory allocator is used only when
** SQLITE_MEMORY_SIZE is defined.
*/
#if defined(SQLITE_MEMORY_SIZE)
#include "sqliteInt.h"
/*
** Maximum size (in Mem3Blocks) of a "small" chunk.
*/
#define MX_SMALL 10
/*
** Number of freelist hash slots
*/
#define N_HASH 61
/*
** A memory allocation (also called a "chunk") consists of two or
** more blocks where each block is 8 bytes. The first 8 bytes are
** a header that is not returned to the user.
**
** A chunk is two or more blocks that is either checked out or
** free. The first block has format u.hdr. u.hdr.size is the
** size of the allocation in blocks if the allocation is free.
** If the allocation is checked out, u.hdr.size is the negative
** of the size. Similarly, u.hdr.prevSize is the size of the
** immediately previous allocation.
**
** We often identify a chunk by its index in mem.aPool[]. When
** this is done, the chunk index refers to the second block of
** the chunk. In this way, the first chunk has an index of 1.
** A chunk index of 0 means "no such chunk" and is the equivalent
** of a NULL pointer.
**
** The second block of free chunks is of the form u.list. The
** two fields form a double-linked list of chunks of related sizes.
** Pointers to the head of the list are stored in mem.aiSmall[]
** for smaller chunks and mem.aiHash[] for larger chunks.
**
** The second block of a chunk is user data if the chunk is checked
** out.
*/
typedef struct Mem3Block Mem3Block;
struct Mem3Block {
union {
struct {
int prevSize; /* Size of previous chunk in Mem3Block elements */
int size; /* Size of current chunk in Mem3Block elements */
} hdr;
struct {
int next; /* Index in mem.aPool[] of next free chunk */
int prev; /* Index in mem.aPool[] of previous free chunk */
} list;
} u;
};
/*
** All of the static variables used by this module are collected
** into a single structure named "mem". This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct {
/*
** The alarm callback and its arguments. The mem.mutex lock will
** be held while the callback is running. Recursive calls into
** the memory subsystem are allowed, but no new callbacks will be
** issued. The alarmBusy variable is set to prevent recursive
** callbacks.
*/
sqlite3_int64 alarmThreshold;
void (*alarmCallback)(void*, sqlite3_int64,int);
void *alarmArg;
int alarmBusy;
/*
** Mutex to control access to the memory allocation subsystem.
*/
sqlite3_mutex *mutex;
/*
** Current allocation and high-water mark.
*/
sqlite3_int64 nowUsed;
sqlite3_int64 mxUsed;
/*
** iMaster is the index of the master chunk. Most new allocations
** occur off of this chunk. szMaster is the size (in Mem3Blocks)
** of the current master. iMaster is 0 if there is not master chunk.
** The master chunk is not in either the aiHash[] or aiSmall[].
*/
int iMaster;
int szMaster;
/*
** Array of lists of free blocks according to the block size
** for smaller chunks, or a hash on the block size for larger
** chunks.
*/
int aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
int aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
/*
** Memory available for allocation
*/
Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2];
} mem;
/*
** Unlink the chunk at mem.aPool[i] from list it is currently
** on. *pRoot is the list that i is a member of.
*/
static void unlinkChunkFromList(int i, int *pRoot){
int next = mem.aPool[i].u.list.next;
int prev = mem.aPool[i].u.list.prev;
if( prev==0 ){
*pRoot = next;
}else{
mem.aPool[prev].u.list.next = next;
}
if( next ){
mem.aPool[next].u.list.prev = prev;
}
mem.aPool[i].u.list.next = 0;
mem.aPool[i].u.list.prev = 0;
}
/*
** Unlink the chunk at index i from
** whatever list is currently a member of.
*/
static void unlinkChunk(int i){
int size, hash;
size = mem.aPool[i-1].u.hdr.size;
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
assert( size>=2 );
if( size <= MX_SMALL ){
unlinkChunkFromList(i, &mem.aiSmall[size-2]);
}else{
hash = size % N_HASH;
unlinkChunkFromList(i, &mem.aiHash[hash]);
}
}
/*
** Link the chunk at mem.aPool[i] so that is on the list rooted
** at *pRoot.
*/
static void linkChunkIntoList(int i, int *pRoot){
mem.aPool[i].u.list.next = *pRoot;
mem.aPool[i].u.list.prev = 0;
if( *pRoot ){
mem.aPool[*pRoot].u.list.prev = i;
}
*pRoot = i;
}
/*
** Link the chunk at index i into either the appropriate
** small chunk list, or into the large chunk hash table.
*/
static void linkChunk(int i){
int size, hash;
size = mem.aPool[i-1].u.hdr.size;
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
assert( size>=2 );
if( size <= MX_SMALL ){
linkChunkIntoList(i, &mem.aiSmall[size-2]);
}else{
hash = size % N_HASH;
linkChunkIntoList(i, &mem.aiHash[hash]);
}
}
/*
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
**
** Also: Initialize the memory allocation subsystem the first time
** this routine is called.
*/
static void enterMem(void){
if( mem.mutex==0 ){
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
mem.aPool[0].u.hdr.size = SQLITE_MEMORY_SIZE/8;
mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_MEMORY_SIZE/8;
mem.iMaster = 1;
mem.szMaster = SQLITE_MEMORY_SIZE/8;
}
sqlite3_mutex_enter(mem.mutex);
}
/*
** Return the amount of memory currently checked out.
*/
sqlite3_int64 sqlite3_memory_used(void){
sqlite3_int64 n;
enterMem();
n = mem.nowUsed;
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
sqlite3_int64 n;
enterMem();
n = mem.mxUsed;
if( resetFlag ){
mem.mxUsed = mem.nowUsed;
}
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Change the alarm callback
*/
int sqlite3_memory_alarm(
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
void *pArg,
sqlite3_int64 iThreshold
){
enterMem();
mem.alarmCallback = xCallback;
mem.alarmArg = pArg;
mem.alarmThreshold = iThreshold;
sqlite3_mutex_leave(mem.mutex);
return SQLITE_OK;
}
/*
** Trigger the alarm
*/
static void sqlite3MemsysAlarm(int nByte){
void (*xCallback)(void*,sqlite3_int64,int);
sqlite3_int64 nowUsed;
void *pArg;
if( mem.alarmCallback==0 || mem.alarmBusy ) return;
mem.alarmBusy = 1;
xCallback = mem.alarmCallback;
nowUsed = mem.nowUsed;
pArg = mem.alarmArg;
sqlite3_mutex_leave(mem.mutex);
xCallback(pArg, nowUsed, nByte);
sqlite3_mutex_enter(mem.mutex);
mem.alarmBusy = 0;
}
/*
** Return the size of an outstanding allocation, in bytes. The
** size returned includes the 8-byte header overhead. This only
** works for chunks that are currently checked out.
*/
static int internal_size(void *p){
Mem3Block *pBlock = (Mem3Block*)p;
assert( pBlock[-1].u.hdr.size<0 );
return -pBlock[-1].u.hdr.size*8;
}
/*
** Chunk i is a free chunk that has been unlinked. Adjust its
** size parameters for check-out and return a pointer to the
** user portion of the chunk.
*/
static void *checkOutChunk(int i, int nBlock){
assert( mem.aPool[i-1].u.hdr.size==nBlock );
assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
mem.aPool[i-1].u.hdr.size = -nBlock;
mem.aPool[i+nBlock-1].u.hdr.prevSize = -nBlock;
return &mem.aPool[i];
}
/*
** Carve a piece off of the end of the mem.iMaster free chunk.
** Return a pointer to the new allocation. Or, if the master chunk
** is not large enough, return 0.
*/
static void *internal_from_master(int nBlock){
assert( mem.szMaster>=nBlock );
if( nBlock>=mem.szMaster-1 ){
/* Use the entire master */
void *p = checkOutChunk(mem.iMaster, mem.szMaster);
mem.iMaster = 0;
mem.szMaster = 0;
return p;
}else{
/* Split the master block. Return the tail. */
int newi;
newi = mem.iMaster + mem.szMaster - nBlock;
assert( newi > mem.iMaster+1 );
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = -nBlock;
mem.aPool[newi-1].u.hdr.size = -nBlock;
mem.szMaster -= nBlock;
mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster;
return (void*)&mem.aPool[newi];
}
}
/*
** *pRoot is the head of a list of free chunks of the same size
** or same size hash. In other words, *pRoot is an entry in either
** mem.aiSmall[] or mem.aiHash[].
**
** This routine examines all entries on the given list and tries
** to coalesce each entries with adjacent free chunks.
**
** If it sees a chunk that is larger than mem.iMaster, it replaces
** the current mem.iMaster with the new larger chunk. In order for
** this mem.iMaster replacement to work, the master chunk must be
** linked into the hash tables. That is not the normal state of
** affairs, of course. The calling routine must link the master
** chunk before invoking this routine, then must unlink the (possibly
** changed) master chunk once this routine has finished.
*/
static void mergeChunks(int *pRoot){
int iNext, prev, size, i;
for(i=*pRoot; i>0; i=iNext){
iNext = mem.aPool[i].u.list.next;
size = mem.aPool[i-1].u.hdr.size;
assert( size>0 );
if( mem.aPool[i-1].u.hdr.prevSize>0 ){
unlinkChunkFromList(i, pRoot);
prev = i - mem.aPool[i-1].u.hdr.prevSize;
assert( prev>=0 );
if( prev==iNext ){
iNext = mem.aPool[prev].u.list.next;
}
unlinkChunk(prev);
size = i + size - prev;
mem.aPool[prev-1].u.hdr.size = size;
mem.aPool[prev+size-1].u.hdr.prevSize = size;
linkChunk(prev);
i = prev;
}
if( size>mem.szMaster ){
mem.iMaster = i;
mem.szMaster = size;
}
}
}
/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.
*/
static void *internal_malloc(int nByte){
int i;
int nBlock;
assert( sizeof(Mem3Block)==8 );
if( nByte<=0 ){
nBlock = 2;
}else{
nBlock = (nByte + 15)/8;
}
assert( nBlock >= 2 );
/* STEP 1:
** Look for an entry of the correct size in either the small
** chunk table or in the large chunk hash table. This is
** successful most of the time (about 9 times out of 10).
*/
if( nBlock <= MX_SMALL ){
i = mem.aiSmall[nBlock-2];
if( i>0 ){
unlinkChunkFromList(i, &mem.aiSmall[nBlock-2]);
return checkOutChunk(i, nBlock);
}
}else{
int hash = nBlock % N_HASH;
for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
if( mem.aPool[i-1].u.hdr.size==nBlock ){
unlinkChunkFromList(i, &mem.aiHash[hash]);
return checkOutChunk(i, nBlock);
}
}
}
/* STEP 2:
** Try to satisfy the allocation by carving a piece off of the end
** of the master chunk. This step usually works if step 1 fails.
*/
if( mem.szMaster>=nBlock ){
return internal_from_master(nBlock);
}
/* STEP 3:
** Loop through the entire memory pool. Coalesce adjacent free
** chunks. Recompute the master chunk as the largest free chunk.
** Then try again to satisfy the allocation by carving a piece off
** of the end of the master chunk. This step happens very
** rarely (we hope!)
*/
if( mem.iMaster ){
linkChunk(mem.iMaster);
mem.iMaster = 0;
mem.szMaster = 0;
}
for(i=0; i<N_HASH; i++){
mergeChunks(&mem.aiHash[i]);
}
for(i=0; i<MX_SMALL-1; i++){
mergeChunks(&mem.aiSmall[i]);
}
if( mem.szMaster ){
unlinkChunk(mem.iMaster);
if( mem.szMaster>=nBlock ){
return internal_from_master(nBlock);
}
}
/* If none of the above worked, then we fail. */
return 0;
}
/*
** Free an outstanding memory allocation.
*/
void internal_free(void *pOld){
Mem3Block *p = (Mem3Block*)pOld;
int i;
int size;
assert( p>mem.aPool && p<&mem.aPool[SQLITE_MEMORY_SIZE/8] );
i = p - mem.aPool;
size = -mem.aPool[i-1].u.hdr.size;
assert( size>=2 );
assert( mem.aPool[i+size-1].u.hdr.prevSize==-size );
mem.aPool[i-1].u.hdr.size = size;
mem.aPool[i+size-1].u.hdr.prevSize = size;
linkChunk(i);
/* Try to expand the master using the newly freed chunk */
if( mem.iMaster ){
while( mem.aPool[mem.iMaster-1].u.hdr.prevSize>0 ){
size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
mem.iMaster -= size;
mem.szMaster += size;
unlinkChunk(mem.iMaster);
mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster;
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
}
while( mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size>0 ){
unlinkChunk(mem.iMaster+mem.szMaster);
mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size;
mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster;
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
}
}
}
/*
** Allocate nBytes of memory
*/
void *sqlite3_malloc(int nBytes){
sqlite3_int64 *p = 0;
if( nBytes>0 ){
enterMem();
if( mem.alarmCallback!=0 && mem.nowUsed+nBytes>=mem.alarmThreshold ){
sqlite3MemsysAlarm(nBytes);
}
p = internal_malloc(nBytes);
if( p==0 ){
sqlite3MemsysAlarm(nBytes);
p = internal_malloc(nBytes);
}
if( p ){
mem.nowUsed += internal_size(p);
if( mem.nowUsed>mem.mxUsed ){
mem.mxUsed = mem.nowUsed;
}
}
sqlite3_mutex_leave(mem.mutex);
}
return (void*)p;
}
/*
** Free memory.
*/
void sqlite3_free(void *pPrior){
if( pPrior==0 ){
return;
}
assert( mem.mutex!=0 );
sqlite3_mutex_enter(mem.mutex);
mem.nowUsed -= internal_size(pPrior);
internal_free(pPrior);
sqlite3_mutex_leave(mem.mutex);
}
/*
** Change the size of an existing memory allocation
*/
void *sqlite3_realloc(void *pPrior, int nBytes){
int nOld;
void *p;
if( pPrior==0 ){
return sqlite3_malloc(nBytes);
}
if( nBytes<=0 ){
sqlite3_free(pPrior);
return 0;
}
assert( mem.mutex!=0 );
sqlite3_mutex_enter(mem.mutex);
nOld = internal_size(pPrior);
if( mem.alarmCallback!=0 && mem.nowUsed+nBytes-nOld>=mem.alarmThreshold ){
sqlite3MemsysAlarm(nBytes-nOld);
}
p = internal_malloc(nBytes);
if( p==0 ){
sqlite3MemsysAlarm(nBytes);
p = internal_malloc(nBytes);
if( p==0 ){
return 0;
}
}
if( nOld<nBytes ){
memcpy(p, pPrior, nOld);
}else{
memcpy(p, pPrior, nBytes);
}
internal_free(pPrior);
mem.nowUsed += internal_size(p)-nOld;
if( mem.nowUsed>mem.mxUsed ){
mem.mxUsed = mem.nowUsed;
}
sqlite3_mutex_leave(mem.mutex);
return p;
}
/*
** Open the file indicated and write a log of all unfreed memory
** allocations into that log.
*/
void sqlite3_memdebug_dump(const char *zFilename){
#ifdef SQLITE_DEBUG
FILE *out;
int i, j, size;
if( zFilename==0 || zFilename[0]==0 ){
out = stdout;
}else{
out = fopen(zFilename, "w");
if( out==0 ){
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
zFilename);
return;
}
}
enterMem();
fprintf(out, "CHUNKS:\n");
for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size){
size = mem.aPool[i-1].u.hdr.size;
if( size>=-1 && size<=1 ){
fprintf(out, "%p size error\n", &mem.aPool[i]);
assert( 0 );
break;
}
if( mem.aPool[i+(size<0?-size:size)-1].u.hdr.prevSize!=size ){
fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
assert( 0 );
break;
}
if( size<0 ){
size = -size;
fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], size*8-8);
}else{
fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], size*8-8,
i==mem.iMaster ? " **master**" : "");
}
}
for(i=0; i<MX_SMALL-1; i++){
if( mem.aiSmall[i]==0 ) continue;
fprintf(out, "small(%2d):", i);
for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
fprintf(out, " %p(%d)", &mem.aPool[j], mem.aPool[j-1].u.hdr.size*8-8);
}
fprintf(out, "\n");
}
for(i=0; i<N_HASH; i++){
if( mem.aiHash[i]==0 ) continue;
fprintf(out, "hash(%2d):", i);
for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
fprintf(out, " %p(%d)", &mem.aPool[j], mem.aPool[j-1].u.hdr.size*8-8);
}
fprintf(out, "\n");
}
fprintf(out, "master=%d\n", mem.iMaster);
fprintf(out, "nowUsed=%lld\n", mem.nowUsed);
fprintf(out, "mxUsed=%lld\n", mem.mxUsed);
sqlite3_mutex_leave(mem.mutex);
if( out==stdout ){
fflush(stdout);
}else{
fclose(out);
}
#endif
}
#endif /* !SQLITE_MEMORY_SIZE */

View File

@ -16,7 +16,7 @@
** The focus of this file is providing the TCL testing layer
** access to compile-time constants.
**
** $Id: test_config.c,v 1.15 2007/09/03 15:26:21 drh Exp $
** $Id: test_config.c,v 1.16 2007/10/19 17:47:25 drh Exp $
*/
#include "sqliteLimit.h"
@ -80,6 +80,12 @@ static void set_options(Tcl_Interp *interp){
Tcl_SetVar2(interp, "sqlite_options", "memdebug", "0", TCL_GLOBAL_ONLY);
#endif
#ifdef SQLITE_MEMORY_SIZE
Tcl_SetVar2(interp, "sqlite_options", "mem3", "1", TCL_GLOBAL_ONLY);
#else
Tcl_SetVar2(interp, "sqlite_options", "mem3", "0", TCL_GLOBAL_ONLY);
#endif
#ifdef SQLITE_OMIT_ALTERTABLE
Tcl_SetVar2(interp, "sqlite_options", "altertable", "0", TCL_GLOBAL_ONLY);
#else

View File

@ -17,7 +17,7 @@
** with historical versions of the "binary" command. So it seems
** easier and safer to build our own mechanism.
**
** $Id: test_hexio.c,v 1.5 2007/09/01 11:04:27 danielk1977 Exp $
** $Id: test_hexio.c,v 1.6 2007/10/19 17:47:25 drh Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
@ -31,7 +31,7 @@
** binary data. zBuf[] is 2*n+1 bytes long. Overwrite zBuf[]
** with a hexadecimal representation of its original binary input.
*/
static void binToHex(unsigned char *zBuf, int N){
void sqlite3TestBinToHex(unsigned char *zBuf, int N){
const unsigned char zHex[] = "0123456789ABCDEF";
int i, j;
unsigned char c;
@ -51,7 +51,7 @@ static void binToHex(unsigned char *zBuf, int N){
** the binary data. Spaces in the original input are ignored.
** Return the number of bytes of binary rendered.
*/
static int hexToBin(const unsigned char *zIn, int N, unsigned char *aOut){
int sqlite3TestHexToBin(const unsigned char *zIn, int N, unsigned char *aOut){
const unsigned char aMap[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
@ -130,7 +130,7 @@ static int hexio_read(
if( got<0 ){
got = 0;
}
binToHex(zBuf, got);
sqlite3TestBinToHex(zBuf, got);
Tcl_AppendResult(interp, zBuf, 0);
sqlite3_free(zBuf);
return TCL_OK;
@ -167,7 +167,7 @@ static int hexio_write(
if( aOut==0 ){
return TCL_ERROR;
}
nOut = hexToBin(zIn, nIn, aOut);
nOut = sqlite3TestHexToBin(zIn, nIn, aOut);
out = fopen(zFile, "r+");
if( out==0 ){
Tcl_AppendResult(interp, "cannot open output file ", zFile, 0);
@ -209,7 +209,7 @@ static int hexio_get_int(
if( aOut==0 ){
return TCL_ERROR;
}
nOut = hexToBin(zIn, nIn, aOut);
nOut = sqlite3TestHexToBin(zIn, nIn, aOut);
if( nOut>=4 ){
memcpy(aNum, aOut, 4);
}else{
@ -244,7 +244,7 @@ static int hexio_render_int16(
if( Tcl_GetIntFromObj(interp, objv[1], &val) ) return TCL_ERROR;
aNum[0] = val>>8;
aNum[1] = val;
binToHex(aNum, 2);
sqlite3TestBinToHex(aNum, 2);
Tcl_SetObjResult(interp, Tcl_NewStringObj((char*)aNum, 4));
return TCL_OK;
}
@ -273,7 +273,7 @@ static int hexio_render_int32(
aNum[1] = val>>16;
aNum[2] = val>>8;
aNum[3] = val;
binToHex(aNum, 4);
sqlite3TestBinToHex(aNum, 4);
Tcl_SetObjResult(interp, Tcl_NewStringObj((char*)aNum, 8));
return TCL_OK;
}
@ -302,10 +302,10 @@ static int utf8_to_utf8(
}
zOrig = (unsigned char *)Tcl_GetStringFromObj(objv[1], &n);
z = sqlite3_malloc( n+3 );
n = hexToBin(zOrig, n, z);
n = sqlite3TestHexToBin(zOrig, n, z);
z[n] = 0;
nOut = sqlite3Utf8To8(z);
binToHex(z,nOut);
sqlite3TestBinToHex(z,nOut);
Tcl_AppendResult(interp, (char*)z, 0);
sqlite3_free(z);
#endif

View File

@ -13,7 +13,7 @@
** This file contains code used to implement test interfaces to the
** memory allocation subsystem.
**
** $Id: test_malloc.c,v 1.8 2007/09/03 07:31:10 danielk1977 Exp $
** $Id: test_malloc.c,v 1.9 2007/10/19 17:47:25 drh Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
@ -153,6 +153,106 @@ static int test_free(
return TCL_OK;
}
/*
** These routines are in test_hexio.c
*/
int sqlite3TestHexToBin(const char *, int, char *);
int sqlite3TestBinToHex(char*,int);
/*
** Usage: memset ADDRESS SIZE HEX
**
** Set a chunk of memory (obtained from malloc, probably) to a
** specified hex pattern.
*/
static int test_memset(
void * clientData,
Tcl_Interp *interp,
int objc,
Tcl_Obj *CONST objv[]
){
void *p;
int size, n, i;
char *zHex;
char *zOut;
char zBin[100];
if( objc!=4 ){
Tcl_WrongNumArgs(interp, 1, objv, "ADDRESS SIZE HEX");
return TCL_ERROR;
}
if( textToPointer(Tcl_GetString(objv[1]), &p) ){
Tcl_AppendResult(interp, "bad pointer: ", Tcl_GetString(objv[1]), (char*)0);
return TCL_ERROR;
}
if( Tcl_GetIntFromObj(interp, objv[2], &size) ){
return TCL_ERROR;
}
if( size<=0 ){
Tcl_AppendResult(interp, "size must be positive", (char*)0);
return TCL_ERROR;
}
zHex = Tcl_GetStringFromObj(objv[3], &n);
if( n>sizeof(zBin)*2 ) n = sizeof(zBin)*2;
n = sqlite3TestHexToBin(zHex, n, zBin);
if( n==0 ){
Tcl_AppendResult(interp, "no data", (char*)0);
return TCL_ERROR;
}
zOut = p;
for(i=0; i<size; i++){
zOut[i] = zBin[i%n];
}
return TCL_OK;
}
/*
** Usage: memget ADDRESS SIZE
**
** Return memory as hexadecimal text.
*/
static int test_memget(
void * clientData,
Tcl_Interp *interp,
int objc,
Tcl_Obj *CONST objv[]
){
void *p;
int size, n;
char *zBin;
char zHex[100];
if( objc!=3 ){
Tcl_WrongNumArgs(interp, 1, objv, "ADDRESS SIZE");
return TCL_ERROR;
}
if( textToPointer(Tcl_GetString(objv[1]), &p) ){
Tcl_AppendResult(interp, "bad pointer: ", Tcl_GetString(objv[1]), (char*)0);
return TCL_ERROR;
}
if( Tcl_GetIntFromObj(interp, objv[2], &size) ){
return TCL_ERROR;
}
if( size<=0 ){
Tcl_AppendResult(interp, "size must be positive", (char*)0);
return TCL_ERROR;
}
zBin = p;
while( size>0 ){
if( size>(sizeof(zHex)-1)/2 ){
n = (sizeof(zHex)-1)/2;
}else{
n = size;
}
memcpy(zHex, zBin, n);
zBin += n;
size -= n;
sqlite3TestBinToHex(zHex, n);
Tcl_AppendResult(interp, zHex, (char*)0);
}
return TCL_OK;
}
/*
** Usage: sqlite3_memory_used
**
@ -234,7 +334,7 @@ static int test_memdebug_dump(
Tcl_WrongNumArgs(interp, 1, objv, "FILENAME");
return TCL_ERROR;
}
#ifdef SQLITE_MEMDEBUG
#if defined(SQLITE_MEMDEBUG) || defined(SQLITE_MEMORY_SIZE)
{
extern void sqlite3_memdebug_dump(const char*);
sqlite3_memdebug_dump(Tcl_GetString(objv[1]));
@ -395,6 +495,8 @@ int Sqlitetest_malloc_Init(Tcl_Interp *interp){
{ "sqlite3_malloc", test_malloc },
{ "sqlite3_realloc", test_realloc },
{ "sqlite3_free", test_free },
{ "memset", test_memset },
{ "memget", test_memget },
{ "sqlite3_memory_used", test_memory_used },
{ "sqlite3_memory_highwater", test_memory_highwater },
{ "sqlite3_memdebug_backtrace", test_memdebug_backtrace },