Begin adding documentation for version 3.0. (CVS 1509)

FossilOrigin-Name: 2005bfdad03ac2aa70a82ba7ff9b2f469d129367
This commit is contained in:
drh 2004-05-31 18:22:25 +00:00
parent 02f9f6b38f
commit 75d82cc4bf
5 changed files with 692 additions and 8 deletions

View File

@ -1,5 +1,5 @@
C Get\sthe\sattach.test\sworking\son\swindows.\s(CVS\s1508)
D 2004-05-31T18:21:55
C Begin\sadding\sdocumentation\sfor\sversion\s3.0.\s(CVS\s1509)
D 2004-05-31T18:22:26
F Makefile.in ab7b0d5118e2da97bac66be8684a1034e3500f5a
F Makefile.linux-gcc b86a99c493a5bfb402d1d9178dcdc4bd4b32f906
F README f1de682fbbd94899d50aca13d387d1b3fd3be2dd
@ -184,14 +184,16 @@ F www/arch2.fig 613b5ac63511109064c2f93c5754ee662219937d
F www/arch2.gif 49c6bb36160f03ca2b89eaa5bfb1f560c7d68ee7
F www/audit.tcl 90e09d580f79c7efec0c7d6f447b7ec5c2dce5c0
F www/c_interface.tcl 2176519fc2bd2d2cf6fe74fd806fc2d8362de2c8
F www/capi3.tcl 79fec496d95e87420c40e4058f2685a6df2f93c7
F www/changes.tcl 9d562205db584d26b358ebe93fb58039feefd1b8
F www/common.tcl f786e6be86fb2627ceb30e770e9efa83b9c67a3a
F www/conflict.tcl fb8a2ba83746c7fdfd9e52fa7f6aaf5c422b8246
F www/copyright-release.html 294e011760c439c44951a6bfecd4c81a1ae359e8
F www/copyright-release.pdf cfca3558fc97095e57c6117d08f1f5b80d95125a
F www/copyright.tcl 82c9670c7ddb0311912ab7fe24703f33c531066c
F www/datatype3.tcl 3dcc0baaccc7d3bc28e12a3acc45f5ab7f723ca2
F www/datatypes.tcl 566004b81c36877397ddbe6e1907aae6065f6b41
F www/docs.tcl 60a7ce60d6f04cd5f56ab9329e0ffc22ebd6f021
F www/docs.tcl 5ea8a84edd33030879725fca85905899c89c7075
F www/download.tcl 8c84f15695c92cb01486930055fdf5192995f474
F www/dynload.tcl 02eb8273aa78cfa9070dd4501dca937fb22b466c
F www/faq.tcl 3a1776818d9bd973ab0c3048ec7ad6b1ad091ae5
@ -210,7 +212,7 @@ F www/support.tcl 67682848d6ddd283370451dc3da2e56cded9fc9a
F www/tclsqlite.tcl 19191cf2a1010eaeff74c51d83fd5f5a4d899075
F www/vdbe.tcl 59288db1ac5c0616296b26dce071c36cb611dfe9
F www/whentouse.tcl a8335bce47cc2fddb07f19052cb0cb4d9129a8e4
P 460f2361141f14aa709addd41cc011127bac9b6e
R e79cc292e6bccbc3d8d6727cae1981b6
P 48226a73801bc478d6fd6de5a554aec5119d2194
R 6c1a6ec8dae26e3de7139bd0ba98440c
U drh
Z 90fe3d5148e97c78c1b08256539f671c
Z dd522c4899d9ea1abb58bb871bde4c24

View File

@ -1 +1 @@
48226a73801bc478d6fd6de5a554aec5119d2194
2005bfdad03ac2aa70a82ba7ff9b2f469d129367

364
www/capi3.tcl Normal file
View File

@ -0,0 +1,364 @@
set rcsid {$Id: capi3.tcl,v 1.1 2004/05/31 18:22:26 drh Exp $}
source common.tcl
header {C/C++ Interface For SQLite Version 3}
puts {
<h2>C/C++ Interface For SQLite Version 3</h2>
<h3>1.0 Overview</h3>
<p>
SQLite version 3.0 will be a new version of SQLite, derived from
the SQLite 2.8.13 code base, but with an incompatible file format
and API.
SQLite version 3.0 is intended to answer the increasing demand
for the following features:
</p>
<ul>
<li>Support for UTF-16.</li>
<li>User-definable text collating sequences.</li>
<li>The ability to store BLOBs in indexed columns.</li>
</ul>
<p>
It became necessary to move to version 3.0
to implement these features because each
requires incompatible changes to the database file format. Other
incompatible changes, such as a cleanup of the API, were introduced
at the same time under the theory that it is best to get your
incompatible changes out of the way all at once.
<p>
The API for version 3.0 is similar to the version 2.X API,
but with some important changes. Most noticeably, the "<tt>sqlite_</tt>"
prefix that occurs on the beginning of all API functions and data
structures will be changed to "<tt>sqlite3_</tt>".
This will avoid confusion between the two APIs and allow
linking against both SQLite 2.X and SQLite 3.0 at the same time,
if desired.
</p>
<p>
There is no agreement on what the C datatype for a UTF-16
string should be. Therefore, SQLite uses a generic type of void*
to refer to UTF-16 strings.
Client software can cast the void*
to whatever datatype is appropriate for their system.
</p>
<h3>2.0 C/C++ Interface</h3>
<h4>2.1 Opening and closing a database</h4>
<blockquote><pre>
typedef struct sqlite3 sqlite3;
int sqlite3_open(const char*, sqlite3**, const char**);
int sqlite3_open16(const void*, sqlite3**, const char**);
int sqlite3_close(sqlite3*);
const char *sqlite3_errmsg(sqlite3*);
const void *sqlite3_errmsg16(sqlite3*);
int sqlite3_errcode(sqlite3*);
</pre></blockquote>
<p>
The sqlite3_open() routine returns an integer error code rather than
a pointer to the sqlite3 structure. The difference between sqlite3_open()
and sqlite3_open16() is that sqlite3_open16() takes UTF-16 (in host native
byte order) for the name of the database file. If a new database file
needs to be created, then sqlite3_open16() will set the internal text
representation to UTF-16 whereas sqlite3_open() will set the text
representation to UTF-8.
</p>
<p>
The third "const char**" argument to sqlite3_open() is a NULL-terminated
list of keyword/value pairs that define options to apply to the open
request. The third argument may be NULL if there are no options.
This extra argument provides an expandable way of supporting new features
in future releases. For example, a future release may contain an
option to define an encryption/decryption key.
</p>
<p>
The sqlite3_errcode() routine will return the result code for the most
recent major API call. sqlite3_errmsg() will return an English-language
text error message for the most recent error. The error message will
be represented in UTF-8 and will be ephemeral - it could disappear on
the next call to any SQLite API function. sqlite3_errmsg16() works like
sqlite3_errmsg() except that it returns the error message represented
as UTF-16 in host native byte order.
</p>
<h4>2.2 Executing SQL statements</h4>
<blockquote><pre>
typedef struct sqlite3_stmt sqlite3_stmt;
int sqlite3_prepare(sqlite3*, const char*, sqlite3_stmt**, const char**);
int sqlite3_prepare16(sqlite3*, const void*, sqlite3_stmt**, const void**);
int sqlite3_finalize(sqlite3_stmt*);
int sqlite3_reset(sqlite3_stmt*);
</pre></blockquote>
<p>
The non-callback API is now the preferred way of accessing the database.
Wrapper functions that emulate the older callback API may (or may not)
be provided.
</p>
<p>
The sqlite3_prepare() function compiles an single SQL statement.
The statement may contain tokens of the form "?" or "?nnn" or ":nnn:"
where "nnn" is an integer. Such tokens represent unspecified literal values
(or wildcard) to be filled in later by the sqlite3_bind() API.
Each wildcard as an associated number given
by the "nnn" that follows the "?". If the "?" is not followed by an
integer, then its number one more than the number of prior wildcards
in the same SQL statement. It is allowed for the same wildcard
to occur more than once in the same SQL statement, in which case
all instance of that wildcard will be filled in with the same value.
Unbound wildcards have a value of NULL.
</p>
<p>The SQL statement is a UTF-8 string for sqlite3_prepare().
The sqlite3_prepare16() works the same way except
that it expects a UTF-16 string as SQL input.
Only the first SQL statement in the input string is compiled.
The fourth parameter is filled in with a pointer to the next (uncompiled)
SQLite statement in the input string, if any.
The sqlite3_finalize() routine deallocates a prepared SQL statement.
The sqlite3_reset() routine resets a prepared SQL statement so that it
can be executed again.
</p>
<blockquote><pre>
int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, int eCopy);
int sqlite3_bind_double(sqlite3_stmt*, int, double);
int sqlite3_bind_int(sqlite3_stmt*, int, int);
int sqlite3_bind_int64(sqlite3_stmt*, int, long long int);
int sqlite3_bind_null(sqlite3_stmt*, int);
int sqlite3_bind_text(sqlite3_stmt*, int, const char*, int n, int eCopy);
int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int n, int eCopy);
int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
</pre></blockquote>
<p>
There is an assortment of sqlite3_bind routines used to assign values
to wildcards in a prepared SQL statement. Unbound wildcards
are interpreted as NULLs. Bindings are not reset by sqlite3_reset().
But wildcards can be rebound to new values after an sqlite3_reset().
</p>
<p>
After an SQL statement has been prepared (and optionally bound), it
is executed using:
</p>
<blockquote><pre>
int sqlite3_step(sqlite3_stmt*);
</pre></blockquote>
<p>
The sqlite3_step() routine return SQLITE3_ROW if it is returning a single
row of the result set, or SQLITE3_DONE if execution has completed, either
normally or due to an error. It might also return SQLITE3_BUSY if it is
unable to open the database file. If the return value is SQLITE3_ROW, then
the following routines can be used to extract information about that row
of the result set:
</p>
<blockquote><pre>
int sqlite3_column_count(sqlite3_stmt*);
int sqlite3_column_type(sqlite3_stmt*,int);
const char *sqlite3_column_decltype(sqlite3_stmt *, int i);
const char *sqlite3_column_decltype16(sqlite3_stmt *, int i);
const char *sqlite3_column_name(sqlite3_stmt*,int);
const void *sqlite3_column_name16(sqlite3_stmt*,int);
const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
double sqlite3_column_double(sqlite3_stmt*, int iCol);
int sqlite3_column_int(sqlite3_stmt*, int iCol);
long long int sqlite3_column_int64(sqlite3_stmt*, int iCol);
const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
int sqlite3_column_type(sqlite3_stmt*, int iCol);
</pre></blockquote>
<p>
The sqlite3_column_count() function returns the number of columns in
the results set. The sqlite3_column_type() function returns the
datatype for the value in the Nth column. The return value is one
of these:
</p>
<blockquote><pre>
#define SQLITE3_INTEGER 1
#define SQLITE3_FLOAT 2
#define SQLITE3_TEXT 3
#define SQLITE3_BLOB 4
#define SQLITE3_NULL 5
</pre></blockquote>
<p>
The sqlite3_column_decltype() routine returns text which is the
declared type of the column in the CREATE TABLE statement. For an
expression, the return type is an empty string. sqlite3_column_name()
returns the name of the Nth column. sqlite3_column_bytes() returns
the number of bytes in a column that has type BLOB or the number of bytes
in a TEXT string with UTF-8 encoding. sqlite3_column_bytes16() returns
the same value for BLOBs but for TEXT strings returns the number of bytes
in a UTF-16 encoding.
sqlite3_column_blob() return BLOB data.
sqlite3_column_text() return TEXT data as UTF-8.
sqlite3_column_text16() return TEXT data as UTF-16.
sqlite3_column_int() return INTEGER data in the host machines native
integer format.
sqlite3_column_int64() returns 64-bit INTEGER data.
Finally, sqlite3_column_double() return floating point data.
</p>
<h4>2.3 User-defined functions</h4>
<p>
User defined functions can be created using the following routine:
</p>
<blockquote><pre>
typedef struct sqlite3_value sqlite3_value;
int sqlite3_create_function(
sqlite3 *,
const char *zFunctionName,
int nArg,
int eTextRep,
int iCollateArg,
void*,
void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
void (*xFinal)(sqlite3_context*)
);
int sqlite3_create_function16(
sqlite3*,
const void *zFunctionName,
int nArg,
int eTextRep,
int iCollateArg,
void*,
void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
void (*xStep)(sqlite3_context*,int,sqlite3_value**),
void (*xFinal)(sqlite3_context*)
);
#define SQLITE3_UTF8 1
#define SQLITE3_UTF16LE 2
#define SQLITE3_UTF16BE 3
#define SQLITE3_ANY 4
</pre></blockquote>
<p>
The nArg parameter specifies the number of arguments to the function.
A value of 0 indicates that any number of arguments is allowed. The
eTextRep parameter specifies what representation text values are expected
to be in for arguments to this function. The value of this parameter should
be one of the parameters defined above. SQLite version 3 allows multiple
implementations of the same function using different text representations.
The database engine chooses the function that minimization the number
of text conversions required.
The iCollateArg parameter indicates that the collating sequence for the
result is to be the same as the collating sequence of the iCollateArg-th
parameter.
</p>
<p>
Normal functions specify only xFunc and leave xStep and xFinal set to NULL.
Aggregate functions specify xStep and xFinal and leave xFunc set to NULL.
There is no separate sqlite3_create_aggregate() API.
</p>
<p>
The function name is specified in UTF-8. A separate sqlite3_create_function16()
API works the same as sqlite_create_function()
except that the function name is specified in UTF-16 host byte order.
</p>
<p>
Notice that the parameters to functions are now pointers to sqlite3_value
structures instead of pointers to strings as in SQLite version 2.X.
The following routines are used to extract useful information from these
"values":
</p>
<blockquote><pre>
const void *sqlite3_value_blob(sqlite3_value*);
int sqlite3_value_bytes(sqlite3_value*);
int sqlite3_value_bytes16(sqlite3_value*);
double sqlite3_value_double(sqlite3_value*);
int sqlite3_value_int(sqlite3_value*);
long long int sqlite3_value_int64(sqlite3_value*);
const unsigned char *sqlite3_value_text(sqlite3_value*);
const void *sqlite3_value_text16(sqlite3_value*);
int sqlite3_value_type(sqlite3_value*);
</pre></blockquote>
<p>
Function implementations use the following APIs to acquire context and
to report results:
</p>
<blockquote><pre>
void *sqlite3_aggregate_context(sqlite3_context*, int nbyte);
void *sqlite3_user_data(sqlite3_context*);
void sqlite3_result_blob(sqlite3_context*, const void*, int n, int eCopy);
void sqlite3_result_double(sqlite3_context*, double);
void sqlite3_result_error(sqlite3_context*, const char*, int);
void sqlite3_result_error16(sqlite3_context*, const void*, int);
void sqlite3_result_int(sqlite3_context*, int);
void sqlite3_result_int64(sqlite3_context*, long long int);
void sqlite3_result_null(sqlite3_context*);
void sqlite3_result_text(sqlite3_context*, const char*, int n, int eCopy);
void sqlite3_result_text16(sqlite3_context*, const void*, int n, int eCopy);
void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
void *sqlite3_get_auxdata(sqlite3_context*, int);
void sqlite3_set_auxdata(sqlite3_context*, int, void*, void (*)(void*));
</pre></blockquote>
<h4>2.4 User-defined collating sequences</h4>
<p>
The following routines are used to implement user-defined
collating sequences:
</p>
<blockquote><pre>
sqlite3_create_collation(sqlite3*, const char *zName, int eTextRep, void*,
int(*xCompare)(void*,int,const void*,int,const void*));
sqlite3_create_collation16(sqlite3*, const void *zName, int eTextRep, void*,
int(*xCompare)(void*,int,const void*,int,const void*));
sqlite3_collation_needed(sqlite3*, void*,
void(*)(void*,sqlite3*,int eTextRep,const char*));
sqlite3_collation_needed16(sqlite3*, void*,
void(*)(void*,sqlite3*,int eTextRep,const void*));
</pre></blockquote>
<p>
The sqlite3_create_collation() function specifies a collating sequence name
and a comparison function to implement that collating sequence. The
comparison function is only used for comparing text values. The eTextRep
parameter is one of SQLITE3_UTF8, SQLITE3_UTF16LE, SQLITE3_UTF16BE, or
SQLITE3_ANY to specify which text representation to comparison function works
with. Separate comparison functions can exist for the same collating
sequence for each of the UTF-8, UTF-16LE and UTF-16BE text representations.
The sqlite3_create_collation16() works like sqlite3_create_collation() except
that the collation name is specified in UTF-16 host byte order instead of
in UTF-8.
</p>
<p>
The sqlite3_collation_needed() routine registers a callback which the
database engine will invoke if it encounters an unknown collating sequence.
The callback can lookup an appropriate comparison function and invoke
sqlite_3_create_collation() as needed. The fourth parameter to the callback
is the name of the collating sequence in UTF-8. For sqlite3_collation_need16()
the callback sends the collating sequence name in UTF-16 host byte order.
</p>
}
footer $rcsid

308
www/datatype3.tcl Normal file
View File

@ -0,0 +1,308 @@
set rcsid {$Id: datatype3.tcl,v 1.1 2004/05/31 18:22:26 drh Exp $}
source common.tcl
header {Datatypes In SQLite Version 3}
puts {
<h2>Datatypes In SQLite Version 3</h2>
<h3>1. Storage Classes</h3>
<P>Version 2 of SQLite stores all column values as ASCII text.
Version 3 enhances this by providing the ability to store integer and
real numbers in a more compact format and the capability to store
BLOB data.</P>
<P>Each value stored in an SQLite database (or manipulated by the
database engine) has one of the following storage classes:</P>
<UL>
<LI><P><B>NULL</B>. The value is a NULL value.</P>
<LI><P><B>INTEGER</B>. The value is a signed integer, stored in 1,
2, 3, 4, 6, or 8 bytes depending on the magnitude of the value.</P>
<LI><P><B>REAL</B>. The value is a floating point value, stored as
an 8-byte IEEE floating point number.</P>
<LI><P><B>TEXT</B>. The value is a text string, stored using the
database encoding (UTF-8, UTF-16BE or UTF-16-LE).</P>
<LI><P><B>BLOB</B>. The value is a blob of data, stored exactly as
it was input.</P>
</UL>
<P>As in SQLite version 2, any column in a version 3 database except an INTEGER
PRIMARY KEY may be used to store any type of value. The exception to
this rule is described below under 'Strict Affinity Mode'.</P>
<P>All values supplied to SQLite, whether as literals embedded in SQL
statements or values bound to pre-compiled SQL statements
are assigned a storage class before the SQL statement is executed.
Under circumstances described below, the
database engine may convert values between numeric storage classes
(INTEGER and REAL) and TEXT during query execution.
</P>
<P>Storage classes are initially assigned as follows:</P>
<UL>
<LI><P>Values specified as literals as part of SQL statements are
assigned storage class TEXT if they are enclosed by single or double
quotes, INTEGER if the literal is specified as an unquoted number
with no decimal point or exponent, REAL if the literal is an
unquoted number with a decimal point or exponent and NULL if the
value is a NULL.</P>
<LI><P>Values supplied using the sqlite3_bind_* APIs are assigned
the storage class that most closely matches the native type bound
(i.e. sqlite3_bind_blob() binds a value with storage class BLOB).</P>
</UL>
<P>The storage class of a value that is the result of an SQL scalar
operator depends on the outermost operator of the expression.
User-defined functions may return values with any storage class. It
is not generally possible to determine the storage class of the
result of an expression at compile time.</P>
<h3>2. Column Affinity</h3>
<p>
In SQLite version 3, the type of a value is associated with the value
itself, not with the column or variable in which the value is stored.
(This is sometimes called
<a href="http://www.cliki.net/manifest%20type%50system">
manifest typing</a>.)
All other SQL databases engines that we are aware of use the more
restrict system of static typing where the type is associated with
the container, not the value.
</p>
<p>
In order to maximize compatibility between SQLite and other database
engines, SQLite support the concept of "type affinity" on columns.
The type affinity of a column is the recommended type for data stored
in that column. The key here is that the type is recommended, not
required. Any column can still store any type of data, in theory.
It is just that some columns, given the choice, will prefer to use
one storage class over another. The preferred storage class for
a column is called its "affinity".
</p>
<P>Each column in an SQLite 3 database is assigned one of the
following type affinities:</P>
<UL>
<LI><P>TEXT.</P>
<LI><P>NUMERIC.</P>
<LI><P>INTEGER.</P>
<LI><P>NONE.</P>
</UL>
<P>A column with TEXT affinity stores all data using storage classes
NULL, TEXT or BLOB. If numerical data is inserted into a column with
TEXT affinity it is converted to text form before being stored.</P>
<P>A column with NUMERIC affinity may contain values using all five
storage classes. When text data is inserted into a NUMERIC column, an
attempt is made to convert it to an integer or real number before it
is stored. If the conversion is successful, then the value is stored
using the INTEGER or REAL storage class. If the conversion cannot be
performed the value is stored using the TEXT storage class. No
attempt is made to convert NULL or blob values.</P>
<P>A column that uses INTEGER affinity behaves in the same way as a
column with NUMERIC affinity, except that if a real value with no
floating point component (or text value that converts to such) is
inserted it is converted to an integer and stored using the INTEGER
storage class.</P>
<P>A column with affinity NONE does not prefer one storage class over
another. It makes no attempt to coerce data before
it is inserted.</P>
<h4>2.1 Determination Of Column Affinity</h4>
<P>The type affinity of a column is determined by the declared type
of the column, according to the following rules:</P>
<OL>
<LI><P>If the datatype contains the string &quot;INT&quot; then it
is assigned INTEGER affinity.</P>
<LI><P>If the datatype of the column contains any of the strings
&quot;CHAR&quot;, &quot;CLOB&quot;, or &quot;TEXT&quot; then that
column has TEXT affinity. Notice that the type VARCHAR contains the
string &quot;CHAR&quot; and is thus assigned TEXT affinity.</P>
<LI><P>If the datatype contains the string &quot;BLOB&quot;
then the column has affinity NONE.</P>
<LI><P>Otherwise, the affinity is NUMERIC. Notice that a column
where no datatype is specified is given affinity NUMERIC.</P>
</OL>
<P>If a table is created using a "CREATE TABLE &lt;table&gt; AS
SELECT..." statement, then all columns have no datatype specified
and they are given no affinity.</P>
<h4>2.2 Column Affinity Example</h4>
<blockquote>
<PRE>CREATE TABLE t1(
t AFFINITY TEXT,
nu AFFINITY NUMERIC,
i AFFINITY INTEGER,
no AFFINITY NONE
);
-- Storage classes for the following row:
-- TEXT, REAL, INTEGER, TEXT
INSERT INTO t1 VALUES('500.0', '500.0', '500.0', '500.0');
-- Storage classes for the following row:
-- TEXT, REAL, INTEGER, REAL
INSERT INTO t1 VALUES(500.0, 500.0, 500.0, 500.0);</PRE>
</blockquote>
<h3>3. Comparison Expressions</h3>
<P>Like SQLite version 2, version 3
features the binary comparison operators '=',
'&lt;', '&lt;=', '&gt;=' and '!=', an operation to test for set
membership, 'IN', and the ternary comparison operator 'BETWEEN'.</P>
<P>The results of a comparison depend on the storage classes of the
two values being compared, according to the following rules:</P>
<UL>
<LI><P>A value with storage class NULL is considered less than any
other value (including another value with storage class NULL).</P>
<LI><P>An INTEGER or REAL value is less than any TEXT or BLOB value.
When an INTEGER or REAL is compared to another INTEGER or REAL, a
numerical comparison is performed.</P>
<LI><P>A TEXT value is less than a BLOB value. When two TEXT values
are compared, the C library function memcmp() is usually used to
determine the result. However this can be overriden, as described
under 'User-defined collation Sequences' below.</P>
<LI><P>When two BLOB values are compared, the result is always
determined using memcmp().</P>
</UL>
<P>SQLite may attempt to convert values between the numeric storage
classes (INTEGER and REAL) and TEXT before performing a comparison.
For binary comparisons, this is done in the cases enumerated below.
The term expression used in the bullet points below means any
SQL scalar expression or literal other than a column value.</P>
<UL>
<LI><P>When a column value is compared to the result of an
expression, the affinity of the column is applied to the result of
the expression before the comparison takes place.</P>
<LI><P>When two column values are compared, if one column has
INTEGER or NUMERIC affinity and the other does not, the NUMERIC
affinity is applied to any values with storage class TEXT extracted
from the non-NUMERIC column.</P>
<LI><P>When the results of two expressions are compared, the NUMERIC
affinity is applied to both values before the comparison takes
place.</P>
</UL>
<h4>3.1 Comparison Example</h4>
<blockquote>
<PRE>CREATE TABLE t1(
a AFFINITY TEXT,
b AFFINITY NUMERIC,
c AFFINITY NONE
);
-- Storage classes for the following row:
-- TEXT, REAL, TEXT
INSERT INTO t1 VALUES('500', '500', '500');
-- 60 and 40 are converted to 60 and 40 and values are compared as TEXT.
SELECT a &lt; 60, a &lt; 40 FROM t1;
1|0
-- Comparisons are numeric. No conversions are required.
SELECT b &lt; 60, b &lt; 600 FROM t1;
0|1
-- Both 60 and 600 (storage class NUMERIC) are less than '500' (storage class TEXT).
SELECT c &lt; 60, c &lt; 600 FROM t1;
0|0</PRE>
</blockquote>
<P>
In SQLite, the expression "a BETWEEN b AND c" is currently
equivalent to "a &gt;= b AND a &lt;= c". SQLite will continue to
treat the two as exactly equivalent, even if this means that
different affinities are applied to 'a' in each of the comparisons
required to evaluate the expression.</P>
<P>Expressions of the type "a IN (SELECT b ....)" are handled by
the three rules enumerated above for binary comparisons (e.g. in a
similar manner to "a = b"). For example if 'b' is a column value
and 'a' is an expression, then the affinity of 'b' is applied to 'a'
before any comparisons take place.</P>
<P>SQLite currently treats the expression "a IN (x, y, z)" as
equivalent to "a = z OR a = y OR a = z". SQLite will continue to
treat the two as exactly equivalent, even if this means that
different affinities are applied to 'a' in each of the comparisons
required to evaluate the expression.</P>
<h3>4. Operators</h3>
<P>All mathematical operators (which is to say, all operators other
than the concatenation operator &quot;||&quot;) apply NUMERIC
affinity to all operands prior to being carried out. If one or both
operands cannot be converted to NUMERIC then the result of the
operation is NULL.</P>
<P>For the concatenation operator, TEXT affinity is applied to both
operands. If either operand cannot be converted to TEXT (because it
is NULL or a BLOB) then the result of the concatenation is NULL.</P>
<h3>5. Sorting, Grouping and Compound SELECTs</h3>
<P>When values are sorted by an ORDER by clause, values with storage
class NULL come first, followed by INTEGER and REAL values
interspersed in numeric order, followed by TEXT values usually in
memcmp() order, and finally BLOB values in memcmp() order. No storage
class conversions occur before the sort.</P>
<P>When grouping values with the GROUP BY clause values with
different storage classes are considered distinct, except for INTEGER
and REAL values which are considered equal if they are numerically
equal. No affinities are applied to any values as the result of a
GROUP by clause.</P>
<P>The compound SELECT operators UNION,
INTERSECT and EXCEPT perform implicit comparisons between values.
Before these comparisons are performed an affinity may be applied to
each value. The same affinity, if any, is applied to all values that
may be returned in a single column of the compound SELECT result set.
The affinity applied is the affinity of the column returned by the
left most component SELECTs that has a column value (and not some
other kind of expression) in that position. If for a given compound
SELECT column none of the component SELECTs return a column value, no
affinity is applied to the values from that column before they are
compared.</P>
<h3>6. Other Affinity Modes</h3>
<P>The above sections describe the operation of the database engine
in 'normal' affinity mode. SQLite version 3 will feature two other affinity
modes, as follows:</P>
<UL>
<LI><P><B>Strict affinity</B> mode. In this mode if a conversion
between storage classes is ever required, the database engine
returns an error and the current statement is rolled back.</P>
<LI><P><B>No affinity</B> mode. In this mode no conversions between
storage classes are ever performed. Comparisons between values of
different storage classes (except for INTEGER and REAL) are always
false.</P>
</UL>
<h3>7. User-defined Collation Sequences</h3>
<P>By default, when SQLite compares two
text values, the result of the comparison is determined using
memcmp(), regardless of the encoding of the string. SQLite v3
provides the ability for users to supply arbitrary comparison
functions, known as user-defined collation sequences, to be used
instead of memcmp().</P>
}
footer $rcsid

View File

@ -1,7 +1,7 @@
# This script generates the "docs.html" page that describes various
# sources of documentation available for SQLite.
#
set rcsid {$Id: docs.tcl,v 1.1 2004/05/31 15:06:30 drh Exp $}
set rcsid {$Id: docs.tcl,v 1.2 2004/05/31 18:22:26 drh Exp $}
source common.tcl
header {SQLite Documentation}
puts {
@ -28,6 +28,10 @@ doc {Version 2 C/C++ API} {c_interface.html} {
A description of the C/C++ interface bindings for SQLite through version
2.8
}
doc {Version 3 C/C++ API} {capi3.html} {
A description of the C/C++ interface bindings for SQLite version 3.0.0
and following.
}
doc {Tcl API} {tclsqlite.html} {
A description of the TCL interface bindings for SQLite.
@ -36,6 +40,12 @@ doc {Tcl API} {tclsqlite.html} {
doc {Version 2 DataTypes } {datatypes.html} {
A description of how SQLite version 2 handles SQL datatypes.
}
doc {Version 3 DataTypes } {datatype3.html} {
SQLite version 3 introduces the concept of manifest typing, where the
type of a value is associated with the value itself, not the column that
it is stored in.
This page describes data typing for SQLite version 3 in further detail.
}
doc {Release History} {changes.html} {
A chronology of SQLite releases going back to version 1.0.0