Merge the stat2 query planner enhancements into the trunk.

FossilOrigin-Name: 499edcbc8ab70fcf35431d4e672c68dbcb6c5aad
This commit is contained in:
drh 2011-02-04 06:36:44 +00:00
commit 47fe5533a6
14 changed files with 598 additions and 139 deletions

View File

@ -1,8 +1,8 @@
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
C If\sa\sdeferred\sforeign\skey\sconstraint\sfails\son\sa\sstatement\sthat\sis\snot\spart\nof\sa\slarger\stransation,\smake\ssure\sthat\sthe\sstatement\sfully\sends\sso\sthat\nsubsequent\sinvocations\sof\sthe\ssame\sstatement\swill\snot\spass\sthe\sconstraint\nbecause\sthey\sthink\sthe\stransaction\sis\snot\sclosed.\s\sThis\sis\sa\smerge\sof\nthe\sdeferred-fk-quirk\sbranch\stogether\swith\sa\stest\scase.
D 2011-02-04T05:47:51.496
C Merge\sthe\sstat2\squery\splanner\senhancements\sinto\sthe\strunk.
D 2011-02-04T06:36:44.125
F Makefile.arm-wince-mingw32ce-gcc d6df77f1f48d690bd73162294bbba7f59507c72f
F Makefile.in de6498556d536ae60bb8bb10e8c1ba011448658c
F Makefile.linux-gcc 91d710bdc4998cb015f39edf3cb314ec4f4d7e23
@ -238,13 +238,13 @@ F src/vdbeInt.h 6e6f28e9bccc6c703dca1372fd661c57b5c15fb0
F src/vdbeapi.c 8e9324fd35eb70d0b5904bd1af40f2598744dc4d
F src/vdbeaux.c 521b954f21ec15aee2ba5a0af8a1526bdd71e45e
F src/vdbeblob.c 18955f0ee6b133cd08e1592010cb9a6b11e9984c
F src/vdbemem.c 411649a35686f54268ccabeda175322c4697f5a6
F src/vdbemem.c c011228c6fb1b5df924e4584765b16bde863c9c6
F src/vdbetrace.c 3ba13bc32bdf16d2bdea523245fd16736bed67b5
F src/vtab.c b297e8fa656ab5e66244ab15680d68db0adbec30
F src/wal.c 8704a563b37c0c48b6a65d49da5d5656568abfc6
F src/wal.h 7a5fbb00114b7f2cd40c7e1003d4c41ce9d26840
F src/walker.c 3112bb3afe1d85dc52317cb1d752055e9a781f8f
F src/where.c af069e6b53234118014dabfece96a9515b69d76b
F src/where.c f4915ac03e5e42c8416b35ca3ba34af841c00d12
F test/aggerror.test a867e273ef9e3d7919f03ef4f0e8c0d2767944f2
F test/alias.test 4529fbc152f190268a15f9384a5651bbbabc9d87
F test/all.test 51756962d522e474338e9b2ebb26e7364d4aa125
@ -254,9 +254,10 @@ F test/alter3.test 8677e48d95536f7a6ed86a1a774744dadcc22b07
F test/alter4.test 1e5dd6b951e9f65ca66422edff02e56df82dd403
F test/altermalloc.test e81ac9657ed25c6c5bb09bebfa5a047cd8e4acfc
F test/analyze.test c1eb87067fc16ece7c07e823d6395fd831b270c5
F test/analyze2.test 3bde8f0879d9c1f2df3af21fcf42e706d8ee1e43
F test/analyze3.test 820ddfb7591b49607fbaf77240c7955ac3cabb04
F test/analyze2.test 8f2b1534d43f5547ce9a6b736c021d4192c75be3
F test/analyze3.test d61f55d8b472fc6e713160b1e577f7a68e63f38b
F test/analyze4.test 757b37875cf9bb528d46f74497bc789c88365045
F test/analyze5.test 18659612dd854330b9f2a0bf4c90658f3739fd67
F test/async.test ad4ba51b77cd118911a3fe1356b0809da9c108c3
F test/async2.test bf5e2ca2c96763b4cba3d016249ad7259a5603b6
F test/async3.test 93edaa9122f498e56ea98c36c72abc407f4fb11e
@ -357,7 +358,7 @@ F test/descidx2.test 9f1a0c83fd57f8667c82310ca21b30a350888b5d
F test/descidx3.test fe720e8b37d59f4cef808b0bf4e1b391c2e56b6f
F test/diskfull.test 0cede7ef9d8f415d9d3944005c76be7589bb5ebb
F test/distinctagg.test 1a6ef9c87a58669438fc771450d7a72577417376
F test/e_createtable.test b8f5286879315d5b7f4cc5ead1afda4846f0c0bb
F test/e_createtable.test b40fc61bc4f1ad2a3c84590bd1d711507263d921
F test/e_delete.test 55d868b647acc091c261a10b9b0cb0ab660a6acb
F test/e_droptrigger.test ddd4b28ed8a3d81bd5153fa0ab7559529a2ca03a
F test/e_dropview.test b347bab30fc8de67b131594b3cd6f3d3bdaa753d
@ -375,7 +376,7 @@ F test/enc.test e54531cd6bf941ee6760be041dff19a104c7acea
F test/enc2.test 6d91a5286f59add0cfcbb2d0da913b76f2242398
F test/enc3.test 5c550d59ff31dccdba5d1a02ae11c7047d77c041
F test/enc4.test 4b575ef09e0eff896e73bd24076f96c2aa6a42de
F test/eqp.test 69670e7919030f21de29fb99bf1d68f97aedcbdb
F test/eqp.test 8f535d902b2df780d22edb95113880480664f976
F test/eval.test bc269c365ba877554948441e91ad5373f9f91be3
F test/exclusive.test 53e1841b422e554cecf0160f937c473d6d0e3062
F test/exclusive2.test b65264c3e76e1db6c6eda15c02000a40743f6541
@ -490,7 +491,7 @@ F test/incrvacuum_ioerr.test 57d2f5777ab13fa03b87b262a4ea1bad5cfc0291
F test/index.test df7c00c6edd9504ab71c83a9514f1c5ca0fa54d8
F test/index2.test ee83c6b5e3173a3d7137140d945d9a5d4fdfb9d6
F test/index3.test 423a25c789fc8cc51aaf2a4370bbdde2d9e9eed7
F test/indexedby.test d7367c5a0e8ed8db642824a68126753e0808c706
F test/indexedby.test be501e381b82b2f8ab406309ba7aac46e221f4ad
F test/init.test 15c823093fdabbf7b531fe22cf037134d09587a7
F test/insert.test aef273dd1cee84cc92407469e6bd1b3cdcb76908
F test/insert2.test 4f3a04d168c728ed5ec2c88842e772606c7ce435
@ -521,7 +522,7 @@ F test/jrnlmode3.test c6522b276ba315fd1416198de6fc1da9e72409fb
F test/keyword1.test a2400977a2e4fde43bf33754c2929fda34dbca05
F test/lastinsert.test 474d519c68cb79d07ecae56a763aa7f322c72f51
F test/laststmtchanges.test ae613f53819206b3222771828d024154d51db200
F test/like.test 0f64aeaed50b6e3ebaef3af0b3b8f894aed5acca
F test/like.test a47f52692aac96ba82508efba74819214cdebc17
F test/like2.test 3b2ee13149ba4a8a60b59756f4e5d345573852da
F test/limit.test 2db7b3b34fb925b8e847d583d2eb67531d0ce67e
F test/loadext.test 0393ce12d9616aa87597dd0ec88181de181f6db0
@ -565,7 +566,7 @@ F test/memsubsys1.test 679db68394a5692791737b150852173b3e2fea10
F test/memsubsys2.test 72a731225997ad5e8df89fdbeae9224616b6aecc
F test/minmax.test 722d80816f7e096bf2c04f4111f1a6c1ba65453d
F test/minmax2.test 33504c01a03bd99226144e4b03f7631a274d66e0
F test/minmax3.test 66a60eb0f20281b0753249d347c5de0766954cee
F test/minmax3.test cc1e8b010136db0d01a6f2a29ba5a9f321034354
F test/misc1.test e56baf44656dd68d6475a4b44521045a60241e9b
F test/misc2.test a628db7b03e18973e5d446c67696b03de718c9fd
F test/misc3.test 72c5dc87a78e7865c5ec7a969fc572913dbe96b6
@ -864,14 +865,14 @@ F test/walslow.test d21625e2e99e11c032ce949e8a94661576548933
F test/walthread.test a25a393c068a2b42b44333fa3fdaae9072f1617c
F test/where.test de337a3fe0a459ec7c93db16a519657a90552330
F test/where2.test 43d4becaf5a5df854e6c21d624a1cb84c6904554
F test/where3.test 8ebedae552e13fc7f2b4e8df6cbe72a095347400
F test/where3.test c81d4ecfaed54e8aef9c1a8a90ac83c9f5c49090
F test/where4.test e9b9e2f2f98f00379e6031db6a6fca29bae782a2
F test/where5.test fdf66f96d29a064b63eb543e28da4dfdccd81ad2
F test/where6.test 5da5a98cec820d488e82708301b96cb8c18a258b
F test/where7.test aa4cfcd6f66e2a4ef87b6717327325bf4d547502
F test/where8.test a6c740fd286d7883e274e17b6230a9d672a7ab1f
F test/where8m.test da346596e19d54f0aba35ebade032a7c47d79739
F test/where9.test 7ee38c3fd67e76789a6ec769f62f6433d3d4a5cf
F test/where9.test 24f19ad14bb1b831564ced5273e681e495662848
F test/whereA.test 24c234263c8fe358f079d5e57d884fb569d2da0a
F test/whereB.test 0def95db3bdec220a731c7e4bec5930327c1d8c5
F test/wherelimit.test 5e9fd41e79bb2b2d588ed999d641d9c965619b31
@ -908,14 +909,14 @@ F tool/speedtest2.tcl ee2149167303ba8e95af97873c575c3e0fab58ff
F tool/speedtest8.c 2902c46588c40b55661e471d7a86e4dd71a18224
F tool/speedtest8inst1.c 293327bc76823f473684d589a8160bde1f52c14e
F tool/vdbe-compress.tcl d70ea6d8a19e3571d7ab8c9b75cba86d1173ff0f
P e64e1453a9c204d93de1af92dc0b3ca26762b024 8063197ef141c0c62ba710efdd2b3421fbee4e5d
R 69d3f0356b4d8f9e9f40d56c45da6c25
P 2f94d4623f9aae1b5bc7041bd85f4e3a7462c60e a2a9f6401c927f6259cda3ba35219cabef24e84d
R 654ce4e6cf2cefef95b0b26439b60214
U drh
Z 9ed074a22966ce70581904f84a2ffc62
Z 53e699a32a3e2a35635c3c7b5d97adbf
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (Darwin)
iEYEARECAAYFAk1LkwcACgkQoxKgR168RlE5awCdFnaZrUhXoj6KrFZElnyy4f9M
kbMAn19H8xD5tiM5UH35kU9mL5D0eNXv
=9S5i
iEYEARECAAYFAk1LnnwACgkQoxKgR168RlGb5gCdHxqynC2kEpWU39CHtpPLNzYl
tuEAnRuLHTKqjeTXUQlltmCERn2tuJ1n
=tbOv
-----END PGP SIGNATURE-----

View File

@ -1 +1 @@
2f94d4623f9aae1b5bc7041bd85f4e3a7462c60e
499edcbc8ab70fcf35431d4e672c68dbcb6c5aad

View File

@ -1082,6 +1082,8 @@ int sqlite3ValueFromExpr(
pVal->r = (double)-1 * pVal->r;
sqlite3ValueApplyAffinity(pVal, affinity, enc);
}
}else if( op==TK_NULL ){
pVal = sqlite3ValueNew(db);
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
else if( op==TK_BLOB ){

View File

@ -117,6 +117,7 @@ struct WhereTerm {
#define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
#define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
#define TERM_OR_OK 0x40 /* Used during OR-clause processing */
#define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */
/*
** An instance of the following structure holds all information about a
@ -210,6 +211,7 @@ struct WhereCost {
#define WO_ISNULL 0x080
#define WO_OR 0x100 /* Two or more OR-connected terms */
#define WO_AND 0x200 /* Two or more AND-connected terms */
#define WO_NOOP 0x800 /* This term does not restrict search space */
#define WO_ALL 0xfff /* Mask of all possible WO_* values */
#define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
@ -1060,7 +1062,7 @@ static void exprAnalyzeOrTerm(
}else{
sqlite3ExprListDelete(db, pList);
}
pTerm->eOperator = 0; /* case 1 trumps case 2 */
pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */
}
}
}
@ -1324,6 +1326,42 @@ static void exprAnalyze(
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifdef SQLITE_ENABLE_STAT2
/* When sqlite_stat2 histogram data is available an operator of the
** form "x IS NOT NULL" can sometimes be evaluated more efficiently
** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
** virtual term of that form.
**
** Note that the virtual term must be tagged with TERM_VNULL. This
** TERM_VNULL tag will suppress the not-null check at the beginning
** of the loop. Without the TERM_VNULL flag, the not-null check at
** the start of the loop will prevent any results from being returned.
*/
if( pExpr->op==TK_NOTNULL && pExpr->pLeft->iColumn>=0 ){
Expr *pNewExpr;
Expr *pLeft = pExpr->pLeft;
int idxNew;
WhereTerm *pNewTerm;
pNewExpr = sqlite3PExpr(pParse, TK_GT,
sqlite3ExprDup(db, pLeft, 0),
sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);
idxNew = whereClauseInsert(pWC, pNewExpr,
TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
testcase( idxNew==0 );
pNewTerm = &pWC->a[idxNew];
pNewTerm->leftCursor = pLeft->iTable;
pNewTerm->u.leftColumn = pLeft->iColumn;
pNewTerm->eOperator = WO_GT;
pNewTerm->iParent = idxTerm;
pTerm = &pWC->a[idxTerm];
pTerm->nChild = 1;
pTerm->wtFlags |= TERM_COPIED;
pNewTerm->prereqAll = pTerm->prereqAll;
}
#endif /* SQLITE_ENABLE_STAT2 */
/* Prevent ON clause terms of a LEFT JOIN from being used to drive
** an index for tables to the left of the join.
*/
@ -2201,11 +2239,18 @@ static void bestVirtualIndex(
/*
** Argument pIdx is a pointer to an index structure that has an array of
** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
** stored in Index.aSample. The domain of values stored in said column
** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions.
** Region 0 contains all values smaller than the first sample value. Region
** 1 contains values larger than or equal to the value of the first sample,
** but smaller than the value of the second. And so on.
** stored in Index.aSample. These samples divide the domain of values stored
** the index into (SQLITE_INDEX_SAMPLES+1) regions.
** Region 0 contains all values less than the first sample value. Region
** 1 contains values between the first and second samples. Region 2 contains
** values between samples 2 and 3. And so on. Region SQLITE_INDEX_SAMPLES
** contains values larger than the last sample.
**
** If the index contains many duplicates of a single value, then it is
** possible that two or more adjacent samples can hold the same value.
** When that is the case, the smallest possible region code is returned
** when roundUp is false and the largest possible region code is returned
** when roundUp is true.
**
** If successful, this function determines which of the regions value
** pVal lies in, sets *piRegion to the region index (a value between 0
@ -2218,8 +2263,10 @@ static int whereRangeRegion(
Parse *pParse, /* Database connection */
Index *pIdx, /* Index to consider domain of */
sqlite3_value *pVal, /* Value to consider */
int roundUp, /* Return largest valid region if true */
int *piRegion /* OUT: Region of domain in which value lies */
){
assert( roundUp==0 || roundUp==1 );
if( ALWAYS(pVal) ){
IndexSample *aSample = pIdx->aSample;
int i = 0;
@ -2229,7 +2276,17 @@ static int whereRangeRegion(
double r = sqlite3_value_double(pVal);
for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
if( aSample[i].eType==SQLITE_NULL ) continue;
if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break;
if( aSample[i].eType>=SQLITE_TEXT ) break;
if( roundUp ){
if( aSample[i].u.r>r ) break;
}else{
if( aSample[i].u.r>=r ) break;
}
}
}else if( eType==SQLITE_NULL ){
i = 0;
if( roundUp ){
while( i<SQLITE_INDEX_SAMPLES && aSample[i].eType==SQLITE_NULL ) i++;
}
}else{
sqlite3 *db = pParse->db;
@ -2260,7 +2317,7 @@ static int whereRangeRegion(
n = sqlite3ValueBytes(pVal, pColl->enc);
for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
int r;
int c;
int eSampletype = aSample[i].eType;
if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
if( (eSampletype!=eType) ) break;
@ -2274,14 +2331,14 @@ static int whereRangeRegion(
assert( db->mallocFailed );
return SQLITE_NOMEM;
}
r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
sqlite3DbFree(db, zSample);
}else
#endif
{
r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
}
if( r>0 ) break;
if( c-roundUp>=0 ) break;
}
}
@ -2364,9 +2421,9 @@ static int valueFromExpr(
** constraints.
**
** In the absence of sqlite_stat2 ANALYZE data, each range inequality
** reduces the search space by 2/3rds. Hence a single constraint (x>?)
** results in a return of 33 and a range constraint (x>? AND x<?) results
** in a return of 11.
** reduces the search space by 3/4ths. Hence a single constraint (x>?)
** results in a return of 25 and a range constraint (x>? AND x<?) results
** in a return of 6.
*/
static int whereRangeScanEst(
Parse *pParse, /* Parsing & code generating context */
@ -2386,15 +2443,21 @@ static int whereRangeScanEst(
int iEst;
int iLower = 0;
int iUpper = SQLITE_INDEX_SAMPLES;
int roundUpUpper;
int roundUpLower;
u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
if( pLower ){
Expr *pExpr = pLower->pExpr->pRight;
rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal);
assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
roundUpLower = (pLower->eOperator==WO_GT) ?1:0;
}
if( rc==SQLITE_OK && pUpper ){
Expr *pExpr = pUpper->pExpr->pRight;
rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal);
assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
roundUpUpper = (pUpper->eOperator==WO_LE) ?1:0;
}
if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
@ -2402,28 +2465,29 @@ static int whereRangeScanEst(
sqlite3ValueFree(pUpperVal);
goto range_est_fallback;
}else if( pLowerVal==0 ){
rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper);
if( pLower ) iLower = iUpper/2;
}else if( pUpperVal==0 ){
rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower);
if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
}else{
rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper);
if( rc==SQLITE_OK ){
rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower);
}
}
WHERETRACE(("range scan regions: %d..%d\n", iLower, iUpper));
iEst = iUpper - iLower;
testcase( iEst==SQLITE_INDEX_SAMPLES );
assert( iEst<=SQLITE_INDEX_SAMPLES );
if( iEst<1 ){
iEst = 1;
*piEst = 50/SQLITE_INDEX_SAMPLES;
}else{
*piEst = (iEst*100)/SQLITE_INDEX_SAMPLES;
}
sqlite3ValueFree(pLowerVal);
sqlite3ValueFree(pUpperVal);
*piEst = (iEst * 100)/SQLITE_INDEX_SAMPLES;
return rc;
}
range_est_fallback:
@ -2433,22 +2497,151 @@ range_est_fallback:
UNUSED_PARAMETER(nEq);
#endif
assert( pLower || pUpper );
if( pLower && pUpper ){
*piEst = 11;
}else{
*piEst = 33;
}
*piEst = 100;
if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *piEst /= 4;
if( pUpper ) *piEst /= 4;
return rc;
}
#ifdef SQLITE_ENABLE_STAT2
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in
** the histogram data. This only works when x is the left-most
** column of an index and sqlite_stat2 histogram data is available
** for that index.
**
** Write the estimated row count into *pnRow and return SQLITE_OK.
** If unable to make an estimate, leave *pnRow unchanged and return
** non-zero.
**
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison. The error is stored
** in the pParse structure.
*/
int whereEqualScanEst(
Parse *pParse, /* Parsing & code generating context */
Index *p, /* The index whose left-most column is pTerm */
Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
double *pnRow /* Write the revised row estimate here */
){
sqlite3_value *pRhs = 0; /* VALUE on right-hand side of pTerm */
int iLower, iUpper; /* Range of histogram regions containing pRhs */
u8 aff; /* Column affinity */
int rc; /* Subfunction return code */
double nRowEst; /* New estimate of the number of rows */
assert( p->aSample!=0 );
aff = p->pTable->aCol[p->aiColumn[0]].affinity;
rc = valueFromExpr(pParse, pExpr, aff, &pRhs);
if( rc ) goto whereEqualScanEst_cancel;
if( pRhs==0 ) return SQLITE_NOTFOUND;
rc = whereRangeRegion(pParse, p, pRhs, 0, &iLower);
if( rc ) goto whereEqualScanEst_cancel;
rc = whereRangeRegion(pParse, p, pRhs, 1, &iUpper);
if( rc ) goto whereEqualScanEst_cancel;
WHERETRACE(("equality scan regions: %d..%d\n", iLower, iUpper));
if( iLower>=iUpper ){
nRowEst = p->aiRowEst[0]/(SQLITE_INDEX_SAMPLES*2);
if( nRowEst<*pnRow ) *pnRow = nRowEst;
}else{
nRowEst = (iUpper-iLower)*p->aiRowEst[0]/SQLITE_INDEX_SAMPLES;
*pnRow = nRowEst;
}
whereEqualScanEst_cancel:
sqlite3ValueFree(pRhs);
return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT2) */
#ifdef SQLITE_ENABLE_STAT2
/*
** Estimate the number of rows that will be returned based on
** an IN constraint where the right-hand side of the IN operator
** is a list of values. Example:
**
** WHERE x IN (1,2,3,4)
**
** Write the estimated row count into *pnRow and return SQLITE_OK.
** If unable to make an estimate, leave *pnRow unchanged and return
** non-zero.
**
** This routine can fail if it is unable to load a collating sequence
** required for string comparison, or if unable to allocate memory
** for a UTF conversion required for comparison. The error is stored
** in the pParse structure.
*/
int whereInScanEst(
Parse *pParse, /* Parsing & code generating context */
Index *p, /* The index whose left-most column is pTerm */
ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
double *pnRow /* Write the revised row estimate here */
){
sqlite3_value *pVal = 0; /* One value from list */
int iLower, iUpper; /* Range of histogram regions containing pRhs */
u8 aff; /* Column affinity */
int rc = SQLITE_OK; /* Subfunction return code */
double nRowEst; /* New estimate of the number of rows */
int nSpan = 0; /* Number of histogram regions spanned */
int nSingle = 0; /* Histogram regions hit by a single value */
int nNotFound = 0; /* Count of values that are not constants */
int i; /* Loop counter */
u8 aSpan[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions that are spanned */
u8 aSingle[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions hit once */
assert( p->aSample!=0 );
aff = p->pTable->aCol[p->aiColumn[0]].affinity;
memset(aSpan, 0, sizeof(aSpan));
memset(aSingle, 0, sizeof(aSingle));
for(i=0; i<pList->nExpr; i++){
sqlite3ValueFree(pVal);
rc = valueFromExpr(pParse, pList->a[i].pExpr, aff, &pVal);
if( rc ) break;
if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){
nNotFound++;
continue;
}
rc = whereRangeRegion(pParse, p, pVal, 0, &iLower);
if( rc ) break;
rc = whereRangeRegion(pParse, p, pVal, 1, &iUpper);
if( rc ) break;
if( iLower>=iUpper ){
aSingle[iLower] = 1;
}else{
assert( iLower>=0 && iUpper<=SQLITE_INDEX_SAMPLES );
while( iLower<iUpper ) aSpan[iLower++] = 1;
}
}
if( rc==SQLITE_OK ){
for(i=nSpan=0; i<=SQLITE_INDEX_SAMPLES; i++){
if( aSpan[i] ){
nSpan++;
}else if( aSingle[i] ){
nSingle++;
}
}
nRowEst = (nSpan*2+nSingle)*p->aiRowEst[0]/(2*SQLITE_INDEX_SAMPLES)
+ nNotFound*p->aiRowEst[1];
if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
*pnRow = nRowEst;
WHERETRACE(("IN row estimate: nSpan=%d, nSingle=%d, nNotFound=%d, est=%g\n",
nSpan, nSingle, nNotFound, nRowEst));
}
sqlite3ValueFree(pVal);
return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT2) */
/*
** Find the query plan for accessing a particular table. Write the
** Find the best query plan for accessing a particular table. Write the
** best query plan and its cost into the WhereCost object supplied as the
** last parameter.
**
** The lowest cost plan wins. The cost is an estimate of the amount of
** CPU and disk I/O need to process the request using the selected plan.
** CPU and disk I/O needed to process the requested result.
** Factors that influence cost include:
**
** * The estimated number of rows that will be retrieved. (The
@ -2467,7 +2660,7 @@ range_est_fallback:
**
** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
** in the SELECT statement, then no indexes are considered. However, the
** selected plan may still take advantage of the tables built-in rowid
** selected plan may still take advantage of the built-in rowid primary key
** index.
*/
static void bestBtreeIndex(
@ -2510,9 +2703,11 @@ static void bestBtreeIndex(
wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
eqTermMask = idxEqTermMask;
}else{
/* There is no INDEXED BY clause. Create a fake Index object to
** represent the primary key */
Index *pFirst; /* Any other index on the table */
/* There is no INDEXED BY clause. Create a fake Index object in local
** variable sPk to represent the rowid primary key index. Make this
** fake index the first in a chain of Index objects with all of the real
** indices to follow */
Index *pFirst; /* First of real indices on the table */
memset(&sPk, 0, sizeof(Index));
sPk.nColumn = 1;
sPk.aiColumn = &aiColumnPk;
@ -2523,6 +2718,8 @@ static void bestBtreeIndex(
aiRowEstPk[1] = 1;
pFirst = pSrc->pTab->pIndex;
if( pSrc->notIndexed==0 ){
/* The real indices of the table are only considered if the
** NOT INDEXED qualifier is omitted from the FROM clause */
sPk.pNext = pFirst;
}
pProbe = &sPk;
@ -2540,15 +2737,18 @@ static void bestBtreeIndex(
double cost; /* Cost of using pProbe */
double nRow; /* Estimated number of rows in result set */
int rev; /* True to scan in reverse order */
double nSearch; /* Estimated number of binary searches */
int wsFlags = 0;
Bitmask used = 0;
/* The following variables are populated based on the properties of
** scan being evaluated. They are then used to determine the expected
** index being evaluated. They are then used to determine the expected
** cost and number of rows returned.
**
** nEq:
** Number of equality terms that can be implemented using the index.
** In other words, the number of initial fields in the index that
** are used in == or IN or NOT NULL constraints of the WHERE clause.
**
** nInMul:
** The "in-multiplier". This is an estimate of how many seek operations
@ -2572,7 +2772,9 @@ static void bestBtreeIndex(
**
** bInEst:
** Set to true if there was at least one "x IN (SELECT ...)" term used
** in determining the value of nInMul.
** in determining the value of nInMul. Note that the RHS of the
** IN operator must be a SELECT, not a value list, for this variable
** to be true.
**
** estBound:
** An estimate on the amount of the table that must be searched. A
@ -2580,8 +2782,8 @@ static void bestBtreeIndex(
** might reduce this to a value less than 100 to indicate that only
** a fraction of the table needs searching. In the absence of
** sqlite_stat2 ANALYZE data, a single inequality reduces the search
** space to 1/3rd its original size. So an x>? constraint reduces
** estBound to 33. Two constraints (x>? AND x<?) reduce estBound to 11.
** space to 1/4rd its original size. So an x>? constraint reduces
** estBound to 25. Two constraints (x>? AND x<?) reduce estBound to 6.
**
** bSort:
** Boolean. True if there is an ORDER BY clause that will require an
@ -2589,25 +2791,31 @@ static void bestBtreeIndex(
** correctly order records).
**
** bLookup:
** Boolean. True if for each index entry visited a lookup on the
** corresponding table b-tree is required. This is always false
** for the rowid index. For other indexes, it is true unless all the
** columns of the table used by the SELECT statement are present in
** the index (such an index is sometimes described as a covering index).
** Boolean. True if a table lookup is required for each index entry
** visited. In other words, true if this is not a covering index.
** This is always false for the rowid primary key index of a table.
** For other indexes, it is true unless all the columns of the table
** used by the SELECT statement are present in the index (such an
** index is sometimes described as a covering index).
** For example, given the index on (a, b), the second of the following
** two queries requires table b-tree lookups, but the first does not.
** two queries requires table b-tree lookups in order to find the value
** of column c, but the first does not because columns a and b are
** both available in the index.
**
** SELECT a, b FROM tbl WHERE a = 1;
** SELECT a, b, c FROM tbl WHERE a = 1;
*/
int nEq;
int bInEst = 0;
int nInMul = 1;
int estBound = 100;
int nBound = 0; /* Number of range constraints seen */
int bSort = 0;
int bLookup = 0;
WhereTerm *pTerm; /* A single term of the WHERE clause */
int nEq; /* Number of == or IN terms matching index */
int bInEst = 0; /* True if "x IN (SELECT...)" seen */
int nInMul = 1; /* Number of distinct equalities to lookup */
int estBound = 100; /* Estimated reduction in search space */
int nBound = 0; /* Number of range constraints seen */
int bSort = 0; /* True if external sort required */
int bLookup = 0; /* True if not a covering index */
WhereTerm *pTerm; /* A single term of the WHERE clause */
#ifdef SQLITE_ENABLE_STAT2
WhereTerm *pFirstTerm = 0; /* First term matching the index */
#endif
/* Determine the values of nEq and nInMul */
for(nEq=0; nEq<pProbe->nColumn; nEq++){
@ -2619,14 +2827,19 @@ static void bestBtreeIndex(
Expr *pExpr = pTerm->pExpr;
wsFlags |= WHERE_COLUMN_IN;
if( ExprHasProperty(pExpr, EP_xIsSelect) ){
/* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */
nInMul *= 25;
bInEst = 1;
}else if( ALWAYS(pExpr->x.pList) ){
nInMul *= pExpr->x.pList->nExpr + 1;
}else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
/* "x IN (value, value, ...)" */
nInMul *= pExpr->x.pList->nExpr;
}
}else if( pTerm->eOperator & WO_ISNULL ){
wsFlags |= WHERE_COLUMN_NULL;
}
#ifdef SQLITE_ENABLE_STAT2
if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
#endif
used |= pTerm->prereqRight;
}
@ -2694,8 +2907,8 @@ static void bestBtreeIndex(
}
/*
** Estimate the number of rows of output. For an IN operator,
** do not let the estimate exceed half the rows in the table.
** Estimate the number of rows of output. For an "x IN (SELECT...)"
** constraint, do not let the estimate exceed half the rows in the table.
*/
nRow = (double)(aiRowEst[nEq] * nInMul);
if( bInEst && nRow*2>aiRowEst[0] ){
@ -2703,31 +2916,69 @@ static void bestBtreeIndex(
nInMul = (int)(nRow / aiRowEst[nEq]);
}
/* Assume constant cost to access a row and logarithmic cost to
** do a binary search. Hence, the initial cost is the number of output
** rows plus log2(table-size) times the number of binary searches.
#ifdef SQLITE_ENABLE_STAT2
/* If the constraint is of the form x=VALUE and histogram
** data is available for column x, then it might be possible
** to get a better estimate on the number of rows based on
** VALUE and how common that value is according to the histogram.
*/
cost = nRow + nInMul*estLog(aiRowEst[0]);
if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 ){
if( pFirstTerm->eOperator==WO_EQ ){
whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
}else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){
whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
}
}
#endif /* SQLITE_ENABLE_STAT2 */
/* Adjust the number of rows and the cost downward to reflect rows
** that are excluded by range constraints.
*/
nRow = (nRow * (double)estBound) / (double)100;
cost = (cost * (double)estBound) / (double)100;
if( nRow<1 ) nRow = 1;
/* Add in the estimated cost of sorting the result
/* Assume constant cost to advance from one row to the next and
** logarithmic cost to do a binary search. Hence, the initial cost
** is the number of output rows plus log2(table-size) times the
** number of binary searches.
**
** Because fan-out on tables is so much higher than the fan-out on
** indices (because table btrees contain only integer keys in non-leaf
** nodes) we weight the cost of a table binary search as 1/10th the
** cost of an index binary search.
*/
if( pIdx ){
if( bLookup ){
/* For an index lookup followed by a table lookup:
** nInMul index searches to find the start of each index range
** + nRow steps through the index
** + nRow table searches to lookup the table entry using the rowid
*/
nSearch = nInMul + nRow/10;
}else{
/* For a covering index:
** nInMul binary searches to find the initial entry
** + nRow steps through the index
*/
nSearch = nInMul;
}
}else{
/* For a rowid primary key lookup:
** nInMult binary searches to find the initial entry scaled by 1/10th
** + nRow steps through the table
*/
nSearch = nInMul/10;
}
cost = nRow + nSearch*estLog(aiRowEst[0]);
/* Add in the estimated cost of sorting the result. This cost is expanded
** by a fudge factor of 3.0 to account for the fact that a sorting step
** involves a write and is thus more expensive than a lookup step.
*/
if( bSort ){
cost += cost*estLog(cost);
cost += nRow*estLog(nRow)*(double)3;
}
/* If all information can be taken directly from the index, we avoid
** doing table lookups. This reduces the cost by half. (Not really -
** this needs to be fixed.)
*/
if( pIdx && bLookup==0 ){
cost /= (double)2;
}
/**** Cost of using this index has now been computed ****/
/* If there are additional constraints on this table that cannot
@ -2768,15 +3019,19 @@ static void bestBtreeIndex(
}
}else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
if( nSkipRange ){
/* Ignore the first nBound range constraints since the index
/* Ignore the first nSkipRange range constraints since the index
** has already accounted for these */
nSkipRange--;
}else{
/* Assume each additional range constraint reduces the result
** set size by a factor of 3 */
** set size by a factor of 3. Indexed range constraints reduce
** the search space by a larger factor: 4. We make indexed range
** more selective intentionally because of the subjective
** observation that indexed range constraints really are more
** selective in practice, on average. */
nRow /= 3;
}
}else{
}else if( pTerm->eOperator!=WO_NOOP ){
/* Any other expression lowers the output row count by half */
nRow /= 2;
}
@ -3614,7 +3869,9 @@ static Bitmask codeOneLoopStart(
if( pRangeStart ){
Expr *pRight = pRangeStart->pExpr->pRight;
sqlite3ExprCode(pParse, pRight, regBase+nEq);
sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){
sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
}
if( zStartAff ){
if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
/* Since the comparison is to be performed with no conversions
@ -3653,7 +3910,9 @@ static Bitmask codeOneLoopStart(
Expr *pRight = pRangeEnd->pExpr->pRight;
sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
sqlite3ExprCode(pParse, pRight, regBase+nEq);
sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){
sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
}
if( zEndAff ){
if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){
/* Since the comparison is to be performed with no conversions

View File

@ -154,22 +154,22 @@ do_eqp_test 2.6 {
do_eqp_test 2.7 {
SELECT * FROM t1 WHERE x BETWEEN -400 AND -300 AND y BETWEEN 100 AND 300
} {
0 0 0 {SEARCH TABLE t1 USING INDEX t1_x (x>? AND x<?) (~25 rows)}
0 0 0 {SEARCH TABLE t1 USING INDEX t1_x (x>? AND x<?) (~12 rows)}
}
do_eqp_test 2.8 {
SELECT * FROM t1 WHERE x BETWEEN 100 AND 300 AND y BETWEEN -400 AND -300
} {
0 0 0 {SEARCH TABLE t1 USING INDEX t1_y (y>? AND y<?) (~25 rows)}
0 0 0 {SEARCH TABLE t1 USING INDEX t1_y (y>? AND y<?) (~12 rows)}
}
do_eqp_test 2.9 {
SELECT * FROM t1 WHERE x BETWEEN 500 AND 100 AND y BETWEEN 100 AND 300
} {
0 0 0 {SEARCH TABLE t1 USING INDEX t1_x (x>? AND x<?) (~25 rows)}
0 0 0 {SEARCH TABLE t1 USING INDEX t1_x (x>? AND x<?) (~12 rows)}
}
do_eqp_test 2.10 {
SELECT * FROM t1 WHERE x BETWEEN 100 AND 300 AND y BETWEEN 500 AND 100
} {
0 0 0 {SEARCH TABLE t1 USING INDEX t1_y (y>? AND y<?) (~25 rows)}
0 0 0 {SEARCH TABLE t1 USING INDEX t1_y (y>? AND y<?) (~12 rows)}
}
do_test analyze2-3.1 {
@ -207,7 +207,7 @@ do_eqp_test 3.3 {
do_eqp_test 3.4 {
SELECT * FROM t1 WHERE x BETWEEN 100 AND 400 AND y BETWEEN 'a' AND 'h'
} {
0 0 0 {SEARCH TABLE t1 USING INDEX t1_x (x>? AND x<?) (~50 rows)}
0 0 0 {SEARCH TABLE t1 USING INDEX t1_x (x>? AND x<?) (~100 rows)}
}
do_eqp_test 3.5 {
SELECT * FROM t1 WHERE x<'a' AND y>'h'
@ -242,10 +242,12 @@ do_test analyze2-4.1 {
} {}
do_test analyze2-4.2 {
execsql {
PRAGMA automatic_index=OFF;
SELECT tbl,idx,group_concat(sample,' ')
FROM sqlite_stat2
WHERE idx = 't3a'
GROUP BY tbl,idx
GROUP BY tbl,idx;
PRAGMA automatic_index=ON;
}
} {t3 t3a {AfA bEj CEj dEj EEj fEj GEj hEj IEj jEj}}
do_test analyze2-4.3 {
@ -408,7 +410,7 @@ do_test analyze2-6.2.1 {
t5.a>1 AND t5.a<15 AND
t6.a>1
}
} {0 0 0 {SEARCH TABLE t5 USING COVERING INDEX t5i (a>? AND a<?) (~110000 rows)} 0 1 1 {SEARCH TABLE t6 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
} {0 0 0 {SEARCH TABLE t5 USING COVERING INDEX t5i (a>? AND a<?) (~60000 rows)} 0 1 1 {SEARCH TABLE t6 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze2-6.2.2 {
db cache flush
execsql ANALYZE
@ -416,14 +418,14 @@ do_test analyze2-6.2.2 {
t5.a>1 AND t5.a<15 AND
t6.a>1
}
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~2 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~1 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze2-6.2.3 {
sqlite3 db test.db
eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND
t5.a>1 AND t5.a<15 AND
t6.a>1
}
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~2 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~1 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze2-6.2.4 {
execsql {
PRAGMA writable_schema = 1;
@ -434,7 +436,7 @@ do_test analyze2-6.2.4 {
t5.a>1 AND t5.a<15 AND
t6.a>1
}
} {0 0 0 {SEARCH TABLE t5 USING COVERING INDEX t5i (a>? AND a<?) (~110000 rows)} 0 1 1 {SEARCH TABLE t6 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
} {0 0 0 {SEARCH TABLE t5 USING COVERING INDEX t5i (a>? AND a<?) (~60000 rows)} 0 1 1 {SEARCH TABLE t6 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze2-6.2.5 {
execsql {
PRAGMA writable_schema = 1;
@ -445,7 +447,7 @@ do_test analyze2-6.2.5 {
t5.a>1 AND t5.a<15 AND
t6.a>1
}
} {0 0 0 {SEARCH TABLE t5 USING COVERING INDEX t5i (a>? AND a<?) (~110000 rows)} 0 1 1 {SEARCH TABLE t6 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
} {0 0 0 {SEARCH TABLE t5 USING COVERING INDEX t5i (a>? AND a<?) (~60000 rows)} 0 1 1 {SEARCH TABLE t6 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze2-6.2.6 {
execsql {
PRAGMA writable_schema = 1;
@ -457,7 +459,7 @@ do_test analyze2-6.2.6 {
t5.a>1 AND t5.a<15 AND
t6.a>1
}
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~2 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~1 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
#--------------------------------------------------------------------
# These tests, analyze2-7.*, test that the sqlite_stat2 functionality
@ -501,7 +503,7 @@ ifcapable shared_cache {
t5.a>1 AND t5.a<15 AND
t6.a>1
} db1
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~2 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~1 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze2-7.6 {
incr_schema_cookie test.db
execsql { SELECT * FROM sqlite_master } db2
@ -509,7 +511,7 @@ ifcapable shared_cache {
t5.a>1 AND t5.a<15 AND
t6.a>1
} db2
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~2 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~1 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze2-7.7 {
incr_schema_cookie test.db
execsql { SELECT * FROM sqlite_master } db1
@ -517,7 +519,7 @@ ifcapable shared_cache {
t5.a>1 AND t5.a<15 AND
t6.a>1
} db1
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~2 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~1 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze2-7.8 {
execsql { DELETE FROM sqlite_stat2 } db2
@ -526,14 +528,14 @@ ifcapable shared_cache {
t5.a>1 AND t5.a<15 AND
t6.a>1
} db1
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~2 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~1 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze2-7.9 {
execsql { SELECT * FROM sqlite_master } db2
eqp { SELECT * FROM t5,t6 WHERE t5.rowid=t6.rowid AND
t5.a>1 AND t5.a<15 AND
t6.a>1
} db2
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~2 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
} {0 0 1 {SEARCH TABLE t6 USING COVERING INDEX t6i (a>?) (~1 rows)} 0 1 0 {SEARCH TABLE t5 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze2-7.10 {
incr_schema_cookie test.db
@ -542,7 +544,7 @@ ifcapable shared_cache {
t5.a>1 AND t5.a<15 AND
t6.a>1
} db1
} {0 0 0 {SEARCH TABLE t5 USING COVERING INDEX t5i (a>? AND a<?) (~2 rows)} 0 1 1 {SEARCH TABLE t6 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
} {0 0 0 {SEARCH TABLE t5 USING COVERING INDEX t5i (a>? AND a<?) (~1 rows)} 0 1 1 {SEARCH TABLE t6 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
db1 close
db2 close

View File

@ -248,7 +248,7 @@ do_test analyze3-2.1 {
} {}
do_eqp_test analyze3-2.2 {
SELECT count(a) FROM t1 WHERE b LIKE 'a%'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?) (~55000 rows)}}
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?) (~30000 rows)}}
do_eqp_test analyze3-2.3 {
SELECT count(a) FROM t1 WHERE b LIKE '%a'
} {0 0 0 {SCAN TABLE t1 (~500000 rows)}}

194
test/analyze5.test Normal file
View File

@ -0,0 +1,194 @@
# 2011 January 19
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
#
# This file implements tests for SQLite library. The focus of the tests
# in this file is the use of the sqlite_stat2 histogram data on tables
# with many repeated values and only a few distinct values.
#
set testdir [file dirname $argv0]
source $testdir/tester.tcl
ifcapable !stat2 {
finish_test
return
}
set testprefix analyze5
proc eqp {sql {db db}} {
uplevel execsql [list "EXPLAIN QUERY PLAN $sql"] $db
}
unset -nocomplain i t u v w x y z
do_test analyze5-1.0 {
db eval {CREATE TABLE t1(t,u,v TEXT COLLATE nocase,w,x,y,z)}
for {set i 0} {$i < 1000} {incr i} {
set y [expr {$i>=25 && $i<=50}]
set z [expr {($i>=400) + ($i>=700) + ($i>=875)}]
set x $z
set w $z
set t [expr {$z+0.5}]
switch $z {
0 {set u "alpha"; unset x}
1 {set u "bravo"}
2 {set u "charlie"}
3 {set u "delta"; unset w}
}
if {$i%2} {set v $u} {set v [string toupper $u]}
db eval {INSERT INTO t1 VALUES($t,$u,$v,$w,$x,$y,$z)}
}
db eval {
CREATE INDEX t1t ON t1(t); -- 0.5, 1.5, 2.5, and 3.5
CREATE INDEX t1u ON t1(u); -- text
CREATE INDEX t1v ON t1(v); -- mixed case text
CREATE INDEX t1w ON t1(w); -- integers 0, 1, 2 and a few NULLs
CREATE INDEX t1x ON t1(x); -- integers 1, 2, 3 and many NULLs
CREATE INDEX t1y ON t1(y); -- integers 0 and very few 1s
CREATE INDEX t1z ON t1(z); -- integers 0, 1, 2, and 3
ANALYZE;
SELECT sample FROM sqlite_stat2 WHERE idx='t1u' ORDER BY sampleno;
}
} {alpha alpha alpha alpha bravo bravo bravo charlie charlie delta}
do_test analyze5-1.1 {
string tolower \
[db eval {SELECT sample from sqlite_stat2 WHERE idx='t1v' ORDER BY sampleno}]
} {alpha alpha alpha alpha bravo bravo bravo charlie charlie delta}
do_test analyze5-1.2 {
db eval {SELECT sample from sqlite_stat2 WHERE idx='t1w' ORDER BY sampleno}
} {{} 0 0 0 0 1 1 1 2 2}
do_test analyze5-1.3 {
db eval {SELECT sample from sqlite_stat2 WHERE idx='t1x' ORDER BY sampleno}
} {{} {} {} {} 1 1 1 2 2 3}
do_test analyze5-1.4 {
db eval {SELECT sample from sqlite_stat2 WHERE idx='t1y' ORDER BY sampleno}
} {0 0 0 0 0 0 0 0 0 0}
do_test analyze5-1.5 {
db eval {SELECT sample from sqlite_stat2 WHERE idx='t1z' ORDER BY sampleno}
} {0 0 0 0 1 1 1 2 2 3}
do_test analyze5-1.6 {
db eval {SELECT sample from sqlite_stat2 WHERE idx='t1t' ORDER BY sampleno}
} {0.5 0.5 0.5 0.5 1.5 1.5 1.5 2.5 2.5 3.5}
# Verify that range queries generate the correct row count estimates
#
foreach {testid where index rows} {
1 {z>=0 AND z<=0} t1z 400
2 {z>=1 AND z<=1} t1z 300
3 {z>=2 AND z<=2} t1z 200
4 {z>=3 AND z<=3} t1z 100
5 {z>=4 AND z<=4} t1z 50
6 {z>=-1 AND z<=-1} t1z 50
7 {z>1 AND z<3} t1z 200
8 {z>0 AND z<100} t1z 600
9 {z>=1 AND z<100} t1z 600
10 {z>1 AND z<100} t1z 300
11 {z>=2 AND z<100} t1z 300
12 {z>2 AND z<100} t1z 100
13 {z>=3 AND z<100} t1z 100
14 {z>3 AND z<100} t1z 50
15 {z>=4 AND z<100} t1z 50
16 {z>=-100 AND z<=-1} t1z 50
17 {z>=-100 AND z<=0} t1z 400
18 {z>=-100 AND z<0} t1z 50
19 {z>=-100 AND z<=1} t1z 700
20 {z>=-100 AND z<2} t1z 700
21 {z>=-100 AND z<=2} {} 111
22 {z>=-100 AND z<3} {} 111
31 {z>=0.0 AND z<=0.0} t1z 400
32 {z>=1.0 AND z<=1.0} t1z 300
33 {z>=2.0 AND z<=2.0} t1z 200
34 {z>=3.0 AND z<=3.0} t1z 100
35 {z>=4.0 AND z<=4.0} t1z 50
36 {z>=-1.0 AND z<=-1.0} t1z 50
37 {z>1.5 AND z<3.0} t1z 200
38 {z>0.5 AND z<100} t1z 600
39 {z>=1.0 AND z<100} t1z 600
40 {z>1.5 AND z<100} t1z 300
41 {z>=2.0 AND z<100} t1z 300
42 {z>2.1 AND z<100} t1z 100
43 {z>=3.0 AND z<100} t1z 100
44 {z>3.2 AND z<100} t1z 50
45 {z>=4.0 AND z<100} t1z 50
46 {z>=-100 AND z<=-1.0} t1z 50
47 {z>=-100 AND z<=0.0} t1z 400
48 {z>=-100 AND z<0.0} t1z 50
49 {z>=-100 AND z<=1.0} t1z 700
50 {z>=-100 AND z<2.0} t1z 700
51 {z>=-100 AND z<=2.0} {} 111
52 {z>=-100 AND z<3.0} {} 111
101 {z=-1} t1z 50
102 {z=0} t1z 400
103 {z=1} t1z 300
104 {z=2} t1z 200
105 {z=3} t1z 100
106 {z=4} t1z 50
107 {z=-10.0} t1z 50
108 {z=0.0} t1z 400
109 {z=1.0} t1z 300
110 {z=2.0} t1z 200
111 {z=3.0} t1z 100
112 {z=4.0} t1z 50
113 {z=1.5} t1z 50
114 {z=2.5} t1z 50
201 {z IN (-1)} t1z 50
202 {z IN (0)} t1z 400
203 {z IN (1)} t1z 300
204 {z IN (2)} t1z 200
205 {z IN (3)} t1z 100
206 {z IN (4)} t1z 50
207 {z IN (0.5)} t1z 50
208 {z IN (0,1)} t1z 700
209 {z IN (0,1,2)} {} 100
210 {z IN (0,1,2,3)} {} 100
211 {z IN (0,1,2,3,4,5)} {} 100
212 {z IN (1,2)} t1z 500
213 {z IN (2,3)} t1z 300
214 {z=3 OR z=2} t1z 300
215 {z IN (-1,3)} t1z 150
216 {z=-1 OR z=3} t1z 150
300 {y=0} {} 100
301 {y=1} t1y 50
302 {y=0.1} t1y 50
} {
# Verify that the expected index is used with the expected row count
do_test analyze5-1.${testid}a {
set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
set idx {}
regexp {INDEX (t1.) } $x all idx
regexp {~([0-9]+) rows} $x all nrow
list $idx $nrow
} [list $index $rows]
# Verify that the same result is achieved regardless of whether or not
# the index is used
do_test analyze5-1.${testid}b {
set w2 [string map {y +y z +z} $where]
set a1 [db eval "SELECT rowid FROM t1 NOT INDEXED WHERE $w2\
ORDER BY +rowid"]
set a2 [db eval "SELECT rowid FROM t1 WHERE $where ORDER BY +rowid"]
if {$a1==$a2} {
set res ok
} else {
set res "a1=\[$a1\] a2=\[$a2\]"
}
set res
} {ok}
}
finish_test

View File

@ -1379,7 +1379,7 @@ do_createtable_tests 4.10 {
{0 0 0 {SCAN TABLE t2 USING INDEX sqlite_autoindex_t2_1 (~1000000 rows)}}
3 "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE b=10 AND c>10"
{0 0 0 {SEARCH TABLE t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?) (~3 rows)}}
{0 0 0 {SEARCH TABLE t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?) (~2 rows)}}
}
# EVIDENCE-OF: R-45493-35653 A CHECK constraint may be attached to a

View File

@ -392,7 +392,7 @@ det 5.3.1 "SELECT a, b FROM t1 WHERE a=1" {
# (~1000000 rows)
do_execsql_test 5.4.0 {CREATE TABLE t2(c, d)}
det 5.4.1 "SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2" {
0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?) (~3 rows)}
0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?) (~2 rows)}
0 1 1 {SCAN TABLE t2 (~1000000 rows)}
}
@ -401,7 +401,7 @@ det 5.4.1 "SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2" {
# USING COVERING INDEX i2 (a=? AND b>?) (~3 rows) 0|1|0|SCAN TABLE t2
# (~1000000 rows)
det 5.5 "SELECT t1.*, t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2" {
0 0 1 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?) (~3 rows)}
0 0 1 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?) (~2 rows)}
0 1 0 {SCAN TABLE t2 (~1000000 rows)}
}

View File

@ -154,10 +154,10 @@ do_test indexedby-4.4 {
do_execsql_test indexedby-5.1 {
CREATE VIEW v2 AS SELECT * FROM t1 INDEXED BY i1 WHERE a > 5;
EXPLAIN QUERY PLAN SELECT * FROM v2
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?) (~330000 rows)}}
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?) (~250000 rows)}}
do_execsql_test indexedby-5.2 {
EXPLAIN QUERY PLAN SELECT * FROM v2 WHERE b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?) (~33000 rows)}}
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?) (~25000 rows)}}
do_test indexedby-5.3 {
execsql { DROP INDEX i1 }
catchsql { SELECT * FROM v2 }

View File

@ -707,32 +707,32 @@ ifcapable like_opt&&!icu {
INSERT INTO t10 VALUES(45,45,45,45,45,45);
}
count {
SELECT a FROM t10 WHERE b LIKE '12%' ORDER BY a;
SELECT a FROM t10 WHERE b LIKE '12%' ORDER BY +a;
}
} {12 123 scan 5 like 6}
do_test like-10.2 {
count {
SELECT a FROM t10 WHERE c LIKE '12%' ORDER BY a;
SELECT a FROM t10 WHERE c LIKE '12%' ORDER BY +a;
}
} {12 123 scan 5 like 6}
do_test like-10.3 {
count {
SELECT a FROM t10 WHERE d LIKE '12%' ORDER BY a;
SELECT a FROM t10 WHERE d LIKE '12%' ORDER BY +a;
}
} {12 123 scan 5 like 6}
do_test like-10.4 {
count {
SELECT a FROM t10 WHERE e LIKE '12%' ORDER BY a;
SELECT a FROM t10 WHERE e LIKE '12%' ORDER BY +a;
}
} {12 123 scan 5 like 6}
do_test like-10.5 {
count {
SELECT a FROM t10 WHERE f LIKE '12%' ORDER BY a;
SELECT a FROM t10 WHERE f LIKE '12%' ORDER BY +a;
}
} {12 123 scan 3 like 0}
do_test like-10.6 {
count {
SELECT a FROM t10 WHERE a LIKE '12%' ORDER BY a;
SELECT a FROM t10 WHERE a LIKE '12%' ORDER BY +a;
}
} {12 123 scan 5 like 6}
do_test like-10.10 {
@ -748,32 +748,32 @@ ifcapable like_opt&&!icu {
INSERT INTO t10b SELECT * FROM t10;
}
count {
SELECT a FROM t10b WHERE b GLOB '12*' ORDER BY a;
SELECT a FROM t10b WHERE b GLOB '12*' ORDER BY +a;
}
} {12 123 scan 5 like 6}
do_test like-10.11 {
count {
SELECT a FROM t10b WHERE c GLOB '12*' ORDER BY a;
SELECT a FROM t10b WHERE c GLOB '12*' ORDER BY +a;
}
} {12 123 scan 5 like 6}
do_test like-10.12 {
count {
SELECT a FROM t10b WHERE d GLOB '12*' ORDER BY a;
SELECT a FROM t10b WHERE d GLOB '12*' ORDER BY +a;
}
} {12 123 scan 5 like 6}
do_test like-10.13 {
count {
SELECT a FROM t10b WHERE e GLOB '12*' ORDER BY a;
SELECT a FROM t10b WHERE e GLOB '12*' ORDER BY +a;
}
} {12 123 scan 5 like 6}
do_test like-10.14 {
count {
SELECT a FROM t10b WHERE f GLOB '12*' ORDER BY a;
SELECT a FROM t10b WHERE f GLOB '12*' ORDER BY +a;
}
} {12 123 scan 3 like 0}
do_test like-10.15 {
count {
SELECT a FROM t10b WHERE a GLOB '12*' ORDER BY a;
SELECT a FROM t10b WHERE a GLOB '12*' ORDER BY +a;
}
} {12 123 scan 5 like 6}
}
@ -819,7 +819,7 @@ do_test like-11.3 {
queryplan {
PRAGMA case_sensitive_like=OFF;
CREATE INDEX t11b ON t11(b);
SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
}
} {abc abcd ABC ABCD sort {} t11b}
do_test like-11.4 {
@ -833,37 +833,37 @@ do_test like-11.5 {
PRAGMA case_sensitive_like=OFF;
DROP INDEX t11b;
CREATE INDEX t11bnc ON t11(b COLLATE nocase);
SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
}
} {abc abcd ABC ABCD sort {} t11bnc}
do_test like-11.6 {
queryplan {
CREATE INDEX t11bb ON t11(b COLLATE binary);
SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
}
} {abc abcd ABC ABCD sort {} t11bnc}
do_test like-11.7 {
queryplan {
PRAGMA case_sensitive_like=ON;
SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
}
} {abc abcd sort {} t11bb}
do_test like-11.8 {
queryplan {
PRAGMA case_sensitive_like=OFF;
SELECT b FROM t11 WHERE b GLOB 'abc*' ORDER BY a;
SELECT b FROM t11 WHERE b GLOB 'abc*' ORDER BY +a;
}
} {abc abcd sort {} t11bb}
do_test like-11.9 {
queryplan {
CREATE INDEX t11cnc ON t11(c COLLATE nocase);
CREATE INDEX t11cb ON t11(c COLLATE binary);
SELECT c FROM t11 WHERE c LIKE 'abc%' ORDER BY a;
SELECT c FROM t11 WHERE c LIKE 'abc%' ORDER BY +a;
}
} {abc abcd ABC ABCD sort {} t11cnc}
do_test like-11.10 {
queryplan {
SELECT c FROM t11 WHERE c GLOB 'abc*' ORDER BY a;
SELECT c FROM t11 WHERE c GLOB 'abc*' ORDER BY +a;
}
} {abc abcd sort {} t11cb}

View File

@ -52,6 +52,7 @@ do_test minmax3-1.0 {
INSERT INTO t1 VALUES('2', 'V', 'five');
INSERT INTO t1 VALUES('3', 'VI', 'six');
COMMIT;
PRAGMA automatic_index=OFF;
}
} {}
do_test minmax3-1.1.1 {

View File

@ -225,14 +225,14 @@ do_execsql_test where3-3.0 {
ANALYZE;
explain query plan SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y;
} {
0 0 0 {SCAN TABLE t302 (~0 rows)}
0 0 0 {SCAN TABLE t302 (~1 rows)}
0 1 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}
do_execsql_test where3-3.1 {
explain query plan
SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y;
} {
0 0 1 {SCAN TABLE t302 (~0 rows)}
0 0 1 {SCAN TABLE t302 (~1 rows)}
0 1 0 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}

View File

@ -472,7 +472,7 @@ ifcapable explain {
do_execsql_test where9-5.3 {
EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c>=31031 OR d IS NULL)
} {
0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>?) (~165000 rows)}
0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>?) (~125000 rows)}
}
}