Add the experimental mem5.c memory allocator. Allocate the content part
of cache pages separately from the header. (See check-ins (4495) and (4409)). (CVS 4789) FossilOrigin-Name: 669ece8c82bfa69add852589dd1211751cb26fb2
This commit is contained in:
parent
7663e36c40
commit
0d18020b80
5
main.mk
5
main.mk
@ -51,8 +51,8 @@ TCCX = $(TCC) $(OPTS) -I. -I$(TOP)/src
|
||||
LIBOBJ+= alter.o analyze.o attach.o auth.o btmutex.o btree.o build.o \
|
||||
callback.o complete.o date.o delete.o \
|
||||
expr.o fault.o func.o hash.o insert.o journal.o loadext.o \
|
||||
main.o malloc.o mem1.o mem2.o mem3.o mem4.o mutex.o mutex_os2.o \
|
||||
mutex_unix.o mutex_w32.o \
|
||||
main.o malloc.o mem1.o mem2.o mem3.o mem4.o mem5.o \
|
||||
mutex.o mutex_os2.o mutex_unix.o mutex_w32.o \
|
||||
opcodes.o os.o os_os2.o os_unix.o os_win.o \
|
||||
pager.o parse.o pragma.o prepare.o printf.o random.o \
|
||||
select.o table.o $(TCLOBJ) tokenize.o trigger.o \
|
||||
@ -109,6 +109,7 @@ SRC = \
|
||||
$(TOP)/src/mem2.c \
|
||||
$(TOP)/src/mem3.c \
|
||||
$(TOP)/src/mem4.c \
|
||||
$(TOP)/src/mem5.c \
|
||||
$(TOP)/src/mutex.c \
|
||||
$(TOP)/src/mutex.h \
|
||||
$(TOP)/src/mutex_os2.c \
|
||||
|
25
manifest
25
manifest
@ -1,5 +1,5 @@
|
||||
C Fix\sa\stypo\sin\sa\scomment\sused\sto\sgenerate\sdocumentation.\s(CVS\s4788)
|
||||
D 2008-02-14T23:24:16
|
||||
C Add\sthe\sexperimental\smem5.c\smemory\sallocator.\s\sAllocate\sthe\scontent\spart\nof\scache\spages\sseparately\sfrom\sthe\sheader.\s\s(See\scheck-ins\s(4495)\sand\s(4409)).\s(CVS\s4789)
|
||||
D 2008-02-14T23:26:56
|
||||
F Makefile.arm-wince-mingw32ce-gcc ac5f7b2cef0cd850d6f755ba6ee4ab961b1fadf7
|
||||
F Makefile.in bc2b5df3e3d0d4b801b824b7ef6dec43812b049b
|
||||
F Makefile.linux-gcc d53183f4aa6a9192d249731c90dbdffbd2c68654
|
||||
@ -64,7 +64,7 @@ F ext/icu/README.txt 3b130aa66e7a681136f6add198b076a2f90d1e33
|
||||
F ext/icu/icu.c 12e763d288d23b5a49de37caa30737b971a2f1e2
|
||||
F install-sh 9d4de14ab9fb0facae2f48780b874848cbf2f895
|
||||
F ltmain.sh 56abb507100ed2d4261f6dd1653dec3cf4066387
|
||||
F main.mk ad3a30d15d88f7d7c58b3c5f6bcee6f917043887
|
||||
F main.mk e5649378177ca11d8a115a09e4284d14ffdc64d6
|
||||
F mkdll.sh 712e74f3efe08a6ba12b2945d018a29a89d7fe3b
|
||||
F mkextu.sh 416f9b7089d80e5590a29692c9d9280a10dbad9f
|
||||
F mkextw.sh 1a866b53637dab137191341cc875575a5ca110fb
|
||||
@ -105,10 +105,11 @@ F src/loadext.c d17a0f760d6866aacf5262f97d8efaaad379cdd7
|
||||
F src/main.c b4014b71979a58d6aa79549fdf87175ab7bdf1cc
|
||||
F src/malloc.c 60e392a4c12c839517f9b0db7b995f825444fb35
|
||||
F src/md5.c c5fdfa5c2593eaee2e32a5ce6c6927c986eaf217
|
||||
F src/mem1.c b15e107d51bdd4bcf410c18798ee48bee4768d4e
|
||||
F src/mem2.c ed0cb11ae43a3cc92bfb07172c2801956e94eaba
|
||||
F src/mem3.c 4ca65028bd5aabebc087cd29ab2ac1c10ce6a0d4
|
||||
F src/mem4.c 36ecd536a8b7acfe4cbf011353dae6ea68121e40
|
||||
F src/mem1.c 62a821702d3292809ca78e7c55c3ca04b05a3757
|
||||
F src/mem2.c 021eecbb210cfe90a8e7be9f04b01329d2c38851
|
||||
F src/mem3.c 979191678eb1aac0af7e5df9ab3897a07410ff4c
|
||||
F src/mem4.c 45c328ec6dcb7e8d319cb383615b5fe547ca5409
|
||||
F src/mem5.c addb464d2328ad5dcd38a127a19a10fb654e1349
|
||||
F src/mutex.c 3259f62c2429967aee6dc112117a6d2f499ef061
|
||||
F src/mutex.h 079fa6fe9da18ceb89e79012c010594c6672addb
|
||||
F src/mutex_os2.c 19ab15764736f13b94b4f70e53f77547cbddd47a
|
||||
@ -125,7 +126,7 @@ F src/os_unix.c e4daef7628f690fa2b188af3632fb18f96525946
|
||||
F src/os_unix.h 5768d56d28240d3fe4537fac08cc85e4fb52279e
|
||||
F src/os_win.c c832d528ea774c7094d887749d71884984c9034c
|
||||
F src/os_win.h 41a946bea10f61c158ce8645e7646b29d44f122b
|
||||
F src/pager.c 2ed81808091ce42ceb1cf209e4ce87922a0065c8
|
||||
F src/pager.c 1960545a871f9b57a80e485e5969ee045b7a00d8
|
||||
F src/pager.h 8174615ffd14ccc2cad2b081b919a398fa95e3f9
|
||||
F src/parse.y 00f2698c8ae84f315be5e3f10b63c94f531fdd6d
|
||||
F src/pragma.c e3f39f8576234887ecd0c1de43dc51af5855930c
|
||||
@ -137,7 +138,7 @@ F src/server.c 087b92a39d883e3fa113cae259d64e4c7438bc96
|
||||
F src/shell.c ca06cb687c40a8bff6307b5fad41a0e86a0f8558
|
||||
F src/sqlite.h.in 74e71510ce5967333a36329212eca0833f6300bd
|
||||
F src/sqlite3ext.h a93f59cdee3638dc0c9c086f80df743a4e68c3cb
|
||||
F src/sqliteInt.h 822045362bdddd303a0b17aa09679ba735ffbaa1
|
||||
F src/sqliteInt.h c82511830758350ed4cedd0815add7cbb145e08d
|
||||
F src/sqliteLimit.h ee4430f88f69bf63527967bb35ca52af7b0ccb1e
|
||||
F src/table.c 46ccf9b7892a86f57420ae7bac69ecd5e72d26b5
|
||||
F src/tclsqlite.c 0d4483e37c6a1e87f80565e50d977df6dd2bf732
|
||||
@ -617,7 +618,7 @@ F www/tclsqlite.tcl 8be95ee6dba05eabcd27a9d91331c803f2ce2130
|
||||
F www/vdbe.tcl 87a31ace769f20d3627a64fa1fade7fed47b90d0
|
||||
F www/version3.tcl 890248cf7b70e60c383b0e84d77d5132b3ead42b
|
||||
F www/whentouse.tcl fc46eae081251c3c181bd79c5faef8195d7991a5
|
||||
P aca2bee8662c3adaa47b3e70b1ef35347111f9eb
|
||||
R c4ed434e338bc60f75c5f2a5d865d5c6
|
||||
P 65e66dd81cd821364a2d95a9078d174fd9486288
|
||||
R 6ff5217afe1707040720fe27516205be
|
||||
U drh
|
||||
Z 746cf76953f3d41bcc6c125a1c516040
|
||||
Z 6ab02326c39954da923fa8b7ecd38a1d
|
||||
|
@ -1 +1 @@
|
||||
65e66dd81cd821364a2d95a9078d174fd9486288
|
||||
669ece8c82bfa69add852589dd1211751cb26fb2
|
23
src/mem1.c
23
src/mem1.c
@ -12,31 +12,16 @@
|
||||
** This file contains the C functions that implement a memory
|
||||
** allocation subsystem for use by SQLite.
|
||||
**
|
||||
** $Id: mem1.c,v 1.15 2008/02/13 18:25:27 danielk1977 Exp $
|
||||
** $Id: mem1.c,v 1.16 2008/02/14 23:26:56 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is the default. It is
|
||||
** used when no other memory allocator is specified using compile-time
|
||||
** macros.
|
||||
*/
|
||||
#if !defined(SQLITE_MEMDEBUG) && !defined(SQLITE_MEMORY_SIZE) \
|
||||
&& !defined(SQLITE_MMAP_HEAP_SIZE)
|
||||
|
||||
/*
|
||||
** We will eventually construct multiple memory allocation subsystems
|
||||
** suitable for use in various contexts:
|
||||
**
|
||||
** * Normal multi-threaded builds
|
||||
** * Normal single-threaded builds
|
||||
** * Debugging builds
|
||||
**
|
||||
** This initial version is suitable for use in normal multi-threaded
|
||||
** builds. We envision that alternative versions will be stored in
|
||||
** separate source files. #ifdefs will be used to select the code from
|
||||
** one of the various memN.c source files for use in any given build.
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#ifdef SQLITE_SYSTEM_MALLOC
|
||||
|
||||
/*
|
||||
** All of the static variables used by this module are collected
|
||||
@ -239,4 +224,4 @@ void *sqlite3_realloc(void *pPrior, int nBytes){
|
||||
return (void*)p;
|
||||
}
|
||||
|
||||
#endif /* !SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
|
||||
#endif /* SQLITE_SYSTEM_MALLOC */
|
||||
|
34
src/mem2.c
34
src/mem2.c
@ -12,38 +12,15 @@
|
||||
** This file contains the C functions that implement a memory
|
||||
** allocation subsystem for use by SQLite.
|
||||
**
|
||||
** $Id: mem2.c,v 1.20 2008/02/13 18:25:27 danielk1977 Exp $
|
||||
** $Id: mem2.c,v 1.21 2008/02/14 23:26:56 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is used only if the
|
||||
** SQLITE_MEMDEBUG macro is defined and SQLITE_OMIT_MEMORY_ALLOCATION
|
||||
** is not defined.
|
||||
** SQLITE_MEMDEBUG macro is defined
|
||||
*/
|
||||
#if defined(SQLITE_MEMDEBUG)
|
||||
|
||||
/*
|
||||
** We will eventually construct multiple memory allocation subsystems
|
||||
** suitable for use in various contexts:
|
||||
**
|
||||
** * Normal multi-threaded builds
|
||||
** * Normal single-threaded builds
|
||||
** * Debugging builds
|
||||
**
|
||||
** This version is suitable for use in debugging builds.
|
||||
**
|
||||
** Features:
|
||||
**
|
||||
** * Every allocate has guards at both ends.
|
||||
** * New allocations are initialized with randomness
|
||||
** * Allocations are overwritten with randomness when freed
|
||||
** * Optional logs of malloc activity generated
|
||||
** * Summary of outstanding allocations with backtraces to the
|
||||
** point of allocation.
|
||||
** * The ability to simulate memory allocation failure
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
#include <stdio.h>
|
||||
#ifdef SQLITE_MEMDEBUG
|
||||
|
||||
/*
|
||||
** The backtrace functionality is only available with GLIBC
|
||||
@ -55,6 +32,7 @@
|
||||
# define backtrace(A,B) 0
|
||||
# define backtrace_symbols_fd(A,B,C)
|
||||
#endif
|
||||
#include <stdio.h>
|
||||
|
||||
/*
|
||||
** Each memory allocation looks like this:
|
||||
@ -477,4 +455,4 @@ int sqlite3_memdebug_malloc_count(){
|
||||
}
|
||||
|
||||
|
||||
#endif /* SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
|
||||
#endif /* SQLITE_MEMDEBUG */
|
||||
|
10
src/mem3.c
10
src/mem3.c
@ -20,19 +20,15 @@
|
||||
** This version of the memory allocation subsystem is used if
|
||||
** and only if SQLITE_MEMORY_SIZE is defined.
|
||||
**
|
||||
** $Id: mem3.c,v 1.10 2008/02/14 15:31:52 danielk1977 Exp $
|
||||
** $Id: mem3.c,v 1.11 2008/02/14 23:26:56 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is used only when
|
||||
** SQLITE_MEMORY_SIZE is defined.
|
||||
*/
|
||||
#if defined(SQLITE_MEMORY_SIZE)
|
||||
#include "sqliteInt.h"
|
||||
|
||||
#ifdef SQLITE_MEMDEBUG
|
||||
# error cannot define both SQLITE_MEMDEBUG and SQLITE_MEMORY_SIZE
|
||||
#endif
|
||||
#ifdef SQLITE_MEMORY_SIZE
|
||||
|
||||
/*
|
||||
** Maximum size (in Mem3Blocks) of a "small" chunk.
|
||||
|
13
src/mem4.c
13
src/mem4.c
@ -12,8 +12,9 @@
|
||||
** This file contains the C functions that implement a memory
|
||||
** allocation subsystem for use by SQLite.
|
||||
**
|
||||
** $Id: mem4.c,v 1.1 2007/11/29 18:36:49 drh Exp $
|
||||
** $Id: mem4.c,v 1.2 2008/02/14 23:26:56 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator attempts to obtain memory
|
||||
@ -28,12 +29,7 @@
|
||||
** to support. This module may choose to use less memory than requested.
|
||||
**
|
||||
*/
|
||||
#if defined(SQLITE_MMAP_HEAP_SIZE)
|
||||
|
||||
#if defined(SQLITE_MEMDEBUG) || defined(SQLITE_MEMORY_SIZE)
|
||||
# error cannot use SQLITE_MMAP_HEAP_SIZE with either SQLITE_MEMDEBUG \
|
||||
or SQLITE_MEMORY_SIZE
|
||||
#endif
|
||||
#ifdef SQLITE_MMAP_HEAP_SIZE
|
||||
|
||||
/*
|
||||
** This is a test version of the memory allocator that attempts to
|
||||
@ -43,7 +39,6 @@
|
||||
#include <sys/types.h>
|
||||
#include <sys/mman.h>
|
||||
#include <errno.h>
|
||||
#include "sqliteInt.h"
|
||||
#include <unistd.h>
|
||||
|
||||
|
||||
@ -395,4 +390,4 @@ void *sqlite3_realloc(void *pPrior, int nBytes){
|
||||
return (void*)p;
|
||||
}
|
||||
|
||||
#endif /* !SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
|
||||
#endif /* SQLITE_MMAP_HEAP_SIZE */
|
||||
|
662
src/mem5.c
Normal file
662
src/mem5.c
Normal file
@ -0,0 +1,662 @@
|
||||
/*
|
||||
** 2007 October 14
|
||||
**
|
||||
** The author disclaims copyright to this source code. In place of
|
||||
** a legal notice, here is a blessing:
|
||||
**
|
||||
** May you do good and not evil.
|
||||
** May you find forgiveness for yourself and forgive others.
|
||||
** May you share freely, never taking more than you give.
|
||||
**
|
||||
*************************************************************************
|
||||
** This file contains the C functions that implement a memory
|
||||
** allocation subsystem for use by SQLite.
|
||||
**
|
||||
** This version of the memory allocation subsystem omits all
|
||||
** use of malloc(). All dynamically allocatable memory is
|
||||
** contained in a static array, mem.aPool[]. The size of this
|
||||
** fixed memory pool is SQLITE_POW2_MEMORY_SIZE bytes.
|
||||
**
|
||||
** This version of the memory allocation subsystem is used if
|
||||
** and only if SQLITE_POW2_MEMORY_SIZE is defined.
|
||||
**
|
||||
** $Id: mem5.c,v 1.1 2008/02/14 23:26:56 drh Exp $
|
||||
*/
|
||||
#include "sqliteInt.h"
|
||||
|
||||
/*
|
||||
** This version of the memory allocator is used only when
|
||||
** SQLITE_POW2_MEMORY_SIZE is defined.
|
||||
*/
|
||||
#ifdef SQLITE_POW2_MEMORY_SIZE
|
||||
|
||||
/*
|
||||
** Maximum size (in Mem3Blocks) of a "small" chunk.
|
||||
*/
|
||||
#define MX_SMALL 10
|
||||
|
||||
|
||||
/*
|
||||
** Number of freelist hash slots
|
||||
*/
|
||||
#define N_HASH 61
|
||||
|
||||
/*
|
||||
** A memory allocation (also called a "chunk") consists of two or
|
||||
** more blocks where each block is 8 bytes. The first 8 bytes are
|
||||
** a header that is not returned to the user.
|
||||
**
|
||||
** A chunk is two or more blocks that is either checked out or
|
||||
** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
|
||||
** size of the allocation in blocks if the allocation is free.
|
||||
** The u.hdr.size4x&1 bit is true if the chunk is checked out and
|
||||
** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
|
||||
** is true if the previous chunk is checked out and false if the
|
||||
** previous chunk is free. The u.hdr.prevSize field is the size of
|
||||
** the previous chunk in blocks if the previous chunk is on the
|
||||
** freelist. If the previous chunk is checked out, then
|
||||
** u.hdr.prevSize can be part of the data for that chunk and should
|
||||
** not be read or written.
|
||||
**
|
||||
** We often identify a chunk by its index in mem.aPool[]. When
|
||||
** this is done, the chunk index refers to the second block of
|
||||
** the chunk. In this way, the first chunk has an index of 1.
|
||||
** A chunk index of 0 means "no such chunk" and is the equivalent
|
||||
** of a NULL pointer.
|
||||
**
|
||||
** The second block of free chunks is of the form u.list. The
|
||||
** two fields form a double-linked list of chunks of related sizes.
|
||||
** Pointers to the head of the list are stored in mem.aiSmall[]
|
||||
** for smaller chunks and mem.aiHash[] for larger chunks.
|
||||
**
|
||||
** The second block of a chunk is user data if the chunk is checked
|
||||
** out. If a chunk is checked out, the user data may extend into
|
||||
** the u.hdr.prevSize value of the following chunk.
|
||||
*/
|
||||
typedef struct Mem3Block Mem3Block;
|
||||
struct Mem3Block {
|
||||
union {
|
||||
struct {
|
||||
u32 prevSize; /* Size of previous chunk in Mem3Block elements */
|
||||
u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
|
||||
} hdr;
|
||||
struct {
|
||||
u32 next; /* Index in mem.aPool[] of next free chunk */
|
||||
u32 prev; /* Index in mem.aPool[] of previous free chunk */
|
||||
} list;
|
||||
} u;
|
||||
};
|
||||
|
||||
/*
|
||||
** All of the static variables used by this module are collected
|
||||
** into a single structure named "mem". This is to keep the
|
||||
** static variables organized and to reduce namespace pollution
|
||||
** when this module is combined with other in the amalgamation.
|
||||
*/
|
||||
static struct {
|
||||
/*
|
||||
** True if we are evaluating an out-of-memory callback.
|
||||
*/
|
||||
int alarmBusy;
|
||||
|
||||
/*
|
||||
** Mutex to control access to the memory allocation subsystem.
|
||||
*/
|
||||
sqlite3_mutex *mutex;
|
||||
|
||||
/*
|
||||
** The minimum amount of free space that we have seen.
|
||||
*/
|
||||
u32 mnMaster;
|
||||
|
||||
/*
|
||||
** iMaster is the index of the master chunk. Most new allocations
|
||||
** occur off of this chunk. szMaster is the size (in Mem3Blocks)
|
||||
** of the current master. iMaster is 0 if there is not master chunk.
|
||||
** The master chunk is not in either the aiHash[] or aiSmall[].
|
||||
*/
|
||||
u32 iMaster;
|
||||
u32 szMaster;
|
||||
|
||||
|
||||
u64 totalAlloc;
|
||||
u64 totalExcess;
|
||||
int nAlloc;
|
||||
|
||||
/*
|
||||
** Array of lists of free blocks according to the block size
|
||||
** for smaller chunks, or a hash on the block size for larger
|
||||
** chunks.
|
||||
*/
|
||||
u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
|
||||
u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
|
||||
|
||||
/*
|
||||
** Memory available for allocation
|
||||
*/
|
||||
Mem3Block aPool[SQLITE_POW2_MEMORY_SIZE/sizeof(Mem3Block)+2];
|
||||
} mem;
|
||||
|
||||
/*
|
||||
** Unlink the chunk at mem.aPool[i] from list it is currently
|
||||
** on. *pRoot is the list that i is a member of.
|
||||
*/
|
||||
static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
|
||||
u32 next = mem.aPool[i].u.list.next;
|
||||
u32 prev = mem.aPool[i].u.list.prev;
|
||||
assert( sqlite3_mutex_held(mem.mutex) );
|
||||
if( prev==0 ){
|
||||
*pRoot = next;
|
||||
}else{
|
||||
mem.aPool[prev].u.list.next = next;
|
||||
}
|
||||
if( next ){
|
||||
mem.aPool[next].u.list.prev = prev;
|
||||
}
|
||||
mem.aPool[i].u.list.next = 0;
|
||||
mem.aPool[i].u.list.prev = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Unlink the chunk at index i from
|
||||
** whatever list is currently a member of.
|
||||
*/
|
||||
static void memsys3Unlink(u32 i){
|
||||
u32 size, hash;
|
||||
assert( sqlite3_mutex_held(mem.mutex) );
|
||||
assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
|
||||
assert( i>=1 );
|
||||
size = mem.aPool[i-1].u.hdr.size4x/4;
|
||||
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
|
||||
assert( size>=2 );
|
||||
if( size <= MX_SMALL ){
|
||||
memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
|
||||
}else{
|
||||
hash = size % N_HASH;
|
||||
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Link the chunk at mem.aPool[i] so that is on the list rooted
|
||||
** at *pRoot.
|
||||
*/
|
||||
static void memsys3LinkIntoList(u32 i, u32 *pRoot){
|
||||
assert( sqlite3_mutex_held(mem.mutex) );
|
||||
mem.aPool[i].u.list.next = *pRoot;
|
||||
mem.aPool[i].u.list.prev = 0;
|
||||
if( *pRoot ){
|
||||
mem.aPool[*pRoot].u.list.prev = i;
|
||||
}
|
||||
*pRoot = i;
|
||||
}
|
||||
|
||||
/*
|
||||
** Link the chunk at index i into either the appropriate
|
||||
** small chunk list, or into the large chunk hash table.
|
||||
*/
|
||||
static void memsys3Link(u32 i){
|
||||
u32 size, hash;
|
||||
assert( sqlite3_mutex_held(mem.mutex) );
|
||||
assert( i>=1 );
|
||||
assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
|
||||
size = mem.aPool[i-1].u.hdr.size4x/4;
|
||||
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
|
||||
assert( size>=2 );
|
||||
if( size <= MX_SMALL ){
|
||||
memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
|
||||
}else{
|
||||
hash = size % N_HASH;
|
||||
memsys3LinkIntoList(i, &mem.aiHash[hash]);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
|
||||
**
|
||||
** Also: Initialize the memory allocation subsystem the first time
|
||||
** this routine is called.
|
||||
*/
|
||||
static void memsys3Enter(void){
|
||||
if( mem.mutex==0 ){
|
||||
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
|
||||
mem.aPool[0].u.hdr.size4x = SQLITE_POW2_MEMORY_SIZE/2 + 2;
|
||||
mem.aPool[SQLITE_POW2_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_POW2_MEMORY_SIZE/8;
|
||||
mem.aPool[SQLITE_POW2_MEMORY_SIZE/8].u.hdr.size4x = 1;
|
||||
mem.iMaster = 1;
|
||||
mem.szMaster = SQLITE_POW2_MEMORY_SIZE/8;
|
||||
mem.mnMaster = mem.szMaster;
|
||||
}
|
||||
sqlite3_mutex_enter(mem.mutex);
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the amount of memory currently checked out.
|
||||
*/
|
||||
sqlite3_int64 sqlite3_memory_used(void){
|
||||
sqlite3_int64 n;
|
||||
memsys3Enter();
|
||||
n = SQLITE_POW2_MEMORY_SIZE - mem.szMaster*8;
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
return n;
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the maximum amount of memory that has ever been
|
||||
** checked out since either the beginning of this process
|
||||
** or since the most recent reset.
|
||||
*/
|
||||
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
||||
sqlite3_int64 n;
|
||||
memsys3Enter();
|
||||
n = SQLITE_POW2_MEMORY_SIZE - mem.mnMaster*8;
|
||||
if( resetFlag ){
|
||||
mem.mnMaster = mem.szMaster;
|
||||
}
|
||||
printf("alloc-cnt=%d avg-size=%lld avg-excess=%lld\n",
|
||||
mem.nAlloc, mem.totalAlloc/mem.nAlloc, mem.totalExcess/mem.nAlloc);
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
return n;
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the alarm callback.
|
||||
**
|
||||
** This is a no-op for the static memory allocator. The purpose
|
||||
** of the memory alarm is to support sqlite3_soft_heap_limit().
|
||||
** But with this memory allocator, the soft_heap_limit is really
|
||||
** a hard limit that is fixed at SQLITE_POW2_MEMORY_SIZE.
|
||||
*/
|
||||
int sqlite3_memory_alarm(
|
||||
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
|
||||
void *pArg,
|
||||
sqlite3_int64 iThreshold
|
||||
){
|
||||
return SQLITE_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
** Called when we are unable to satisfy an allocation of nBytes.
|
||||
*/
|
||||
static void memsys3OutOfMemory(int nByte){
|
||||
if( !mem.alarmBusy ){
|
||||
mem.alarmBusy = 1;
|
||||
assert( sqlite3_mutex_held(mem.mutex) );
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
sqlite3_release_memory(nByte);
|
||||
sqlite3_mutex_enter(mem.mutex);
|
||||
mem.alarmBusy = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return the size of an outstanding allocation, in bytes. The
|
||||
** size returned omits the 8-byte header overhead. This only
|
||||
** works for chunks that are currently checked out.
|
||||
*/
|
||||
int sqlite3MallocSize(void *p){
|
||||
int iSize = 0;
|
||||
if( p ){
|
||||
Mem3Block *pBlock = (Mem3Block*)p;
|
||||
assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
|
||||
iSize = (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
|
||||
}
|
||||
return iSize;
|
||||
}
|
||||
|
||||
/*
|
||||
** Chunk i is a free chunk that has been unlinked. Adjust its
|
||||
** size parameters for check-out and return a pointer to the
|
||||
** user portion of the chunk.
|
||||
*/
|
||||
static void *memsys3Checkout(u32 i, int nBlock){
|
||||
u32 x;
|
||||
assert( sqlite3_mutex_held(mem.mutex) );
|
||||
assert( i>=1 );
|
||||
assert( mem.aPool[i-1].u.hdr.size4x/4==nBlock );
|
||||
assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
|
||||
x = mem.aPool[i-1].u.hdr.size4x;
|
||||
mem.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
|
||||
mem.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
|
||||
mem.aPool[i+nBlock-1].u.hdr.size4x |= 2;
|
||||
return &mem.aPool[i];
|
||||
}
|
||||
|
||||
/*
|
||||
** Carve a piece off of the end of the mem.iMaster free chunk.
|
||||
** Return a pointer to the new allocation. Or, if the master chunk
|
||||
** is not large enough, return 0.
|
||||
*/
|
||||
static void *memsys3FromMaster(int nBlock){
|
||||
assert( sqlite3_mutex_held(mem.mutex) );
|
||||
assert( mem.szMaster>=nBlock );
|
||||
if( nBlock>=mem.szMaster-1 ){
|
||||
/* Use the entire master */
|
||||
void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
|
||||
mem.iMaster = 0;
|
||||
mem.szMaster = 0;
|
||||
mem.mnMaster = 0;
|
||||
return p;
|
||||
}else{
|
||||
/* Split the master block. Return the tail. */
|
||||
u32 newi, x;
|
||||
newi = mem.iMaster + mem.szMaster - nBlock;
|
||||
assert( newi > mem.iMaster+1 );
|
||||
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = nBlock;
|
||||
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x |= 2;
|
||||
mem.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
|
||||
mem.szMaster -= nBlock;
|
||||
mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
|
||||
x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
|
||||
mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
|
||||
if( mem.szMaster < mem.mnMaster ){
|
||||
mem.mnMaster = mem.szMaster;
|
||||
}
|
||||
return (void*)&mem.aPool[newi];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** *pRoot is the head of a list of free chunks of the same size
|
||||
** or same size hash. In other words, *pRoot is an entry in either
|
||||
** mem.aiSmall[] or mem.aiHash[].
|
||||
**
|
||||
** This routine examines all entries on the given list and tries
|
||||
** to coalesce each entries with adjacent free chunks.
|
||||
**
|
||||
** If it sees a chunk that is larger than mem.iMaster, it replaces
|
||||
** the current mem.iMaster with the new larger chunk. In order for
|
||||
** this mem.iMaster replacement to work, the master chunk must be
|
||||
** linked into the hash tables. That is not the normal state of
|
||||
** affairs, of course. The calling routine must link the master
|
||||
** chunk before invoking this routine, then must unlink the (possibly
|
||||
** changed) master chunk once this routine has finished.
|
||||
*/
|
||||
static void memsys3Merge(u32 *pRoot){
|
||||
u32 iNext, prev, size, i, x;
|
||||
|
||||
assert( sqlite3_mutex_held(mem.mutex) );
|
||||
for(i=*pRoot; i>0; i=iNext){
|
||||
iNext = mem.aPool[i].u.list.next;
|
||||
size = mem.aPool[i-1].u.hdr.size4x;
|
||||
assert( (size&1)==0 );
|
||||
if( (size&2)==0 ){
|
||||
memsys3UnlinkFromList(i, pRoot);
|
||||
assert( i > mem.aPool[i-1].u.hdr.prevSize );
|
||||
prev = i - mem.aPool[i-1].u.hdr.prevSize;
|
||||
if( prev==iNext ){
|
||||
iNext = mem.aPool[prev].u.list.next;
|
||||
}
|
||||
memsys3Unlink(prev);
|
||||
size = i + size/4 - prev;
|
||||
x = mem.aPool[prev-1].u.hdr.size4x & 2;
|
||||
mem.aPool[prev-1].u.hdr.size4x = size*4 | x;
|
||||
mem.aPool[prev+size-1].u.hdr.prevSize = size;
|
||||
memsys3Link(prev);
|
||||
i = prev;
|
||||
}else{
|
||||
size /= 4;
|
||||
}
|
||||
if( size>mem.szMaster ){
|
||||
mem.iMaster = i;
|
||||
mem.szMaster = size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Return a block of memory of at least nBytes in size.
|
||||
** Return NULL if unable.
|
||||
*/
|
||||
static void *memsys3Malloc(int nByte){
|
||||
u32 i;
|
||||
int nBlock;
|
||||
int toFree;
|
||||
int x;
|
||||
|
||||
assert( sqlite3_mutex_held(mem.mutex) );
|
||||
assert( sizeof(Mem3Block)==8 );
|
||||
for(x=256; x<nByte; x *= 2){}
|
||||
mem.nAlloc++;
|
||||
mem.totalAlloc += x;
|
||||
mem.totalExcess += x - nByte;
|
||||
nByte = x;
|
||||
nBlock = (nByte + 11)/8;
|
||||
assert( nBlock >= 2 );
|
||||
|
||||
/* STEP 1:
|
||||
** Look for an entry of the correct size in either the small
|
||||
** chunk table or in the large chunk hash table. This is
|
||||
** successful most of the time (about 9 times out of 10).
|
||||
*/
|
||||
if( nBlock <= MX_SMALL ){
|
||||
i = mem.aiSmall[nBlock-2];
|
||||
if( i>0 ){
|
||||
memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
|
||||
return memsys3Checkout(i, nBlock);
|
||||
}
|
||||
}else{
|
||||
int hash = nBlock % N_HASH;
|
||||
for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
|
||||
if( mem.aPool[i-1].u.hdr.size4x/4==nBlock ){
|
||||
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
|
||||
return memsys3Checkout(i, nBlock);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* STEP 2:
|
||||
** Try to satisfy the allocation by carving a piece off of the end
|
||||
** of the master chunk. This step usually works if step 1 fails.
|
||||
*/
|
||||
if( mem.szMaster>=nBlock ){
|
||||
return memsys3FromMaster(nBlock);
|
||||
}
|
||||
|
||||
|
||||
/* STEP 3:
|
||||
** Loop through the entire memory pool. Coalesce adjacent free
|
||||
** chunks. Recompute the master chunk as the largest free chunk.
|
||||
** Then try again to satisfy the allocation by carving a piece off
|
||||
** of the end of the master chunk. This step happens very
|
||||
** rarely (we hope!)
|
||||
*/
|
||||
for(toFree=nBlock*16; toFree<SQLITE_POW2_MEMORY_SIZE*2; toFree *= 2){
|
||||
memsys3OutOfMemory(toFree);
|
||||
if( mem.iMaster ){
|
||||
memsys3Link(mem.iMaster);
|
||||
mem.iMaster = 0;
|
||||
mem.szMaster = 0;
|
||||
}
|
||||
for(i=0; i<N_HASH; i++){
|
||||
memsys3Merge(&mem.aiHash[i]);
|
||||
}
|
||||
for(i=0; i<MX_SMALL-1; i++){
|
||||
memsys3Merge(&mem.aiSmall[i]);
|
||||
}
|
||||
if( mem.szMaster ){
|
||||
memsys3Unlink(mem.iMaster);
|
||||
if( mem.szMaster>=nBlock ){
|
||||
return memsys3FromMaster(nBlock);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* If none of the above worked, then we fail. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free an outstanding memory allocation.
|
||||
*/
|
||||
void memsys3Free(void *pOld){
|
||||
Mem3Block *p = (Mem3Block*)pOld;
|
||||
int i;
|
||||
u32 size, x;
|
||||
assert( sqlite3_mutex_held(mem.mutex) );
|
||||
assert( p>mem.aPool && p<&mem.aPool[SQLITE_POW2_MEMORY_SIZE/8] );
|
||||
i = p - mem.aPool;
|
||||
assert( (mem.aPool[i-1].u.hdr.size4x&1)==1 );
|
||||
size = mem.aPool[i-1].u.hdr.size4x/4;
|
||||
assert( i+size<=SQLITE_POW2_MEMORY_SIZE/8+1 );
|
||||
mem.aPool[i-1].u.hdr.size4x &= ~1;
|
||||
mem.aPool[i+size-1].u.hdr.prevSize = size;
|
||||
mem.aPool[i+size-1].u.hdr.size4x &= ~2;
|
||||
memsys3Link(i);
|
||||
|
||||
/* Try to expand the master using the newly freed chunk */
|
||||
if( mem.iMaster ){
|
||||
while( (mem.aPool[mem.iMaster-1].u.hdr.size4x&2)==0 ){
|
||||
size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
|
||||
mem.iMaster -= size;
|
||||
mem.szMaster += size;
|
||||
memsys3Unlink(mem.iMaster);
|
||||
x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
|
||||
mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
|
||||
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
|
||||
}
|
||||
x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
|
||||
while( (mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x&1)==0 ){
|
||||
memsys3Unlink(mem.iMaster+mem.szMaster);
|
||||
mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x/4;
|
||||
mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
|
||||
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
** Allocate nBytes of memory
|
||||
*/
|
||||
void *sqlite3_malloc(int nBytes){
|
||||
sqlite3_int64 *p = 0;
|
||||
if( nBytes>0 ){
|
||||
memsys3Enter();
|
||||
p = memsys3Malloc(nBytes);
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
}
|
||||
return (void*)p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Free memory.
|
||||
*/
|
||||
void sqlite3_free(void *pPrior){
|
||||
if( pPrior==0 ){
|
||||
return;
|
||||
}
|
||||
assert( mem.mutex!=0 );
|
||||
sqlite3_mutex_enter(mem.mutex);
|
||||
memsys3Free(pPrior);
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
}
|
||||
|
||||
/*
|
||||
** Change the size of an existing memory allocation
|
||||
*/
|
||||
void *sqlite3_realloc(void *pPrior, int nBytes){
|
||||
int nOld;
|
||||
void *p;
|
||||
if( pPrior==0 ){
|
||||
return sqlite3_malloc(nBytes);
|
||||
}
|
||||
if( nBytes<=0 ){
|
||||
sqlite3_free(pPrior);
|
||||
return 0;
|
||||
}
|
||||
assert( mem.mutex!=0 );
|
||||
nOld = sqlite3MallocSize(pPrior);
|
||||
if( nBytes<=nOld && nBytes>=nOld-128 ){
|
||||
return pPrior;
|
||||
}
|
||||
sqlite3_mutex_enter(mem.mutex);
|
||||
p = memsys3Malloc(nBytes);
|
||||
if( p ){
|
||||
if( nOld<nBytes ){
|
||||
memcpy(p, pPrior, nOld);
|
||||
}else{
|
||||
memcpy(p, pPrior, nBytes);
|
||||
}
|
||||
memsys3Free(pPrior);
|
||||
}
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
return p;
|
||||
}
|
||||
|
||||
/*
|
||||
** Open the file indicated and write a log of all unfreed memory
|
||||
** allocations into that log.
|
||||
*/
|
||||
void sqlite3_memdebug_dump(const char *zFilename){
|
||||
#ifdef SQLITE_DEBUG
|
||||
FILE *out;
|
||||
int i, j;
|
||||
u32 size;
|
||||
if( zFilename==0 || zFilename[0]==0 ){
|
||||
out = stdout;
|
||||
}else{
|
||||
out = fopen(zFilename, "w");
|
||||
if( out==0 ){
|
||||
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
||||
zFilename);
|
||||
return;
|
||||
}
|
||||
}
|
||||
memsys3Enter();
|
||||
fprintf(out, "CHUNKS:\n");
|
||||
for(i=1; i<=SQLITE_POW2_MEMORY_SIZE/8; i+=size/4){
|
||||
size = mem.aPool[i-1].u.hdr.size4x;
|
||||
if( size/4<=1 ){
|
||||
fprintf(out, "%p size error\n", &mem.aPool[i]);
|
||||
assert( 0 );
|
||||
break;
|
||||
}
|
||||
if( (size&1)==0 && mem.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
|
||||
fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
|
||||
assert( 0 );
|
||||
break;
|
||||
}
|
||||
if( ((mem.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
|
||||
fprintf(out, "%p tail checkout bit is incorrect\n", &mem.aPool[i]);
|
||||
assert( 0 );
|
||||
break;
|
||||
}
|
||||
if( size&1 ){
|
||||
fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], (size/4)*8-8);
|
||||
}else{
|
||||
fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], (size/4)*8-8,
|
||||
i==mem.iMaster ? " **master**" : "");
|
||||
}
|
||||
}
|
||||
for(i=0; i<MX_SMALL-1; i++){
|
||||
if( mem.aiSmall[i]==0 ) continue;
|
||||
fprintf(out, "small(%2d):", i);
|
||||
for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
|
||||
fprintf(out, " %p(%d)", &mem.aPool[j],
|
||||
(mem.aPool[j-1].u.hdr.size4x/4)*8-8);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
for(i=0; i<N_HASH; i++){
|
||||
if( mem.aiHash[i]==0 ) continue;
|
||||
fprintf(out, "hash(%2d):", i);
|
||||
for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
|
||||
fprintf(out, " %p(%d)", &mem.aPool[j],
|
||||
(mem.aPool[j-1].u.hdr.size4x/4)*8-8);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fprintf(out, "master=%d\n", mem.iMaster);
|
||||
fprintf(out, "nowUsed=%d\n", SQLITE_POW2_MEMORY_SIZE - mem.szMaster*8);
|
||||
fprintf(out, "mxUsed=%d\n", SQLITE_POW2_MEMORY_SIZE - mem.mnMaster*8);
|
||||
sqlite3_mutex_leave(mem.mutex);
|
||||
if( out==stdout ){
|
||||
fflush(stdout);
|
||||
}else{
|
||||
fclose(out);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#endif /* !SQLITE_POW2_MEMORY_SIZE */
|
17
src/pager.c
17
src/pager.c
@ -18,7 +18,7 @@
|
||||
** file simultaneously, or one process from reading the database while
|
||||
** another is writing.
|
||||
**
|
||||
** @(#) $Id: pager.c,v 1.405 2008/02/02 20:47:38 drh Exp $
|
||||
** @(#) $Id: pager.c,v 1.406 2008/02/14 23:26:56 drh Exp $
|
||||
*/
|
||||
#ifndef SQLITE_OMIT_DISKIO
|
||||
#include "sqliteInt.h"
|
||||
@ -1209,6 +1209,7 @@ static void pager_reset(Pager *pPager){
|
||||
PAGER_INCR(sqlite3_pager_pgfree_count);
|
||||
pNext = pPg->pNextAll;
|
||||
lruListRemove(pPg);
|
||||
sqlite3_free(pPg->pData);
|
||||
sqlite3_free(pPg);
|
||||
}
|
||||
assert(pPager->lru.pFirst==0);
|
||||
@ -2539,6 +2540,7 @@ static void pager_truncate_cache(Pager *pPager){
|
||||
PAGER_INCR(sqlite3_pager_pgfree_count);
|
||||
unlinkPage(pPg);
|
||||
makeClean(pPg);
|
||||
sqlite3_free(pPg->pData);
|
||||
sqlite3_free(pPg);
|
||||
pPager->nPage--;
|
||||
}
|
||||
@ -3205,6 +3207,7 @@ int sqlite3PagerReleaseMemory(int nReq){
|
||||
);
|
||||
IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno));
|
||||
PAGER_INCR(sqlite3_pager_pgfree_count);
|
||||
sqlite3_free(pPg->pData);
|
||||
sqlite3_free(pPg);
|
||||
pPager->nPage--;
|
||||
}else{
|
||||
@ -3476,6 +3479,7 @@ static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
|
||||
|| MEMDB
|
||||
|| (pPager->lru.pFirstSynced==0 && pPager->doNotSync)
|
||||
){
|
||||
void *pData;
|
||||
if( pPager->nPage>=pPager->nHash ){
|
||||
pager_resize_hash_table(pPager,
|
||||
pPager->nHash<256 ? 256 : pPager->nHash*2);
|
||||
@ -3487,14 +3491,21 @@ static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
|
||||
pagerLeave(pPager);
|
||||
nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra
|
||||
+ MEMDB*sizeof(PgHistory);
|
||||
pPg = sqlite3_malloc( nByteHdr + pPager->pageSize );
|
||||
pPg = sqlite3_malloc( nByteHdr );
|
||||
if( pPg ){
|
||||
pData = sqlite3_malloc( pPager->pageSize );
|
||||
if( pData==0 ){
|
||||
sqlite3_free(pPg);
|
||||
pPg = 0;
|
||||
}
|
||||
}
|
||||
pagerEnter(pPager);
|
||||
if( pPg==0 ){
|
||||
rc = SQLITE_NOMEM;
|
||||
goto pager_allocate_out;
|
||||
}
|
||||
memset(pPg, 0, nByteHdr);
|
||||
pPg->pData = (void*)(nByteHdr + (char*)pPg);
|
||||
pPg->pData = pData;
|
||||
pPg->pPager = pPager;
|
||||
pPg->pNextAll = pPager->pAll;
|
||||
pPager->pAll = pPg;
|
||||
|
@ -11,7 +11,7 @@
|
||||
*************************************************************************
|
||||
** Internal interface definitions for SQLite.
|
||||
**
|
||||
** @(#) $Id: sqliteInt.h,v 1.661 2008/02/13 18:25:27 danielk1977 Exp $
|
||||
** @(#) $Id: sqliteInt.h,v 1.662 2008/02/14 23:26:56 drh Exp $
|
||||
*/
|
||||
#ifndef _SQLITEINT_H_
|
||||
#define _SQLITEINT_H_
|
||||
@ -117,6 +117,32 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/*
|
||||
** Exactly one of the following macros must be defined in order to
|
||||
** specify which memory allocation subsystem to use.
|
||||
**
|
||||
** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
|
||||
** SQLITE_MEMDEBUG // Debugging version of system malloc()
|
||||
** SQLITE_MEMORY_SIZE // internal allocator #1
|
||||
** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator
|
||||
** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator
|
||||
**
|
||||
** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
|
||||
** the default.
|
||||
*/
|
||||
#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
|
||||
defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
|
||||
defined(SQLITE_POW2_MEMORY_SIZE)>1
|
||||
# error "At most one of the following compile-time configuration options\
|
||||
is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
|
||||
SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
|
||||
#endif
|
||||
#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
|
||||
defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
|
||||
defined(SQLITE_POW2_MEMORY_SIZE)==0
|
||||
# define SQLITE_SYSTEM_MALLOC 1
|
||||
#endif
|
||||
|
||||
/*
|
||||
** We need to define _XOPEN_SOURCE as follows in order to enable
|
||||
** recursive mutexes on most unix systems. But Mac OS X is different.
|
||||
|
Loading…
Reference in New Issue
Block a user