Add the experimental mem5.c memory allocator. Allocate the content part

of cache pages separately from the header.  (See check-ins (4495) and (4409)). (CVS 4789)

FossilOrigin-Name: 669ece8c82bfa69add852589dd1211751cb26fb2
This commit is contained in:
drh 2008-02-14 23:26:56 +00:00
parent 7663e36c40
commit 0d18020b80
10 changed files with 737 additions and 82 deletions

View File

@ -51,8 +51,8 @@ TCCX = $(TCC) $(OPTS) -I. -I$(TOP)/src
LIBOBJ+= alter.o analyze.o attach.o auth.o btmutex.o btree.o build.o \
callback.o complete.o date.o delete.o \
expr.o fault.o func.o hash.o insert.o journal.o loadext.o \
main.o malloc.o mem1.o mem2.o mem3.o mem4.o mutex.o mutex_os2.o \
mutex_unix.o mutex_w32.o \
main.o malloc.o mem1.o mem2.o mem3.o mem4.o mem5.o \
mutex.o mutex_os2.o mutex_unix.o mutex_w32.o \
opcodes.o os.o os_os2.o os_unix.o os_win.o \
pager.o parse.o pragma.o prepare.o printf.o random.o \
select.o table.o $(TCLOBJ) tokenize.o trigger.o \
@ -109,6 +109,7 @@ SRC = \
$(TOP)/src/mem2.c \
$(TOP)/src/mem3.c \
$(TOP)/src/mem4.c \
$(TOP)/src/mem5.c \
$(TOP)/src/mutex.c \
$(TOP)/src/mutex.h \
$(TOP)/src/mutex_os2.c \

View File

@ -1,5 +1,5 @@
C Fix\sa\stypo\sin\sa\scomment\sused\sto\sgenerate\sdocumentation.\s(CVS\s4788)
D 2008-02-14T23:24:16
C Add\sthe\sexperimental\smem5.c\smemory\sallocator.\s\sAllocate\sthe\scontent\spart\nof\scache\spages\sseparately\sfrom\sthe\sheader.\s\s(See\scheck-ins\s(4495)\sand\s(4409)).\s(CVS\s4789)
D 2008-02-14T23:26:56
F Makefile.arm-wince-mingw32ce-gcc ac5f7b2cef0cd850d6f755ba6ee4ab961b1fadf7
F Makefile.in bc2b5df3e3d0d4b801b824b7ef6dec43812b049b
F Makefile.linux-gcc d53183f4aa6a9192d249731c90dbdffbd2c68654
@ -64,7 +64,7 @@ F ext/icu/README.txt 3b130aa66e7a681136f6add198b076a2f90d1e33
F ext/icu/icu.c 12e763d288d23b5a49de37caa30737b971a2f1e2
F install-sh 9d4de14ab9fb0facae2f48780b874848cbf2f895
F ltmain.sh 56abb507100ed2d4261f6dd1653dec3cf4066387
F main.mk ad3a30d15d88f7d7c58b3c5f6bcee6f917043887
F main.mk e5649378177ca11d8a115a09e4284d14ffdc64d6
F mkdll.sh 712e74f3efe08a6ba12b2945d018a29a89d7fe3b
F mkextu.sh 416f9b7089d80e5590a29692c9d9280a10dbad9f
F mkextw.sh 1a866b53637dab137191341cc875575a5ca110fb
@ -105,10 +105,11 @@ F src/loadext.c d17a0f760d6866aacf5262f97d8efaaad379cdd7
F src/main.c b4014b71979a58d6aa79549fdf87175ab7bdf1cc
F src/malloc.c 60e392a4c12c839517f9b0db7b995f825444fb35
F src/md5.c c5fdfa5c2593eaee2e32a5ce6c6927c986eaf217
F src/mem1.c b15e107d51bdd4bcf410c18798ee48bee4768d4e
F src/mem2.c ed0cb11ae43a3cc92bfb07172c2801956e94eaba
F src/mem3.c 4ca65028bd5aabebc087cd29ab2ac1c10ce6a0d4
F src/mem4.c 36ecd536a8b7acfe4cbf011353dae6ea68121e40
F src/mem1.c 62a821702d3292809ca78e7c55c3ca04b05a3757
F src/mem2.c 021eecbb210cfe90a8e7be9f04b01329d2c38851
F src/mem3.c 979191678eb1aac0af7e5df9ab3897a07410ff4c
F src/mem4.c 45c328ec6dcb7e8d319cb383615b5fe547ca5409
F src/mem5.c addb464d2328ad5dcd38a127a19a10fb654e1349
F src/mutex.c 3259f62c2429967aee6dc112117a6d2f499ef061
F src/mutex.h 079fa6fe9da18ceb89e79012c010594c6672addb
F src/mutex_os2.c 19ab15764736f13b94b4f70e53f77547cbddd47a
@ -125,7 +126,7 @@ F src/os_unix.c e4daef7628f690fa2b188af3632fb18f96525946
F src/os_unix.h 5768d56d28240d3fe4537fac08cc85e4fb52279e
F src/os_win.c c832d528ea774c7094d887749d71884984c9034c
F src/os_win.h 41a946bea10f61c158ce8645e7646b29d44f122b
F src/pager.c 2ed81808091ce42ceb1cf209e4ce87922a0065c8
F src/pager.c 1960545a871f9b57a80e485e5969ee045b7a00d8
F src/pager.h 8174615ffd14ccc2cad2b081b919a398fa95e3f9
F src/parse.y 00f2698c8ae84f315be5e3f10b63c94f531fdd6d
F src/pragma.c e3f39f8576234887ecd0c1de43dc51af5855930c
@ -137,7 +138,7 @@ F src/server.c 087b92a39d883e3fa113cae259d64e4c7438bc96
F src/shell.c ca06cb687c40a8bff6307b5fad41a0e86a0f8558
F src/sqlite.h.in 74e71510ce5967333a36329212eca0833f6300bd
F src/sqlite3ext.h a93f59cdee3638dc0c9c086f80df743a4e68c3cb
F src/sqliteInt.h 822045362bdddd303a0b17aa09679ba735ffbaa1
F src/sqliteInt.h c82511830758350ed4cedd0815add7cbb145e08d
F src/sqliteLimit.h ee4430f88f69bf63527967bb35ca52af7b0ccb1e
F src/table.c 46ccf9b7892a86f57420ae7bac69ecd5e72d26b5
F src/tclsqlite.c 0d4483e37c6a1e87f80565e50d977df6dd2bf732
@ -617,7 +618,7 @@ F www/tclsqlite.tcl 8be95ee6dba05eabcd27a9d91331c803f2ce2130
F www/vdbe.tcl 87a31ace769f20d3627a64fa1fade7fed47b90d0
F www/version3.tcl 890248cf7b70e60c383b0e84d77d5132b3ead42b
F www/whentouse.tcl fc46eae081251c3c181bd79c5faef8195d7991a5
P aca2bee8662c3adaa47b3e70b1ef35347111f9eb
R c4ed434e338bc60f75c5f2a5d865d5c6
P 65e66dd81cd821364a2d95a9078d174fd9486288
R 6ff5217afe1707040720fe27516205be
U drh
Z 746cf76953f3d41bcc6c125a1c516040
Z 6ab02326c39954da923fa8b7ecd38a1d

View File

@ -1 +1 @@
65e66dd81cd821364a2d95a9078d174fd9486288
669ece8c82bfa69add852589dd1211751cb26fb2

View File

@ -12,31 +12,16 @@
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
** $Id: mem1.c,v 1.15 2008/02/13 18:25:27 danielk1977 Exp $
** $Id: mem1.c,v 1.16 2008/02/14 23:26:56 drh Exp $
*/
#include "sqliteInt.h"
/*
** This version of the memory allocator is the default. It is
** used when no other memory allocator is specified using compile-time
** macros.
*/
#if !defined(SQLITE_MEMDEBUG) && !defined(SQLITE_MEMORY_SIZE) \
&& !defined(SQLITE_MMAP_HEAP_SIZE)
/*
** We will eventually construct multiple memory allocation subsystems
** suitable for use in various contexts:
**
** * Normal multi-threaded builds
** * Normal single-threaded builds
** * Debugging builds
**
** This initial version is suitable for use in normal multi-threaded
** builds. We envision that alternative versions will be stored in
** separate source files. #ifdefs will be used to select the code from
** one of the various memN.c source files for use in any given build.
*/
#include "sqliteInt.h"
#ifdef SQLITE_SYSTEM_MALLOC
/*
** All of the static variables used by this module are collected
@ -239,4 +224,4 @@ void *sqlite3_realloc(void *pPrior, int nBytes){
return (void*)p;
}
#endif /* !SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
#endif /* SQLITE_SYSTEM_MALLOC */

View File

@ -12,38 +12,15 @@
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
** $Id: mem2.c,v 1.20 2008/02/13 18:25:27 danielk1977 Exp $
** $Id: mem2.c,v 1.21 2008/02/14 23:26:56 drh Exp $
*/
#include "sqliteInt.h"
/*
** This version of the memory allocator is used only if the
** SQLITE_MEMDEBUG macro is defined and SQLITE_OMIT_MEMORY_ALLOCATION
** is not defined.
** SQLITE_MEMDEBUG macro is defined
*/
#if defined(SQLITE_MEMDEBUG)
/*
** We will eventually construct multiple memory allocation subsystems
** suitable for use in various contexts:
**
** * Normal multi-threaded builds
** * Normal single-threaded builds
** * Debugging builds
**
** This version is suitable for use in debugging builds.
**
** Features:
**
** * Every allocate has guards at both ends.
** * New allocations are initialized with randomness
** * Allocations are overwritten with randomness when freed
** * Optional logs of malloc activity generated
** * Summary of outstanding allocations with backtraces to the
** point of allocation.
** * The ability to simulate memory allocation failure
*/
#include "sqliteInt.h"
#include <stdio.h>
#ifdef SQLITE_MEMDEBUG
/*
** The backtrace functionality is only available with GLIBC
@ -55,6 +32,7 @@
# define backtrace(A,B) 0
# define backtrace_symbols_fd(A,B,C)
#endif
#include <stdio.h>
/*
** Each memory allocation looks like this:
@ -477,4 +455,4 @@ int sqlite3_memdebug_malloc_count(){
}
#endif /* SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
#endif /* SQLITE_MEMDEBUG */

View File

@ -20,19 +20,15 @@
** This version of the memory allocation subsystem is used if
** and only if SQLITE_MEMORY_SIZE is defined.
**
** $Id: mem3.c,v 1.10 2008/02/14 15:31:52 danielk1977 Exp $
** $Id: mem3.c,v 1.11 2008/02/14 23:26:56 drh Exp $
*/
#include "sqliteInt.h"
/*
** This version of the memory allocator is used only when
** SQLITE_MEMORY_SIZE is defined.
*/
#if defined(SQLITE_MEMORY_SIZE)
#include "sqliteInt.h"
#ifdef SQLITE_MEMDEBUG
# error cannot define both SQLITE_MEMDEBUG and SQLITE_MEMORY_SIZE
#endif
#ifdef SQLITE_MEMORY_SIZE
/*
** Maximum size (in Mem3Blocks) of a "small" chunk.

View File

@ -12,8 +12,9 @@
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
** $Id: mem4.c,v 1.1 2007/11/29 18:36:49 drh Exp $
** $Id: mem4.c,v 1.2 2008/02/14 23:26:56 drh Exp $
*/
#include "sqliteInt.h"
/*
** This version of the memory allocator attempts to obtain memory
@ -28,12 +29,7 @@
** to support. This module may choose to use less memory than requested.
**
*/
#if defined(SQLITE_MMAP_HEAP_SIZE)
#if defined(SQLITE_MEMDEBUG) || defined(SQLITE_MEMORY_SIZE)
# error cannot use SQLITE_MMAP_HEAP_SIZE with either SQLITE_MEMDEBUG \
or SQLITE_MEMORY_SIZE
#endif
#ifdef SQLITE_MMAP_HEAP_SIZE
/*
** This is a test version of the memory allocator that attempts to
@ -43,7 +39,6 @@
#include <sys/types.h>
#include <sys/mman.h>
#include <errno.h>
#include "sqliteInt.h"
#include <unistd.h>
@ -395,4 +390,4 @@ void *sqlite3_realloc(void *pPrior, int nBytes){
return (void*)p;
}
#endif /* !SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
#endif /* SQLITE_MMAP_HEAP_SIZE */

662
src/mem5.c Normal file
View File

@ -0,0 +1,662 @@
/*
** 2007 October 14
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.
**
** This version of the memory allocation subsystem omits all
** use of malloc(). All dynamically allocatable memory is
** contained in a static array, mem.aPool[]. The size of this
** fixed memory pool is SQLITE_POW2_MEMORY_SIZE bytes.
**
** This version of the memory allocation subsystem is used if
** and only if SQLITE_POW2_MEMORY_SIZE is defined.
**
** $Id: mem5.c,v 1.1 2008/02/14 23:26:56 drh Exp $
*/
#include "sqliteInt.h"
/*
** This version of the memory allocator is used only when
** SQLITE_POW2_MEMORY_SIZE is defined.
*/
#ifdef SQLITE_POW2_MEMORY_SIZE
/*
** Maximum size (in Mem3Blocks) of a "small" chunk.
*/
#define MX_SMALL 10
/*
** Number of freelist hash slots
*/
#define N_HASH 61
/*
** A memory allocation (also called a "chunk") consists of two or
** more blocks where each block is 8 bytes. The first 8 bytes are
** a header that is not returned to the user.
**
** A chunk is two or more blocks that is either checked out or
** free. The first block has format u.hdr. u.hdr.size4x is 4 times the
** size of the allocation in blocks if the allocation is free.
** The u.hdr.size4x&1 bit is true if the chunk is checked out and
** false if the chunk is on the freelist. The u.hdr.size4x&2 bit
** is true if the previous chunk is checked out and false if the
** previous chunk is free. The u.hdr.prevSize field is the size of
** the previous chunk in blocks if the previous chunk is on the
** freelist. If the previous chunk is checked out, then
** u.hdr.prevSize can be part of the data for that chunk and should
** not be read or written.
**
** We often identify a chunk by its index in mem.aPool[]. When
** this is done, the chunk index refers to the second block of
** the chunk. In this way, the first chunk has an index of 1.
** A chunk index of 0 means "no such chunk" and is the equivalent
** of a NULL pointer.
**
** The second block of free chunks is of the form u.list. The
** two fields form a double-linked list of chunks of related sizes.
** Pointers to the head of the list are stored in mem.aiSmall[]
** for smaller chunks and mem.aiHash[] for larger chunks.
**
** The second block of a chunk is user data if the chunk is checked
** out. If a chunk is checked out, the user data may extend into
** the u.hdr.prevSize value of the following chunk.
*/
typedef struct Mem3Block Mem3Block;
struct Mem3Block {
union {
struct {
u32 prevSize; /* Size of previous chunk in Mem3Block elements */
u32 size4x; /* 4x the size of current chunk in Mem3Block elements */
} hdr;
struct {
u32 next; /* Index in mem.aPool[] of next free chunk */
u32 prev; /* Index in mem.aPool[] of previous free chunk */
} list;
} u;
};
/*
** All of the static variables used by this module are collected
** into a single structure named "mem". This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct {
/*
** True if we are evaluating an out-of-memory callback.
*/
int alarmBusy;
/*
** Mutex to control access to the memory allocation subsystem.
*/
sqlite3_mutex *mutex;
/*
** The minimum amount of free space that we have seen.
*/
u32 mnMaster;
/*
** iMaster is the index of the master chunk. Most new allocations
** occur off of this chunk. szMaster is the size (in Mem3Blocks)
** of the current master. iMaster is 0 if there is not master chunk.
** The master chunk is not in either the aiHash[] or aiSmall[].
*/
u32 iMaster;
u32 szMaster;
u64 totalAlloc;
u64 totalExcess;
int nAlloc;
/*
** Array of lists of free blocks according to the block size
** for smaller chunks, or a hash on the block size for larger
** chunks.
*/
u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
/*
** Memory available for allocation
*/
Mem3Block aPool[SQLITE_POW2_MEMORY_SIZE/sizeof(Mem3Block)+2];
} mem;
/*
** Unlink the chunk at mem.aPool[i] from list it is currently
** on. *pRoot is the list that i is a member of.
*/
static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
u32 next = mem.aPool[i].u.list.next;
u32 prev = mem.aPool[i].u.list.prev;
assert( sqlite3_mutex_held(mem.mutex) );
if( prev==0 ){
*pRoot = next;
}else{
mem.aPool[prev].u.list.next = next;
}
if( next ){
mem.aPool[next].u.list.prev = prev;
}
mem.aPool[i].u.list.next = 0;
mem.aPool[i].u.list.prev = 0;
}
/*
** Unlink the chunk at index i from
** whatever list is currently a member of.
*/
static void memsys3Unlink(u32 i){
u32 size, hash;
assert( sqlite3_mutex_held(mem.mutex) );
assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
assert( i>=1 );
size = mem.aPool[i-1].u.hdr.size4x/4;
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
assert( size>=2 );
if( size <= MX_SMALL ){
memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
}else{
hash = size % N_HASH;
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
}
}
/*
** Link the chunk at mem.aPool[i] so that is on the list rooted
** at *pRoot.
*/
static void memsys3LinkIntoList(u32 i, u32 *pRoot){
assert( sqlite3_mutex_held(mem.mutex) );
mem.aPool[i].u.list.next = *pRoot;
mem.aPool[i].u.list.prev = 0;
if( *pRoot ){
mem.aPool[*pRoot].u.list.prev = i;
}
*pRoot = i;
}
/*
** Link the chunk at index i into either the appropriate
** small chunk list, or into the large chunk hash table.
*/
static void memsys3Link(u32 i){
u32 size, hash;
assert( sqlite3_mutex_held(mem.mutex) );
assert( i>=1 );
assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
size = mem.aPool[i-1].u.hdr.size4x/4;
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
assert( size>=2 );
if( size <= MX_SMALL ){
memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
}else{
hash = size % N_HASH;
memsys3LinkIntoList(i, &mem.aiHash[hash]);
}
}
/*
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
**
** Also: Initialize the memory allocation subsystem the first time
** this routine is called.
*/
static void memsys3Enter(void){
if( mem.mutex==0 ){
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
mem.aPool[0].u.hdr.size4x = SQLITE_POW2_MEMORY_SIZE/2 + 2;
mem.aPool[SQLITE_POW2_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_POW2_MEMORY_SIZE/8;
mem.aPool[SQLITE_POW2_MEMORY_SIZE/8].u.hdr.size4x = 1;
mem.iMaster = 1;
mem.szMaster = SQLITE_POW2_MEMORY_SIZE/8;
mem.mnMaster = mem.szMaster;
}
sqlite3_mutex_enter(mem.mutex);
}
/*
** Return the amount of memory currently checked out.
*/
sqlite3_int64 sqlite3_memory_used(void){
sqlite3_int64 n;
memsys3Enter();
n = SQLITE_POW2_MEMORY_SIZE - mem.szMaster*8;
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
sqlite3_int64 n;
memsys3Enter();
n = SQLITE_POW2_MEMORY_SIZE - mem.mnMaster*8;
if( resetFlag ){
mem.mnMaster = mem.szMaster;
}
printf("alloc-cnt=%d avg-size=%lld avg-excess=%lld\n",
mem.nAlloc, mem.totalAlloc/mem.nAlloc, mem.totalExcess/mem.nAlloc);
sqlite3_mutex_leave(mem.mutex);
return n;
}
/*
** Change the alarm callback.
**
** This is a no-op for the static memory allocator. The purpose
** of the memory alarm is to support sqlite3_soft_heap_limit().
** But with this memory allocator, the soft_heap_limit is really
** a hard limit that is fixed at SQLITE_POW2_MEMORY_SIZE.
*/
int sqlite3_memory_alarm(
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
void *pArg,
sqlite3_int64 iThreshold
){
return SQLITE_OK;
}
/*
** Called when we are unable to satisfy an allocation of nBytes.
*/
static void memsys3OutOfMemory(int nByte){
if( !mem.alarmBusy ){
mem.alarmBusy = 1;
assert( sqlite3_mutex_held(mem.mutex) );
sqlite3_mutex_leave(mem.mutex);
sqlite3_release_memory(nByte);
sqlite3_mutex_enter(mem.mutex);
mem.alarmBusy = 0;
}
}
/*
** Return the size of an outstanding allocation, in bytes. The
** size returned omits the 8-byte header overhead. This only
** works for chunks that are currently checked out.
*/
int sqlite3MallocSize(void *p){
int iSize = 0;
if( p ){
Mem3Block *pBlock = (Mem3Block*)p;
assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
iSize = (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
}
return iSize;
}
/*
** Chunk i is a free chunk that has been unlinked. Adjust its
** size parameters for check-out and return a pointer to the
** user portion of the chunk.
*/
static void *memsys3Checkout(u32 i, int nBlock){
u32 x;
assert( sqlite3_mutex_held(mem.mutex) );
assert( i>=1 );
assert( mem.aPool[i-1].u.hdr.size4x/4==nBlock );
assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
x = mem.aPool[i-1].u.hdr.size4x;
mem.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
mem.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
mem.aPool[i+nBlock-1].u.hdr.size4x |= 2;
return &mem.aPool[i];
}
/*
** Carve a piece off of the end of the mem.iMaster free chunk.
** Return a pointer to the new allocation. Or, if the master chunk
** is not large enough, return 0.
*/
static void *memsys3FromMaster(int nBlock){
assert( sqlite3_mutex_held(mem.mutex) );
assert( mem.szMaster>=nBlock );
if( nBlock>=mem.szMaster-1 ){
/* Use the entire master */
void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
mem.iMaster = 0;
mem.szMaster = 0;
mem.mnMaster = 0;
return p;
}else{
/* Split the master block. Return the tail. */
u32 newi, x;
newi = mem.iMaster + mem.szMaster - nBlock;
assert( newi > mem.iMaster+1 );
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = nBlock;
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x |= 2;
mem.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
mem.szMaster -= nBlock;
mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
if( mem.szMaster < mem.mnMaster ){
mem.mnMaster = mem.szMaster;
}
return (void*)&mem.aPool[newi];
}
}
/*
** *pRoot is the head of a list of free chunks of the same size
** or same size hash. In other words, *pRoot is an entry in either
** mem.aiSmall[] or mem.aiHash[].
**
** This routine examines all entries on the given list and tries
** to coalesce each entries with adjacent free chunks.
**
** If it sees a chunk that is larger than mem.iMaster, it replaces
** the current mem.iMaster with the new larger chunk. In order for
** this mem.iMaster replacement to work, the master chunk must be
** linked into the hash tables. That is not the normal state of
** affairs, of course. The calling routine must link the master
** chunk before invoking this routine, then must unlink the (possibly
** changed) master chunk once this routine has finished.
*/
static void memsys3Merge(u32 *pRoot){
u32 iNext, prev, size, i, x;
assert( sqlite3_mutex_held(mem.mutex) );
for(i=*pRoot; i>0; i=iNext){
iNext = mem.aPool[i].u.list.next;
size = mem.aPool[i-1].u.hdr.size4x;
assert( (size&1)==0 );
if( (size&2)==0 ){
memsys3UnlinkFromList(i, pRoot);
assert( i > mem.aPool[i-1].u.hdr.prevSize );
prev = i - mem.aPool[i-1].u.hdr.prevSize;
if( prev==iNext ){
iNext = mem.aPool[prev].u.list.next;
}
memsys3Unlink(prev);
size = i + size/4 - prev;
x = mem.aPool[prev-1].u.hdr.size4x & 2;
mem.aPool[prev-1].u.hdr.size4x = size*4 | x;
mem.aPool[prev+size-1].u.hdr.prevSize = size;
memsys3Link(prev);
i = prev;
}else{
size /= 4;
}
if( size>mem.szMaster ){
mem.iMaster = i;
mem.szMaster = size;
}
}
}
/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.
*/
static void *memsys3Malloc(int nByte){
u32 i;
int nBlock;
int toFree;
int x;
assert( sqlite3_mutex_held(mem.mutex) );
assert( sizeof(Mem3Block)==8 );
for(x=256; x<nByte; x *= 2){}
mem.nAlloc++;
mem.totalAlloc += x;
mem.totalExcess += x - nByte;
nByte = x;
nBlock = (nByte + 11)/8;
assert( nBlock >= 2 );
/* STEP 1:
** Look for an entry of the correct size in either the small
** chunk table or in the large chunk hash table. This is
** successful most of the time (about 9 times out of 10).
*/
if( nBlock <= MX_SMALL ){
i = mem.aiSmall[nBlock-2];
if( i>0 ){
memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
return memsys3Checkout(i, nBlock);
}
}else{
int hash = nBlock % N_HASH;
for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
if( mem.aPool[i-1].u.hdr.size4x/4==nBlock ){
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
return memsys3Checkout(i, nBlock);
}
}
}
/* STEP 2:
** Try to satisfy the allocation by carving a piece off of the end
** of the master chunk. This step usually works if step 1 fails.
*/
if( mem.szMaster>=nBlock ){
return memsys3FromMaster(nBlock);
}
/* STEP 3:
** Loop through the entire memory pool. Coalesce adjacent free
** chunks. Recompute the master chunk as the largest free chunk.
** Then try again to satisfy the allocation by carving a piece off
** of the end of the master chunk. This step happens very
** rarely (we hope!)
*/
for(toFree=nBlock*16; toFree<SQLITE_POW2_MEMORY_SIZE*2; toFree *= 2){
memsys3OutOfMemory(toFree);
if( mem.iMaster ){
memsys3Link(mem.iMaster);
mem.iMaster = 0;
mem.szMaster = 0;
}
for(i=0; i<N_HASH; i++){
memsys3Merge(&mem.aiHash[i]);
}
for(i=0; i<MX_SMALL-1; i++){
memsys3Merge(&mem.aiSmall[i]);
}
if( mem.szMaster ){
memsys3Unlink(mem.iMaster);
if( mem.szMaster>=nBlock ){
return memsys3FromMaster(nBlock);
}
}
}
/* If none of the above worked, then we fail. */
return 0;
}
/*
** Free an outstanding memory allocation.
*/
void memsys3Free(void *pOld){
Mem3Block *p = (Mem3Block*)pOld;
int i;
u32 size, x;
assert( sqlite3_mutex_held(mem.mutex) );
assert( p>mem.aPool && p<&mem.aPool[SQLITE_POW2_MEMORY_SIZE/8] );
i = p - mem.aPool;
assert( (mem.aPool[i-1].u.hdr.size4x&1)==1 );
size = mem.aPool[i-1].u.hdr.size4x/4;
assert( i+size<=SQLITE_POW2_MEMORY_SIZE/8+1 );
mem.aPool[i-1].u.hdr.size4x &= ~1;
mem.aPool[i+size-1].u.hdr.prevSize = size;
mem.aPool[i+size-1].u.hdr.size4x &= ~2;
memsys3Link(i);
/* Try to expand the master using the newly freed chunk */
if( mem.iMaster ){
while( (mem.aPool[mem.iMaster-1].u.hdr.size4x&2)==0 ){
size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
mem.iMaster -= size;
mem.szMaster += size;
memsys3Unlink(mem.iMaster);
x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
}
x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
while( (mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x&1)==0 ){
memsys3Unlink(mem.iMaster+mem.szMaster);
mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x/4;
mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
}
}
}
/*
** Allocate nBytes of memory
*/
void *sqlite3_malloc(int nBytes){
sqlite3_int64 *p = 0;
if( nBytes>0 ){
memsys3Enter();
p = memsys3Malloc(nBytes);
sqlite3_mutex_leave(mem.mutex);
}
return (void*)p;
}
/*
** Free memory.
*/
void sqlite3_free(void *pPrior){
if( pPrior==0 ){
return;
}
assert( mem.mutex!=0 );
sqlite3_mutex_enter(mem.mutex);
memsys3Free(pPrior);
sqlite3_mutex_leave(mem.mutex);
}
/*
** Change the size of an existing memory allocation
*/
void *sqlite3_realloc(void *pPrior, int nBytes){
int nOld;
void *p;
if( pPrior==0 ){
return sqlite3_malloc(nBytes);
}
if( nBytes<=0 ){
sqlite3_free(pPrior);
return 0;
}
assert( mem.mutex!=0 );
nOld = sqlite3MallocSize(pPrior);
if( nBytes<=nOld && nBytes>=nOld-128 ){
return pPrior;
}
sqlite3_mutex_enter(mem.mutex);
p = memsys3Malloc(nBytes);
if( p ){
if( nOld<nBytes ){
memcpy(p, pPrior, nOld);
}else{
memcpy(p, pPrior, nBytes);
}
memsys3Free(pPrior);
}
sqlite3_mutex_leave(mem.mutex);
return p;
}
/*
** Open the file indicated and write a log of all unfreed memory
** allocations into that log.
*/
void sqlite3_memdebug_dump(const char *zFilename){
#ifdef SQLITE_DEBUG
FILE *out;
int i, j;
u32 size;
if( zFilename==0 || zFilename[0]==0 ){
out = stdout;
}else{
out = fopen(zFilename, "w");
if( out==0 ){
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
zFilename);
return;
}
}
memsys3Enter();
fprintf(out, "CHUNKS:\n");
for(i=1; i<=SQLITE_POW2_MEMORY_SIZE/8; i+=size/4){
size = mem.aPool[i-1].u.hdr.size4x;
if( size/4<=1 ){
fprintf(out, "%p size error\n", &mem.aPool[i]);
assert( 0 );
break;
}
if( (size&1)==0 && mem.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
assert( 0 );
break;
}
if( ((mem.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
fprintf(out, "%p tail checkout bit is incorrect\n", &mem.aPool[i]);
assert( 0 );
break;
}
if( size&1 ){
fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], (size/4)*8-8);
}else{
fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], (size/4)*8-8,
i==mem.iMaster ? " **master**" : "");
}
}
for(i=0; i<MX_SMALL-1; i++){
if( mem.aiSmall[i]==0 ) continue;
fprintf(out, "small(%2d):", i);
for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
fprintf(out, " %p(%d)", &mem.aPool[j],
(mem.aPool[j-1].u.hdr.size4x/4)*8-8);
}
fprintf(out, "\n");
}
for(i=0; i<N_HASH; i++){
if( mem.aiHash[i]==0 ) continue;
fprintf(out, "hash(%2d):", i);
for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
fprintf(out, " %p(%d)", &mem.aPool[j],
(mem.aPool[j-1].u.hdr.size4x/4)*8-8);
}
fprintf(out, "\n");
}
fprintf(out, "master=%d\n", mem.iMaster);
fprintf(out, "nowUsed=%d\n", SQLITE_POW2_MEMORY_SIZE - mem.szMaster*8);
fprintf(out, "mxUsed=%d\n", SQLITE_POW2_MEMORY_SIZE - mem.mnMaster*8);
sqlite3_mutex_leave(mem.mutex);
if( out==stdout ){
fflush(stdout);
}else{
fclose(out);
}
#endif
}
#endif /* !SQLITE_POW2_MEMORY_SIZE */

View File

@ -18,7 +18,7 @@
** file simultaneously, or one process from reading the database while
** another is writing.
**
** @(#) $Id: pager.c,v 1.405 2008/02/02 20:47:38 drh Exp $
** @(#) $Id: pager.c,v 1.406 2008/02/14 23:26:56 drh Exp $
*/
#ifndef SQLITE_OMIT_DISKIO
#include "sqliteInt.h"
@ -1209,6 +1209,7 @@ static void pager_reset(Pager *pPager){
PAGER_INCR(sqlite3_pager_pgfree_count);
pNext = pPg->pNextAll;
lruListRemove(pPg);
sqlite3_free(pPg->pData);
sqlite3_free(pPg);
}
assert(pPager->lru.pFirst==0);
@ -2539,6 +2540,7 @@ static void pager_truncate_cache(Pager *pPager){
PAGER_INCR(sqlite3_pager_pgfree_count);
unlinkPage(pPg);
makeClean(pPg);
sqlite3_free(pPg->pData);
sqlite3_free(pPg);
pPager->nPage--;
}
@ -3205,6 +3207,7 @@ int sqlite3PagerReleaseMemory(int nReq){
);
IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno));
PAGER_INCR(sqlite3_pager_pgfree_count);
sqlite3_free(pPg->pData);
sqlite3_free(pPg);
pPager->nPage--;
}else{
@ -3476,6 +3479,7 @@ static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
|| MEMDB
|| (pPager->lru.pFirstSynced==0 && pPager->doNotSync)
){
void *pData;
if( pPager->nPage>=pPager->nHash ){
pager_resize_hash_table(pPager,
pPager->nHash<256 ? 256 : pPager->nHash*2);
@ -3487,14 +3491,21 @@ static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
pagerLeave(pPager);
nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra
+ MEMDB*sizeof(PgHistory);
pPg = sqlite3_malloc( nByteHdr + pPager->pageSize );
pPg = sqlite3_malloc( nByteHdr );
if( pPg ){
pData = sqlite3_malloc( pPager->pageSize );
if( pData==0 ){
sqlite3_free(pPg);
pPg = 0;
}
}
pagerEnter(pPager);
if( pPg==0 ){
rc = SQLITE_NOMEM;
goto pager_allocate_out;
}
memset(pPg, 0, nByteHdr);
pPg->pData = (void*)(nByteHdr + (char*)pPg);
pPg->pData = pData;
pPg->pPager = pPager;
pPg->pNextAll = pPager->pAll;
pPager->pAll = pPg;

View File

@ -11,7 +11,7 @@
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.661 2008/02/13 18:25:27 danielk1977 Exp $
** @(#) $Id: sqliteInt.h,v 1.662 2008/02/14 23:26:56 drh Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_
@ -117,6 +117,32 @@
#endif
#endif
/*
** Exactly one of the following macros must be defined in order to
** specify which memory allocation subsystem to use.
**
** SQLITE_SYSTEM_MALLOC // Use normal system malloc()
** SQLITE_MEMDEBUG // Debugging version of system malloc()
** SQLITE_MEMORY_SIZE // internal allocator #1
** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator
** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator
**
** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
** the default.
*/
#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
defined(SQLITE_POW2_MEMORY_SIZE)>1
# error "At most one of the following compile-time configuration options\
is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\
SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE"
#endif
#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\
defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\
defined(SQLITE_POW2_MEMORY_SIZE)==0
# define SQLITE_SYSTEM_MALLOC 1
#endif
/*
** We need to define _XOPEN_SOURCE as follows in order to enable
** recursive mutexes on most unix systems. But Mac OS X is different.