sqlite/src/utf.c

609 lines
17 KiB
C
Raw Normal View History

/*
** 2004 April 13
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used to translate between UTF-8,
** UTF-16, UTF-16BE, and UTF-16LE.
**
** $Id: utf.c,v 1.15 2004/05/31 18:51:58 drh Exp $
**
** Notes on UTF-8:
**
** Byte-0 Byte-1 Byte-2 Byte-3 Value
** 0xxxxxxx 00000000 00000000 0xxxxxxx
** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
**
**
** Notes on UTF-16: (with wwww+1==uuuuu)
**
** Word-0 Word-1 Value
** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
**
**
** BOM or Byte Order Mark:
** 0xff 0xfe little-endian utf-16 follows
** 0xfe 0xff big-endian utf-16 follows
**
**
** Handling of malformed strings:
**
** SQLite accepts and processes malformed strings without an error wherever
** possible. However this is not possible when converting between UTF-8 and
** UTF-16.
**
** When converting malformed UTF-8 strings to UTF-16, one instance of the
** replacement character U+FFFD for each byte that cannot be interpeted as
** part of a valid unicode character.
**
** When converting malformed UTF-16 strings to UTF-8, one instance of the
** replacement character U+FFFD for each pair of bytes that cannot be
** interpeted as part of a valid unicode character.
*/
#include <assert.h>
#include "sqliteInt.h"
typedef struct UtfString UtfString;
struct UtfString {
unsigned char *pZ; /* Raw string data */
int n; /* Allocated length of pZ in bytes */
int c; /* Number of pZ bytes already read or written */
};
/* TODO: Implement this macro in os.h. It should be 1 on big-endian
** machines, and 0 on little-endian.
*/
#define SQLITE_NATIVE_BIGENDIAN 0
#if SQLITE_NATIVE_BIGENDIAN == 1
#define BOM_BIGENDIAN 0x0000FFFE
#define BOM_LITTLEENDIAN 0x0000FEFF
#else
#define BOM_BIGENDIAN 0x0000FEFF
#define BOM_LITTLEENDIAN 0x0000FFFE
#endif
/*
** These two macros are used to interpret the first two bytes of the
** unsigned char array pZ as a 16-bit unsigned int. BE16() for a big-endian
** interpretation, LE16() for little-endian.
*/
#define BE16(pZ) (((u16)((pZ)[0])<<8) + (u16)((pZ)[1]))
#define LE16(pZ) (((u16)((pZ)[1])<<8) + (u16)((pZ)[0]))
/*
** READ_16 interprets the first two bytes of the unsigned char array pZ
** as a 16-bit unsigned int. If big_endian is non-zero the intepretation
** is big-endian, otherwise little-endian.
*/
#define READ_16(pZ,big_endian) (big_endian?BE16(pZ):LE16(pZ))
/*
** Read the BOM from the start of *pStr, if one is present. Return zero
** for little-endian, non-zero for big-endian. If no BOM is present, return
** the value of the parameter "big_endian".
**
** Return values:
** 1 -> big-endian string
** 0 -> little-endian string
*/
static int readUtf16Bom(UtfString *pStr, int big_endian){
/* The BOM must be the first thing read from the string */
assert( pStr->c==0 );
/* If the string data consists of 1 byte or less, the BOM will make no
** difference anyway. In this case just fall through to the default case
** and return the native byte-order for this machine.
**
** Otherwise, check the first 2 bytes of the string to see if a BOM is
** present.
*/
if( pStr->n>1 ){
u32 bom = BE16(pStr->pZ);
if( bom==BOM_BIGENDIAN ){
pStr->c = 2;
return 1;
}
if( bom==BOM_LITTLEENDIAN ){
pStr->c = 2;
return 0;
}
}
return big_endian;
}
/*
** zData is a UTF-16 encoded string, nData bytes in length. This routine
** checks if there is a byte-order mark at the start of zData. If no
** byte order mark is found 0 is returned. Otherwise TEXT_Utf16be or
** TEXT_Utf16le is returned, depending on whether The BOM indicates that
** the text is big-endian or little-endian.
*/
u8 sqlite3UtfReadBom(const void *zData, int nData){
if( nData<0 || nData>1 ){
u8 b1 = *(u8 *)zData;
u8 b2 = *(((u8 *)zData) + 1);
if( b1==0xFE && b2==0xFF ){
return TEXT_Utf16be;
}
if( b1==0xFF && b2==0xFE ){
return TEXT_Utf16le;
}
}
return 0;
}
/*
** Read a single unicode character from the UTF-8 encoded string *pStr. The
** value returned is a unicode scalar value. In the case of malformed
** strings, the unicode replacement character U+FFFD may be returned.
*/
static u32 readUtf8(UtfString *pStr){
struct Utf8TblRow {
u8 b1_mask;
u8 b1_masked_val;
u8 b1_value_mask;
int trailing_bytes;
};
static const struct Utf8TblRow utf8tbl[] = {
{ 0x80, 0x00, 0x7F, 0 },
{ 0xE0, 0xC0, 0x1F, 1 },
{ 0xF0, 0xE0, 0x0F, 2 },
{ 0xF8, 0xF0, 0x0E, 3 },
{ 0, 0, 0, 0}
};
u8 b1; /* First byte of the potentially multi-byte utf-8 character */
u32 ret = 0; /* Return value */
int ii;
struct Utf8TblRow const *pRow;
pRow = &(utf8tbl[0]);
b1 = pStr->pZ[pStr->c];
pStr->c++;
while( pRow->b1_mask && (b1&pRow->b1_mask)!=pRow->b1_masked_val ){
pRow++;
}
if( !pRow->b1_mask ){
return 0xFFFD;
}
ret = (u32)(b1&pRow->b1_value_mask);
for( ii=0; ii<pRow->trailing_bytes; ii++ ){
u8 b = pStr->pZ[pStr->c+ii];
if( (b&0xC0)!=0x80 ){
return 0xFFFD;
}
ret = (ret<<6) + (u32)(b&0x3F);
}
pStr->c += pRow->trailing_bytes;
return ret;
}
/*
** Write the unicode character 'code' to the string pStr using UTF-8
** encoding. SQLITE_NOMEM may be returned if sqlite3Malloc() fails.
*/
static int writeUtf8(UtfString *pStr, u32 code){
struct Utf8WriteTblRow {
u32 max_code;
int trailing_bytes;
u8 b1_and_mask;
u8 b1_or_mask;
};
static const struct Utf8WriteTblRow utf8tbl[] = {
{0x0000007F, 0, 0x7F, 0x00},
{0x000007FF, 1, 0xDF, 0xC0},
{0x0000FFFF, 2, 0xEF, 0xE0},
{0x0010FFFF, 3, 0xF7, 0xF0},
{0x00000000, 0, 0x00, 0x00}
};
const struct Utf8WriteTblRow *pRow = &utf8tbl[0];
while( code>pRow->max_code ){
assert( pRow->max_code );
pRow++;
}
/* Ensure there is enough room left in the output buffer to write
** this UTF-8 character.
*/
assert( (pStr->n-pStr->c)>=(pRow->trailing_bytes+1) );
/* Write the UTF-8 encoded character to pStr. All cases below are
** intentionally fall-through.
*/
switch( pRow->trailing_bytes ){
case 3:
pStr->pZ[pStr->c+3] = (((u8)code)&0x3F)|0x80;
code = code>>6;
case 2:
pStr->pZ[pStr->c+2] = (((u8)code)&0x3F)|0x80;
code = code>>6;
case 1:
pStr->pZ[pStr->c+1] = (((u8)code)&0x3F)|0x80;
code = code>>6;
case 0:
pStr->pZ[pStr->c] = (((u8)code)&(pRow->b1_and_mask))|(pRow->b1_or_mask);
}
pStr->c += (pRow->trailing_bytes + 1);
return 0;
}
/*
** Read a single unicode character from the UTF-16 encoded string *pStr. The
** value returned is a unicode scalar value. In the case of malformed
** strings, the unicode replacement character U+FFFD may be returned.
**
** If big_endian is true, the string is assumed to be UTF-16BE encoded.
** Otherwise, it is UTF-16LE encoded.
*/
static u32 readUtf16(UtfString *pStr, int big_endian){
u32 code_point; /* the first code-point in the character */
/* If there is only one byte of data left in the string, return the
** replacement character.
*/
if( (pStr->n-pStr->c)==1 ){
pStr->c++;
return (int)0xFFFD;
}
code_point = READ_16(&(pStr->pZ[pStr->c]), big_endian);
pStr->c += 2;
/* If this is a non-surrogate code-point, just cast it to an int and
** return the code-point value.
*/
if( code_point<0xD800 || code_point>0xE000 ){
return code_point;
}
/* If this is a trailing surrogate code-point, then the string is
** malformed; return the replacement character.
*/
if( code_point>0xDBFF ){
return 0xFFFD;
}
/* The code-point just read is a leading surrogate code-point. If their
** is not enough data left or the next code-point is not a trailing
** surrogate, return the replacement character.
*/
if( (pStr->n-pStr->c)>1 ){
u32 code_point2 = READ_16(&pStr->pZ[pStr->c], big_endian);
if( code_point2<0xDC00 || code_point>0xDFFF ){
return 0xFFFD;
}
pStr->c += 2;
return (
(((code_point&0x03C0)+0x0040)<<16) + /* uuuuu */
((code_point&0x003F)<<10) + /* xxxxxx */
(code_point2&0x03FF) /* yy yyyyyyyy */
);
}else{
return (int)0xFFFD;
}
/* not reached */
}
static int writeUtf16(UtfString *pStr, int code, int big_endian){
int bytes;
unsigned char *hi_byte;
unsigned char *lo_byte;
bytes = (code>0x0000FFFF?4:2);
/* Ensure there is enough room left in the output buffer to write
** this UTF-8 character.
*/
assert( (pStr->n-pStr->c)>=bytes );
/* Initialise hi_byte and lo_byte to point at the locations into which
** the MSB and LSB of the (first) 16-bit unicode code-point written for
** this character.
*/
hi_byte = (big_endian?&pStr->pZ[pStr->c]:&pStr->pZ[pStr->c+1]);
lo_byte = (big_endian?&pStr->pZ[pStr->c+1]:&pStr->pZ[pStr->c]);
if( bytes==2 ){
*hi_byte = (u8)((code&0x0000FF00)>>8);
*lo_byte = (u8)(code&0x000000FF);
}else{
u32 wrd;
wrd = ((((code&0x001F0000)-0x00010000)+(code&0x0000FC00))>>10)|0x0000D800;
*hi_byte = (u8)((wrd&0x0000FF00)>>8);
*lo_byte = (u8)(wrd&0x000000FF);
wrd = (code&0x000003FF)|0x0000DC00;
*(hi_byte+2) = (u8)((wrd&0x0000FF00)>>8);
*(lo_byte+2) = (u8)(wrd&0x000000FF);
}
pStr->c += bytes;
return 0;
}
/*
** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
** return the number of unicode characters in pZ up to (but not including)
** the first 0x00 byte. If nByte is not less than zero, return the
** number of unicode characters in the first nByte of pZ (or up to
** the first 0x00, whichever comes first).
*/
int sqlite3utf8CharLen(const char *pZ, int nByte){
UtfString str;
int ret = 0;
u32 code = 1;
str.pZ = (char *)pZ;
str.n = nByte;
str.c = 0;
while( (nByte<0 || str.c<str.n) && code!=0 ){
code = readUtf8(&str);
ret++;
}
if( code==0 ) ret--;
return ret;
}
/*
** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
** return the number of bytes up to (but not including), the first pair
** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
** then return the number of bytes in the first nChar unicode characters
** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
*/
int sqlite3utf16ByteLen(const void *pZ, int nChar){
if( nChar<0 ){
const unsigned char *pC1 = (unsigned char *)pZ;
const unsigned char *pC2 = (unsigned char *)pZ+1;
while( *pC1 || *pC2 ){
pC1 += 2;
pC2 += 2;
}
return pC1-(unsigned char *)pZ;
}else{
UtfString str;
u32 code = 1;
int big_endian;
int nRead = 0;
int ret;
str.pZ = (char *)pZ;
str.c = 0;
str.n = -1;
/* Check for a BOM. We just ignore it if there is one, it's only read
** so that it is not counted as a character.
*/
big_endian = readUtf16Bom(&str, 0);
ret = 0-str.c;
while( code!=0 && nRead<nChar ){
code = readUtf16(&str, big_endian);
nRead++;
}
if( code==0 ){
ret -= 2;
}
return str.c + ret;
}
}
/*
** Convert a string in UTF-16 native byte (or with a Byte-order-mark or
** "BOM") into a UTF-8 string. The UTF-8 string is written into space
** obtained from sqlite3Malloc() and must be released by the calling function.
**
** The parameter N is the number of bytes in the UTF-16 string. If N is
** negative, the entire string up to the first \u0000 character is translated.
**
** The returned UTF-8 string is always \000 terminated.
*/
unsigned char *sqlite3utf16to8(const void *pData, int N, int big_endian){
UtfString in;
UtfString out;
out.pZ = 0;
in.pZ = (unsigned char *)pData;
in.n = N;
in.c = 0;
if( in.n<0 ){
in.n = sqlite3utf16ByteLen(in.pZ, -1);
}
/* A UTF-8 encoding of a unicode string can require at most 1.5 times as
** much space to store as the same string encoded using UTF-16. Allocate
** this now.
*/
out.n = (in.n*1.5) + 1;
out.pZ = sqliteMalloc(out.n);
if( !out.pZ ){
return 0;
}
out.c = 0;
big_endian = readUtf16Bom(&in, big_endian);
while( in.c<in.n ){
writeUtf8(&out, readUtf16(&in, big_endian));
}
/* Add the NULL-terminator character */
assert( out.c<out.n );
out.pZ[out.c] = 0x00;
return out.pZ;
}
static void *utf8toUtf16(const unsigned char *pIn, int N, int big_endian){
UtfString in;
UtfString out;
in.pZ = (unsigned char *)pIn;
in.n = N;
in.c = 0;
if( in.n<0 ){
in.n = strlen(in.pZ);
}
/* A UTF-16 encoding of a unicode string can require at most twice as
** much space to store as the same string encoded using UTF-8. Allocate
** this now.
*/
out.n = (in.n*2) + 2;
out.pZ = sqliteMalloc(out.n);
if( !out.pZ ){
return 0;
}
out.c = 0;
while( in.c<in.n ){
writeUtf16(&out, readUtf8(&in), big_endian);
}
/* Add the NULL-terminator character */
assert( (out.c+1)<out.n );
out.pZ[out.c] = 0x00;
out.pZ[out.c+1] = 0x00;
return out.pZ;
}
/*
** Translate UTF-8 to UTF-16BE or UTF-16LE
*/
void *sqlite3utf8to16be(const unsigned char *pIn, int N){
return utf8toUtf16(pIn, N, 1);
}
void *sqlite3utf8to16le(const unsigned char *pIn, int N){
return utf8toUtf16(pIn, N, 0);
}
/*
** This routine does the work for sqlite3utf16to16le() and
** sqlite3utf16to16be(). If big_endian is 1 the input string is
** transformed in place to UTF-16BE encoding. If big_endian is 0 then
** the input is transformed to UTF-16LE.
**
** Unless the first two bytes of the input string is a BOM, the input is
** assumed to be UTF-16 encoded using the machines native byte ordering.
*/
static void utf16to16(void *pData, int N, int big_endian){
UtfString inout;
inout.pZ = (unsigned char *)pData;
inout.c = 0;
inout.n = N;
if( inout.n<0 ){
inout.n = sqlite3utf16ByteLen(inout.pZ, -1);
}
if( readUtf16Bom(&inout, SQLITE_BIGENDIAN)!=big_endian ){
/* swab(&inout.pZ[inout.c], inout.pZ, inout.n-inout.c); */
int i;
for(i=0; i<(inout.n-inout.c); i += 2){
char c1 = inout.pZ[i+inout.c];
char c2 = inout.pZ[i+inout.c+1];
inout.pZ[i] = c2;
inout.pZ[i+1] = c1;
}
}else if( inout.c ){
memmove(inout.pZ, &inout.pZ[inout.c], inout.n-inout.c);
}
inout.pZ[inout.n-inout.c] = 0x00;
inout.pZ[inout.n-inout.c+1] = 0x00;
}
/*
** Convert a string in UTF-16 native byte or with a BOM into a UTF-16LE
** string. The conversion occurs in-place. The output overwrites the
** input. N bytes are converted. If N is negative everything is converted
** up to the first \u0000 character.
**
** If the native byte order is little-endian and there is no BOM, then
** this routine is a no-op. If there is a BOM at the start of the string,
** it is removed.
**
** Translation from UTF-16LE to UTF-16BE and back again is accomplished
** using the library function swab().
*/
void sqlite3utf16to16le(void *pData, int N){
utf16to16(pData, N, 0);
}
/*
** Convert a string in UTF-16 native byte or with a BOM into a UTF-16BE
** string. The conversion occurs in-place. The output overwrites the
** input. N bytes are converted. If N is negative everything is converted
** up to the first \u0000 character.
**
** If the native byte order is little-endian and there is no BOM, then
** this routine is a no-op. If there is a BOM at the start of the string,
** it is removed.
**
** Translation from UTF-16LE to UTF-16BE and back again is accomplished
** using the library function swab().
*/
void sqlite3utf16to16be(void *pData, int N){
utf16to16(pData, N, 1);
}
/*
** This function is used to translate between UTF-8 and UTF-16. The
** result is returned in dynamically allocated memory.
*/
int sqlite3utfTranslate(
const void *zData, int nData, /* Input string */
u8 enc1, /* Encoding of zData */
void **zOut, int *nOut, /* Output string */
u8 enc2 /* Desired encoding of output */
){
assert( enc1==TEXT_Utf8 || enc1==TEXT_Utf16le || enc1==TEXT_Utf16be );
assert( enc2==TEXT_Utf8 || enc2==TEXT_Utf16le || enc2==TEXT_Utf16be );
assert(
(enc1==TEXT_Utf8 && (enc2==TEXT_Utf16le || enc2==TEXT_Utf16be)) ||
(enc2==TEXT_Utf8 && (enc1==TEXT_Utf16le || enc1==TEXT_Utf16be))
);
if( enc1==TEXT_Utf8 ){
if( enc2==TEXT_Utf16le ){
*zOut = sqlite3utf8to16le(zData, nData);
}else{
*zOut = sqlite3utf8to16be(zData, nData);
}
if( !(*zOut) ) return SQLITE_NOMEM;
*nOut = sqlite3utf16ByteLen(*zOut, -1);
}else{
*zOut = sqlite3utf16to8(zData, nData, enc1==TEXT_Utf16be);
if( !(*zOut) ) return SQLITE_NOMEM;
*nOut = strlen(*zOut);
}
return SQLITE_OK;
}