sqlite/tool/mkkeywordhash.c

723 lines
26 KiB
C
Raw Normal View History

/*
** Compile and run this standalone program in order to generate code that
** implements a function that will translate alphabetic identifiers into
** parser token codes.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
/*
** A header comment placed at the beginning of generated code.
*/
static const char zHdr[] =
"/***** This file contains automatically generated code ******\n"
"**\n"
"** The code in this file has been automatically generated by\n"
"**\n"
"** sqlite/tool/mkkeywordhash.c\n"
"**\n"
"** The code in this file implements a function that determines whether\n"
"** or not a given identifier is really an SQL keyword. The same thing\n"
"** might be implemented more directly using a hand-written hash table.\n"
"** But by using this automatically generated code, the size of the code\n"
"** is substantially reduced. This is important for embedded applications\n"
"** on platforms with limited memory.\n"
"*/\n"
;
/*
** All the keywords of the SQL language are stored in a hash
** table composed of instances of the following structure.
*/
typedef struct Keyword Keyword;
struct Keyword {
char *zName; /* The keyword name */
char *zTokenType; /* Token value for this keyword */
int mask; /* Code this keyword if non-zero */
int priority; /* Put higher priorities earlier in the hash chain */
int id; /* Unique ID for this record */
int hash; /* Hash on the keyword */
int offset; /* Offset to start of name string */
int len; /* Length of this keyword, not counting final \000 */
int prefix; /* Number of characters in prefix */
int longestSuffix; /* Longest suffix that is a prefix on another word */
int iNext; /* Index in aKeywordTable[] of next with same hash */
int substrId; /* Id to another keyword this keyword is embedded in */
int substrOffset; /* Offset into substrId for start of this keyword */
char zOrigName[20]; /* Original keyword name before processing */
};
/*
** Define masks used to determine which keywords are allowed
*/
#if defined(SQLITE_OMIT_ALTERTABLE) || defined(SQLITE_OMIT_VIRTUALTABLE)
# define ALTER 0
#else
# define ALTER 0x00000001
#endif
#define ALWAYS 0x00000002
#ifdef SQLITE_OMIT_ANALYZE
# define ANALYZE 0
#else
# define ANALYZE 0x00000004
#endif
#ifdef SQLITE_OMIT_ATTACH
# define ATTACH 0
#else
# define ATTACH 0x00000008
#endif
#ifdef SQLITE_OMIT_AUTOINCREMENT
# define AUTOINCR 0
#else
# define AUTOINCR 0x00000010
#endif
#ifdef SQLITE_OMIT_CAST
# define CAST 0
#else
# define CAST 0x00000020
#endif
#ifdef SQLITE_OMIT_COMPOUND_SELECT
# define COMPOUND 0
#else
# define COMPOUND 0x00000040
#endif
#ifdef SQLITE_OMIT_CONFLICT_CLAUSE
# define CONFLICT 0
#else
# define CONFLICT 0x00000080
#endif
#ifdef SQLITE_OMIT_EXPLAIN
# define EXPLAIN 0
#else
# define EXPLAIN 0x00000100
#endif
#ifdef SQLITE_OMIT_FOREIGN_KEY
# define FKEY 0
#else
# define FKEY 0x00000200
#endif
#ifdef SQLITE_OMIT_PRAGMA
# define PRAGMA 0
#else
# define PRAGMA 0x00000400
#endif
#ifdef SQLITE_OMIT_REINDEX
# define REINDEX 0
#else
# define REINDEX 0x00000800
#endif
#ifdef SQLITE_OMIT_SUBQUERY
# define SUBQUERY 0
#else
# define SUBQUERY 0x00001000
#endif
#ifdef SQLITE_OMIT_TRIGGER
# define TRIGGER 0
#else
# define TRIGGER 0x00002000
#endif
#if defined(SQLITE_OMIT_AUTOVACUUM) && \
(defined(SQLITE_OMIT_VACUUM) || defined(SQLITE_OMIT_ATTACH))
# define VACUUM 0
#else
# define VACUUM 0x00004000
#endif
#ifdef SQLITE_OMIT_VIEW
# define VIEW 0
#else
# define VIEW 0x00008000
#endif
#ifdef SQLITE_OMIT_VIRTUALTABLE
# define VTAB 0
#else
# define VTAB 0x00010000
#endif
#ifdef SQLITE_OMIT_AUTOVACUUM
# define AUTOVACUUM 0
#else
# define AUTOVACUUM 0x00020000
#endif
#ifdef SQLITE_OMIT_CTE
# define CTE 0
#else
# define CTE 0x00040000
#endif
#ifdef SQLITE_OMIT_UPSERT
# define UPSERT 0
#else
# define UPSERT 0x00080000
#endif
#ifdef SQLITE_OMIT_WINDOWFUNC
# define WINDOWFUNC 0
#else
# define WINDOWFUNC 0x00100000
#endif
#ifdef SQLITE_OMIT_GENERATED_COLUMNS
# define GENCOL 0
#else
# define GENCOL 0x00200000
#endif
#ifdef SQLITE_OMIT_RETURNING
# define RETURNING 0
#else
# define RETURNING 0x00400000
#endif
#ifndef SQLITE_ENABLE_ORDERED_SET_AGGREGATES
# define ORDERSET 0
#else
# define ORDERSET 0x00800000
#endif
/*
** These are the keywords
*/
static Keyword aKeywordTable[] = {
{ "ABORT", "TK_ABORT", CONFLICT|TRIGGER, 0 },
{ "ACTION", "TK_ACTION", FKEY, 0 },
{ "ADD", "TK_ADD", ALTER, 1 },
{ "AFTER", "TK_AFTER", TRIGGER, 0 },
{ "ALL", "TK_ALL", ALWAYS, 0 },
{ "ALTER", "TK_ALTER", ALTER, 0 },
{ "ALWAYS", "TK_ALWAYS", GENCOL, 0 },
{ "ANALYZE", "TK_ANALYZE", ANALYZE, 0 },
{ "AND", "TK_AND", ALWAYS, 10 },
{ "AS", "TK_AS", ALWAYS, 10 },
{ "ASC", "TK_ASC", ALWAYS, 0 },
{ "ATTACH", "TK_ATTACH", ATTACH, 1 },
{ "AUTOINCREMENT", "TK_AUTOINCR", AUTOINCR, 0 },
{ "BEFORE", "TK_BEFORE", TRIGGER, 0 },
{ "BEGIN", "TK_BEGIN", ALWAYS, 1 },
{ "BETWEEN", "TK_BETWEEN", ALWAYS, 5 },
{ "BY", "TK_BY", ALWAYS, 10 },
{ "CASCADE", "TK_CASCADE", FKEY, 1 },
{ "CASE", "TK_CASE", ALWAYS, 5 },
{ "CAST", "TK_CAST", CAST, 5 },
{ "CHECK", "TK_CHECK", ALWAYS, 1 },
{ "COLLATE", "TK_COLLATE", ALWAYS, 1 },
{ "COLUMN", "TK_COLUMNKW", ALTER, 1 },
{ "COMMIT", "TK_COMMIT", ALWAYS, 1 },
{ "CONFLICT", "TK_CONFLICT", CONFLICT, 0 },
{ "CONSTRAINT", "TK_CONSTRAINT", ALWAYS, 1 },
{ "CREATE", "TK_CREATE", ALWAYS, 2 },
{ "CROSS", "TK_JOIN_KW", ALWAYS, 3 },
{ "CURRENT", "TK_CURRENT", WINDOWFUNC, 1 },
{ "CURRENT_DATE", "TK_CTIME_KW", ALWAYS, 1 },
{ "CURRENT_TIME", "TK_CTIME_KW", ALWAYS, 1 },
{ "CURRENT_TIMESTAMP","TK_CTIME_KW", ALWAYS, 1 },
{ "DATABASE", "TK_DATABASE", ATTACH, 0 },
{ "DEFAULT", "TK_DEFAULT", ALWAYS, 1 },
{ "DEFERRED", "TK_DEFERRED", ALWAYS, 1 },
{ "DEFERRABLE", "TK_DEFERRABLE", FKEY, 1 },
{ "DELETE", "TK_DELETE", ALWAYS, 10 },
{ "DESC", "TK_DESC", ALWAYS, 3 },
{ "DETACH", "TK_DETACH", ATTACH, 0 },
{ "DISTINCT", "TK_DISTINCT", ALWAYS, 5 },
{ "DO", "TK_DO", UPSERT, 2 },
{ "DROP", "TK_DROP", ALWAYS, 1 },
{ "END", "TK_END", ALWAYS, 1 },
{ "EACH", "TK_EACH", TRIGGER, 1 },
{ "ELSE", "TK_ELSE", ALWAYS, 2 },
{ "ESCAPE", "TK_ESCAPE", ALWAYS, 4 },
{ "EXCEPT", "TK_EXCEPT", COMPOUND, 4 },
{ "EXCLUSIVE", "TK_EXCLUSIVE", ALWAYS, 1 },
{ "EXCLUDE", "TK_EXCLUDE", WINDOWFUNC, 1 },
{ "EXISTS", "TK_EXISTS", ALWAYS, 4 },
{ "EXPLAIN", "TK_EXPLAIN", EXPLAIN, 1 },
{ "FAIL", "TK_FAIL", CONFLICT|TRIGGER, 1 },
{ "FILTER", "TK_FILTER", WINDOWFUNC, 4 },
{ "FIRST", "TK_FIRST", ALWAYS, 4 },
{ "FOLLOWING", "TK_FOLLOWING", WINDOWFUNC, 4 },
{ "FOR", "TK_FOR", TRIGGER, 2 },
{ "FOREIGN", "TK_FOREIGN", FKEY, 1 },
{ "FROM", "TK_FROM", ALWAYS, 10 },
{ "FULL", "TK_JOIN_KW", ALWAYS, 3 },
{ "GENERATED", "TK_GENERATED", ALWAYS, 1 },
{ "GLOB", "TK_LIKE_KW", ALWAYS, 3 },
{ "GROUP", "TK_GROUP", ALWAYS, 5 },
{ "GROUPS", "TK_GROUPS", WINDOWFUNC, 2 },
{ "HAVING", "TK_HAVING", ALWAYS, 5 },
{ "IF", "TK_IF", ALWAYS, 2 },
{ "IGNORE", "TK_IGNORE", CONFLICT|TRIGGER, 1 },
{ "IMMEDIATE", "TK_IMMEDIATE", ALWAYS, 1 },
{ "IN", "TK_IN", ALWAYS, 10 },
{ "INDEX", "TK_INDEX", ALWAYS, 1 },
{ "INDEXED", "TK_INDEXED", ALWAYS, 0 },
{ "INITIALLY", "TK_INITIALLY", FKEY, 1 },
{ "INNER", "TK_JOIN_KW", ALWAYS, 1 },
{ "INSERT", "TK_INSERT", ALWAYS, 10 },
{ "INSTEAD", "TK_INSTEAD", TRIGGER, 1 },
{ "INTERSECT", "TK_INTERSECT", COMPOUND, 5 },
{ "INTO", "TK_INTO", ALWAYS, 10 },
{ "IS", "TK_IS", ALWAYS, 5 },
{ "ISNULL", "TK_ISNULL", ALWAYS, 5 },
{ "JOIN", "TK_JOIN", ALWAYS, 5 },
{ "KEY", "TK_KEY", ALWAYS, 1 },
{ "LAST", "TK_LAST", ALWAYS, 4 },
{ "LEFT", "TK_JOIN_KW", ALWAYS, 5 },
{ "LIKE", "TK_LIKE_KW", ALWAYS, 5 },
{ "LIMIT", "TK_LIMIT", ALWAYS, 3 },
{ "MATCH", "TK_MATCH", ALWAYS, 2 },
{ "MATERIALIZED", "TK_MATERIALIZED", CTE, 12 },
{ "NATURAL", "TK_JOIN_KW", ALWAYS, 3 },
{ "NO", "TK_NO", FKEY|WINDOWFUNC, 2 },
{ "NOT", "TK_NOT", ALWAYS, 10 },
{ "NOTHING", "TK_NOTHING", UPSERT, 1 },
{ "NOTNULL", "TK_NOTNULL", ALWAYS, 3 },
{ "NULL", "TK_NULL", ALWAYS, 10 },
{ "NULLS", "TK_NULLS", ALWAYS, 3 },
{ "OF", "TK_OF", ALWAYS, 3 },
{ "OFFSET", "TK_OFFSET", ALWAYS, 1 },
{ "ON", "TK_ON", ALWAYS, 1 },
{ "OR", "TK_OR", ALWAYS, 9 },
{ "ORDER", "TK_ORDER", ALWAYS, 10 },
{ "OTHERS", "TK_OTHERS", WINDOWFUNC, 3 },
{ "OUTER", "TK_JOIN_KW", ALWAYS, 5 },
{ "OVER", "TK_OVER", WINDOWFUNC, 3 },
{ "PARTITION", "TK_PARTITION", WINDOWFUNC, 3 },
{ "PLAN", "TK_PLAN", EXPLAIN, 0 },
{ "PRAGMA", "TK_PRAGMA", PRAGMA, 0 },
{ "PRECEDING", "TK_PRECEDING", WINDOWFUNC, 3 },
{ "PRIMARY", "TK_PRIMARY", ALWAYS, 1 },
{ "QUERY", "TK_QUERY", EXPLAIN, 0 },
{ "RAISE", "TK_RAISE", TRIGGER, 1 },
{ "RANGE", "TK_RANGE", WINDOWFUNC, 3 },
{ "RECURSIVE", "TK_RECURSIVE", CTE, 3 },
{ "REFERENCES", "TK_REFERENCES", FKEY, 1 },
{ "REGEXP", "TK_LIKE_KW", ALWAYS, 3 },
{ "REINDEX", "TK_REINDEX", REINDEX, 1 },
{ "RELEASE", "TK_RELEASE", ALWAYS, 1 },
{ "RENAME", "TK_RENAME", ALTER, 1 },
{ "REPLACE", "TK_REPLACE", CONFLICT, 10 },
{ "RESTRICT", "TK_RESTRICT", FKEY, 1 },
{ "RETURNING", "TK_RETURNING", RETURNING, 10 },
{ "RIGHT", "TK_JOIN_KW", ALWAYS, 0 },
{ "ROLLBACK", "TK_ROLLBACK", ALWAYS, 1 },
{ "ROW", "TK_ROW", TRIGGER, 1 },
{ "ROWS", "TK_ROWS", ALWAYS, 1 },
{ "SAVEPOINT", "TK_SAVEPOINT", ALWAYS, 1 },
{ "SELECT", "TK_SELECT", ALWAYS, 10 },
{ "SET", "TK_SET", ALWAYS, 10 },
{ "TABLE", "TK_TABLE", ALWAYS, 1 },
{ "TEMP", "TK_TEMP", ALWAYS, 1 },
{ "TEMPORARY", "TK_TEMP", ALWAYS, 1 },
{ "THEN", "TK_THEN", ALWAYS, 3 },
{ "TIES", "TK_TIES", WINDOWFUNC, 3 },
{ "TO", "TK_TO", ALWAYS, 3 },
{ "TRANSACTION", "TK_TRANSACTION", ALWAYS, 1 },
{ "TRIGGER", "TK_TRIGGER", TRIGGER, 1 },
{ "UNBOUNDED", "TK_UNBOUNDED", WINDOWFUNC, 3 },
{ "UNION", "TK_UNION", COMPOUND, 3 },
{ "UNIQUE", "TK_UNIQUE", ALWAYS, 1 },
{ "UPDATE", "TK_UPDATE", ALWAYS, 10 },
{ "USING", "TK_USING", ALWAYS, 8 },
{ "VACUUM", "TK_VACUUM", VACUUM, 1 },
{ "VALUES", "TK_VALUES", ALWAYS, 10 },
{ "VIEW", "TK_VIEW", VIEW, 1 },
{ "VIRTUAL", "TK_VIRTUAL", VTAB, 1 },
{ "WHEN", "TK_WHEN", ALWAYS, 1 },
{ "WHERE", "TK_WHERE", ALWAYS, 10 },
{ "WINDOW", "TK_WINDOW", WINDOWFUNC, 3 },
{ "WITH", "TK_WITH", CTE, 4 },
{ "WITHIN", "TK_WITHIN", ORDERSET, 1 },
{ "WITHOUT", "TK_WITHOUT", ALWAYS, 1 },
};
/* Number of keywords */
static int nKeyword = (sizeof(aKeywordTable)/sizeof(aKeywordTable[0]));
/* Map all alphabetic characters into lower-case for hashing. This is
** only valid for alphabetics. In particular it does not work for '_'
** and so the hash cannot be on a keyword position that might be an '_'.
*/
#define charMap(X) (0x20|(X))
/*
** Comparision function for two Keyword records
*/
static int keywordCompare1(const void *a, const void *b){
const Keyword *pA = (Keyword*)a;
const Keyword *pB = (Keyword*)b;
int n = pA->len - pB->len;
if( n==0 ){
n = strcmp(pA->zName, pB->zName);
}
assert( n!=0 );
return n;
}
static int keywordCompare2(const void *a, const void *b){
const Keyword *pA = (Keyword*)a;
const Keyword *pB = (Keyword*)b;
int n = pB->longestSuffix - pA->longestSuffix;
if( n==0 ){
n = strcmp(pA->zName, pB->zName);
}
assert( n!=0 );
return n;
}
static int keywordCompare3(const void *a, const void *b){
const Keyword *pA = (Keyword*)a;
const Keyword *pB = (Keyword*)b;
int n = pA->offset - pB->offset;
if( n==0 ) n = pB->id - pA->id;
assert( n!=0 );
return n;
}
/*
** Return a KeywordTable entry with the given id
*/
static Keyword *findById(int id){
int i;
for(i=0; i<nKeyword; i++){
if( aKeywordTable[i].id==id ) break;
}
return &aKeywordTable[i];
}
/*
** If aKeyword[*pFrom-1].iNext has a higher priority that aKeyword[*pFrom-1]
** itself, then swap them.
*/
static void reorder(int *pFrom){
int i = *pFrom - 1;
int j;
if( i<0 ) return;
j = aKeywordTable[i].iNext;
if( j==0 ) return;
j--;
if( aKeywordTable[i].priority >= aKeywordTable[j].priority ) return;
aKeywordTable[i].iNext = aKeywordTable[j].iNext;
aKeywordTable[j].iNext = i+1;
*pFrom = j+1;
reorder(&aKeywordTable[i].iNext);
}
/* Parameter to the hash function
*/
#define HASH_OP ^
#define HASH_CC '^'
#define HASH_C0 4
#define HASH_C1 3
#define HASH_C2 1
/*
** This routine does the work. The generated code is printed on standard
** output.
*/
int main(int argc, char **argv){
int i, j, k, h;
int bestSize, bestCount;
int count;
int nChar;
int totalLen = 0;
int aKWHash[1000]; /* 1000 is much bigger than nKeyword */
char zKWText[2000];
/* Remove entries from the list of keywords that have mask==0 */
for(i=j=0; i<nKeyword; i++){
if( aKeywordTable[i].mask==0 ) continue;
if( j<i ){
aKeywordTable[j] = aKeywordTable[i];
}
j++;
}
nKeyword = j;
/* Fill in the lengths of strings and hashes for all entries. */
for(i=0; i<nKeyword; i++){
Keyword *p = &aKeywordTable[i];
p->len = (int)strlen(p->zName);
assert( p->len<sizeof(p->zOrigName) );
memcpy(p->zOrigName, p->zName, p->len+1);
totalLen += p->len;
p->hash = (charMap(p->zName[0])*HASH_C0) HASH_OP
(charMap(p->zName[p->len-1])*HASH_C1) HASH_OP
(p->len*HASH_C2);
p->id = i+1;
}
/* Sort the table from shortest to longest keyword */
qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare1);
/* Look for short keywords embedded in longer keywords */
for(i=nKeyword-2; i>=0; i--){
Keyword *p = &aKeywordTable[i];
for(j=nKeyword-1; j>i && p->substrId==0; j--){
Keyword *pOther = &aKeywordTable[j];
if( pOther->substrId ) continue;
if( pOther->len<=p->len ) continue;
for(k=0; k<=pOther->len-p->len; k++){
if( memcmp(p->zName, &pOther->zName[k], p->len)==0 ){
p->substrId = pOther->id;
p->substrOffset = k;
break;
}
}
}
}
/* Compute the longestSuffix value for every word */
for(i=0; i<nKeyword; i++){
Keyword *p = &aKeywordTable[i];
if( p->substrId ) continue;
for(j=0; j<nKeyword; j++){
Keyword *pOther;
if( j==i ) continue;
pOther = &aKeywordTable[j];
if( pOther->substrId ) continue;
for(k=p->longestSuffix+1; k<p->len && k<pOther->len; k++){
if( memcmp(&p->zName[p->len-k], pOther->zName, k)==0 ){
p->longestSuffix = k;
}
}
}
}
/* Sort the table into reverse order by length */
qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare2);
/* Fill in the offset for all entries */
nChar = 0;
for(i=0; i<nKeyword; i++){
Keyword *p = &aKeywordTable[i];
if( p->offset>0 || p->substrId ) continue;
p->offset = nChar;
nChar += p->len;
for(k=p->len-1; k>=1; k--){
for(j=i+1; j<nKeyword; j++){
Keyword *pOther = &aKeywordTable[j];
if( pOther->offset>0 || pOther->substrId ) continue;
if( pOther->len<=k ) continue;
if( memcmp(&p->zName[p->len-k], pOther->zName, k)==0 ){
p = pOther;
p->offset = nChar - k;
nChar = p->offset + p->len;
p->zName += k;
p->len -= k;
p->prefix = k;
j = i;
k = p->len;
}
}
}
}
for(i=0; i<nKeyword; i++){
Keyword *p = &aKeywordTable[i];
if( p->substrId ){
p->offset = findById(p->substrId)->offset + p->substrOffset;
}
}
/* Sort the table by offset */
qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare3);
/* Figure out how big to make the hash table in order to minimize the
** number of collisions */
bestSize = nKeyword;
bestCount = nKeyword*nKeyword;
for(i=nKeyword/2; i<=2*nKeyword; i++){
if( i<=0 ) continue;
for(j=0; j<i; j++) aKWHash[j] = 0;
for(j=0; j<nKeyword; j++){
h = aKeywordTable[j].hash % i;
aKWHash[h] *= 2;
aKWHash[h]++;
}
for(j=count=0; j<i; j++) count += aKWHash[j];
if( count<bestCount ){
bestCount = count;
bestSize = i;
}
}
/* Compute the hash */
for(i=0; i<bestSize; i++) aKWHash[i] = 0;
for(i=0; i<nKeyword; i++){
h = aKeywordTable[i].hash % bestSize;
aKeywordTable[i].iNext = aKWHash[h];
aKWHash[h] = i+1;
reorder(&aKWHash[h]);
}
/* Begin generating code */
printf("%s", zHdr);
printf("/* Hash score: %d */\n", bestCount);
printf("/* zKWText[] encodes %d bytes of keyword text in %d bytes */\n",
totalLen + nKeyword, nChar+1 );
for(i=j=k=0; i<nKeyword; i++){
Keyword *p = &aKeywordTable[i];
if( p->substrId ) continue;
memcpy(&zKWText[k], p->zName, p->len);
k += p->len;
if( j+p->len>70 ){
printf("%*s */\n", 74-j, "");
j = 0;
}
if( j==0 ){
printf("/* ");
j = 8;
}
printf("%s", p->zName);
j += p->len;
}
if( j>0 ){
printf("%*s */\n", 74-j, "");
}
printf("static const char zKWText[%d] = {\n", nChar);
zKWText[nChar] = 0;
for(i=j=0; i<k; i++){
if( j==0 ){
printf(" ");
}
if( zKWText[i]==0 ){
printf("0");
}else{
printf("'%c',", zKWText[i]);
}
j += 4;
if( j>68 ){
printf("\n");
j = 0;
}
}
if( j>0 ) printf("\n");
printf("};\n");
printf("/* aKWHash[i] is the hash value for the i-th keyword */\n");
printf("static const unsigned char aKWHash[%d] = {\n", bestSize);
for(i=j=0; i<bestSize; i++){
if( j==0 ) printf(" ");
printf(" %3d,", aKWHash[i]);
j++;
if( j>12 ){
printf("\n");
j = 0;
}
}
printf("%s};\n", j==0 ? "" : "\n");
printf("/* aKWNext[] forms the hash collision chain. If aKWHash[i]==0\n");
printf("** then the i-th keyword has no more hash collisions. Otherwise,\n");
printf("** the next keyword with the same hash is aKWHash[i]-1. */\n");
printf("static const unsigned char aKWNext[%d] = {0,\n", nKeyword+1);
for(i=j=0; i<nKeyword; i++){
if( j==0 ) printf(" ");
printf(" %3d,", aKeywordTable[i].iNext);
j++;
if( j>12 ){
printf("\n");
j = 0;
}
}
printf("%s};\n", j==0 ? "" : "\n");
printf("/* aKWLen[i] is the length (in bytes) of the i-th keyword */\n");
printf("static const unsigned char aKWLen[%d] = {0,\n", nKeyword+1);
for(i=j=0; i<nKeyword; i++){
if( j==0 ) printf(" ");
printf(" %3d,", aKeywordTable[i].len+aKeywordTable[i].prefix);
j++;
if( j>12 ){
printf("\n");
j = 0;
}
}
printf("%s};\n", j==0 ? "" : "\n");
printf("/* aKWOffset[i] is the index into zKWText[] of the start of\n");
printf("** the text for the i-th keyword. */\n");
printf("static const unsigned short int aKWOffset[%d] = {0,\n", nKeyword+1);
for(i=j=0; i<nKeyword; i++){
if( j==0 ) printf(" ");
printf(" %3d,", aKeywordTable[i].offset);
j++;
if( j>12 ){
printf("\n");
j = 0;
}
}
printf("%s};\n", j==0 ? "" : "\n");
printf("/* aKWCode[i] is the parser symbol code for the i-th keyword */\n");
printf("static const unsigned char aKWCode[%d] = {0,\n", nKeyword+1);
for(i=j=0; i<nKeyword; i++){
char *zToken = aKeywordTable[i].zTokenType;
if( j==0 ) printf(" ");
printf("%s,%*s", zToken, (int)(14-strlen(zToken)), "");
j++;
if( j>=5 ){
printf("\n");
j = 0;
}
}
printf("%s};\n", j==0 ? "" : "\n");
printf("/* Hash table decoded:\n");
for(i=0; i<bestSize; i++){
j = aKWHash[i];
printf("** %3d:", i);
while( j ){
printf(" %s", aKeywordTable[j-1].zOrigName);
j = aKeywordTable[j-1].iNext;
}
printf("\n");
}
printf("*/\n");
printf("/* Check to see if z[0..n-1] is a keyword. If it is, write the\n");
printf("** parser symbol code for that keyword into *pType. Always\n");
printf("** return the integer n (the length of the token). */\n");
printf("static int keywordCode(const char *z, int n, int *pType){\n");
printf(" int i, j;\n");
printf(" const char *zKW;\n");
printf(" assert( n>=2 );\n");
printf(" i = ((charMap(z[0])*%d) %c", HASH_C0, HASH_CC);
printf(" (charMap(z[n-1])*%d) %c", HASH_C1, HASH_CC);
printf(" n*%d) %% %d;\n", HASH_C2, bestSize);
printf(" for(i=(int)aKWHash[i]; i>0; i=aKWNext[i]){\n");
printf(" if( aKWLen[i]!=n ) continue;\n");
printf(" zKW = &zKWText[aKWOffset[i]];\n");
printf("#ifdef SQLITE_ASCII\n");
printf(" if( (z[0]&~0x20)!=zKW[0] ) continue;\n");
printf(" if( (z[1]&~0x20)!=zKW[1] ) continue;\n");
printf(" j = 2;\n");
printf(" while( j<n && (z[j]&~0x20)==zKW[j] ){ j++; }\n");
printf("#endif\n");
printf("#ifdef SQLITE_EBCDIC\n");
printf(" if( toupper(z[0])!=zKW[0] ) continue;\n");
printf(" if( toupper(z[1])!=zKW[1] ) continue;\n");
printf(" j = 2;\n");
printf(" while( j<n && toupper(z[j])==zKW[j] ){ j++; }\n");
printf("#endif\n");
printf(" if( j<n ) continue;\n");
for(i=0; i<nKeyword; i++){
printf(" testcase( i==%d ); /* %s */\n",
i+1, aKeywordTable[i].zOrigName);
}
printf(" *pType = aKWCode[i];\n");
printf(" break;\n");
printf(" }\n");
printf(" return n;\n");
printf("}\n");
printf("int sqlite3KeywordCode(const unsigned char *z, int n){\n");
printf(" int id = TK_ID;\n");
printf(" if( n>=2 ) keywordCode((char*)z, n, &id);\n");
printf(" return id;\n");
printf("}\n");
printf("#define SQLITE_N_KEYWORD %d\n", nKeyword);
printf("int sqlite3_keyword_name(int i,const char **pzName,int *pnName){\n");
printf(" if( i<0 || i>=SQLITE_N_KEYWORD ) return SQLITE_ERROR;\n");
printf(" i++;\n");
printf(" *pzName = zKWText + aKWOffset[i];\n");
printf(" *pnName = aKWLen[i];\n");
printf(" return SQLITE_OK;\n");
printf("}\n");
printf("int sqlite3_keyword_count(void){ return SQLITE_N_KEYWORD; }\n");
printf("int sqlite3_keyword_check(const char *zName, int nName){\n");
printf(" return TK_ID!=sqlite3KeywordCode((const u8*)zName, nName);\n");
printf("}\n");
return 0;
}