sqlite/ext/session/sqlite3session.c

2991 lines
93 KiB
C
Raw Normal View History

#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
#include "sqlite3session.h"
#include <assert.h>
#include <string.h>
#ifndef SQLITE_AMALGAMATION
# include "sqliteInt.h"
# include "vdbeInt.h"
#endif
typedef struct SessionTable SessionTable;
typedef struct SessionChange SessionChange;
typedef struct SessionBuffer SessionBuffer;
/*
** Session handle structure.
*/
struct sqlite3_session {
sqlite3 *db; /* Database handle session is attached to */
char *zDb; /* Name of database session is attached to */
int bEnable; /* True if currently recording */
int bIndirect; /* True if all changes are indirect */
int bAutoAttach; /* True to auto-attach tables */
int rc; /* Non-zero if an error has occurred */
sqlite3_session *pNext; /* Next session object on same db. */
SessionTable *pTable; /* List of attached tables */
};
/*
** Structure for changeset iterators.
*/
struct sqlite3_changeset_iter {
u8 *aChangeset; /* Pointer to buffer containing changeset */
int nChangeset; /* Number of bytes in aChangeset */
u8 *pNext; /* Pointer to next change within aChangeset */
int rc; /* Iterator error code */
sqlite3_stmt *pConflict; /* Points to conflicting row, if any */
char *zTab; /* Current table */
int nCol; /* Number of columns in zTab */
int op; /* Current operation */
int bIndirect; /* True if current change was indirect */
u8 *abPK; /* Primary key array */
sqlite3_value **apValue; /* old.* and new.* values */
};
/*
** Each session object maintains a set of the following structures, one
** for each table the session object is monitoring. The structures are
** stored in a linked list starting at sqlite3_session.pTable.
**
** The keys of the SessionTable.aChange[] hash table are all rows that have
** been modified in any way since the session object was attached to the
** table.
**
** The data associated with each hash-table entry is a structure containing
** a subset of the initial values that the modified row contained at the
** start of the session. Or no initial values if the row was inserted.
*/
struct SessionTable {
SessionTable *pNext;
char *zName; /* Local name of table */
int nCol; /* Number of columns in table zName */
const char **azCol; /* Column names */
u8 *abPK; /* Array of primary key flags */
int nEntry; /* Total number of entries in hash table */
int nChange; /* Size of apChange[] array */
SessionChange **apChange; /* Hash table buckets */
};
/*
** RECORD FORMAT:
**
** The following record format is similar to (but not compatible with) that
** used in SQLite database files. This format is used as part of the
** change-set binary format, and so must be architecture independent.
**
** Unlike the SQLite database record format, each field is self-contained -
** there is no separation of header and data. Each field begins with a
** single byte describing its type, as follows:
**
** 0x00: Undefined value.
** 0x01: Integer value.
** 0x02: Real value.
** 0x03: Text value.
** 0x04: Blob value.
** 0x05: SQL NULL value.
**
** Note that the above match the definitions of SQLITE_INTEGER, SQLITE_TEXT
** and so on in sqlite3.h. For undefined and NULL values, the field consists
** only of the single type byte. For other types of values, the type byte
** is followed by:
**
** Text values:
** A varint containing the number of bytes in the value (encoded using
** UTF-8). Followed by a buffer containing the UTF-8 representation
** of the text value. There is no nul terminator.
**
** Blob values:
** A varint containing the number of bytes in the value, followed by
** a buffer containing the value itself.
**
** Integer values:
** An 8-byte big-endian integer value.
**
** Real values:
** An 8-byte big-endian IEEE 754-2008 real value.
**
** Varint values are encoded in the same way as varints in the SQLite
** record format.
**
** CHANGESET FORMAT:
**
** A changeset is a collection of DELETE, UPDATE and INSERT operations on
** one or more tables. Operations on a single table are grouped together,
** but may occur in any order (i.e. deletes, updates and inserts are all
** mixed together).
**
** Each group of changes begins with a table header:
**
** 1 byte: Constant 0x54 (capital 'T')
** Varint: Big-endian integer set to the number of columns in the table.
** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
**
** Followed by one or more changes to the table.
**
** 1 byte: Either SQLITE_INSERT, UPDATE or DELETE.
** 1 byte: The "indirect-change" flag.
** old.* record: (delete and update only)
** new.* record: (insert and update only)
*/
/*
** For each row modified during a session, there exists a single instance of
** this structure stored in a SessionTable.aChange[] hash table.
*/
struct SessionChange {
int bInsert; /* True if row was inserted this session */
int bIndirect; /* True if this change is "indirect" */
int nRecord; /* Number of bytes in buffer aRecord[] */
u8 *aRecord; /* Buffer containing old.* record */
SessionChange *pNext; /* For hash-table collisions */
};
/*
** Instances of this structure are used to build strings or binary records.
*/
struct SessionBuffer {
u8 *aBuf; /* Pointer to changeset buffer */
int nBuf; /* Size of buffer aBuf */
int nAlloc; /* Size of allocation containing aBuf */
};
/*
** Write a varint with value iVal into the buffer at aBuf. Return the
** number of bytes written.
*/
static int sessionVarintPut(u8 *aBuf, int iVal){
return putVarint32(aBuf, iVal);
}
/*
** Return the number of bytes required to store value iVal as a varint.
*/
static int sessionVarintLen(int iVal){
return sqlite3VarintLen(iVal);
}
/*
** Read a varint value from aBuf[] into *piVal. Return the number of
** bytes read.
*/
static int sessionVarintGet(u8 *aBuf, int *piVal){
return getVarint32(aBuf, *piVal);
}
/*
** Read a 64-bit big-endian integer value from buffer aRec[]. Return
** the value read.
*/
static sqlite3_int64 sessionGetI64(u8 *aRec){
return (((sqlite3_int64)aRec[0]) << 56)
+ (((sqlite3_int64)aRec[1]) << 48)
+ (((sqlite3_int64)aRec[2]) << 40)
+ (((sqlite3_int64)aRec[3]) << 32)
+ (((sqlite3_int64)aRec[4]) << 24)
+ (((sqlite3_int64)aRec[5]) << 16)
+ (((sqlite3_int64)aRec[6]) << 8)
+ (((sqlite3_int64)aRec[7]) << 0);
}
/*
** Write a 64-bit big-endian integer value to the buffer aBuf[].
*/
static void sessionPutI64(u8 *aBuf, sqlite3_int64 i){
aBuf[0] = (i>>56) & 0xFF;
aBuf[1] = (i>>48) & 0xFF;
aBuf[2] = (i>>40) & 0xFF;
aBuf[3] = (i>>32) & 0xFF;
aBuf[4] = (i>>24) & 0xFF;
aBuf[5] = (i>>16) & 0xFF;
aBuf[6] = (i>> 8) & 0xFF;
aBuf[7] = (i>> 0) & 0xFF;
}
/*
** This function is used to serialize the contents of value pValue (see
** comment titled "RECORD FORMAT" above).
**
** If it is non-NULL, the serialized form of the value is written to
** buffer aBuf. *pnWrite is set to the number of bytes written before
** returning. Or, if aBuf is NULL, the only thing this function does is
** set *pnWrite.
**
** If no error occurs, SQLITE_OK is returned. Or, if an OOM error occurs
** within a call to sqlite3_value_text() (may fail if the db is utf-16))
** SQLITE_NOMEM is returned.
*/
static int sessionSerializeValue(
u8 *aBuf, /* If non-NULL, write serialized value here */
sqlite3_value *pValue, /* Value to serialize */
int *pnWrite /* IN/OUT: Increment by bytes written */
){
int eType; /* Value type (SQLITE_NULL, TEXT etc.) */
int nByte; /* Size of serialized value in bytes */
eType = sqlite3_value_type(pValue);
if( aBuf ) aBuf[0] = eType;
switch( eType ){
case SQLITE_NULL:
nByte = 1;
break;
case SQLITE_INTEGER:
case SQLITE_FLOAT:
if( aBuf ){
/* TODO: SQLite does something special to deal with mixed-endian
** floating point values (e.g. ARM7). This code probably should
** too. */
u64 i;
if( eType==SQLITE_INTEGER ){
i = (u64)sqlite3_value_int64(pValue);
}else{
double r;
assert( sizeof(double)==8 && sizeof(u64)==8 );
r = sqlite3_value_double(pValue);
memcpy(&i, &r, 8);
}
sessionPutI64(&aBuf[1], i);
}
nByte = 9;
break;
default: {
int n = sqlite3_value_bytes(pValue);
int nVarint = sessionVarintLen(n);
assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
if( aBuf ){
sessionVarintPut(&aBuf[1], n);
memcpy(&aBuf[nVarint + 1], eType==SQLITE_TEXT ?
sqlite3_value_text(pValue) : sqlite3_value_blob(pValue), n
);
}
nByte = 1 + nVarint + n;
break;
}
}
*pnWrite += nByte;
return SQLITE_OK;
}
#define HASH_APPEND(hash, add) ((hash) << 3) ^ (hash) ^ (unsigned int)(add)
static unsigned int sessionHashAppendI64(unsigned int h, i64 i){
h = HASH_APPEND(h, i & 0xFFFFFFFF);
return HASH_APPEND(h, (i>>32)&0xFFFFFFFF);
}
static unsigned int sessionHashAppendBlob(unsigned int h, int n, const u8 *z){
int i;
for(i=0; i<n; i++) h = HASH_APPEND(h, z[i]);
return h;
}
/*
** This function may only be called from within a pre-update callback.
** It calculates a hash based on the primary key values of the old.* or
** new.* row currently available. The value returned is guaranteed to
** be less than pTab->nBucket.
*/
static unsigned int sessionPreupdateHash(
sqlite3 *db, /* Database handle */
SessionTable *pTab, /* Session table handle */
int bNew, /* True to hash the new.* PK */
int *piHash, /* OUT: Hash value */
int *pbNullPK
){
unsigned int h = 0; /* Hash value to return */
int i; /* Used to iterate through columns */
assert( *pbNullPK==0 );
assert( pTab->nCol==sqlite3_preupdate_count(db) );
for(i=0; i<pTab->nCol; i++){
if( pTab->abPK[i] ){
int rc;
int eType;
sqlite3_value *pVal;
if( bNew ){
rc = sqlite3_preupdate_new(db, i, &pVal);
}else{
rc = sqlite3_preupdate_old(db, i, &pVal);
}
if( rc!=SQLITE_OK ) return rc;
eType = sqlite3_value_type(pVal);
h = HASH_APPEND(h, eType);
switch( eType ){
case SQLITE_INTEGER:
case SQLITE_FLOAT: {
i64 iVal;
if( eType==SQLITE_INTEGER ){
iVal = sqlite3_value_int64(pVal);
}else{
double rVal = sqlite3_value_double(pVal);
assert( sizeof(iVal)==8 && sizeof(rVal)==8 );
memcpy(&iVal, &rVal, 8);
}
h = sessionHashAppendI64(h, iVal);
break;
}
case SQLITE_TEXT:
case SQLITE_BLOB: {
int n = sqlite3_value_bytes(pVal);
const u8 *z = eType==SQLITE_TEXT ?
sqlite3_value_text(pVal) : sqlite3_value_blob(pVal);
h = sessionHashAppendBlob(h, n, z);
break;
}
default:
assert( eType==SQLITE_NULL );
*pbNullPK = 1;
return SQLITE_OK;
}
}
}
*piHash = (h % pTab->nChange);
return SQLITE_OK;
}
/*
** The buffer that the argument points to contains a serialized SQL value.
** Return the number of bytes of space occupied by the value (including
** the type byte).
*/
static int sessionSerialLen(u8 *a){
int e = *a;
int n;
if( e==0 ) return 1;
if( e==SQLITE_NULL ) return 1;
if( e==SQLITE_INTEGER || e==SQLITE_FLOAT ) return 9;
return sessionVarintGet(&a[1], &n) + 1 + n;
}
/*
** Based on the primary key values stored in change aRecord, calculate a
** hash key, assuming the has table has nBucket buckets. The hash keys
** calculated by this function are compatible with those calculated by
** sessionPreupdateHash().
*/
static unsigned int sessionChangeHash(
SessionTable *pTab, /* Table handle */
u8 *aRecord, /* Change record */
int nBucket /* Assume this many buckets in hash table */
){
unsigned int h = 0; /* Value to return */
int i; /* Used to iterate through columns */
u8 *a = aRecord; /* Used to iterate through change record */
for(i=0; i<pTab->nCol; i++){
int eType = *a;
int isPK = pTab->abPK[i];
/* It is not possible for eType to be SQLITE_NULL here. The session
** module does not record changes for rows with NULL values stored in
** primary key columns. */
assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT
|| eType==SQLITE_TEXT || eType==SQLITE_BLOB
|| eType==SQLITE_NULL || eType==0
);
assert( !isPK || (eType!=0 && eType!=SQLITE_NULL) );
if( isPK ){
a++;
h = HASH_APPEND(h, eType);
if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
if( isPK ) h = sessionHashAppendI64(h, sessionGetI64(a));
a += 8;
}else{
int n;
a += sessionVarintGet(a, &n);
if( isPK ) h = sessionHashAppendBlob(h, n, a);
a += n;
}
}else{
a += sessionSerialLen(a);
}
}
return (h % nBucket);
}
static int sessionChangeEqual(
SessionTable *pTab,
u8 *aLeft, /* Change record */
u8 *aRight /* Change record */
){
u8 *a1 = aLeft;
u8 *a2 = aRight;
int i;
for(i=0; i<pTab->nCol; i++){
int n1 = sessionSerialLen(a1);
int n2 = sessionSerialLen(a2);
if( pTab->abPK[i] && (n1!=n2 || memcmp(a1, a2, n1)) ){
return 0;
}
a1 += n1;
a2 += n2;
}
return 1;
}
static void sessionMergeRecord(
u8 **paOut,
SessionTable *pTab,
u8 *aLeft,
u8 *aRight
){
u8 *a1 = aLeft;
u8 *a2 = aRight;
u8 *aOut = *paOut;
int i;
for(i=0; i<pTab->nCol; i++){
int n1 = sessionSerialLen(a1);
int n2 = sessionSerialLen(a2);
if( *a2 ){
memcpy(aOut, a2, n2);
aOut += n2;
}else{
memcpy(aOut, a1, n1);
aOut += n1;
}
a1 += n1;
a2 += n2;
}
*paOut = aOut;
}
static u8 *sessionMergeValue(
u8 **paOne,
u8 **paTwo,
int *pnVal
){
u8 *a1 = *paOne;
u8 *a2 = *paTwo;
u8 *pRet = 0;
int n1;
assert( a1 );
if( a2 ){
int n2 = sessionSerialLen(a2);
if( *a2 ){
*pnVal = n2;
pRet = a2;
}
*paTwo = &a2[n2];
}
n1 = sessionSerialLen(a1);
if( pRet==0 ){
*pnVal = n1;
pRet = a1;
}
*paOne = &a1[n1];
return pRet;
}
static int sessionMergeUpdate(
u8 **paOut,
SessionTable *pTab,
u8 *aOldRecord1,
u8 *aOldRecord2,
u8 *aNewRecord1,
u8 *aNewRecord2
){
u8 *aOld1 = aOldRecord1;
u8 *aOld2 = aOldRecord2;
u8 *aNew1 = aNewRecord1;
u8 *aNew2 = aNewRecord2;
u8 *aOut = *paOut;
int i;
int bRequired = 0;
assert( aOldRecord1 && aNewRecord1 );
/* Write the old.* vector first. */
for(i=0; i<pTab->nCol; i++){
int nOld;
u8 *aOld;
int nNew;
u8 *aNew;
aOld = sessionMergeValue(&aOld1, &aOld2, &nOld);
aNew = sessionMergeValue(&aNew1, &aNew2, &nNew);
if( pTab->abPK[i] || nOld!=nNew || memcmp(aOld, aNew, nNew) ){
if( pTab->abPK[i]==0 ) bRequired = 1;
memcpy(aOut, aOld, nOld);
aOut += nOld;
}else{
*(aOut++) = '\0';
}
}
if( !bRequired ) return 0;
/* Write the new.* vector */
aOld1 = aOldRecord1;
aOld2 = aOldRecord2;
aNew1 = aNewRecord1;
aNew2 = aNewRecord2;
for(i=0; i<pTab->nCol; i++){
int nOld;
u8 *aOld;
int nNew;
u8 *aNew;
aOld = sessionMergeValue(&aOld1, &aOld2, &nOld);
aNew = sessionMergeValue(&aNew1, &aNew2, &nNew);
if( pTab->abPK[i] || (nOld==nNew && 0==memcmp(aOld, aNew, nNew)) ){
*(aOut++) = '\0';
}else{
memcpy(aOut, aNew, nNew);
aOut += nNew;
}
}
*paOut = aOut;
return 1;
}
static int sessionPreupdateEqual(
sqlite3 *db,
SessionTable *pTab,
SessionChange *pChange,
int bNew,
int *pbEqual
){
int i;
u8 *a = pChange->aRecord;
*pbEqual = 0;
for(i=0; i<pTab->nCol; i++){
int eType = *a++;
if( !pTab->abPK[i] ){
switch( eType ){
case SQLITE_INTEGER:
case SQLITE_FLOAT:
a += 8;
break;
case SQLITE_TEXT:
case SQLITE_BLOB: {
int n;
a += sessionVarintGet(a, &n);
a += n;
break;
}
}
}else{
sqlite3_value *pVal;
int rc;
if( bNew ){
rc = sqlite3_preupdate_new(db, i, &pVal);
}else{
rc = sqlite3_preupdate_old(db, i, &pVal);
}
if( rc!=SQLITE_OK || sqlite3_value_type(pVal)!=eType ) return rc;
/* A SessionChange object never has a NULL value in a PK column */
assert( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT
|| eType==SQLITE_BLOB || eType==SQLITE_TEXT
);
if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
i64 iVal = sessionGetI64(a);
a += 8;
if( eType==SQLITE_INTEGER ){
if( sqlite3_value_int64(pVal)!=iVal ) return SQLITE_OK;
}else{
double rVal;
assert( sizeof(iVal)==8 && sizeof(rVal)==8 );
memcpy(&rVal, &iVal, 8);
if( sqlite3_value_double(pVal)!=rVal ) return SQLITE_OK;
}
}else{
int n;
const u8 *z;
a += sessionVarintGet(a, &n);
if( sqlite3_value_bytes(pVal)!=n ) return SQLITE_OK;
if( eType==SQLITE_TEXT ){
z = sqlite3_value_text(pVal);
}else{
z = sqlite3_value_blob(pVal);
}
if( memcmp(a, z, n) ) return SQLITE_OK;
a += n;
break;
}
}
}
*pbEqual = 1;
return SQLITE_OK;
}
/*
** If required, grow the hash table used to store changes on table pTab
** (part of the session pSession). If a fatal OOM error occurs, set the
** session object to failed and return SQLITE_ERROR. Otherwise, return
** SQLITE_OK.
**
** It is possible that a non-fatal OOM error occurs in this function. In
** that case the hash-table does not grow, but SQLITE_OK is returned anyway.
** Growing the hash table in this case is a performance optimization only,
** it is not required for correct operation.
*/
static int sessionGrowHash(SessionTable *pTab){
if( pTab->nChange==0 || pTab->nEntry>=(pTab->nChange/2) ){
int i;
SessionChange **apNew;
int nNew = (pTab->nChange ? pTab->nChange : 128) * 2;
apNew = (SessionChange **)sqlite3_malloc(sizeof(SessionChange *) * nNew);
if( apNew==0 ){
if( pTab->nChange==0 ){
return SQLITE_ERROR;
}
return SQLITE_OK;
}
memset(apNew, 0, sizeof(SessionChange *) * nNew);
for(i=0; i<pTab->nChange; i++){
SessionChange *p;
SessionChange *pNext;
for(p=pTab->apChange[i]; p; p=pNext){
int iHash = sessionChangeHash(pTab, p->aRecord, nNew);
pNext = p->pNext;
p->pNext = apNew[iHash];
apNew[iHash] = p;
}
}
sqlite3_free(pTab->apChange);
pTab->nChange = nNew;
pTab->apChange = apNew;
}
return SQLITE_OK;
}
/*
** This function queries the database for the names of the columns of table
** zThis, in schema zDb. It is expected that the table has nCol columns. If
** not, SQLITE_SCHEMA is returned and none of the output variables are
** populated.
**
** Otherwise, if it is not NULL, variable *pzTab is set to point to a
** nul-terminated copy of the table name. *pazCol (if not NULL) is set to
** point to an array of pointers to column names. And *pabPK (again, if not
** NULL) is set to point to an array of booleans - true if the corresponding
** column is part of the primary key.
**
** For example, if the table is declared as:
**
** CREATE TABLE tbl1(w, x, y, z, PRIMARY KEY(w, z));
**
** Then the three output variables are populated as follows:
**
** *pzTab = "tbl1"
** *pazCol = {"w", "x", "y", "z"}
** *pabPK = {1, 0, 0, 1}
**
** All returned buffers are part of the same single allocation, which must
** be freed using sqlite3_free() by the caller. If pazCol was not NULL, then
** pointer *pazCol should be freed to release all memory. Otherwise, pointer
** *pabPK. It is illegal for both pazCol and pabPK to be NULL.
*/
static int sessionTableInfo(
sqlite3 *db, /* Database connection */
const char *zDb, /* Name of attached database (e.g. "main") */
const char *zThis, /* Table name */
int *pnCol, /* OUT: number of columns */
const char **pzTab, /* OUT: Copy of zThis */
const char ***pazCol, /* OUT: Array of column names for table */
u8 **pabPK /* OUT: Array of booleans - true for PK col */
){
char *zPragma;
sqlite3_stmt *pStmt;
int rc;
int nByte;
int nDbCol = 0;
int nThis;
int i;
u8 *pAlloc;
char **azCol = 0;
u8 *abPK;
assert( pazCol && pabPK );
nThis = sqlite3Strlen30(zThis);
zPragma = sqlite3_mprintf("PRAGMA '%q'.table_info('%q')", zDb, zThis);
if( !zPragma ) return SQLITE_NOMEM;
rc = sqlite3_prepare_v2(db, zPragma, -1, &pStmt, 0);
sqlite3_free(zPragma);
if( rc!=SQLITE_OK ) return rc;
nByte = nThis + 1;
while( SQLITE_ROW==sqlite3_step(pStmt) ){
nByte += sqlite3_column_bytes(pStmt, 1);
nDbCol++;
}
rc = sqlite3_reset(pStmt);
if( rc==SQLITE_OK ){
nByte += nDbCol * (sizeof(const char *) + sizeof(u8) + 1);
pAlloc = sqlite3_malloc(nByte);
if( pAlloc==0 ){
rc = SQLITE_NOMEM;
}
}
if( rc==SQLITE_OK ){
azCol = (char **)pAlloc;
pAlloc = (u8 *)&azCol[nDbCol];
abPK = (u8 *)pAlloc;
pAlloc = &abPK[nDbCol];
if( pzTab ){
memcpy(pAlloc, zThis, nThis+1);
*pzTab = (char *)pAlloc;
pAlloc += nThis+1;
}
i = 0;
while( SQLITE_ROW==sqlite3_step(pStmt) ){
int nName = sqlite3_column_bytes(pStmt, 1);
const unsigned char *zName = sqlite3_column_text(pStmt, 1);
if( zName==0 ) break;
memcpy(pAlloc, zName, nName+1);
azCol[i] = (char *)pAlloc;
pAlloc += nName+1;
abPK[i] = sqlite3_column_int(pStmt, 5);
i++;
}
rc = sqlite3_reset(pStmt);
}
/* If successful, populate the output variables. Otherwise, zero them and
** free any allocation made. An error code will be returned in this case.
*/
if( rc==SQLITE_OK ){
*pazCol = (const char **)azCol;
*pabPK = abPK;
*pnCol = nDbCol;
}else{
*pazCol = 0;
*pabPK = 0;
*pnCol = 0;
if( pzTab ) *pzTab = 0;
sqlite3_free(azCol);
}
sqlite3_finalize(pStmt);
return rc;
}
/*
** This function is only called from within a pre-update handler for a
** write to table pTab, part of session pSession. If this is the first
** write to this table, set the SessionTable.nCol variable to the number
** of columns in the table.
**
** Otherwise, if this is not the first time this table has been written
** to, check that the number of columns in the table has not changed. If
** it has not, return zero.
**
** If the number of columns in the table has changed since the last write
** was recorded, set the session error-code to SQLITE_SCHEMA and return
** non-zero. Users are not allowed to change the number of columns in a table
** for which changes are being recorded by the session module. If they do so,
** it is an error.
*/
static int sessionInitTable(sqlite3_session *pSession, SessionTable *pTab){
if( pTab->nCol==0 ){
assert( pTab->azCol==0 || pTab->abPK==0 );
pSession->rc = sessionTableInfo(pSession->db, pSession->zDb,
pTab->zName, &pTab->nCol, 0, &pTab->azCol, &pTab->abPK
);
}
if( pSession->rc==SQLITE_OK
&& pTab->nCol!=sqlite3_preupdate_count(pSession->db)
){
pSession->rc = SQLITE_SCHEMA;
}
return pSession->rc;
}
static void sessionPreupdateOneChange(
int op,
sqlite3_session *pSession,
SessionTable *pTab
){
sqlite3 *db = pSession->db;
int iHash;
int bNullPk = 0;
int rc = SQLITE_OK;
if( pSession->rc ) return;
/* Load table details if required */
if( sessionInitTable(pSession, pTab) ) return;
/* Grow the hash table if required */
if( sessionGrowHash(pTab) ){
pSession->rc = SQLITE_NOMEM;
return;
}
/* Search the hash table for an existing entry for rowid=iKey2. If
** one is found, store a pointer to it in pChange and unlink it from
** the hash table. Otherwise, set pChange to NULL.
*/
rc = sessionPreupdateHash(db, pTab, op==SQLITE_INSERT, &iHash, &bNullPk);
if( rc==SQLITE_OK && bNullPk==0 ){
SessionChange *pC;
for(pC=pTab->apChange[iHash]; rc==SQLITE_OK && pC; pC=pC->pNext){
int bEqual;
rc = sessionPreupdateEqual(db, pTab, pC, op==SQLITE_INSERT, &bEqual);
if( bEqual ) break;
}
if( pC==0 ){
/* Create a new change object containing all the old values (if
** this is an SQLITE_UPDATE or SQLITE_DELETE), or just the PK
** values (if this is an INSERT). */
SessionChange *pChange; /* New change object */
int nByte; /* Number of bytes to allocate */
int i; /* Used to iterate through columns */
assert( rc==SQLITE_OK );
pTab->nEntry++;
/* Figure out how large an allocation is required */
nByte = sizeof(SessionChange);
for(i=0; i<pTab->nCol && rc==SQLITE_OK; i++){
sqlite3_value *p = 0;
if( op!=SQLITE_INSERT ){
rc = sqlite3_preupdate_old(pSession->db, i, &p);
}else if( 1 || pTab->abPK[i] ){
rc = sqlite3_preupdate_new(pSession->db, i, &p);
}
if( p && rc==SQLITE_OK ){
rc = sessionSerializeValue(0, p, &nByte);
}
}
/* Allocate the change object */
pChange = (SessionChange *)sqlite3_malloc(nByte);
if( !pChange ){
rc = SQLITE_NOMEM;
}else{
memset(pChange, 0, sizeof(SessionChange));
pChange->aRecord = (u8 *)&pChange[1];
}
/* Populate the change object */
nByte = 0;
for(i=0; i<pTab->nCol && rc==SQLITE_OK; i++){
sqlite3_value *p = 0;
if( op!=SQLITE_INSERT ){
rc = sqlite3_preupdate_old(pSession->db, i, &p);
}else if( 1 || pTab->abPK[i] ){
rc = sqlite3_preupdate_new(pSession->db, i, &p);
}
if( p && rc==SQLITE_OK ){
rc = sessionSerializeValue(&pChange->aRecord[nByte], p, &nByte);
}
}
if( rc==SQLITE_OK ){
/* Add the change back to the hash-table */
if( pSession->bIndirect || sqlite3_preupdate_depth(pSession->db) ){
pChange->bIndirect = 1;
}
pChange->nRecord = nByte;
pChange->bInsert = (op==SQLITE_INSERT);
pChange->pNext = pTab->apChange[iHash];
pTab->apChange[iHash] = pChange;
}else{
sqlite3_free(pChange);
}
}else if( rc==SQLITE_OK && pC->bIndirect ){
/* If the existing change is considered "indirect", but this current
** change is "direct", mark the change object as direct. */
if( sqlite3_preupdate_depth(pSession->db)==0 && pSession->bIndirect==0 ){
pC->bIndirect = 0;
}
}
}
/* If an error has occurred, mark the session object as failed. */
if( rc!=SQLITE_OK ){
pSession->rc = rc;
}
}
/*
** The 'pre-update' hook registered by this module with SQLite databases.
*/
static void xPreUpdate(
void *pCtx, /* Copy of third arg to preupdate_hook() */
sqlite3 *db, /* Database handle */
int op, /* SQLITE_UPDATE, DELETE or INSERT */
char const *zDb, /* Database name */
char const *zName, /* Table name */
sqlite3_int64 iKey1, /* Rowid of row about to be deleted/updated */
sqlite3_int64 iKey2 /* New rowid value (for a rowid UPDATE) */
){
sqlite3_session *pSession;
int nDb = sqlite3Strlen30(zDb);
int nName = sqlite3Strlen30(zName);
assert( sqlite3_mutex_held(db->mutex) );
for(pSession=(sqlite3_session *)pCtx; pSession; pSession=pSession->pNext){
SessionTable *pTab;
/* If this session is attached to a different database ("main", "temp"
** etc.), or if it is not currently enabled, there is nothing to do. Skip
** to the next session object attached to this database. */
if( pSession->bEnable==0 ) continue;
if( pSession->rc ) continue;
if( sqlite3_strnicmp(zDb, pSession->zDb, nDb+1) ) continue;
for(pTab=pSession->pTable; pTab || pSession->bAutoAttach; pTab=pTab->pNext){
if( !pTab ){
/* This branch is taken if table zName has not yet been attached to
** this session and the auto-attach flag is set. */
pSession->rc = sqlite3session_attach(pSession,zName);
if( pSession->rc ) break;
pTab = pSession->pTable;
assert( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) );
}
if( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) ){
sessionPreupdateOneChange(op, pSession, pTab);
if( op==SQLITE_UPDATE ){
sessionPreupdateOneChange(SQLITE_INSERT, pSession, pTab);
}
break;
}
}
}
}
/*
** Create a session object. This session object will record changes to
** database zDb attached to connection db.
*/
int sqlite3session_create(
sqlite3 *db, /* Database handle */
const char *zDb, /* Name of db (e.g. "main") */
sqlite3_session **ppSession /* OUT: New session object */
){
sqlite3_session *pNew; /* Newly allocated session object */
sqlite3_session *pOld; /* Session object already attached to db */
int nDb = sqlite3Strlen30(zDb); /* Length of zDb in bytes */
/* Zero the output value in case an error occurs. */
*ppSession = 0;
/* Allocate and populate the new session object. */
pNew = (sqlite3_session *)sqlite3_malloc(sizeof(sqlite3_session) + nDb + 1);
if( !pNew ) return SQLITE_NOMEM;
memset(pNew, 0, sizeof(sqlite3_session));
pNew->db = db;
pNew->zDb = (char *)&pNew[1];
pNew->bEnable = 1;
memcpy(pNew->zDb, zDb, nDb+1);
/* Add the new session object to the linked list of session objects
** attached to database handle $db. Do this under the cover of the db
** handle mutex. */
sqlite3_mutex_enter(sqlite3_db_mutex(db));
pOld = (sqlite3_session*)sqlite3_preupdate_hook(db, xPreUpdate, (void*)pNew);
pNew->pNext = pOld;
sqlite3_mutex_leave(sqlite3_db_mutex(db));
*ppSession = pNew;
return SQLITE_OK;
}
void sessionDeleteTable(SessionTable *pList){
SessionTable *pNext;
SessionTable *pTab;
for(pTab=pList; pTab; pTab=pNext){
int i;
pNext = pTab->pNext;
for(i=0; i<pTab->nChange; i++){
SessionChange *p;
SessionChange *pNext;
for(p=pTab->apChange[i]; p; p=pNext){
pNext = p->pNext;
sqlite3_free(p);
}
}
sqlite3_free((char*)pTab->azCol); /* cast works around VC++ bug */
sqlite3_free(pTab->apChange);
sqlite3_free(pTab);
}
}
/*
** Delete a session object previously allocated using sqlite3session_create().
*/
void sqlite3session_delete(sqlite3_session *pSession){
sqlite3 *db = pSession->db;
sqlite3_session *pHead;
sqlite3_session **pp;
/* Unlink the session from the linked list of sessions attached to the
** database handle. Hold the db mutex while doing so. */
sqlite3_mutex_enter(sqlite3_db_mutex(db));
pHead = (sqlite3_session*)sqlite3_preupdate_hook(db, 0, 0);
for(pp=&pHead; (*pp)!=pSession; pp=&((*pp)->pNext));
*pp = (*pp)->pNext;
if( pHead ) sqlite3_preupdate_hook(db, xPreUpdate, (void *)pHead);
sqlite3_mutex_leave(sqlite3_db_mutex(db));
/* Delete all attached table objects. And the contents of their
** associated hash-tables. */
sessionDeleteTable(pSession->pTable);
/* Free the session object itself. */
sqlite3_free(pSession);
}
/*
** Attach a table to a session. All subsequent changes made to the table
** while the session object is enabled will be recorded.
**
** Only tables that have a PRIMARY KEY defined may be attached. It does
** not matter if the PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias)
** or not.
*/
int sqlite3session_attach(
sqlite3_session *pSession, /* Session object */
const char *zName /* Table name */
){
int rc = SQLITE_OK;
sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
if( !zName ){
pSession->bAutoAttach = 1;
}else{
SessionTable *pTab; /* New table object (if required) */
int nName; /* Number of bytes in string zName */
/* First search for an existing entry. If one is found, this call is
** a no-op. Return early. */
nName = sqlite3Strlen30(zName);
for(pTab=pSession->pTable; pTab; pTab=pTab->pNext){
if( 0==sqlite3_strnicmp(pTab->zName, zName, nName+1) ) break;
}
if( !pTab ){
/* Allocate new SessionTable object. */
pTab = (SessionTable *)sqlite3_malloc(sizeof(SessionTable) + nName + 1);
if( !pTab ){
rc = SQLITE_NOMEM;
}else{
/* Populate the new SessionTable object and link it into the list. */
memset(pTab, 0, sizeof(SessionTable));
pTab->zName = (char *)&pTab[1];
memcpy(pTab->zName, zName, nName+1);
pTab->pNext = pSession->pTable;
pSession->pTable = pTab;
}
}
}
sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
return rc;
}
/*
** Ensure that there is room in the buffer to append nByte bytes of data.
** If not, use sqlite3_realloc() to grow the buffer so that there is.
**
** If successful, return zero. Otherwise, if an OOM condition is encountered,
** set *pRc to SQLITE_NOMEM and return non-zero.
*/
static int sessionBufferGrow(SessionBuffer *p, int nByte, int *pRc){
if( p->nAlloc-p->nBuf<nByte ){
u8 *aNew;
int nNew = p->nAlloc ? p->nAlloc : 128;
do {
nNew = nNew*2;
}while( nNew<(p->nAlloc+nByte) );
aNew = (u8 *)sqlite3_realloc(p->aBuf, nNew);
if( 0==aNew ){
*pRc = SQLITE_NOMEM;
return 1;
}
p->aBuf = aNew;
p->nAlloc = nNew;
}
return 0;
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwise, append a single byte to the buffer.
**
** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
** returning.
*/
static void sessionAppendByte(SessionBuffer *p, u8 v, int *pRc){
if( *pRc==SQLITE_OK && 0==sessionBufferGrow(p, 1, pRc) ){
p->aBuf[p->nBuf++] = v;
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwise, append a single varint to the buffer.
**
** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
** returning.
*/
static void sessionAppendVarint(SessionBuffer *p, int v, int *pRc){
if( *pRc==SQLITE_OK && 0==sessionBufferGrow(p, 9, pRc) ){
p->nBuf += sessionVarintPut(&p->aBuf[p->nBuf], v);
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwise, append a blob of data to the buffer.
**
** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
** returning.
*/
static void sessionAppendBlob(
SessionBuffer *p,
const u8 *aBlob,
int nBlob,
int *pRc
){
if( *pRc==SQLITE_OK && 0==sessionBufferGrow(p, nBlob, pRc) ){
memcpy(&p->aBuf[p->nBuf], aBlob, nBlob);
p->nBuf += nBlob;
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwise, append a string to the buffer. All bytes in the string
** up to (but not including) the nul-terminator are written to the buffer.
**
** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
** returning.
*/
static void sessionAppendStr(
SessionBuffer *p,
const char *zStr,
int *pRc
){
int nStr = sqlite3Strlen30(zStr);
if( *pRc==SQLITE_OK && 0==sessionBufferGrow(p, nStr, pRc) ){
memcpy(&p->aBuf[p->nBuf], zStr, nStr);
p->nBuf += nStr;
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwise, append the string representation of integer iVal
** to the buffer. No nul-terminator is written.
**
** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
** returning.
*/
static void sessionAppendInteger(
SessionBuffer *p, /* Buffer to append to */
int iVal, /* Value to write the string rep. of */
int *pRc /* IN/OUT: Error code */
){
char aBuf[24];
sqlite3_snprintf(sizeof(aBuf)-1, aBuf, "%d", iVal);
sessionAppendStr(p, aBuf, pRc);
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwise, append the string zStr enclosed in quotes (") and
** with any embedded quote characters escaped to the buffer. No
** nul-terminator byte is written.
**
** If an OOM condition is encountered, set *pRc to SQLITE_NOMEM before
** returning.
*/
static void sessionAppendIdent(
SessionBuffer *p, /* Buffer to a append to */
const char *zStr, /* String to quote, escape and append */
int *pRc /* IN/OUT: Error code */
){
int nStr = sqlite3Strlen30(zStr)*2 + 2 + 1;
if( *pRc==SQLITE_OK && 0==sessionBufferGrow(p, nStr, pRc) ){
char *zOut = (char *)&p->aBuf[p->nBuf];
const char *zIn = zStr;
*zOut++ = '"';
while( *zIn ){
if( *zIn=='"' ) *zOut++ = '"';
*zOut++ = *(zIn++);
}
*zOut++ = '"';
p->nBuf = (int)((u8 *)zOut - p->aBuf);
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called. Otherwse, it appends the serialized version of the value stored
** in column iCol of the row that SQL statement pStmt currently points
** to to the buffer.
*/
static void sessionAppendCol(
SessionBuffer *p, /* Buffer to append to */
sqlite3_stmt *pStmt, /* Handle pointing to row containing value */
int iCol, /* Column to read value from */
int *pRc /* IN/OUT: Error code */
){
if( *pRc==SQLITE_OK ){
int eType = sqlite3_column_type(pStmt, iCol);
sessionAppendByte(p, (u8)eType, pRc);
if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
sqlite3_int64 i;
u8 aBuf[8];
if( eType==SQLITE_INTEGER ){
i = sqlite3_column_int64(pStmt, iCol);
}else{
double r = sqlite3_column_double(pStmt, iCol);
memcpy(&i, &r, 8);
}
sessionPutI64(aBuf, i);
sessionAppendBlob(p, aBuf, 8, pRc);
}
if( eType==SQLITE_BLOB || eType==SQLITE_TEXT ){
int nByte = sqlite3_column_bytes(pStmt, iCol);
sessionAppendVarint(p, nByte, pRc);
sessionAppendBlob(p, eType==SQLITE_BLOB ?
sqlite3_column_blob(pStmt, iCol) : sqlite3_column_text(pStmt, iCol),
nByte, pRc
);
}
}
}
/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is
** called.
**
** Otherwse, if *pRc is SQLITE_OK, then it appends an update change to
** the buffer (see the comments under "CHANGESET FORMAT" at the top of the
** file). An update change consists of:
**
** 1 byte: SQLITE_UPDATE (0x17)
** n bytes: old.* record (see RECORD FORMAT)
** m bytes: new.* record (see RECORD FORMAT)
**
** The SessionChange object passed as the third argument contains the
** values that were stored in the row when the session began (the old.*
** values). The statement handle passed as the second argument points
** at the current version of the row (the new.* values).
**
** If all of the old.* values are equal to their corresponding new.* value
** (i.e. nothing has changed), then no data at all is appended to the buffer.
**
** Otherwise, the old.* record contains all primary key values and the
** original values of any fields that have been modified. The new.* record
** contains the new values of only those fields that have been modified.
*/
static void sessionAppendUpdate(
SessionBuffer *pBuf, /* Buffer to append to */
sqlite3_stmt *pStmt, /* Statement handle pointing at new row */
SessionChange *p, /* Object containing old values */
u8 *abPK, /* Boolean array - true for PK columns */
int *pRc /* IN/OUT: Error code */
){
if( *pRc==SQLITE_OK ){
SessionBuffer buf2 = {0,0,0}; /* Buffer to accumulate new.* record in */
int bNoop = 1; /* Set to zero if any values are modified */
int nRewind = pBuf->nBuf; /* Set to zero if any values are modified */
int i; /* Used to iterate through columns */
u8 *pCsr = p->aRecord; /* Used to iterate through old.* values */
sessionAppendByte(pBuf, SQLITE_UPDATE, pRc);
sessionAppendByte(pBuf, p->bIndirect, pRc);
for(i=0; i<sqlite3_column_count(pStmt); i++){
int bChanged = 0;
int nAdvance;
int eType = *pCsr;
switch( eType ){
case SQLITE_NULL:
nAdvance = 1;
if( sqlite3_column_type(pStmt, i)!=SQLITE_NULL ){
bChanged = 1;
}
break;
case SQLITE_FLOAT:
case SQLITE_INTEGER: {
nAdvance = 9;
if( eType==sqlite3_column_type(pStmt, i) ){
sqlite3_int64 iVal = sessionGetI64(&pCsr[1]);
if( eType==SQLITE_INTEGER ){
if( iVal==sqlite3_column_int64(pStmt, i) ) break;
}else{
double dVal;
memcpy(&dVal, &iVal, 8);
if( dVal==sqlite3_column_double(pStmt, i) ) break;
}
}
bChanged = 1;
break;
}
default: {
int nByte;
int nHdr = 1 + sessionVarintGet(&pCsr[1], &nByte);
assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
nAdvance = nHdr + nByte;
if( eType==sqlite3_column_type(pStmt, i)
&& nByte==sqlite3_column_bytes(pStmt, i)
&& 0==memcmp(&pCsr[nHdr], sqlite3_column_blob(pStmt, i), nByte)
){
break;
}
bChanged = 1;
}
}
if( bChanged || abPK[i] ){
sessionAppendBlob(pBuf, pCsr, nAdvance, pRc);
}else{
sessionAppendByte(pBuf, 0, pRc);
}
if( bChanged ){
sessionAppendCol(&buf2, pStmt, i, pRc);
bNoop = 0;
}else{
sessionAppendByte(&buf2, 0, pRc);
}
pCsr += nAdvance;
}
if( bNoop ){
pBuf->nBuf = nRewind;
}else{
sessionAppendBlob(pBuf, buf2.aBuf, buf2.nBuf, pRc);
}
sqlite3_free(buf2.aBuf);
}
}
static int sessionSelectStmt(
sqlite3 *db, /* Database handle */
const char *zDb, /* Database name */
const char *zTab, /* Table name */
int nCol,
const char **azCol,
u8 *abPK,
sqlite3_stmt **ppStmt
){
int rc = SQLITE_OK;
int i;
const char *zSep = "";
SessionBuffer buf = {0, 0, 0};
sessionAppendStr(&buf, "SELECT * FROM ", &rc);
sessionAppendIdent(&buf, zDb, &rc);
sessionAppendStr(&buf, ".", &rc);
sessionAppendIdent(&buf, zTab, &rc);
sessionAppendStr(&buf, " WHERE ", &rc);
for(i=0; i<nCol; i++){
if( abPK[i] ){
sessionAppendStr(&buf, zSep, &rc);
sessionAppendIdent(&buf, azCol[i], &rc);
sessionAppendStr(&buf, " = ?", &rc);
sessionAppendInteger(&buf, i+1, &rc);
zSep = " AND ";
}
}
if( rc==SQLITE_OK ){
rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, ppStmt, 0);
}
sqlite3_free(buf.aBuf);
return rc;
}
static int sessionSelectBind(
sqlite3_stmt *pSelect,
int nCol,
u8 *abPK,
SessionChange *pChange
){
int i;
int rc = SQLITE_OK;
u8 *a = pChange->aRecord;
for(i=0; i<nCol && rc==SQLITE_OK; i++){
int eType = *a++;
switch( eType ){
case SQLITE_NULL:
assert( abPK[i]==0 );
break;
case SQLITE_INTEGER: {
if( abPK[i] ){
i64 iVal = sessionGetI64(a);
rc = sqlite3_bind_int64(pSelect, i+1, iVal);
}
a += 8;
break;
}
case SQLITE_FLOAT: {
if( abPK[i] ){
double rVal;
i64 iVal = sessionGetI64(a);
memcpy(&rVal, &iVal, 8);
rc = sqlite3_bind_double(pSelect, i+1, rVal);
}
a += 8;
break;
}
case SQLITE_TEXT: {
int n;
a += sessionVarintGet(a, &n);
if( abPK[i] ){
rc = sqlite3_bind_text(pSelect, i+1, (char *)a, n, SQLITE_TRANSIENT);
}
a += n;
break;
}
default: {
int n;
assert( eType==SQLITE_BLOB );
a += sessionVarintGet(a, &n);
if( abPK[i] ){
rc = sqlite3_bind_blob(pSelect, i+1, a, n, SQLITE_TRANSIENT);
}
a += n;
break;
}
}
}
return rc;
}
static void sessionAppendTableHdr(
SessionBuffer *pBuf,
SessionTable *pTab,
int *pRc
){
/* Write a table header */
sessionAppendByte(pBuf, 'T', pRc);
sessionAppendVarint(pBuf, pTab->nCol, pRc);
sessionAppendBlob(pBuf, pTab->abPK, pTab->nCol, pRc);
sessionAppendBlob(pBuf, (u8 *)pTab->zName, strlen(pTab->zName)+1, pRc);
}
/*
** Obtain a changeset object containing all changes recorded by the
** session object passed as the first argument.
**
** It is the responsibility of the caller to eventually free the buffer
** using sqlite3_free().
*/
int sqlite3session_changeset(
sqlite3_session *pSession, /* Session object */
int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */
void **ppChangeset /* OUT: Buffer containing changeset */
){
sqlite3 *db = pSession->db; /* Source database handle */
SessionTable *pTab; /* Used to iterate through attached tables */
SessionBuffer buf = {0,0,0}; /* Buffer in which to accumlate changeset */
int rc; /* Return code */
/* Zero the output variables in case an error occurs. If this session
** object is already in the error state (sqlite3_session.rc != SQLITE_OK),
** this call will be a no-op. */
*pnChangeset = 0;
*ppChangeset = 0;
if( pSession->rc ) return pSession->rc;
rc = sqlite3_exec(pSession->db, "SAVEPOINT changeset", 0, 0, 0);
if( rc!=SQLITE_OK ) return rc;
sqlite3_mutex_enter(sqlite3_db_mutex(db));
for(pTab=pSession->pTable; rc==SQLITE_OK && pTab; pTab=pTab->pNext){
if( pTab->nEntry ){
const char *zName = pTab->zName;
int nCol; /* Number of columns in table */
u8 *abPK; /* Primary key array */
const char **azCol = 0; /* Table columns */
int i; /* Used to iterate through hash buckets */
sqlite3_stmt *pSel = 0; /* SELECT statement to query table pTab */
int nRewind = buf.nBuf; /* Initial size of write buffer */
int nNoop; /* Size of buffer after writing tbl header */
/* Check the table schema is still Ok. */
rc = sessionTableInfo(db, pSession->zDb, zName, &nCol, 0, &azCol, &abPK);
if( !rc && (pTab->nCol!=nCol || memcmp(abPK, pTab->abPK, nCol)) ){
rc = SQLITE_SCHEMA;
}
/* Write a table header */
sessionAppendTableHdr(&buf, pTab, &rc);
/* Build and compile a statement to execute: */
if( rc==SQLITE_OK ){
rc = sessionSelectStmt(
db, pSession->zDb, zName, nCol, azCol, abPK, &pSel);
}
nNoop = buf.nBuf;
for(i=0; i<pTab->nChange && rc==SQLITE_OK; i++){
SessionChange *p; /* Used to iterate through changes */
for(p=pTab->apChange[i]; rc==SQLITE_OK && p; p=p->pNext){
rc = sessionSelectBind(pSel, nCol, abPK, p);
if( sqlite3_step(pSel)==SQLITE_ROW ){
int iCol;
if( p->bInsert ){
sessionAppendByte(&buf, SQLITE_INSERT, &rc);
sessionAppendByte(&buf, p->bIndirect, &rc);
for(iCol=0; iCol<nCol; iCol++){
sessionAppendCol(&buf, pSel, iCol, &rc);
}
}else{
sessionAppendUpdate(&buf, pSel, p, abPK, &rc);
}
}else if( !p->bInsert ){
/* A DELETE change */
sessionAppendByte(&buf, SQLITE_DELETE, &rc);
sessionAppendByte(&buf, p->bIndirect, &rc);
sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc);
}
if( rc==SQLITE_OK ){
rc = sqlite3_reset(pSel);
}
}
}
sqlite3_finalize(pSel);
if( buf.nBuf==nNoop ){
buf.nBuf = nRewind;
}
sqlite3_free((char*)azCol); /* cast works around VC++ bug */
}
}
if( rc==SQLITE_OK ){
*pnChangeset = buf.nBuf;
*ppChangeset = buf.aBuf;
}else{
sqlite3_free(buf.aBuf);
}
sqlite3_exec(db, "RELEASE changeset", 0, 0, 0);
sqlite3_mutex_leave(sqlite3_db_mutex(db));
return rc;
}
/*
** Enable or disable the session object passed as the first argument.
*/
int sqlite3session_enable(sqlite3_session *pSession, int bEnable){
int ret;
sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
if( bEnable>=0 ){
pSession->bEnable = bEnable;
}
ret = pSession->bEnable;
sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
return ret;
}
/*
** Enable or disable the session object passed as the first argument.
*/
int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect){
int ret;
sqlite3_mutex_enter(sqlite3_db_mutex(pSession->db));
if( bIndirect>=0 ){
pSession->bIndirect = bIndirect;
}
ret = pSession->bIndirect;
sqlite3_mutex_leave(sqlite3_db_mutex(pSession->db));
return ret;
}
/*
** Create an iterator used to iterate through the contents of a changeset.
*/
int sqlite3changeset_start(
sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */
int nChangeset, /* Size of buffer pChangeset in bytes */
void *pChangeset /* Pointer to buffer containing changeset */
){
sqlite3_changeset_iter *pRet; /* Iterator to return */
int nByte; /* Number of bytes to allocate for iterator */
/* Zero the output variable in case an error occurs. */
*pp = 0;
/* Allocate and initialize the iterator structure. */
nByte = sizeof(sqlite3_changeset_iter);
pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte);
if( !pRet ) return SQLITE_NOMEM;
memset(pRet, 0, sizeof(sqlite3_changeset_iter));
pRet->aChangeset = (u8 *)pChangeset;
pRet->nChangeset = nChangeset;
pRet->pNext = pRet->aChangeset;
/* Populate the output variable and return success. */
*pp = pRet;
return SQLITE_OK;
}
/*
** Deserialize a single record from a buffer in memory. See "RECORD FORMAT"
** for details.
**
** When this function is called, *paChange points to the start of the record
** to deserialize. Assuming no error occurs, *paChange is set to point to
** one byte after the end of the same record before this function returns.
**
** If successful, each element of the apOut[] array (allocated by the caller)
** is set to point to an sqlite3_value object containing the value read
** from the corresponding position in the record. If that value is not
** included in the record (i.e. because the record is part of an UPDATE change
** and the field was not modified), the corresponding element of apOut[] is
** set to NULL.
**
** It is the responsibility of the caller to free all sqlite_value structures
** using sqlite3_free().
**
** If an error occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned.
** The apOut[] array may have been partially populated in this case.
*/
static int sessionReadRecord(
u8 **paChange, /* IN/OUT: Pointer to binary record */
int nCol, /* Number of values in record */
sqlite3_value **apOut /* Write values to this array */
){
int i; /* Used to iterate through columns */
u8 *aRec = *paChange; /* Cursor for the serialized record */
for(i=0; i<nCol; i++){
int eType = *aRec++; /* Type of value (SQLITE_NULL, TEXT etc.) */
assert( !apOut || apOut[i]==0 );
if( eType ){
if( apOut ){
apOut[i] = sqlite3ValueNew(0);
if( !apOut[i] ) return SQLITE_NOMEM;
}
if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
int nByte;
aRec += sessionVarintGet(aRec, &nByte);
if( apOut ){
int enc = (eType==SQLITE_TEXT ? SQLITE_UTF8 : 0);
sqlite3ValueSetStr(apOut[i], nByte, aRec, enc, SQLITE_STATIC);
}
aRec += nByte;
}
if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
if( apOut ){
sqlite3_int64 v = sessionGetI64(aRec);
if( eType==SQLITE_INTEGER ){
sqlite3VdbeMemSetInt64(apOut[i], v);
}else{
double d;
memcpy(&d, &v, 8);
sqlite3VdbeMemSetDouble(apOut[i], d);
}
}
aRec += 8;
}
}
}
*paChange = aRec;
return SQLITE_OK;
}
static int sessionChangesetNext(
sqlite3_changeset_iter *p,
u8 **paRec,
int *pnRec
){
u8 *aChange;
int i;
u8 c;
assert( (paRec==0 && pnRec==0) || (paRec && pnRec) );
/* If the iterator is in the error-state, return immediately. */
if( p->rc!=SQLITE_OK ) return p->rc;
/* Free the current contents of p->apValue[], if any. */
if( p->apValue ){
for(i=0; i<p->nCol*2; i++){
sqlite3ValueFree(p->apValue[i]);
}
memset(p->apValue, 0, sizeof(sqlite3_value*)*p->nCol*2);
}
/* If the iterator is already at the end of the changeset, return DONE. */
if( p->pNext>=&p->aChangeset[p->nChangeset] ){
return SQLITE_DONE;
}
aChange = p->pNext;
if( aChange[0]=='T' ){
int nByte; /* Bytes to allocate for apValue */
aChange++;
aChange += sessionVarintGet(aChange, &p->nCol);
p->abPK = (u8 *)aChange;
aChange += p->nCol;
p->zTab = (char *)aChange;
aChange += (sqlite3Strlen30((char *)aChange) + 1);
if( paRec==0 ){
sqlite3_free(p->apValue);
nByte = sizeof(sqlite3_value *) * p->nCol * 2;
p->apValue = (sqlite3_value **)sqlite3_malloc(nByte);
if( !p->apValue ){
return (p->rc = SQLITE_NOMEM);
}
memset(p->apValue, 0, sizeof(sqlite3_value*)*p->nCol*2);
}
}
p->op = *(aChange++);
p->bIndirect = *(aChange++);
if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){
return (p->rc = SQLITE_CORRUPT);
}
if( paRec ){ *paRec = aChange; }
/* If this is an UPDATE or DELETE, read the old.* record. */
if( p->op!=SQLITE_INSERT ){
p->rc = sessionReadRecord(&aChange, p->nCol, paRec?0:p->apValue);
if( p->rc!=SQLITE_OK ) return p->rc;
}
/* If this is an INSERT or UPDATE, read the new.* record. */
if( p->op!=SQLITE_DELETE ){
p->rc = sessionReadRecord(&aChange, p->nCol, paRec?0:&p->apValue[p->nCol]);
if( p->rc!=SQLITE_OK ) return p->rc;
}
if( pnRec ){ *pnRec = aChange - *paRec; }
p->pNext = aChange;
return SQLITE_ROW;
}
/*
** Advance an iterator created by sqlite3changeset_start() to the next
** change in the changeset. This function may return SQLITE_ROW, SQLITE_DONE
** or SQLITE_CORRUPT.
**
** This function may not be called on iterators passed to a conflict handler
** callback by changeset_apply().
*/
int sqlite3changeset_next(sqlite3_changeset_iter *p){
return sessionChangesetNext(p, 0, 0);
}
/*
** The following function extracts information on the current change
** from a changeset iterator. They may only be called after changeset_next()
** has returned SQLITE_ROW.
*/
int sqlite3changeset_op(
sqlite3_changeset_iter *pIter, /* Iterator handle */
const char **pzTab, /* OUT: Pointer to table name */
int *pnCol, /* OUT: Number of columns in table */
int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */
int *pbIndirect /* OUT: True if change is indirect */
){
*pOp = pIter->op;
*pnCol = pIter->nCol;
*pzTab = pIter->zTab;
if( pbIndirect ) *pbIndirect = pIter->bIndirect;
return SQLITE_OK;
}
int sqlite3changeset_pk(
sqlite3_changeset_iter *pIter, /* Iterator object */
unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */
int *pnCol /* OUT: Number of entries in output array */
){
*pabPK = pIter->abPK;
if( pnCol ) *pnCol = pIter->nCol;
return SQLITE_OK;
}
/*
** This function may only be called while the iterator is pointing to an
** SQLITE_UPDATE or SQLITE_DELETE change (see sqlite3changeset_op()).
** Otherwise, SQLITE_MISUSE is returned.
**
** It sets *ppValue to point to an sqlite3_value structure containing the
** iVal'th value in the old.* record. Or, if that particular value is not
** included in the record (because the change is an UPDATE and the field
** was not modified and is not a PK column), set *ppValue to NULL.
**
** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is
** not modified. Otherwise, SQLITE_OK.
*/
int sqlite3changeset_old(
sqlite3_changeset_iter *pIter, /* Changeset iterator */
int iVal, /* Index of old.* value to retrieve */
sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */
){
if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_DELETE ){
return SQLITE_MISUSE;
}
if( iVal<0 || iVal>=pIter->nCol ){
return SQLITE_RANGE;
}
*ppValue = pIter->apValue[iVal];
return SQLITE_OK;
}
/*
** This function may only be called while the iterator is pointing to an
** SQLITE_UPDATE or SQLITE_INSERT change (see sqlite3changeset_op()).
** Otherwise, SQLITE_MISUSE is returned.
**
** It sets *ppValue to point to an sqlite3_value structure containing the
** iVal'th value in the new.* record. Or, if that particular value is not
** included in the record (because the change is an UPDATE and the field
** was not modified), set *ppValue to NULL.
**
** If value iVal is out-of-range, SQLITE_RANGE is returned and *ppValue is
** not modified. Otherwise, SQLITE_OK.
*/
int sqlite3changeset_new(
sqlite3_changeset_iter *pIter, /* Changeset iterator */
int iVal, /* Index of new.* value to retrieve */
sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */
){
if( pIter->op!=SQLITE_UPDATE && pIter->op!=SQLITE_INSERT ){
return SQLITE_MISUSE;
}
if( iVal<0 || iVal>=pIter->nCol ){
return SQLITE_RANGE;
}
*ppValue = pIter->apValue[pIter->nCol+iVal];
return SQLITE_OK;
}
/*
** The following two macros are used internally. They are similar to the
** sqlite3changeset_new() and sqlite3changeset_old() functions, except that
** they omit all error checking and return a pointer to the requested value.
*/
#define sessionChangesetNew(pIter, iVal) (pIter)->apValue[(pIter)->nCol+(iVal)]
#define sessionChangesetOld(pIter, iVal) (pIter)->apValue[(iVal)]
/*
** This function may only be called with a changeset iterator that has been
** passed to an SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT
** conflict-handler function. Otherwise, SQLITE_MISUSE is returned.
**
** If successful, *ppValue is set to point to an sqlite3_value structure
** containing the iVal'th value of the conflicting record.
**
** If value iVal is out-of-range or some other error occurs, an SQLite error
** code is returned. Otherwise, SQLITE_OK.
*/
int sqlite3changeset_conflict(
sqlite3_changeset_iter *pIter, /* Changeset iterator */
int iVal, /* Index of conflict record value to fetch */
sqlite3_value **ppValue /* OUT: Value from conflicting row */
){
if( !pIter->pConflict ){
return SQLITE_MISUSE;
}
if( iVal<0 || iVal>=sqlite3_column_count(pIter->pConflict) ){
return SQLITE_RANGE;
}
*ppValue = sqlite3_column_value(pIter->pConflict, iVal);
return SQLITE_OK;
}
/*
** Finalize an iterator allocated with sqlite3changeset_start().
**
** This function may not be called on iterators passed to a conflict handler
** callback by changeset_apply().
*/
int sqlite3changeset_finalize(sqlite3_changeset_iter *p){
int i; /* Used to iterate through p->apValue[] */
int rc = p->rc; /* Return code */
if( p->apValue ){
for(i=0; i<p->nCol*2; i++) sqlite3ValueFree(p->apValue[i]);
}
sqlite3_free(p->apValue);
sqlite3_free(p);
return rc;
}
/*
** Invert a changeset object.
*/
int sqlite3changeset_invert(
int nChangeset, /* Number of bytes in input */
void *pChangeset, /* Input changeset */
int *pnInverted, /* OUT: Number of bytes in output changeset */
void **ppInverted /* OUT: Inverse of pChangeset */
){
u8 *aOut;
u8 *aIn;
int i;
int nCol = 0;
/* Zero the output variables in case an error occurs. */
*ppInverted = 0;
*pnInverted = 0;
if( nChangeset==0 ) return SQLITE_OK;
aOut = (u8 *)sqlite3_malloc(nChangeset);
if( !aOut ) return SQLITE_NOMEM;
aIn = (u8 *)pChangeset;
i = 0;
while( i<nChangeset ){
u8 eType = aIn[i];
switch( eType ){
case 'T': {
/* A 'table' record consists of:
**
** * A constant 'T' character,
** * Number of columns in said table (a varint),
** * An array of nCol bytes (abPK),
** * A nul-terminated table name.
*/
int nByte = 1 + sessionVarintGet(&aIn[i+1], &nCol);
nByte += nCol;
nByte += 1 + sqlite3Strlen30((char *)&aIn[i+nByte]);
memcpy(&aOut[i], &aIn[i], nByte);
i += nByte;
break;
}
case SQLITE_INSERT:
case SQLITE_DELETE: {
int nByte;
u8 *aEnd = &aIn[i+2];
sessionReadRecord(&aEnd, nCol, 0);
aOut[i] = (eType==SQLITE_DELETE ? SQLITE_INSERT : SQLITE_DELETE);
aOut[i+1] = aIn[i+1];
nByte = (int)(aEnd - &aIn[i+2]);
memcpy(&aOut[i+2], &aIn[i+2], nByte);
i += 2 + nByte;
break;
}
case SQLITE_UPDATE: {
int nByte1; /* Size of old.* record in bytes */
int nByte2; /* Size of new.* record in bytes */
u8 *aEnd = &aIn[i+2];
sessionReadRecord(&aEnd, nCol, 0);
nByte1 = (int)(aEnd - &aIn[i+2]);
sessionReadRecord(&aEnd, nCol, 0);
nByte2 = (int)(aEnd - &aIn[i+2]) - nByte1;
aOut[i] = SQLITE_UPDATE;
aOut[i+1] = aIn[i+1];
memcpy(&aOut[i+2], &aIn[i+2+nByte1], nByte2);
memcpy(&aOut[i+2+nByte2], &aIn[i+2], nByte1);
i += 2 + nByte1 + nByte2;
break;
}
default:
sqlite3_free(aOut);
return SQLITE_CORRUPT;
}
}
*pnInverted = nChangeset;
*ppInverted = (void *)aOut;
return SQLITE_OK;
}
typedef struct SessionApplyCtx SessionApplyCtx;
struct SessionApplyCtx {
sqlite3 *db;
sqlite3_stmt *pDelete; /* DELETE statement */
sqlite3_stmt *pUpdate; /* DELETE statement */
sqlite3_stmt *pInsert; /* INSERT statement */
sqlite3_stmt *pSelect; /* SELECT statement */
int nCol; /* Size of azCol[] and abPK[] arrays */
const char **azCol; /* Array of column names */
u8 *abPK; /* Boolean array - true if column is in PK */
};
/*
** Formulate a statement to DELETE a row from database db. Assuming a table
** structure like this:
**
** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));
**
** The DELETE statement looks like this:
**
** DELETE FROM x WHERE a = :1 AND c = :3 AND (:5 OR b IS :2 AND d IS :4)
**
** Variable :5 (nCol+1) is a boolean. It should be set to 0 if we require
** matching b and d values, or 1 otherwise. The second case comes up if the
** conflict handler is invoked with NOTFOUND and returns CHANGESET_REPLACE.
**
** If successful, SQLITE_OK is returned and SessionApplyCtx.pDelete is left
** pointing to the prepared version of the SQL statement.
*/
static int sessionDeleteRow(
sqlite3 *db, /* Database handle */
const char *zTab, /* Table name */
SessionApplyCtx *p /* Session changeset-apply context */
){
int i;
const char *zSep = "";
int rc = SQLITE_OK;
SessionBuffer buf = {0, 0, 0};
int nPk = 0;
sessionAppendStr(&buf, "DELETE FROM ", &rc);
sessionAppendIdent(&buf, zTab, &rc);
sessionAppendStr(&buf, " WHERE ", &rc);
for(i=0; i<p->nCol; i++){
if( p->abPK[i] ){
nPk++;
sessionAppendStr(&buf, zSep, &rc);
sessionAppendIdent(&buf, p->azCol[i], &rc);
sessionAppendStr(&buf, " = ?", &rc);
sessionAppendInteger(&buf, i+1, &rc);
zSep = " AND ";
}
}
if( nPk<p->nCol ){
sessionAppendStr(&buf, " AND (?", &rc);
sessionAppendInteger(&buf, p->nCol+1, &rc);
sessionAppendStr(&buf, " OR ", &rc);
zSep = "";
for(i=0; i<p->nCol; i++){
if( !p->abPK[i] ){
sessionAppendStr(&buf, zSep, &rc);
sessionAppendIdent(&buf, p->azCol[i], &rc);
sessionAppendStr(&buf, " IS ?", &rc);
sessionAppendInteger(&buf, i+1, &rc);
zSep = "AND ";
}
}
sessionAppendStr(&buf, ")", &rc);
}
if( rc==SQLITE_OK ){
rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pDelete, 0);
}
sqlite3_free(buf.aBuf);
return rc;
}
/*
** Formulate and prepare a statement to UPDATE a row from database db.
** Assuming a table structure like this:
**
** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));
**
** The UPDATE statement looks like this:
**
** UPDATE x SET
** a = CASE WHEN ?2 THEN ?3 ELSE a END,
** b = CASE WHEN ?5 THEN ?6 ELSE a END,
** c = CASE WHEN ?8 THEN ?9 ELSE a END,
** d = CASE WHEN ?11 THEN ?12 ELSE a END
** WHERE a = ?1 AND c = ?7 AND (?13 OR
** (?5==0 OR b IS ?4) AND (?11==0 OR b IS ?10) AND
** )
**
** For each column in the table, there are three variables to bind:
**
** ?(i*3+1) The old.* value of the column, if any.
** ?(i*3+2) A boolean flag indicating that the value is being modified.
** ?(i*3+3) The new.* value of the column, if any.
**
** Also, a boolean flag that, if set to true, causes the statement to update
** a row even if the non-PK values do not match. This is required if the
** conflict-handler is invoked with CHANGESET_DATA and returns
** CHANGESET_REPLACE. This is variable "?(nCol*3+1)".
**
** If successful, SQLITE_OK is returned and SessionApplyCtx.pUpdate is left
** pointing to the prepared version of the SQL statement.
*/
static int sessionUpdateRow(
sqlite3 *db, /* Database handle */
const char *zTab, /* Table name */
SessionApplyCtx *p /* Session changeset-apply context */
){
int rc = SQLITE_OK;
int i;
const char *zSep = "";
SessionBuffer buf = {0, 0, 0};
/* Append "UPDATE tbl SET " */
sessionAppendStr(&buf, "UPDATE ", &rc);
sessionAppendIdent(&buf, zTab, &rc);
sessionAppendStr(&buf, " SET ", &rc);
/* Append the assignments */
for(i=0; i<p->nCol; i++){
sessionAppendStr(&buf, zSep, &rc);
sessionAppendIdent(&buf, p->azCol[i], &rc);
sessionAppendStr(&buf, " = CASE WHEN ?", &rc);
sessionAppendInteger(&buf, i*3+2, &rc);
sessionAppendStr(&buf, " THEN ?", &rc);
sessionAppendInteger(&buf, i*3+3, &rc);
sessionAppendStr(&buf, " ELSE ", &rc);
sessionAppendIdent(&buf, p->azCol[i], &rc);
sessionAppendStr(&buf, " END", &rc);
zSep = ", ";
}
/* Append the PK part of the WHERE clause */
sessionAppendStr(&buf, " WHERE ", &rc);
for(i=0; i<p->nCol; i++){
if( p->abPK[i] ){
sessionAppendIdent(&buf, p->azCol[i], &rc);
sessionAppendStr(&buf, " = ?", &rc);
sessionAppendInteger(&buf, i*3+1, &rc);
sessionAppendStr(&buf, " AND ", &rc);
}
}
/* Append the non-PK part of the WHERE clause */
sessionAppendStr(&buf, " (?", &rc);
sessionAppendInteger(&buf, p->nCol*3+1, &rc);
sessionAppendStr(&buf, " OR 1", &rc);
for(i=0; i<p->nCol; i++){
if( !p->abPK[i] ){
sessionAppendStr(&buf, " AND (?", &rc);
sessionAppendInteger(&buf, i*3+2, &rc);
sessionAppendStr(&buf, "=0 OR ", &rc);
sessionAppendIdent(&buf, p->azCol[i], &rc);
sessionAppendStr(&buf, " IS ?", &rc);
sessionAppendInteger(&buf, i*3+1, &rc);
sessionAppendStr(&buf, ")", &rc);
}
}
sessionAppendStr(&buf, ")", &rc);
if( rc==SQLITE_OK ){
rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pUpdate, 0);
}
sqlite3_free(buf.aBuf);
return rc;
}
/*
** Formulate and prepare an SQL statement to query table zTab by primary
** key. Assuming the following table structure:
**
** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));
**
** The SELECT statement looks like this:
**
** SELECT * FROM x WHERE a = ?1 AND c = ?3
**
** If successful, SQLITE_OK is returned and SessionApplyCtx.pSelect is left
** pointing to the prepared version of the SQL statement.
*/
static int sessionSelectRow(
sqlite3 *db, /* Database handle */
const char *zTab, /* Table name */
SessionApplyCtx *p /* Session changeset-apply context */
){
return sessionSelectStmt(
db, "main", zTab, p->nCol, p->azCol, p->abPK, &p->pSelect);
}
/*
** Formulate and prepare an INSERT statement to add a record to table zTab.
** For example:
**
** INSERT INTO main."zTab" VALUES(?1, ?2, ?3 ...);
**
** If successful, SQLITE_OK is returned and SessionApplyCtx.pInsert is left
** pointing to the prepared version of the SQL statement.
*/
static int sessionInsertRow(
sqlite3 *db, /* Database handle */
const char *zTab, /* Table name */
SessionApplyCtx *p /* Session changeset-apply context */
){
int rc = SQLITE_OK;
int i;
SessionBuffer buf = {0, 0, 0};
sessionAppendStr(&buf, "INSERT INTO main.", &rc);
sessionAppendIdent(&buf, zTab, &rc);
sessionAppendStr(&buf, " VALUES(?", &rc);
for(i=1; i<p->nCol; i++){
sessionAppendStr(&buf, ", ?", &rc);
}
sessionAppendStr(&buf, ")", &rc);
if( rc==SQLITE_OK ){
rc = sqlite3_prepare_v2(db, (char *)buf.aBuf, buf.nBuf, &p->pInsert, 0);
}
sqlite3_free(buf.aBuf);
return rc;
}
/*
** A wrapper around sqlite3_bind_value() that detects an extra problem.
** See comments in the body of this function for details.
*/
static int sessionBindValue(
sqlite3_stmt *pStmt, /* Statement to bind value to */
int i, /* Parameter number to bind to */
sqlite3_value *pVal /* Value to bind */
){
if( (pVal->type==SQLITE_TEXT || pVal->type==SQLITE_BLOB) && pVal->z==0 ){
/* This condition occurs when an earlier OOM in a call to
** sqlite3_value_text() or sqlite3_value_blob() (perhaps from within
** a conflict-hanler) has zeroed the pVal->z pointer. Return NOMEM. */
return SQLITE_NOMEM;
}
return sqlite3_bind_value(pStmt, i, pVal);
}
/*
** Iterator pIter must point to an SQLITE_INSERT entry. This function
** transfers new.* values from the current iterator entry to statement
** pStmt. The table being inserted into has nCol columns.
**
** New.* value $i 0 from the iterator is bound to variable ($i+1) of
** statement pStmt. If parameter abPK is NULL, all values from 0 to (nCol-1)
** are transfered to the statement. Otherwise, if abPK is not NULL, it points
** to an array nCol elements in size. In this case only those values for
** which abPK[$i] is true are read from the iterator and bound to the
** statement.
**
** An SQLite error code is returned if an error occurs. Otherwise, SQLITE_OK.
*/
static int sessionBindRow(
sqlite3_changeset_iter *pIter, /* Iterator to read values from */
int(*xValue)(sqlite3_changeset_iter *, int, sqlite3_value **),
int nCol, /* Number of columns */
u8 *abPK, /* If not NULL, bind only if true */
sqlite3_stmt *pStmt /* Bind values to this statement */
){
int i;
int rc = SQLITE_OK;
/* Neither sqlite3changeset_old or sqlite3changeset_new can fail if the
** argument iterator points to a suitable entry. Make sure that xValue
** is one of these to guarantee that it is safe to ignore the return
** in the code below. */
assert( xValue==sqlite3changeset_old || xValue==sqlite3changeset_new );
for(i=0; rc==SQLITE_OK && i<nCol; i++){
if( !abPK || abPK[i] ){
sqlite3_value *pVal;
(void)xValue(pIter, i, &pVal);
rc = sessionBindValue(pStmt, i+1, pVal);
}
}
return rc;
}
/*
** SQL statement pSelect is as generated by the sessionSelectRow() function.
** This function binds the primary key values from the change that changeset
** iterator pIter points to to the SELECT and attempts to seek to the table
** entry. If a row is found, the SELECT statement left pointing at the row
** and SQLITE_ROW is returned. Otherwise, if no row is found and no error
** has occured, the statement is reset and SQLITE_OK is returned. If an
** error occurs, the statement is reset and an SQLite error code is returned.
**
** If this function returns SQLITE_ROW, the caller must eventually reset()
** statement pSelect. If any other value is returned, the statement does
** not require a reset().
**
** If the iterator currently points to an INSERT record, bind values from the
** new.* record to the SELECT statement. Or, if it points to a DELETE or
** UPDATE, bind values from the old.* record.
*/
static int sessionSeekToRow(
sqlite3 *db, /* Database handle */
sqlite3_changeset_iter *pIter, /* Changeset iterator */
u8 *abPK, /* Primary key flags array */
sqlite3_stmt *pSelect /* SELECT statement from sessionSelectRow() */
){
int rc; /* Return code */
int nCol; /* Number of columns in table */
int op; /* Changset operation (SQLITE_UPDATE etc.) */
const char *zDummy; /* Unused */
sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
rc = sessionBindRow(pIter,
op==SQLITE_INSERT ? sqlite3changeset_new : sqlite3changeset_old,
nCol, abPK, pSelect
);
if( rc==SQLITE_OK ){
rc = sqlite3_step(pSelect);
if( rc!=SQLITE_ROW ) rc = sqlite3_reset(pSelect);
}
return rc;
}
/*
** Invoke the conflict handler for the change that the changeset iterator
** currently points to.
**
** Argument eType must be either CHANGESET_DATA or CHANGESET_CONFLICT.
** If argument pbReplace is NULL, then the type of conflict handler invoked
** depends solely on eType, as follows:
**
** eType value Value passed to xConflict
** -------------------------------------------------
** CHANGESET_DATA CHANGESET_NOTFOUND
** CHANGESET_CONFLICT CHANGESET_CONSTRAINT
**
** Or, if pbReplace is not NULL, then an attempt is made to find an existing
** record with the same primary key as the record about to be deleted, updated
** or inserted. If such a record can be found, it is available to the conflict
** handler as the "conflicting" record. In this case the type of conflict
** handler invoked is as follows:
**
** eType value PK Record found? Value passed to xConflict
** ----------------------------------------------------------------
** CHANGESET_DATA Yes CHANGESET_DATA
** CHANGESET_DATA No CHANGESET_NOTFOUND
** CHANGESET_CONFLICT Yes CHANGESET_CONFLICT
** CHANGESET_CONFLICT No CHANGESET_CONSTRAINT
**
** If pbReplace is not NULL, and a record with a matching PK is found, and
** the conflict handler function returns SQLITE_CHANGESET_REPLACE, *pbReplace
** is set to non-zero before returning SQLITE_OK.
**
** If the conflict handler returns SQLITE_CHANGESET_ABORT, SQLITE_ABORT is
** returned. Or, if the conflict handler returns an invalid value,
** SQLITE_MISUSE. If the conflict handler returns SQLITE_CHANGESET_OMIT,
** this function returns SQLITE_OK.
*/
static int sessionConflictHandler(
int eType, /* Either CHANGESET_DATA or CONFLICT */
SessionApplyCtx *p, /* changeset_apply() context */
sqlite3_changeset_iter *pIter, /* Changeset iterator */
int(*xConflict)(void *, int, sqlite3_changeset_iter*),
void *pCtx, /* First argument for conflict handler */
int *pbReplace /* OUT: Set to true if PK row is found */
){
int res; /* Value returned by conflict handler */
int rc;
int nCol;
int op;
const char *zDummy;
sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
assert( eType==SQLITE_CHANGESET_CONFLICT || eType==SQLITE_CHANGESET_DATA );
assert( SQLITE_CHANGESET_CONFLICT+1==SQLITE_CHANGESET_CONSTRAINT );
assert( SQLITE_CHANGESET_DATA+1==SQLITE_CHANGESET_NOTFOUND );
/* Bind the new.* PRIMARY KEY values to the SELECT statement. */
if( pbReplace ){
rc = sessionSeekToRow(p->db, pIter, p->abPK, p->pSelect);
}else{
rc = SQLITE_OK;
}
if( rc==SQLITE_ROW ){
/* There exists another row with the new.* primary key. */
pIter->pConflict = p->pSelect;
res = xConflict(pCtx, eType, pIter);
pIter->pConflict = 0;
rc = sqlite3_reset(p->pSelect);
}else if( rc==SQLITE_OK ){
/* No other row with the new.* primary key. */
res = xConflict(pCtx, eType+1, pIter);
if( res==SQLITE_CHANGESET_REPLACE ) rc = SQLITE_MISUSE;
}
if( rc==SQLITE_OK ){
switch( res ){
case SQLITE_CHANGESET_REPLACE:
assert( pbReplace );
*pbReplace = 1;
break;
case SQLITE_CHANGESET_OMIT:
break;
case SQLITE_CHANGESET_ABORT:
rc = SQLITE_ABORT;
break;
default:
rc = SQLITE_MISUSE;
break;
}
}
return rc;
}
/*
** Attempt to apply the change that the iterator passed as the first argument
** currently points to to the database. If a conflict is encountered, invoke
** the conflict handler callback.
**
** If argument pbRetry is NULL, then ignore any CHANGESET_DATA conflict. If
** one is encountered, update or delete the row with the matching primary key
** instead. Or, if pbRetry is not NULL and a CHANGESET_DATA conflict occurs,
** invoke the conflict handler. If it returns CHANGESET_REPLACE, set *pbRetry
** to true before returning. In this case the caller will invoke this function
** again, this time with pbRetry set to NULL.
**
** If argument pbReplace is NULL and a CHANGESET_CONFLICT conflict is
** encountered invoke the conflict handler with CHANGESET_CONSTRAINT instead.
** Or, if pbReplace is not NULL, invoke it with CHANGESET_CONFLICT. If such
** an invocation returns SQLITE_CHANGESET_REPLACE, set *pbReplace to true
** before retrying. In this case the caller attempts to remove the conflicting
** row before invoking this function again, this time with pbReplace set
** to NULL.
**
** If any conflict handler returns SQLITE_CHANGESET_ABORT, this function
** returns SQLITE_ABORT. Otherwise, if no error occurs, SQLITE_OK is
** returned.
*/
static int sessionApplyOneOp(
sqlite3_changeset_iter *pIter, /* Changeset iterator */
SessionApplyCtx *p, /* changeset_apply() context */
int(*xConflict)(void *, int, sqlite3_changeset_iter *),
void *pCtx, /* First argument for the conflict handler */
int *pbReplace, /* OUT: True to remove PK row and retry */
int *pbRetry /* OUT: True to retry. */
){
const char *zDummy;
int op;
int nCol;
int rc = SQLITE_OK;
assert( p->pDelete && p->pUpdate && p->pInsert && p->pSelect );
assert( p->azCol && p->abPK );
assert( !pbReplace || *pbReplace==0 );
sqlite3changeset_op(pIter, &zDummy, &nCol, &op, 0);
if( op==SQLITE_DELETE ){
/* Bind values to the DELETE statement. */
rc = sessionBindRow(pIter, sqlite3changeset_old, nCol, 0, p->pDelete);
if( rc==SQLITE_OK && sqlite3_bind_parameter_count(p->pDelete)>nCol ){
rc = sqlite3_bind_int(p->pDelete, nCol+1, pbRetry==0);
}
if( rc!=SQLITE_OK ) return rc;
sqlite3_step(p->pDelete);
rc = sqlite3_reset(p->pDelete);
if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){
rc = sessionConflictHandler(
SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry
);
}else if( rc==SQLITE_CONSTRAINT ){
rc = sessionConflictHandler(
SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0
);
}
}else if( op==SQLITE_UPDATE ){
int i;
/* Bind values to the UPDATE statement. */
for(i=0; rc==SQLITE_OK && i<nCol; i++){
sqlite3_value *pOld = sessionChangesetOld(pIter, i);
sqlite3_value *pNew = sessionChangesetNew(pIter, i);
sqlite3_bind_int(p->pUpdate, i*3+2, !!pNew);
if( pOld ){
rc = sessionBindValue(p->pUpdate, i*3+1, pOld);
}
if( rc==SQLITE_OK && pNew ){
rc = sessionBindValue(p->pUpdate, i*3+3, pNew);
}
}
if( rc==SQLITE_OK ) sqlite3_bind_int(p->pUpdate, nCol*3+1, pbRetry==0);
if( rc!=SQLITE_OK ) return rc;
/* Attempt the UPDATE. In the case of a NOTFOUND or DATA conflict,
** the result will be SQLITE_OK with 0 rows modified. */
sqlite3_step(p->pUpdate);
rc = sqlite3_reset(p->pUpdate);
if( rc==SQLITE_OK && sqlite3_changes(p->db)==0 ){
/* A NOTFOUND or DATA error. Search the table to see if it contains
** a row with a matching primary key. If so, this is a DATA conflict.
** Otherwise, if there is no primary key match, it is a NOTFOUND. */
rc = sessionConflictHandler(
SQLITE_CHANGESET_DATA, p, pIter, xConflict, pCtx, pbRetry
);
}else if( rc==SQLITE_CONSTRAINT ){
/* This is always a CONSTRAINT conflict. */
rc = sessionConflictHandler(
SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, 0
);
}
}else{
assert( op==SQLITE_INSERT );
rc = sessionBindRow(pIter, sqlite3changeset_new, nCol, 0, p->pInsert);
if( rc!=SQLITE_OK ) return rc;
sqlite3_step(p->pInsert);
rc = sqlite3_reset(p->pInsert);
if( rc==SQLITE_CONSTRAINT ){
rc = sessionConflictHandler(
SQLITE_CHANGESET_CONFLICT, p, pIter, xConflict, pCtx, pbReplace
);
}
}
return rc;
}
/*
** Apply the changeset passed via pChangeset/nChangeset to the main database
** attached to handle "db". Invoke the supplied conflict handler callback
** to resolve any conflicts encountered while applying the change.
*/
int sqlite3changeset_apply(
sqlite3 *db, /* Apply change to "main" db of this handle */
int nChangeset, /* Size of changeset in bytes */
void *pChangeset, /* Changeset blob */
int(*xConflict)(
void *pCtx, /* Copy of fifth arg to _apply() */
int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */
sqlite3_changeset_iter *p /* Handle describing change and conflict */
),
void *pCtx /* First argument passed to xConflict */
){
int schemaMismatch = 0;
sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */
int rc; /* Return code */
const char *zTab = 0; /* Name of current table */
int nTab = 0; /* Result of sqlite3Strlen30(zTab) */
SessionApplyCtx sApply; /* changeset_apply() context object */
memset(&sApply, 0, sizeof(sApply));
rc = sqlite3changeset_start(&pIter, nChangeset, pChangeset);
if( rc!=SQLITE_OK ) return rc;
sqlite3_mutex_enter(sqlite3_db_mutex(db));
rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0);
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3changeset_next(pIter) ){
int nCol;
int op;
int bReplace = 0;
int bRetry = 0;
const char *zNew;
sqlite3changeset_op(pIter, &zNew, &nCol, &op, 0);
if( zTab==0 || sqlite3_strnicmp(zNew, zTab, nTab+1) ){
u8 *abPK;
schemaMismatch = 0;
sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */
sqlite3_finalize(sApply.pDelete);
sqlite3_finalize(sApply.pUpdate);
sqlite3_finalize(sApply.pInsert);
sqlite3_finalize(sApply.pSelect);
memset(&sApply, 0, sizeof(sApply));
sApply.db = db;
sqlite3changeset_pk(pIter, &abPK, 0);
rc = sessionTableInfo(
db, "main", zNew, &sApply.nCol, &zTab, &sApply.azCol, &sApply.abPK
);
if( rc!=SQLITE_OK ) break;
if( sApply.nCol==0 ){
schemaMismatch = 1;
sqlite3_log(SQLITE_SCHEMA,
"sqlite3changeset_apply(): no such table: %s", zTab
);
}
else if( sApply.nCol!=nCol ){
schemaMismatch = 1;
sqlite3_log(SQLITE_SCHEMA,
"sqlite3changeset_apply(): table %s has %d columns, expected %d",
zTab, sApply.nCol, nCol
);
}
else if( memcmp(sApply.abPK, abPK, nCol)!=0 ){
schemaMismatch = 1;
sqlite3_log(SQLITE_SCHEMA,
"sqlite3changeset_apply(): primary key mismatch for table %s", zTab
);
}
else if(
(rc = sessionSelectRow(db, zTab, &sApply))
|| (rc = sessionUpdateRow(db, zTab, &sApply))
|| (rc = sessionDeleteRow(db, zTab, &sApply))
|| (rc = sessionInsertRow(db, zTab, &sApply))
){
break;
}
nTab = sqlite3Strlen30(zTab);
}
/* If there is a schema mismatch on the current table, proceed to the
** next change. A log message has already been issued. */
if( schemaMismatch ) continue;
rc = sessionApplyOneOp(pIter, &sApply, xConflict, pCtx, &bReplace, &bRetry);
if( rc==SQLITE_OK && bRetry ){
rc = sessionApplyOneOp(pIter, &sApply, xConflict, pCtx, &bReplace, 0);
}
if( bReplace ){
assert( pIter->op==SQLITE_INSERT );
rc = sqlite3_exec(db, "SAVEPOINT replace_op", 0, 0, 0);
if( rc==SQLITE_OK ){
rc = sessionBindRow(pIter,
sqlite3changeset_new, sApply.nCol, sApply.abPK, sApply.pDelete);
sqlite3_bind_int(sApply.pDelete, sApply.nCol+1, 1);
}
if( rc==SQLITE_OK ){
sqlite3_step(sApply.pDelete);
rc = sqlite3_reset(sApply.pDelete);
}
if( rc==SQLITE_OK ){
rc = sessionApplyOneOp(pIter, &sApply, xConflict, pCtx, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_exec(db, "RELEASE replace_op", 0, 0, 0);
}
}
}
if( rc==SQLITE_OK ){
rc = sqlite3changeset_finalize(pIter);
}else{
sqlite3changeset_finalize(pIter);
}
if( rc==SQLITE_OK ){
rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
}else{
sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0);
sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
}
sqlite3_finalize(sApply.pInsert);
sqlite3_finalize(sApply.pDelete);
sqlite3_finalize(sApply.pUpdate);
sqlite3_finalize(sApply.pSelect);
sqlite3_free((char*)sApply.azCol); /* cast works around VC++ bug */
sqlite3_mutex_leave(sqlite3_db_mutex(db));
return rc;
}
static int sessionChangeMerge(
SessionTable *pTab,
SessionChange *pExist,
int op2,
int bIndirect,
u8 *aRec,
int nRec,
SessionChange **ppNew
){
SessionChange *pNew = 0;
if( !pExist ){
pNew = (SessionChange *)sqlite3_malloc(sizeof(SessionChange));
if( !pNew ){
return SQLITE_NOMEM;
}
memset(pNew, 0, sizeof(SessionChange));
pNew->bInsert = op2;
pNew->bIndirect = bIndirect;
pNew->nRecord = nRec;
pNew->aRecord = aRec;
}else{
int op1 = pExist->bInsert;
/*
** op1=INSERT, op2=INSERT -> Unsupported. Discard op2.
** op1=INSERT, op2=UPDATE -> INSERT.
** op1=INSERT, op2=DELETE -> (none)
**
** op1=UPDATE, op2=INSERT -> Unsupported. Discard op2.
** op1=UPDATE, op2=UPDATE -> UPDATE.
** op1=UPDATE, op2=DELETE -> DELETE.
**
** op1=DELETE, op2=INSERT -> UPDATE.
** op1=DELETE, op2=UPDATE -> Unsupported. Discard op2.
** op1=DELETE, op2=DELETE -> Unsupported. Discard op2.
*/
if( (op1==SQLITE_INSERT && op2==SQLITE_INSERT)
|| (op1==SQLITE_UPDATE && op2==SQLITE_INSERT)
|| (op1==SQLITE_DELETE && op2==SQLITE_UPDATE)
|| (op1==SQLITE_DELETE && op2==SQLITE_DELETE)
){
pNew = pExist;
}else if( op1==SQLITE_INSERT && op2==SQLITE_DELETE ){
sqlite3_free(pExist);
assert( pNew==0 );
}else{
int nByte;
u8 *aCsr;
nByte = sizeof(SessionChange) + pExist->nRecord + nRec;
pNew = (SessionChange *)sqlite3_malloc(nByte);
if( !pNew ){
sqlite3_free(pExist);
return SQLITE_NOMEM;
}
memset(pNew, 0, sizeof(SessionChange));
pNew->bIndirect = (bIndirect && pExist->bIndirect);
aCsr = pNew->aRecord = (u8 *)&pNew[1];
if( op1==SQLITE_INSERT && op2==SQLITE_UPDATE ){
u8 *a1 = aRec;
pNew->bInsert = SQLITE_INSERT;
sessionReadRecord(&a1, pTab->nCol, 0);
sessionMergeRecord(&aCsr, pTab, pExist->aRecord, a1);
}
else if( op1==SQLITE_UPDATE && op2==SQLITE_UPDATE ){
u8 *a1 = pExist->aRecord;
u8 *a2 = aRec;
sessionReadRecord(&a1, pTab->nCol, 0);
sessionReadRecord(&a2, pTab->nCol, 0);
pNew->bInsert = SQLITE_UPDATE;
if( 0==sessionMergeUpdate(&aCsr, pTab, aRec, pExist->aRecord, a1, a2) ){
sqlite3_free(pNew);
pNew = 0;
}
}
else if( op1==SQLITE_UPDATE && op2==SQLITE_DELETE ){
pNew->bInsert = SQLITE_DELETE;
sessionMergeRecord(&aCsr, pTab, aRec, pExist->aRecord);
}
else if( op1==SQLITE_DELETE && op2==SQLITE_INSERT ){
pNew->bInsert = SQLITE_UPDATE;
if( 0==sessionMergeUpdate(&aCsr, pTab, pExist->aRecord, 0, aRec, 0) ){
sqlite3_free(pNew);
pNew = 0;
}
}
if( pNew ){
pNew->nRecord = (aCsr - pNew->aRecord);
}
sqlite3_free(pExist);
}
}
*ppNew = pNew;
return SQLITE_OK;
}
int sessionConcatChangeset(
int nChangeset,
void *pChangeset,
SessionTable **ppTabList
){
u8 *aRec;
int nRec;
sqlite3_changeset_iter *pIter;
int rc;
SessionTable *pTab = 0;
rc = sqlite3changeset_start(&pIter, nChangeset, pChangeset);
if( rc!=SQLITE_OK ) return rc;
while( SQLITE_ROW==sessionChangesetNext(pIter, &aRec, &nRec) ){
const char *zNew;
int nCol;
int op;
int iHash;
int bIndirect;
SessionChange *pChange;
SessionChange *pExist = 0;
SessionChange **pp;
assert( pIter->apValue==0 );
sqlite3changeset_op(pIter, &zNew, &nCol, &op, &bIndirect);
if( !pTab || zNew!=pTab->zName ){
/* Search the list for a matching table */
int nNew = strlen(zNew);
u8 *abPK;
sqlite3changeset_pk(pIter, &abPK, 0);
for(pTab = *ppTabList; pTab; pTab=pTab->pNext){
if( 0==sqlite3_strnicmp(pTab->zName, zNew, nNew+1) ) break;
}
if( !pTab ){
pTab = sqlite3_malloc(sizeof(SessionTable));
if( !pTab ){
rc = SQLITE_NOMEM;
break;
}
memset(pTab, 0, sizeof(SessionTable));
pTab->pNext = *ppTabList;
pTab->abPK = abPK;
pTab->nCol = nCol;
*ppTabList = pTab;
}else if( pTab->nCol!=nCol || memcmp(pTab->abPK, abPK, nCol) ){
rc = SQLITE_SCHEMA;
break;
}
pTab->zName = (char *)zNew;
}
if( sessionGrowHash(pTab) ){
rc = SQLITE_NOMEM;
break;
}
iHash = sessionChangeHash(pTab, aRec, pTab->nChange);
/* Search for existing entry. If found, remove it from the hash table.
** Code below may link it back in.
*/
for(pp=&pTab->apChange[iHash]; *pp; pp=&(*pp)->pNext){
if( sessionChangeEqual(pTab, (*pp)->aRecord, aRec) ){
pExist = *pp;
*pp = (*pp)->pNext;
pTab->nEntry--;
break;
}
}
rc = sessionChangeMerge(pTab, pExist, op, bIndirect, aRec, nRec, &pChange);
if( rc ) break;
if( pChange ){
pChange->pNext = pTab->apChange[iHash];
pTab->apChange[iHash] = pChange;
pTab->nEntry++;
}
}
if( rc==SQLITE_OK ){
rc = sqlite3changeset_finalize(pIter);
}else{
sqlite3changeset_finalize(pIter);
}
return rc;
}
/*
** 1. Iterate through the left-hand changeset. Add an entry to a table
** specific hash table for each change in the changeset. The hash table
** key is the PK of the row affected by the change.
**
** 2. Then interate through the right-hand changeset. Attempt to add an
** entry to a hash table for each component change. If a change already
** exists with the same PK values, combine the two into a single change.
**
** 3. Write an output changeset based on the contents of the hash table.
*/
int sqlite3changeset_concat(
int nLeft, /* Number of bytes in lhs input */
void *pLeft, /* Lhs input changeset */
int nRight /* Number of bytes in rhs input */,
void *pRight, /* Rhs input changeset */
int *pnOut, /* OUT: Number of bytes in output changeset */
void **ppOut /* OUT: changeset (left <concat> right) */
){
SessionTable *pList = 0; /* List of SessionTable objects */
int rc; /* Return code */
*pnOut = 0;
*ppOut = 0;
rc = sessionConcatChangeset(nLeft, pLeft, &pList);
if( rc==SQLITE_OK ){
rc = sessionConcatChangeset(nRight, pRight, &pList);
}
/* Create the serialized output changeset based on the contents of the
** hash tables attached to the SessionTable objects in list pList.
*/
if( rc==SQLITE_OK ){
SessionTable *pTab;
SessionBuffer buf = {0, 0, 0};
for(pTab=pList; pTab; pTab=pTab->pNext){
int i;
if( pTab->nEntry==0 ) continue;
sessionAppendTableHdr(&buf, pTab, &rc);
for(i=0; i<pTab->nChange; i++){
SessionChange *p;
for(p=pTab->apChange[i]; p; p=p->pNext){
sessionAppendByte(&buf, p->bInsert, &rc);
sessionAppendByte(&buf, p->bIndirect, &rc);
sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc);
}
}
}
if( rc==SQLITE_OK ){
*ppOut = buf.aBuf;
*pnOut = buf.nBuf;
}else{
sqlite3_free(buf.aBuf);
}
}
concat_out:
sessionDeleteTable(pList);
return rc;
}
#endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */