2344941974
NOTE: Two libraries still use custom allocators: glfw and stb_vorbis
3701 lines
146 KiB
C
3701 lines
146 KiB
C
/**********************************************************************************************
|
|
*
|
|
* raylib.models - Basic functions to deal with 3d shapes and 3d models
|
|
*
|
|
* CONFIGURATION:
|
|
*
|
|
* #define SUPPORT_FILEFORMAT_OBJ
|
|
* #define SUPPORT_FILEFORMAT_MTL
|
|
* #define SUPPORT_FILEFORMAT_IQM
|
|
* #define SUPPORT_FILEFORMAT_GLTF
|
|
* Selected desired fileformats to be supported for model data loading.
|
|
*
|
|
* #define SUPPORT_MESH_GENERATION
|
|
* Support procedural mesh generation functions, uses external par_shapes.h library
|
|
* NOTE: Some generated meshes DO NOT include generated texture coordinates
|
|
*
|
|
*
|
|
* LICENSE: zlib/libpng
|
|
*
|
|
* Copyright (c) 2013-2020 Ramon Santamaria (@raysan5)
|
|
*
|
|
* This software is provided "as-is", without any express or implied warranty. In no event
|
|
* will the authors be held liable for any damages arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose, including commercial
|
|
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not claim that you
|
|
* wrote the original software. If you use this software in a product, an acknowledgment
|
|
* in the product documentation would be appreciated but is not required.
|
|
*
|
|
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
|
|
* as being the original software.
|
|
*
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*
|
|
**********************************************************************************************/
|
|
|
|
#include "raylib.h" // Declares module functions
|
|
|
|
// Check if config flags have been externally provided on compilation line
|
|
#if !defined(EXTERNAL_CONFIG_FLAGS)
|
|
#include "config.h" // Defines module configuration flags
|
|
#endif
|
|
|
|
#include "utils.h" // Required for: fopen() Android mapping
|
|
|
|
#include <stdlib.h> // Required for: malloc(), free()
|
|
#include <stdio.h> // Required for: FILE, fopen(), fclose()
|
|
#include <string.h> // Required for: strncmp() [Used in LoadModelAnimations()], strlen() [Used in LoadTextureFromCgltfImage()]
|
|
#include <math.h> // Required for: sinf(), cosf(), sqrtf(), fabsf()
|
|
|
|
#include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
|
|
#define TINYOBJ_MALLOC RL_MALLOC
|
|
#define TINYOBJ_CALLOC RL_CALLOC
|
|
#define TINYOBJ_REALLOC RL_REALLOC
|
|
#define TINYOBJ_FREE RL_FREE
|
|
|
|
#define TINYOBJ_LOADER_C_IMPLEMENTATION
|
|
#include "external/tinyobj_loader_c.h" // OBJ/MTL file formats loading
|
|
#endif
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_GLTF)
|
|
#define CGLTF_MALLOC RL_MALLOC
|
|
#define CGLTF_FREE RL_FREE
|
|
|
|
#define CGLTF_IMPLEMENTATION
|
|
#include "external/cgltf.h" // glTF file format loading
|
|
#include "external/stb_image.h" // glTF texture images loading
|
|
#endif
|
|
|
|
#if defined(SUPPORT_MESH_GENERATION)
|
|
#define PAR_MALLOC(T, N) ((T*)RL_MALLOC(N*sizeof(T)))
|
|
#define PAR_CALLOC(T, N) ((T*)RL_CALLOC(N*sizeof(T), 1))
|
|
#define PAR_REALLOC(T, BUF, N) ((T*)RL_REALLOC(BUF, sizeof(T)*(N)))
|
|
#define PAR_FREE RL_FREE
|
|
|
|
#define PAR_SHAPES_IMPLEMENTATION
|
|
#include "external/par_shapes.h" // Shapes 3d parametric generation
|
|
#endif
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Defines and Macros
|
|
//----------------------------------------------------------------------------------
|
|
#define MAX_MESH_VBO 7 // Maximum number of vbo per mesh
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Types and Structures Definition
|
|
//----------------------------------------------------------------------------------
|
|
// ...
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Global Variables Definition
|
|
//----------------------------------------------------------------------------------
|
|
// ...
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module specific Functions Declaration
|
|
//----------------------------------------------------------------------------------
|
|
#if defined(SUPPORT_FILEFORMAT_OBJ)
|
|
static Model LoadOBJ(const char *fileName); // Load OBJ mesh data
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_IQM)
|
|
static Model LoadIQM(const char *fileName); // Load IQM mesh data
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_GLTF)
|
|
static Model LoadGLTF(const char *fileName); // Load GLTF mesh data
|
|
#endif
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Draw a line in 3D world space
|
|
void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color)
|
|
{
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex3f(startPos.x, startPos.y, startPos.z);
|
|
rlVertex3f(endPos.x, endPos.y, endPos.z);
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a point in 3D space, actually a small line
|
|
void DrawPoint3D(Vector3 position, Color color)
|
|
{
|
|
if (rlCheckBufferLimit(8)) rlglDraw();
|
|
|
|
rlPushMatrix();
|
|
rlTranslatef(position.x, position.y, position.z);
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex3f(0.0,0.0,0.0);
|
|
rlVertex3f(0.0,0.0,0.1);
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw a circle in 3D world space
|
|
void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color)
|
|
{
|
|
if (rlCheckBufferLimit(2*36)) rlglDraw();
|
|
|
|
rlPushMatrix();
|
|
rlTranslatef(center.x, center.y, center.z);
|
|
rlRotatef(rotationAngle, rotationAxis.x, rotationAxis.y, rotationAxis.z);
|
|
|
|
rlBegin(RL_LINES);
|
|
for (int i = 0; i < 360; i += 10)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex3f(sinf(DEG2RAD*i)*radius, cosf(DEG2RAD*i)*radius, 0.0f);
|
|
rlVertex3f(sinf(DEG2RAD*(i + 10))*radius, cosf(DEG2RAD*(i + 10))*radius, 0.0f);
|
|
}
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw cube
|
|
// NOTE: Cube position is the center position
|
|
void DrawCube(Vector3 position, float width, float height, float length, Color color)
|
|
{
|
|
float x = 0.0f;
|
|
float y = 0.0f;
|
|
float z = 0.0f;
|
|
|
|
if (rlCheckBufferLimit(36)) rlglDraw();
|
|
|
|
rlPushMatrix();
|
|
// NOTE: Transformation is applied in inverse order (scale -> rotate -> translate)
|
|
rlTranslatef(position.x, position.y, position.z);
|
|
//rlRotatef(45, 0, 1, 0);
|
|
//rlScalef(1.0f, 1.0f, 1.0f); // NOTE: Vertices are directly scaled on definition
|
|
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
// Front face
|
|
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
|
|
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
|
|
|
|
// Back face
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
|
|
|
|
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
|
|
|
|
// Top face
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right
|
|
|
|
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right
|
|
|
|
// Bottom face
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
|
|
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
|
|
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Right
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left
|
|
|
|
// Right face
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
|
|
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left
|
|
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left
|
|
|
|
// Left face
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right
|
|
|
|
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw cube (Vector version)
|
|
void DrawCubeV(Vector3 position, Vector3 size, Color color)
|
|
{
|
|
DrawCube(position, size.x, size.y, size.z, color);
|
|
}
|
|
|
|
// Draw cube wires
|
|
void DrawCubeWires(Vector3 position, float width, float height, float length, Color color)
|
|
{
|
|
float x = 0.0f;
|
|
float y = 0.0f;
|
|
float z = 0.0f;
|
|
|
|
if (rlCheckBufferLimit(36)) rlglDraw();
|
|
|
|
rlPushMatrix();
|
|
rlTranslatef(position.x, position.y, position.z);
|
|
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
// Front Face -----------------------------------------------------
|
|
// Bottom Line
|
|
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
|
|
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
|
|
|
|
// Left Line
|
|
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
|
|
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
|
|
|
|
// Top Line
|
|
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
|
|
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
|
|
|
|
// Right Line
|
|
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
|
|
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
|
|
|
|
// Back Face ------------------------------------------------------
|
|
// Bottom Line
|
|
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
|
|
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
|
|
|
|
// Left Line
|
|
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
|
|
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
|
|
|
|
// Top Line
|
|
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
|
|
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
|
|
|
|
// Right Line
|
|
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
|
|
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
|
|
|
|
// Top Face -------------------------------------------------------
|
|
// Left Line
|
|
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left Front
|
|
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left Back
|
|
|
|
// Right Line
|
|
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right Front
|
|
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right Back
|
|
|
|
// Bottom Face ---------------------------------------------------
|
|
// Left Line
|
|
rlVertex3f(x-width/2, y-height/2, z+length/2); // Top Left Front
|
|
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left Back
|
|
|
|
// Right Line
|
|
rlVertex3f(x+width/2, y-height/2, z+length/2); // Top Right Front
|
|
rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right Back
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw cube wires (vector version)
|
|
void DrawCubeWiresV(Vector3 position, Vector3 size, Color color)
|
|
{
|
|
DrawCubeWires(position, size.x, size.y, size.z, color);
|
|
}
|
|
|
|
// Draw cube
|
|
// NOTE: Cube position is the center position
|
|
void DrawCubeTexture(Texture2D texture, Vector3 position, float width, float height, float length, Color color)
|
|
{
|
|
float x = position.x;
|
|
float y = position.y;
|
|
float z = position.z;
|
|
|
|
if (rlCheckBufferLimit(36)) rlglDraw();
|
|
|
|
rlEnableTexture(texture.id);
|
|
|
|
//rlPushMatrix();
|
|
// NOTE: Transformation is applied in inverse order (scale -> rotate -> translate)
|
|
//rlTranslatef(2.0f, 0.0f, 0.0f);
|
|
//rlRotatef(45, 0, 1, 0);
|
|
//rlScalef(2.0f, 2.0f, 2.0f);
|
|
|
|
rlBegin(RL_QUADS);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
// Front Face
|
|
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal Pointing Towards Viewer
|
|
rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad
|
|
rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad
|
|
rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right Of The Texture and Quad
|
|
rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left Of The Texture and Quad
|
|
// Back Face
|
|
rlNormal3f(0.0f, 0.0f, - 1.0f); // Normal Pointing Away From Viewer
|
|
rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right Of The Texture and Quad
|
|
rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad
|
|
rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad
|
|
rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Left Of The Texture and Quad
|
|
// Top Face
|
|
rlNormal3f(0.0f, 1.0f, 0.0f); // Normal Pointing Up
|
|
rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad
|
|
rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left Of The Texture and Quad
|
|
rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right Of The Texture and Quad
|
|
rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad
|
|
// Bottom Face
|
|
rlNormal3f(0.0f, - 1.0f, 0.0f); // Normal Pointing Down
|
|
rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Right Of The Texture and Quad
|
|
rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Left Of The Texture and Quad
|
|
rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad
|
|
rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad
|
|
// Right face
|
|
rlNormal3f(1.0f, 0.0f, 0.0f); // Normal Pointing Right
|
|
rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right Of The Texture and Quad
|
|
rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad
|
|
rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left Of The Texture and Quad
|
|
rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad
|
|
// Left Face
|
|
rlNormal3f( - 1.0f, 0.0f, 0.0f); // Normal Pointing Left
|
|
rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left Of The Texture and Quad
|
|
rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad
|
|
rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Right Of The Texture and Quad
|
|
rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad
|
|
rlEnd();
|
|
//rlPopMatrix();
|
|
|
|
rlDisableTexture();
|
|
}
|
|
|
|
// Draw sphere
|
|
void DrawSphere(Vector3 centerPos, float radius, Color color)
|
|
{
|
|
DrawSphereEx(centerPos, radius, 16, 16, color);
|
|
}
|
|
|
|
// Draw sphere with extended parameters
|
|
void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color)
|
|
{
|
|
int numVertex = (rings + 2)*slices*6;
|
|
if (rlCheckBufferLimit(numVertex)) rlglDraw();
|
|
|
|
rlPushMatrix();
|
|
// NOTE: Transformation is applied in inverse order (scale -> translate)
|
|
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
|
|
rlScalef(radius, radius, radius);
|
|
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
for (int i = 0; i < (rings + 2); i++)
|
|
{
|
|
for (int j = 0; j < slices; j++)
|
|
{
|
|
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
|
|
sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
|
|
cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
|
|
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
|
|
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
|
|
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
|
|
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
|
|
|
|
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
|
|
sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
|
|
cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i)))*sinf(DEG2RAD*((j+1)*360/slices)),
|
|
sinf(DEG2RAD*(270+(180/(rings + 1))*(i))),
|
|
cosf(DEG2RAD*(270+(180/(rings + 1))*(i)))*cosf(DEG2RAD*((j+1)*360/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
|
|
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
|
|
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
|
|
}
|
|
}
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw sphere wires
|
|
void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color)
|
|
{
|
|
int numVertex = (rings + 2)*slices*6;
|
|
if (rlCheckBufferLimit(numVertex)) rlglDraw();
|
|
|
|
rlPushMatrix();
|
|
// NOTE: Transformation is applied in inverse order (scale -> translate)
|
|
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
|
|
rlScalef(radius, radius, radius);
|
|
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
for (int i = 0; i < (rings + 2); i++)
|
|
{
|
|
for (int j = 0; j < slices; j++)
|
|
{
|
|
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
|
|
sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
|
|
cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
|
|
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
|
|
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
|
|
|
|
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
|
|
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
|
|
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
|
|
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
|
|
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
|
|
|
|
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
|
|
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
|
|
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
|
|
sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
|
|
cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
|
|
}
|
|
}
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw a cylinder
|
|
// NOTE: It could be also used for pyramid and cone
|
|
void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
|
|
{
|
|
if (sides < 3) sides = 3;
|
|
|
|
int numVertex = sides*6;
|
|
if (rlCheckBufferLimit(numVertex)) rlglDraw();
|
|
|
|
rlPushMatrix();
|
|
rlTranslatef(position.x, position.y, position.z);
|
|
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
if (radiusTop > 0)
|
|
{
|
|
// Draw Body -------------------------------------------------------------------------------------
|
|
for (int i = 0; i < 360; i += 360/sides)
|
|
{
|
|
rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left
|
|
rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom); //Bottom Right
|
|
rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); //Top Right
|
|
|
|
rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); //Top Left
|
|
rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left
|
|
rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); //Top Right
|
|
}
|
|
|
|
// Draw Cap --------------------------------------------------------------------------------------
|
|
for (int i = 0; i < 360; i += 360/sides)
|
|
{
|
|
rlVertex3f(0, height, 0);
|
|
rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
|
|
rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Draw Cone -------------------------------------------------------------------------------------
|
|
for (int i = 0; i < 360; i += 360/sides)
|
|
{
|
|
rlVertex3f(0, height, 0);
|
|
rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
|
|
rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
|
|
}
|
|
}
|
|
|
|
// Draw Base -----------------------------------------------------------------------------------------
|
|
for (int i = 0; i < 360; i += 360/sides)
|
|
{
|
|
rlVertex3f(0, 0, 0);
|
|
rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
|
|
rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
|
|
}
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw a wired cylinder
|
|
// NOTE: It could be also used for pyramid and cone
|
|
void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
|
|
{
|
|
if (sides < 3) sides = 3;
|
|
|
|
int numVertex = sides*8;
|
|
if (rlCheckBufferLimit(numVertex)) rlglDraw();
|
|
|
|
rlPushMatrix();
|
|
rlTranslatef(position.x, position.y, position.z);
|
|
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
for (int i = 0; i < 360; i += 360/sides)
|
|
{
|
|
rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
|
|
rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
|
|
|
|
rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
|
|
rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop);
|
|
|
|
rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop);
|
|
rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
|
|
|
|
rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
|
|
rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
|
|
}
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw a plane
|
|
void DrawPlane(Vector3 centerPos, Vector2 size, Color color)
|
|
{
|
|
if (rlCheckBufferLimit(4)) rlglDraw();
|
|
|
|
// NOTE: Plane is always created on XZ ground
|
|
rlPushMatrix();
|
|
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
|
|
rlScalef(size.x, 1.0f, size.y);
|
|
|
|
rlBegin(RL_QUADS);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlNormal3f(0.0f, 1.0f, 0.0f);
|
|
|
|
rlVertex3f(-0.5f, 0.0f, -0.5f);
|
|
rlVertex3f(-0.5f, 0.0f, 0.5f);
|
|
rlVertex3f(0.5f, 0.0f, 0.5f);
|
|
rlVertex3f(0.5f, 0.0f, -0.5f);
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw a ray line
|
|
void DrawRay(Ray ray, Color color)
|
|
{
|
|
float scale = 10000;
|
|
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex3f(ray.position.x, ray.position.y, ray.position.z);
|
|
rlVertex3f(ray.position.x + ray.direction.x*scale, ray.position.y + ray.direction.y*scale, ray.position.z + ray.direction.z*scale);
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a grid centered at (0, 0, 0)
|
|
void DrawGrid(int slices, float spacing)
|
|
{
|
|
int halfSlices = slices/2;
|
|
|
|
if (rlCheckBufferLimit(slices*4)) rlglDraw();
|
|
|
|
rlBegin(RL_LINES);
|
|
for (int i = -halfSlices; i <= halfSlices; i++)
|
|
{
|
|
if (i == 0)
|
|
{
|
|
rlColor3f(0.5f, 0.5f, 0.5f);
|
|
rlColor3f(0.5f, 0.5f, 0.5f);
|
|
rlColor3f(0.5f, 0.5f, 0.5f);
|
|
rlColor3f(0.5f, 0.5f, 0.5f);
|
|
}
|
|
else
|
|
{
|
|
rlColor3f(0.75f, 0.75f, 0.75f);
|
|
rlColor3f(0.75f, 0.75f, 0.75f);
|
|
rlColor3f(0.75f, 0.75f, 0.75f);
|
|
rlColor3f(0.75f, 0.75f, 0.75f);
|
|
}
|
|
|
|
rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing);
|
|
rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing);
|
|
|
|
rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing);
|
|
rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing);
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw gizmo
|
|
void DrawGizmo(Vector3 position)
|
|
{
|
|
// NOTE: RGB = XYZ
|
|
float length = 1.0f;
|
|
|
|
rlPushMatrix();
|
|
rlTranslatef(position.x, position.y, position.z);
|
|
rlScalef(length, length, length);
|
|
|
|
rlBegin(RL_LINES);
|
|
rlColor3f(1.0f, 0.0f, 0.0f); rlVertex3f(0.0f, 0.0f, 0.0f);
|
|
rlColor3f(1.0f, 0.0f, 0.0f); rlVertex3f(1.0f, 0.0f, 0.0f);
|
|
|
|
rlColor3f(0.0f, 1.0f, 0.0f); rlVertex3f(0.0f, 0.0f, 0.0f);
|
|
rlColor3f(0.0f, 1.0f, 0.0f); rlVertex3f(0.0f, 1.0f, 0.0f);
|
|
|
|
rlColor3f(0.0f, 0.0f, 1.0f); rlVertex3f(0.0f, 0.0f, 0.0f);
|
|
rlColor3f(0.0f, 0.0f, 1.0f); rlVertex3f(0.0f, 0.0f, 1.0f);
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Load model from files (mesh and material)
|
|
Model LoadModel(const char *fileName)
|
|
{
|
|
Model model = { 0 };
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_OBJ)
|
|
if (IsFileExtension(fileName, ".obj")) model = LoadOBJ(fileName);
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_IQM)
|
|
if (IsFileExtension(fileName, ".iqm")) model = LoadIQM(fileName);
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_GLTF)
|
|
if (IsFileExtension(fileName, ".gltf") || IsFileExtension(fileName, ".glb")) model = LoadGLTF(fileName);
|
|
#endif
|
|
|
|
// Make sure model transform is set to identity matrix!
|
|
model.transform = MatrixIdentity();
|
|
|
|
if (model.meshCount == 0)
|
|
{
|
|
model.meshCount = 1;
|
|
model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
|
|
#if defined(SUPPORT_MESH_GENERATION)
|
|
TRACELOG(LOG_WARNING, "[%s] No meshes can be loaded, default to cube mesh", fileName);
|
|
model.meshes[0] = GenMeshCube(1.0f, 1.0f, 1.0f);
|
|
#else
|
|
TRACELOG(LOG_WARNING, "[%s] No meshes can be loaded, and can't create a default mesh. The raylib mesh generation is not supported (SUPPORT_MESH_GENERATION).", fileName);
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
// Upload vertex data to GPU (static mesh)
|
|
for (int i = 0; i < model.meshCount; i++) rlLoadMesh(&model.meshes[i], false);
|
|
}
|
|
|
|
if (model.materialCount == 0)
|
|
{
|
|
TRACELOG(LOG_WARNING, "[%s] No materials can be loaded, default to white material", fileName);
|
|
|
|
model.materialCount = 1;
|
|
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
|
|
model.materials[0] = LoadMaterialDefault();
|
|
|
|
if (model.meshMaterial == NULL) model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
|
|
}
|
|
|
|
return model;
|
|
}
|
|
|
|
// Load model from generated mesh
|
|
// WARNING: A shallow copy of mesh is generated, passed by value,
|
|
// as long as struct contains pointers to data and some values, we get a copy
|
|
// of mesh pointing to same data as original version... be careful!
|
|
Model LoadModelFromMesh(Mesh mesh)
|
|
{
|
|
Model model = { 0 };
|
|
|
|
model.transform = MatrixIdentity();
|
|
|
|
model.meshCount = 1;
|
|
model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
|
|
model.meshes[0] = mesh;
|
|
|
|
model.materialCount = 1;
|
|
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
|
|
model.materials[0] = LoadMaterialDefault();
|
|
|
|
model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
|
|
model.meshMaterial[0] = 0; // First material index
|
|
|
|
return model;
|
|
}
|
|
|
|
// Unload model from memory (RAM and/or VRAM)
|
|
void UnloadModel(Model model)
|
|
{
|
|
for (int i = 0; i < model.meshCount; i++) UnloadMesh(model.meshes[i]);
|
|
|
|
// As the user could be sharing shaders and textures between models,
|
|
// we don't unload the material but just free it's maps, the user
|
|
// is responsible for freeing models shaders and textures
|
|
for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps);
|
|
|
|
RL_FREE(model.meshes);
|
|
RL_FREE(model.materials);
|
|
RL_FREE(model.meshMaterial);
|
|
|
|
// Unload animation data
|
|
RL_FREE(model.bones);
|
|
RL_FREE(model.bindPose);
|
|
|
|
TRACELOG(LOG_INFO, "Unloaded model data from RAM and VRAM");
|
|
}
|
|
|
|
// Load meshes from model file
|
|
Mesh *LoadMeshes(const char *fileName, int *meshCount)
|
|
{
|
|
Mesh *meshes = NULL;
|
|
int count = 0;
|
|
|
|
// TODO: Load meshes from file (OBJ, IQM, GLTF)
|
|
|
|
*meshCount = count;
|
|
return meshes;
|
|
}
|
|
|
|
// Unload mesh from memory (RAM and/or VRAM)
|
|
void UnloadMesh(Mesh mesh)
|
|
{
|
|
rlUnloadMesh(mesh);
|
|
RL_FREE(mesh.vboId);
|
|
}
|
|
|
|
// Export mesh data to file
|
|
void ExportMesh(Mesh mesh, const char *fileName)
|
|
{
|
|
bool success = false;
|
|
|
|
if (IsFileExtension(fileName, ".obj"))
|
|
{
|
|
FILE *objFile = fopen(fileName, "wt");
|
|
|
|
fprintf(objFile, "# //////////////////////////////////////////////////////////////////////////////////\n");
|
|
fprintf(objFile, "# // //\n");
|
|
fprintf(objFile, "# // rMeshOBJ exporter v1.0 - Mesh exported as triangle faces and not optimized //\n");
|
|
fprintf(objFile, "# // //\n");
|
|
fprintf(objFile, "# // more info and bugs-report: github.com/raysan5/raylib //\n");
|
|
fprintf(objFile, "# // feedback and support: ray[at]raylib.com //\n");
|
|
fprintf(objFile, "# // //\n");
|
|
fprintf(objFile, "# // Copyright (c) 2018 Ramon Santamaria (@raysan5) //\n");
|
|
fprintf(objFile, "# // //\n");
|
|
fprintf(objFile, "# //////////////////////////////////////////////////////////////////////////////////\n\n");
|
|
fprintf(objFile, "# Vertex Count: %i\n", mesh.vertexCount);
|
|
fprintf(objFile, "# Triangle Count: %i\n\n", mesh.triangleCount);
|
|
|
|
fprintf(objFile, "g mesh\n");
|
|
|
|
for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
|
|
{
|
|
fprintf(objFile, "v %.2f %.2f %.2f\n", mesh.vertices[v], mesh.vertices[v + 1], mesh.vertices[v + 2]);
|
|
}
|
|
|
|
for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 2)
|
|
{
|
|
fprintf(objFile, "vt %.2f %.2f\n", mesh.texcoords[v], mesh.texcoords[v + 1]);
|
|
}
|
|
|
|
for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
|
|
{
|
|
fprintf(objFile, "vn %.2f %.2f %.2f\n", mesh.normals[v], mesh.normals[v + 1], mesh.normals[v + 2]);
|
|
}
|
|
|
|
for (int i = 0; i < mesh.triangleCount; i += 3)
|
|
{
|
|
fprintf(objFile, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", i, i, i, i + 1, i + 1, i + 1, i + 2, i + 2, i + 2);
|
|
}
|
|
|
|
fprintf(objFile, "\n");
|
|
|
|
fclose(objFile);
|
|
|
|
success = true;
|
|
}
|
|
else if (IsFileExtension(fileName, ".raw")) { } // TODO: Support additional file formats to export mesh vertex data
|
|
|
|
if (success) TRACELOG(LOG_INFO, "Mesh exported successfully: %s", fileName);
|
|
else TRACELOG(LOG_WARNING, "Mesh could not be exported.");
|
|
}
|
|
|
|
// Load materials from model file
|
|
Material *LoadMaterials(const char *fileName, int *materialCount)
|
|
{
|
|
Material *materials = NULL;
|
|
unsigned int count = 0;
|
|
|
|
// TODO: Support IQM and GLTF for materials parsing
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_MTL)
|
|
if (IsFileExtension(fileName, ".mtl"))
|
|
{
|
|
tinyobj_material_t *mats;
|
|
|
|
int result = tinyobj_parse_mtl_file(&mats, &count, fileName);
|
|
if (result != TINYOBJ_SUCCESS) {
|
|
TRACELOG(LOG_WARNING, "[%s] Could not parse Materials file", fileName);
|
|
}
|
|
|
|
// TODO: Process materials to return
|
|
|
|
tinyobj_materials_free(mats, count);
|
|
}
|
|
#else
|
|
TRACELOG(LOG_WARNING, "[%s] Materials file not supported", fileName);
|
|
#endif
|
|
|
|
// Set materials shader to default (DIFFUSE, SPECULAR, NORMAL)
|
|
for (int i = 0; i < count; i++) materials[i].shader = GetShaderDefault();
|
|
|
|
*materialCount = count;
|
|
return materials;
|
|
}
|
|
|
|
// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
|
|
Material LoadMaterialDefault(void)
|
|
{
|
|
Material material = { 0 };
|
|
material.maps = (MaterialMap *)RL_CALLOC(MAX_MATERIAL_MAPS, sizeof(MaterialMap));
|
|
|
|
material.shader = GetShaderDefault();
|
|
material.maps[MAP_DIFFUSE].texture = GetTextureDefault(); // White texture (1x1 pixel)
|
|
//material.maps[MAP_NORMAL].texture; // NOTE: By default, not set
|
|
//material.maps[MAP_SPECULAR].texture; // NOTE: By default, not set
|
|
|
|
material.maps[MAP_DIFFUSE].color = WHITE; // Diffuse color
|
|
material.maps[MAP_SPECULAR].color = WHITE; // Specular color
|
|
|
|
return material;
|
|
}
|
|
|
|
// Unload material from memory
|
|
void UnloadMaterial(Material material)
|
|
{
|
|
// Unload material shader (avoid unloading default shader, managed by raylib)
|
|
if (material.shader.id != GetShaderDefault().id) UnloadShader(material.shader);
|
|
|
|
// Unload loaded texture maps (avoid unloading default texture, managed by raylib)
|
|
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
|
|
{
|
|
if (material.maps[i].texture.id != GetTextureDefault().id) rlDeleteTextures(material.maps[i].texture.id);
|
|
}
|
|
|
|
RL_FREE(material.maps);
|
|
}
|
|
|
|
// Set texture for a material map type (MAP_DIFFUSE, MAP_SPECULAR...)
|
|
// NOTE: Previous texture should be manually unloaded
|
|
void SetMaterialTexture(Material *material, int mapType, Texture2D texture)
|
|
{
|
|
material->maps[mapType].texture = texture;
|
|
}
|
|
|
|
// Set the material for a mesh
|
|
void SetModelMeshMaterial(Model *model, int meshId, int materialId)
|
|
{
|
|
if (meshId >= model->meshCount) TRACELOG(LOG_WARNING, "Mesh id greater than mesh count");
|
|
else if (materialId >= model->materialCount) TRACELOG(LOG_WARNING,"Material id greater than material count");
|
|
else model->meshMaterial[meshId] = materialId;
|
|
}
|
|
|
|
// Load model animations from file
|
|
ModelAnimation *LoadModelAnimations(const char *filename, int *animCount)
|
|
{
|
|
#define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
|
|
#define IQM_VERSION 2 // only IQM version 2 supported
|
|
|
|
typedef struct IQMHeader {
|
|
char magic[16];
|
|
unsigned int version;
|
|
unsigned int filesize;
|
|
unsigned int flags;
|
|
unsigned int num_text, ofs_text;
|
|
unsigned int num_meshes, ofs_meshes;
|
|
unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
|
|
unsigned int num_triangles, ofs_triangles, ofs_adjacency;
|
|
unsigned int num_joints, ofs_joints;
|
|
unsigned int num_poses, ofs_poses;
|
|
unsigned int num_anims, ofs_anims;
|
|
unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
|
|
unsigned int num_comment, ofs_comment;
|
|
unsigned int num_extensions, ofs_extensions;
|
|
} IQMHeader;
|
|
|
|
typedef struct IQMPose {
|
|
int parent;
|
|
unsigned int mask;
|
|
float channeloffset[10];
|
|
float channelscale[10];
|
|
} IQMPose;
|
|
|
|
typedef struct IQMAnim {
|
|
unsigned int name;
|
|
unsigned int first_frame, num_frames;
|
|
float framerate;
|
|
unsigned int flags;
|
|
} IQMAnim;
|
|
|
|
FILE *iqmFile = NULL;
|
|
IQMHeader iqm;
|
|
|
|
iqmFile = fopen(filename,"rb");
|
|
|
|
if (!iqmFile)
|
|
{
|
|
TRACELOG(LOG_ERROR, "[%s] Unable to open file", filename);
|
|
}
|
|
|
|
// Read IQM header
|
|
fread(&iqm, sizeof(IQMHeader), 1, iqmFile);
|
|
|
|
if (strncmp(iqm.magic, IQM_MAGIC, sizeof(IQM_MAGIC)))
|
|
{
|
|
TRACELOG(LOG_ERROR, "Magic Number \"%s\"does not match.", iqm.magic);
|
|
fclose(iqmFile);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
if (iqm.version != IQM_VERSION)
|
|
{
|
|
TRACELOG(LOG_ERROR, "IQM version %i is incorrect.", iqm.version);
|
|
fclose(iqmFile);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// Get bones data
|
|
IQMPose *poses = RL_MALLOC(iqm.num_poses*sizeof(IQMPose));
|
|
fseek(iqmFile, iqm.ofs_poses, SEEK_SET);
|
|
fread(poses, iqm.num_poses*sizeof(IQMPose), 1, iqmFile);
|
|
|
|
// Get animations data
|
|
*animCount = iqm.num_anims;
|
|
IQMAnim *anim = RL_MALLOC(iqm.num_anims*sizeof(IQMAnim));
|
|
fseek(iqmFile, iqm.ofs_anims, SEEK_SET);
|
|
fread(anim, iqm.num_anims*sizeof(IQMAnim), 1, iqmFile);
|
|
ModelAnimation *animations = RL_MALLOC(iqm.num_anims*sizeof(ModelAnimation));
|
|
|
|
// frameposes
|
|
unsigned short *framedata = RL_MALLOC(iqm.num_frames*iqm.num_framechannels*sizeof(unsigned short));
|
|
fseek(iqmFile, iqm.ofs_frames, SEEK_SET);
|
|
fread(framedata, iqm.num_frames*iqm.num_framechannels*sizeof(unsigned short), 1, iqmFile);
|
|
|
|
for (int a = 0; a < iqm.num_anims; a++)
|
|
{
|
|
animations[a].frameCount = anim[a].num_frames;
|
|
animations[a].boneCount = iqm.num_poses;
|
|
animations[a].bones = RL_MALLOC(iqm.num_poses*sizeof(BoneInfo));
|
|
animations[a].framePoses = RL_MALLOC(anim[a].num_frames*sizeof(Transform *));
|
|
//animations[a].framerate = anim.framerate; // TODO: Use framerate?
|
|
|
|
for (int j = 0; j < iqm.num_poses; j++)
|
|
{
|
|
strcpy(animations[a].bones[j].name, "ANIMJOINTNAME");
|
|
animations[a].bones[j].parent = poses[j].parent;
|
|
}
|
|
|
|
for (int j = 0; j < anim[a].num_frames; j++) animations[a].framePoses[j] = RL_MALLOC(iqm.num_poses*sizeof(Transform));
|
|
|
|
int dcounter = anim[a].first_frame*iqm.num_framechannels;
|
|
|
|
for (int frame = 0; frame < anim[a].num_frames; frame++)
|
|
{
|
|
for (int i = 0; i < iqm.num_poses; i++)
|
|
{
|
|
animations[a].framePoses[frame][i].translation.x = poses[i].channeloffset[0];
|
|
|
|
if (poses[i].mask & 0x01)
|
|
{
|
|
animations[a].framePoses[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].translation.y = poses[i].channeloffset[1];
|
|
|
|
if (poses[i].mask & 0x02)
|
|
{
|
|
animations[a].framePoses[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].translation.z = poses[i].channeloffset[2];
|
|
|
|
if (poses[i].mask & 0x04)
|
|
{
|
|
animations[a].framePoses[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].rotation.x = poses[i].channeloffset[3];
|
|
|
|
if (poses[i].mask & 0x08)
|
|
{
|
|
animations[a].framePoses[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].rotation.y = poses[i].channeloffset[4];
|
|
|
|
if (poses[i].mask & 0x10)
|
|
{
|
|
animations[a].framePoses[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].rotation.z = poses[i].channeloffset[5];
|
|
|
|
if (poses[i].mask & 0x20)
|
|
{
|
|
animations[a].framePoses[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].rotation.w = poses[i].channeloffset[6];
|
|
|
|
if (poses[i].mask & 0x40)
|
|
{
|
|
animations[a].framePoses[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].scale.x = poses[i].channeloffset[7];
|
|
|
|
if (poses[i].mask & 0x80)
|
|
{
|
|
animations[a].framePoses[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].scale.y = poses[i].channeloffset[8];
|
|
|
|
if (poses[i].mask & 0x100)
|
|
{
|
|
animations[a].framePoses[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].scale.z = poses[i].channeloffset[9];
|
|
|
|
if (poses[i].mask & 0x200)
|
|
{
|
|
animations[a].framePoses[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].rotation = QuaternionNormalize(animations[a].framePoses[frame][i].rotation);
|
|
}
|
|
}
|
|
|
|
// Build frameposes
|
|
for (int frame = 0; frame < anim[a].num_frames; frame++)
|
|
{
|
|
for (int i = 0; i < animations[a].boneCount; i++)
|
|
{
|
|
if (animations[a].bones[i].parent >= 0)
|
|
{
|
|
animations[a].framePoses[frame][i].rotation = QuaternionMultiply(animations[a].framePoses[frame][animations[a].bones[i].parent].rotation, animations[a].framePoses[frame][i].rotation);
|
|
animations[a].framePoses[frame][i].translation = Vector3RotateByQuaternion(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].rotation);
|
|
animations[a].framePoses[frame][i].translation = Vector3Add(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].translation);
|
|
animations[a].framePoses[frame][i].scale = Vector3Multiply(animations[a].framePoses[frame][i].scale, animations[a].framePoses[frame][animations[a].bones[i].parent].scale);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
RL_FREE(framedata);
|
|
RL_FREE(poses);
|
|
RL_FREE(anim);
|
|
|
|
fclose(iqmFile);
|
|
|
|
return animations;
|
|
}
|
|
|
|
// Update model animated vertex data (positions and normals) for a given frame
|
|
// NOTE: Updated data is uploaded to GPU
|
|
void UpdateModelAnimation(Model model, ModelAnimation anim, int frame)
|
|
{
|
|
if ((anim.frameCount > 0) && (anim.bones != NULL) && (anim.framePoses != NULL))
|
|
{
|
|
if (frame >= anim.frameCount) frame = frame%anim.frameCount;
|
|
|
|
for (int m = 0; m < model.meshCount; m++)
|
|
{
|
|
Vector3 animVertex = { 0 };
|
|
Vector3 animNormal = { 0 };
|
|
|
|
Vector3 inTranslation = { 0 };
|
|
Quaternion inRotation = { 0 };
|
|
//Vector3 inScale = { 0 }; // Not used...
|
|
|
|
Vector3 outTranslation = { 0 };
|
|
Quaternion outRotation = { 0 };
|
|
Vector3 outScale = { 0 };
|
|
|
|
int vCounter = 0;
|
|
int boneCounter = 0;
|
|
int boneId = 0;
|
|
|
|
for (int i = 0; i < model.meshes[m].vertexCount; i++)
|
|
{
|
|
boneId = model.meshes[m].boneIds[boneCounter];
|
|
inTranslation = model.bindPose[boneId].translation;
|
|
inRotation = model.bindPose[boneId].rotation;
|
|
//inScale = model.bindPose[boneId].scale;
|
|
outTranslation = anim.framePoses[frame][boneId].translation;
|
|
outRotation = anim.framePoses[frame][boneId].rotation;
|
|
outScale = anim.framePoses[frame][boneId].scale;
|
|
|
|
// Vertices processing
|
|
// NOTE: We use meshes.vertices (default vertex position) to calculate meshes.animVertices (animated vertex position)
|
|
animVertex = (Vector3){ model.meshes[m].vertices[vCounter], model.meshes[m].vertices[vCounter + 1], model.meshes[m].vertices[vCounter + 2] };
|
|
animVertex = Vector3Multiply(animVertex, outScale);
|
|
animVertex = Vector3Subtract(animVertex, inTranslation);
|
|
animVertex = Vector3RotateByQuaternion(animVertex, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
|
|
animVertex = Vector3Add(animVertex, outTranslation);
|
|
model.meshes[m].animVertices[vCounter] = animVertex.x;
|
|
model.meshes[m].animVertices[vCounter + 1] = animVertex.y;
|
|
model.meshes[m].animVertices[vCounter + 2] = animVertex.z;
|
|
|
|
// Normals processing
|
|
// NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals)
|
|
animNormal = (Vector3){ model.meshes[m].normals[vCounter], model.meshes[m].normals[vCounter + 1], model.meshes[m].normals[vCounter + 2] };
|
|
animNormal = Vector3RotateByQuaternion(animNormal, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
|
|
model.meshes[m].animNormals[vCounter] = animNormal.x;
|
|
model.meshes[m].animNormals[vCounter + 1] = animNormal.y;
|
|
model.meshes[m].animNormals[vCounter + 2] = animNormal.z;
|
|
vCounter += 3;
|
|
|
|
boneCounter += 4;
|
|
}
|
|
|
|
// Upload new vertex data to GPU for model drawing
|
|
rlUpdateBuffer(model.meshes[m].vboId[0], model.meshes[m].animVertices, model.meshes[m].vertexCount*3*sizeof(float)); // Update vertex position
|
|
rlUpdateBuffer(model.meshes[m].vboId[2], model.meshes[m].animNormals, model.meshes[m].vertexCount*3*sizeof(float)); // Update vertex normals
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unload animation data
|
|
void UnloadModelAnimation(ModelAnimation anim)
|
|
{
|
|
for (int i = 0; i < anim.frameCount; i++) RL_FREE(anim.framePoses[i]);
|
|
|
|
RL_FREE(anim.bones);
|
|
RL_FREE(anim.framePoses);
|
|
}
|
|
|
|
// Check model animation skeleton match
|
|
// NOTE: Only number of bones and parent connections are checked
|
|
bool IsModelAnimationValid(Model model, ModelAnimation anim)
|
|
{
|
|
int result = true;
|
|
|
|
if (model.boneCount != anim.boneCount) result = false;
|
|
else
|
|
{
|
|
for (int i = 0; i < model.boneCount; i++)
|
|
{
|
|
if (model.bones[i].parent != anim.bones[i].parent) { result = false; break; }
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#if defined(SUPPORT_MESH_GENERATION)
|
|
// Generate polygonal mesh
|
|
Mesh GenMeshPoly(int sides, float radius)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
int vertexCount = sides*3;
|
|
|
|
// Vertices definition
|
|
Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
|
|
for (int i = 0, v = 0; i < 360; i += 360/sides, v += 3)
|
|
{
|
|
vertices[v] = (Vector3){ 0.0f, 0.0f, 0.0f };
|
|
vertices[v + 1] = (Vector3){ sinf(DEG2RAD*i)*radius, 0.0f, cosf(DEG2RAD*i)*radius };
|
|
vertices[v + 2] = (Vector3){ sinf(DEG2RAD*(i + 360/sides))*radius, 0.0f, cosf(DEG2RAD*(i + 360/sides))*radius };
|
|
}
|
|
|
|
// Normals definition
|
|
Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
|
|
for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up;
|
|
|
|
// TexCoords definition
|
|
Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
|
|
for (int n = 0; n < vertexCount; n++) texcoords[n] = (Vector2){ 0.0f, 0.0f };
|
|
|
|
mesh.vertexCount = vertexCount;
|
|
mesh.triangleCount = sides;
|
|
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
|
|
// Mesh vertices position array
|
|
for (int i = 0; i < mesh.vertexCount; i++)
|
|
{
|
|
mesh.vertices[3*i] = vertices[i].x;
|
|
mesh.vertices[3*i + 1] = vertices[i].y;
|
|
mesh.vertices[3*i + 2] = vertices[i].z;
|
|
}
|
|
|
|
// Mesh texcoords array
|
|
for (int i = 0; i < mesh.vertexCount; i++)
|
|
{
|
|
mesh.texcoords[2*i] = texcoords[i].x;
|
|
mesh.texcoords[2*i + 1] = texcoords[i].y;
|
|
}
|
|
|
|
// Mesh normals array
|
|
for (int i = 0; i < mesh.vertexCount; i++)
|
|
{
|
|
mesh.normals[3*i] = normals[i].x;
|
|
mesh.normals[3*i + 1] = normals[i].y;
|
|
mesh.normals[3*i + 2] = normals[i].z;
|
|
}
|
|
|
|
RL_FREE(vertices);
|
|
RL_FREE(normals);
|
|
RL_FREE(texcoords);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
rlLoadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate plane mesh (with subdivisions)
|
|
Mesh GenMeshPlane(float width, float length, int resX, int resZ)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
|
|
#define CUSTOM_MESH_GEN_PLANE
|
|
#if defined(CUSTOM_MESH_GEN_PLANE)
|
|
resX++;
|
|
resZ++;
|
|
|
|
// Vertices definition
|
|
int vertexCount = resX*resZ; // vertices get reused for the faces
|
|
|
|
Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
|
|
for (int z = 0; z < resZ; z++)
|
|
{
|
|
// [-length/2, length/2]
|
|
float zPos = ((float)z/(resZ - 1) - 0.5f)*length;
|
|
for (int x = 0; x < resX; x++)
|
|
{
|
|
// [-width/2, width/2]
|
|
float xPos = ((float)x/(resX - 1) - 0.5f)*width;
|
|
vertices[x + z*resX] = (Vector3){ xPos, 0.0f, zPos };
|
|
}
|
|
}
|
|
|
|
// Normals definition
|
|
Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
|
|
for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up;
|
|
|
|
// TexCoords definition
|
|
Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
|
|
for (int v = 0; v < resZ; v++)
|
|
{
|
|
for (int u = 0; u < resX; u++)
|
|
{
|
|
texcoords[u + v*resX] = (Vector2){ (float)u/(resX - 1), (float)v/(resZ - 1) };
|
|
}
|
|
}
|
|
|
|
// Triangles definition (indices)
|
|
int numFaces = (resX - 1)*(resZ - 1);
|
|
int *triangles = (int *)RL_MALLOC(numFaces*6*sizeof(int));
|
|
int t = 0;
|
|
for (int face = 0; face < numFaces; face++)
|
|
{
|
|
// Retrieve lower left corner from face ind
|
|
int i = face % (resX - 1) + (face/(resZ - 1)*resX);
|
|
|
|
triangles[t++] = i + resX;
|
|
triangles[t++] = i + 1;
|
|
triangles[t++] = i;
|
|
|
|
triangles[t++] = i + resX;
|
|
triangles[t++] = i + resX + 1;
|
|
triangles[t++] = i + 1;
|
|
}
|
|
|
|
mesh.vertexCount = vertexCount;
|
|
mesh.triangleCount = numFaces*2;
|
|
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.indices = (unsigned short *)RL_MALLOC(mesh.triangleCount*3*sizeof(unsigned short));
|
|
|
|
// Mesh vertices position array
|
|
for (int i = 0; i < mesh.vertexCount; i++)
|
|
{
|
|
mesh.vertices[3*i] = vertices[i].x;
|
|
mesh.vertices[3*i + 1] = vertices[i].y;
|
|
mesh.vertices[3*i + 2] = vertices[i].z;
|
|
}
|
|
|
|
// Mesh texcoords array
|
|
for (int i = 0; i < mesh.vertexCount; i++)
|
|
{
|
|
mesh.texcoords[2*i] = texcoords[i].x;
|
|
mesh.texcoords[2*i + 1] = texcoords[i].y;
|
|
}
|
|
|
|
// Mesh normals array
|
|
for (int i = 0; i < mesh.vertexCount; i++)
|
|
{
|
|
mesh.normals[3*i] = normals[i].x;
|
|
mesh.normals[3*i + 1] = normals[i].y;
|
|
mesh.normals[3*i + 2] = normals[i].z;
|
|
}
|
|
|
|
// Mesh indices array initialization
|
|
for (int i = 0; i < mesh.triangleCount*3; i++) mesh.indices[i] = triangles[i];
|
|
|
|
RL_FREE(vertices);
|
|
RL_FREE(normals);
|
|
RL_FREE(texcoords);
|
|
RL_FREE(triangles);
|
|
|
|
#else // Use par_shapes library to generate plane mesh
|
|
|
|
par_shapes_mesh *plane = par_shapes_create_plane(resX, resZ); // No normals/texcoords generated!!!
|
|
par_shapes_scale(plane, width, length, 1.0f);
|
|
par_shapes_rotate(plane, -PI/2.0f, (float[]){ 1, 0, 0 });
|
|
par_shapes_translate(plane, -width/2, 0.0f, length/2);
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(plane->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
|
|
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
|
|
mesh.vertexCount = plane->ntriangles*3;
|
|
mesh.triangleCount = plane->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = plane->points[plane->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = plane->points[plane->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = plane->points[plane->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = plane->normals[plane->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = plane->normals[plane->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = plane->normals[plane->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = plane->tcoords[plane->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = plane->tcoords[plane->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(plane);
|
|
#endif
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
rlLoadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generated cuboid mesh
|
|
Mesh GenMeshCube(float width, float height, float length)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
|
|
#define CUSTOM_MESH_GEN_CUBE
|
|
#if defined(CUSTOM_MESH_GEN_CUBE)
|
|
float vertices[] = {
|
|
-width/2, -height/2, length/2,
|
|
width/2, -height/2, length/2,
|
|
width/2, height/2, length/2,
|
|
-width/2, height/2, length/2,
|
|
-width/2, -height/2, -length/2,
|
|
-width/2, height/2, -length/2,
|
|
width/2, height/2, -length/2,
|
|
width/2, -height/2, -length/2,
|
|
-width/2, height/2, -length/2,
|
|
-width/2, height/2, length/2,
|
|
width/2, height/2, length/2,
|
|
width/2, height/2, -length/2,
|
|
-width/2, -height/2, -length/2,
|
|
width/2, -height/2, -length/2,
|
|
width/2, -height/2, length/2,
|
|
-width/2, -height/2, length/2,
|
|
width/2, -height/2, -length/2,
|
|
width/2, height/2, -length/2,
|
|
width/2, height/2, length/2,
|
|
width/2, -height/2, length/2,
|
|
-width/2, -height/2, -length/2,
|
|
-width/2, -height/2, length/2,
|
|
-width/2, height/2, length/2,
|
|
-width/2, height/2, -length/2
|
|
};
|
|
|
|
float texcoords[] = {
|
|
0.0f, 0.0f,
|
|
1.0f, 0.0f,
|
|
1.0f, 1.0f,
|
|
0.0f, 1.0f,
|
|
1.0f, 0.0f,
|
|
1.0f, 1.0f,
|
|
0.0f, 1.0f,
|
|
0.0f, 0.0f,
|
|
0.0f, 1.0f,
|
|
0.0f, 0.0f,
|
|
1.0f, 0.0f,
|
|
1.0f, 1.0f,
|
|
1.0f, 1.0f,
|
|
0.0f, 1.0f,
|
|
0.0f, 0.0f,
|
|
1.0f, 0.0f,
|
|
1.0f, 0.0f,
|
|
1.0f, 1.0f,
|
|
0.0f, 1.0f,
|
|
0.0f, 0.0f,
|
|
0.0f, 0.0f,
|
|
1.0f, 0.0f,
|
|
1.0f, 1.0f,
|
|
0.0f, 1.0f
|
|
};
|
|
|
|
float normals[] = {
|
|
0.0f, 0.0f, 1.0f,
|
|
0.0f, 0.0f, 1.0f,
|
|
0.0f, 0.0f, 1.0f,
|
|
0.0f, 0.0f, 1.0f,
|
|
0.0f, 0.0f,-1.0f,
|
|
0.0f, 0.0f,-1.0f,
|
|
0.0f, 0.0f,-1.0f,
|
|
0.0f, 0.0f,-1.0f,
|
|
0.0f, 1.0f, 0.0f,
|
|
0.0f, 1.0f, 0.0f,
|
|
0.0f, 1.0f, 0.0f,
|
|
0.0f, 1.0f, 0.0f,
|
|
0.0f,-1.0f, 0.0f,
|
|
0.0f,-1.0f, 0.0f,
|
|
0.0f,-1.0f, 0.0f,
|
|
0.0f,-1.0f, 0.0f,
|
|
1.0f, 0.0f, 0.0f,
|
|
1.0f, 0.0f, 0.0f,
|
|
1.0f, 0.0f, 0.0f,
|
|
1.0f, 0.0f, 0.0f,
|
|
-1.0f, 0.0f, 0.0f,
|
|
-1.0f, 0.0f, 0.0f,
|
|
-1.0f, 0.0f, 0.0f,
|
|
-1.0f, 0.0f, 0.0f
|
|
};
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(24*3*sizeof(float));
|
|
memcpy(mesh.vertices, vertices, 24*3*sizeof(float));
|
|
|
|
mesh.texcoords = (float *)RL_MALLOC(24*2*sizeof(float));
|
|
memcpy(mesh.texcoords, texcoords, 24*2*sizeof(float));
|
|
|
|
mesh.normals = (float *)RL_MALLOC(24*3*sizeof(float));
|
|
memcpy(mesh.normals, normals, 24*3*sizeof(float));
|
|
|
|
mesh.indices = (unsigned short *)RL_MALLOC(36*sizeof(unsigned short));
|
|
|
|
int k = 0;
|
|
|
|
// Indices can be initialized right now
|
|
for (int i = 0; i < 36; i+=6)
|
|
{
|
|
mesh.indices[i] = 4*k;
|
|
mesh.indices[i+1] = 4*k+1;
|
|
mesh.indices[i+2] = 4*k+2;
|
|
mesh.indices[i+3] = 4*k;
|
|
mesh.indices[i+4] = 4*k+2;
|
|
mesh.indices[i+5] = 4*k+3;
|
|
|
|
k++;
|
|
}
|
|
|
|
mesh.vertexCount = 24;
|
|
mesh.triangleCount = 12;
|
|
|
|
#else // Use par_shapes library to generate cube mesh
|
|
/*
|
|
// Platonic solids:
|
|
par_shapes_mesh* par_shapes_create_tetrahedron(); // 4 sides polyhedron (pyramid)
|
|
par_shapes_mesh* par_shapes_create_cube(); // 6 sides polyhedron (cube)
|
|
par_shapes_mesh* par_shapes_create_octahedron(); // 8 sides polyhedron (dyamond)
|
|
par_shapes_mesh* par_shapes_create_dodecahedron(); // 12 sides polyhedron
|
|
par_shapes_mesh* par_shapes_create_icosahedron(); // 20 sides polyhedron
|
|
*/
|
|
// Platonic solid generation: cube (6 sides)
|
|
// NOTE: No normals/texcoords generated by default
|
|
par_shapes_mesh *cube = par_shapes_create_cube();
|
|
cube->tcoords = PAR_MALLOC(float, 2*cube->npoints);
|
|
for (int i = 0; i < 2*cube->npoints; i++) cube->tcoords[i] = 0.0f;
|
|
par_shapes_scale(cube, width, height, length);
|
|
par_shapes_translate(cube, -width/2, 0.0f, -length/2);
|
|
par_shapes_compute_normals(cube);
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(cube->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = cube->ntriangles*3;
|
|
mesh.triangleCount = cube->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = cube->points[cube->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = cube->points[cube->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = cube->points[cube->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = cube->normals[cube->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = cube->normals[cube->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = cube->normals[cube->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = cube->tcoords[cube->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = cube->tcoords[cube->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(cube);
|
|
#endif
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
rlLoadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate sphere mesh (standard sphere)
|
|
RLAPI Mesh GenMeshSphere(float radius, int rings, int slices)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
|
|
par_shapes_mesh *sphere = par_shapes_create_parametric_sphere(slices, rings);
|
|
par_shapes_scale(sphere, radius, radius, radius);
|
|
// NOTE: Soft normals are computed internally
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = sphere->ntriangles*3;
|
|
mesh.triangleCount = sphere->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(sphere);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
rlLoadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate hemi-sphere mesh (half sphere, no bottom cap)
|
|
RLAPI Mesh GenMeshHemiSphere(float radius, int rings, int slices)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
|
|
par_shapes_mesh *sphere = par_shapes_create_hemisphere(slices, rings);
|
|
par_shapes_scale(sphere, radius, radius, radius);
|
|
// NOTE: Soft normals are computed internally
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = sphere->ntriangles*3;
|
|
mesh.triangleCount = sphere->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(sphere);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
rlLoadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate cylinder mesh
|
|
Mesh GenMeshCylinder(float radius, float height, int slices)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
|
|
// Instance a cylinder that sits on the Z=0 plane using the given tessellation
|
|
// levels across the UV domain. Think of "slices" like a number of pizza
|
|
// slices, and "stacks" like a number of stacked rings.
|
|
// Height and radius are both 1.0, but they can easily be changed with par_shapes_scale
|
|
par_shapes_mesh *cylinder = par_shapes_create_cylinder(slices, 8);
|
|
par_shapes_scale(cylinder, radius, radius, height);
|
|
par_shapes_rotate(cylinder, -PI/2.0f, (float[]){ 1, 0, 0 });
|
|
par_shapes_rotate(cylinder, PI/2.0f, (float[]){ 0, 1, 0 });
|
|
|
|
// Generate an orientable disk shape (top cap)
|
|
par_shapes_mesh *capTop = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, 1 });
|
|
capTop->tcoords = PAR_MALLOC(float, 2*capTop->npoints);
|
|
for (int i = 0; i < 2*capTop->npoints; i++) capTop->tcoords[i] = 0.0f;
|
|
par_shapes_rotate(capTop, -PI/2.0f, (float[]){ 1, 0, 0 });
|
|
par_shapes_translate(capTop, 0, height, 0);
|
|
|
|
// Generate an orientable disk shape (bottom cap)
|
|
par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 });
|
|
capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints);
|
|
for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f;
|
|
par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 });
|
|
|
|
par_shapes_merge_and_free(cylinder, capTop);
|
|
par_shapes_merge_and_free(cylinder, capBottom);
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(cylinder->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = cylinder->ntriangles*3;
|
|
mesh.triangleCount = cylinder->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = cylinder->points[cylinder->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = cylinder->points[cylinder->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = cylinder->points[cylinder->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = cylinder->normals[cylinder->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = cylinder->normals[cylinder->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = cylinder->normals[cylinder->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = cylinder->tcoords[cylinder->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = cylinder->tcoords[cylinder->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(cylinder);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
rlLoadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate torus mesh
|
|
Mesh GenMeshTorus(float radius, float size, int radSeg, int sides)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
|
|
if (radius > 1.0f) radius = 1.0f;
|
|
else if (radius < 0.1f) radius = 0.1f;
|
|
|
|
// Create a donut that sits on the Z=0 plane with the specified inner radius
|
|
// The outer radius can be controlled with par_shapes_scale
|
|
par_shapes_mesh *torus = par_shapes_create_torus(radSeg, sides, radius);
|
|
par_shapes_scale(torus, size/2, size/2, size/2);
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(torus->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = torus->ntriangles*3;
|
|
mesh.triangleCount = torus->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = torus->points[torus->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = torus->points[torus->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = torus->points[torus->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = torus->normals[torus->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = torus->normals[torus->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = torus->normals[torus->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = torus->tcoords[torus->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = torus->tcoords[torus->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(torus);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
rlLoadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate trefoil knot mesh
|
|
Mesh GenMeshKnot(float radius, float size, int radSeg, int sides)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
|
|
if (radius > 3.0f) radius = 3.0f;
|
|
else if (radius < 0.5f) radius = 0.5f;
|
|
|
|
par_shapes_mesh *knot = par_shapes_create_trefoil_knot(radSeg, sides, radius);
|
|
par_shapes_scale(knot, size, size, size);
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(knot->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = knot->ntriangles*3;
|
|
mesh.triangleCount = knot->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = knot->points[knot->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = knot->points[knot->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = knot->points[knot->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = knot->normals[knot->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = knot->normals[knot->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = knot->normals[knot->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = knot->tcoords[knot->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = knot->tcoords[knot->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(knot);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
rlLoadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate a mesh from heightmap
|
|
// NOTE: Vertex data is uploaded to GPU
|
|
Mesh GenMeshHeightmap(Image heightmap, Vector3 size)
|
|
{
|
|
#define GRAY_VALUE(c) ((c.r+c.g+c.b)/3)
|
|
|
|
Mesh mesh = { 0 };
|
|
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
|
|
int mapX = heightmap.width;
|
|
int mapZ = heightmap.height;
|
|
|
|
Color *pixels = GetImageData(heightmap);
|
|
|
|
// NOTE: One vertex per pixel
|
|
mesh.triangleCount = (mapX-1)*(mapZ-1)*2; // One quad every four pixels
|
|
|
|
mesh.vertexCount = mesh.triangleCount*3;
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
|
|
mesh.colors = NULL;
|
|
|
|
int vCounter = 0; // Used to count vertices float by float
|
|
int tcCounter = 0; // Used to count texcoords float by float
|
|
int nCounter = 0; // Used to count normals float by float
|
|
|
|
int trisCounter = 0;
|
|
|
|
Vector3 scaleFactor = { size.x/mapX, size.y/255.0f, size.z/mapZ };
|
|
|
|
for (int z = 0; z < mapZ-1; z++)
|
|
{
|
|
for (int x = 0; x < mapX-1; x++)
|
|
{
|
|
// Fill vertices array with data
|
|
//----------------------------------------------------------
|
|
|
|
// one triangle - 3 vertex
|
|
mesh.vertices[vCounter] = (float)x*scaleFactor.x;
|
|
mesh.vertices[vCounter + 1] = (float)GRAY_VALUE(pixels[x + z*mapX])*scaleFactor.y;
|
|
mesh.vertices[vCounter + 2] = (float)z*scaleFactor.z;
|
|
|
|
mesh.vertices[vCounter + 3] = (float)x*scaleFactor.x;
|
|
mesh.vertices[vCounter + 4] = (float)GRAY_VALUE(pixels[x + (z + 1)*mapX])*scaleFactor.y;
|
|
mesh.vertices[vCounter + 5] = (float)(z + 1)*scaleFactor.z;
|
|
|
|
mesh.vertices[vCounter + 6] = (float)(x + 1)*scaleFactor.x;
|
|
mesh.vertices[vCounter + 7] = (float)GRAY_VALUE(pixels[(x + 1) + z*mapX])*scaleFactor.y;
|
|
mesh.vertices[vCounter + 8] = (float)z*scaleFactor.z;
|
|
|
|
// another triangle - 3 vertex
|
|
mesh.vertices[vCounter + 9] = mesh.vertices[vCounter + 6];
|
|
mesh.vertices[vCounter + 10] = mesh.vertices[vCounter + 7];
|
|
mesh.vertices[vCounter + 11] = mesh.vertices[vCounter + 8];
|
|
|
|
mesh.vertices[vCounter + 12] = mesh.vertices[vCounter + 3];
|
|
mesh.vertices[vCounter + 13] = mesh.vertices[vCounter + 4];
|
|
mesh.vertices[vCounter + 14] = mesh.vertices[vCounter + 5];
|
|
|
|
mesh.vertices[vCounter + 15] = (float)(x + 1)*scaleFactor.x;
|
|
mesh.vertices[vCounter + 16] = (float)GRAY_VALUE(pixels[(x + 1) + (z + 1)*mapX])*scaleFactor.y;
|
|
mesh.vertices[vCounter + 17] = (float)(z + 1)*scaleFactor.z;
|
|
vCounter += 18; // 6 vertex, 18 floats
|
|
|
|
// Fill texcoords array with data
|
|
//--------------------------------------------------------------
|
|
mesh.texcoords[tcCounter] = (float)x/(mapX - 1);
|
|
mesh.texcoords[tcCounter + 1] = (float)z/(mapZ - 1);
|
|
|
|
mesh.texcoords[tcCounter + 2] = (float)x/(mapX - 1);
|
|
mesh.texcoords[tcCounter + 3] = (float)(z + 1)/(mapZ - 1);
|
|
|
|
mesh.texcoords[tcCounter + 4] = (float)(x + 1)/(mapX - 1);
|
|
mesh.texcoords[tcCounter + 5] = (float)z/(mapZ - 1);
|
|
|
|
mesh.texcoords[tcCounter + 6] = mesh.texcoords[tcCounter + 4];
|
|
mesh.texcoords[tcCounter + 7] = mesh.texcoords[tcCounter + 5];
|
|
|
|
mesh.texcoords[tcCounter + 8] = mesh.texcoords[tcCounter + 2];
|
|
mesh.texcoords[tcCounter + 9] = mesh.texcoords[tcCounter + 3];
|
|
|
|
mesh.texcoords[tcCounter + 10] = (float)(x + 1)/(mapX - 1);
|
|
mesh.texcoords[tcCounter + 11] = (float)(z + 1)/(mapZ - 1);
|
|
tcCounter += 12; // 6 texcoords, 12 floats
|
|
|
|
// Fill normals array with data
|
|
//--------------------------------------------------------------
|
|
for (int i = 0; i < 18; i += 3)
|
|
{
|
|
mesh.normals[nCounter + i] = 0.0f;
|
|
mesh.normals[nCounter + i + 1] = 1.0f;
|
|
mesh.normals[nCounter + i + 2] = 0.0f;
|
|
}
|
|
|
|
// TODO: Calculate normals in an efficient way
|
|
|
|
nCounter += 18; // 6 vertex, 18 floats
|
|
trisCounter += 2;
|
|
}
|
|
}
|
|
|
|
RL_FREE(pixels);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
rlLoadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate a cubes mesh from pixel data
|
|
// NOTE: Vertex data is uploaded to GPU
|
|
Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
|
|
Color *cubicmapPixels = GetImageData(cubicmap);
|
|
|
|
int mapWidth = cubicmap.width;
|
|
int mapHeight = cubicmap.height;
|
|
|
|
// NOTE: Max possible number of triangles numCubes*(12 triangles by cube)
|
|
int maxTriangles = cubicmap.width*cubicmap.height*12;
|
|
|
|
int vCounter = 0; // Used to count vertices
|
|
int tcCounter = 0; // Used to count texcoords
|
|
int nCounter = 0; // Used to count normals
|
|
|
|
float w = cubeSize.x;
|
|
float h = cubeSize.z;
|
|
float h2 = cubeSize.y;
|
|
|
|
Vector3 *mapVertices = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
|
|
Vector2 *mapTexcoords = (Vector2 *)RL_MALLOC(maxTriangles*3*sizeof(Vector2));
|
|
Vector3 *mapNormals = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
|
|
|
|
// Define the 6 normals of the cube, we will combine them accordingly later...
|
|
Vector3 n1 = { 1.0f, 0.0f, 0.0f };
|
|
Vector3 n2 = { -1.0f, 0.0f, 0.0f };
|
|
Vector3 n3 = { 0.0f, 1.0f, 0.0f };
|
|
Vector3 n4 = { 0.0f, -1.0f, 0.0f };
|
|
Vector3 n5 = { 0.0f, 0.0f, 1.0f };
|
|
Vector3 n6 = { 0.0f, 0.0f, -1.0f };
|
|
|
|
// NOTE: We use texture rectangles to define different textures for top-bottom-front-back-right-left (6)
|
|
typedef struct RectangleF {
|
|
float x;
|
|
float y;
|
|
float width;
|
|
float height;
|
|
} RectangleF;
|
|
|
|
RectangleF rightTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
|
|
RectangleF leftTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
|
|
RectangleF frontTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
|
|
RectangleF backTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
|
|
RectangleF topTexUV = { 0.0f, 0.5f, 0.5f, 0.5f };
|
|
RectangleF bottomTexUV = { 0.5f, 0.5f, 0.5f, 0.5f };
|
|
|
|
for (int z = 0; z < mapHeight; ++z)
|
|
{
|
|
for (int x = 0; x < mapWidth; ++x)
|
|
{
|
|
// Define the 8 vertex of the cube, we will combine them accordingly later...
|
|
Vector3 v1 = { w*(x - 0.5f), h2, h*(z - 0.5f) };
|
|
Vector3 v2 = { w*(x - 0.5f), h2, h*(z + 0.5f) };
|
|
Vector3 v3 = { w*(x + 0.5f), h2, h*(z + 0.5f) };
|
|
Vector3 v4 = { w*(x + 0.5f), h2, h*(z - 0.5f) };
|
|
Vector3 v5 = { w*(x + 0.5f), 0, h*(z - 0.5f) };
|
|
Vector3 v6 = { w*(x - 0.5f), 0, h*(z - 0.5f) };
|
|
Vector3 v7 = { w*(x - 0.5f), 0, h*(z + 0.5f) };
|
|
Vector3 v8 = { w*(x + 0.5f), 0, h*(z + 0.5f) };
|
|
|
|
// We check pixel color to be WHITE, we will full cubes
|
|
if ((cubicmapPixels[z*cubicmap.width + x].r == 255) &&
|
|
(cubicmapPixels[z*cubicmap.width + x].g == 255) &&
|
|
(cubicmapPixels[z*cubicmap.width + x].b == 255))
|
|
{
|
|
// Define triangles (Checking Collateral Cubes!)
|
|
//----------------------------------------------
|
|
|
|
// Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
|
|
mapVertices[vCounter] = v1;
|
|
mapVertices[vCounter + 1] = v2;
|
|
mapVertices[vCounter + 2] = v3;
|
|
mapVertices[vCounter + 3] = v1;
|
|
mapVertices[vCounter + 4] = v3;
|
|
mapVertices[vCounter + 5] = v4;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n3;
|
|
mapNormals[nCounter + 1] = n3;
|
|
mapNormals[nCounter + 2] = n3;
|
|
mapNormals[nCounter + 3] = n3;
|
|
mapNormals[nCounter + 4] = n3;
|
|
mapNormals[nCounter + 5] = n3;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
|
|
tcCounter += 6;
|
|
|
|
// Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
|
|
mapVertices[vCounter] = v6;
|
|
mapVertices[vCounter + 1] = v8;
|
|
mapVertices[vCounter + 2] = v7;
|
|
mapVertices[vCounter + 3] = v6;
|
|
mapVertices[vCounter + 4] = v5;
|
|
mapVertices[vCounter + 5] = v8;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n4;
|
|
mapNormals[nCounter + 1] = n4;
|
|
mapNormals[nCounter + 2] = n4;
|
|
mapNormals[nCounter + 3] = n4;
|
|
mapNormals[nCounter + 4] = n4;
|
|
mapNormals[nCounter + 5] = n4;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
|
|
tcCounter += 6;
|
|
|
|
if (((z < cubicmap.height - 1) &&
|
|
(cubicmapPixels[(z + 1)*cubicmap.width + x].r == 0) &&
|
|
(cubicmapPixels[(z + 1)*cubicmap.width + x].g == 0) &&
|
|
(cubicmapPixels[(z + 1)*cubicmap.width + x].b == 0)) || (z == cubicmap.height - 1))
|
|
{
|
|
// Define front triangles (2 tris, 6 vertex) --> v2 v7 v3, v3 v7 v8
|
|
// NOTE: Collateral occluded faces are not generated
|
|
mapVertices[vCounter] = v2;
|
|
mapVertices[vCounter + 1] = v7;
|
|
mapVertices[vCounter + 2] = v3;
|
|
mapVertices[vCounter + 3] = v3;
|
|
mapVertices[vCounter + 4] = v7;
|
|
mapVertices[vCounter + 5] = v8;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n6;
|
|
mapNormals[nCounter + 1] = n6;
|
|
mapNormals[nCounter + 2] = n6;
|
|
mapNormals[nCounter + 3] = n6;
|
|
mapNormals[nCounter + 4] = n6;
|
|
mapNormals[nCounter + 5] = n6;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ frontTexUV.x, frontTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y + frontTexUV.height };
|
|
tcCounter += 6;
|
|
}
|
|
|
|
if (((z > 0) &&
|
|
(cubicmapPixels[(z - 1)*cubicmap.width + x].r == 0) &&
|
|
(cubicmapPixels[(z - 1)*cubicmap.width + x].g == 0) &&
|
|
(cubicmapPixels[(z - 1)*cubicmap.width + x].b == 0)) || (z == 0))
|
|
{
|
|
// Define back triangles (2 tris, 6 vertex) --> v1 v5 v6, v1 v4 v5
|
|
// NOTE: Collateral occluded faces are not generated
|
|
mapVertices[vCounter] = v1;
|
|
mapVertices[vCounter + 1] = v5;
|
|
mapVertices[vCounter + 2] = v6;
|
|
mapVertices[vCounter + 3] = v1;
|
|
mapVertices[vCounter + 4] = v4;
|
|
mapVertices[vCounter + 5] = v5;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n5;
|
|
mapNormals[nCounter + 1] = n5;
|
|
mapNormals[nCounter + 2] = n5;
|
|
mapNormals[nCounter + 3] = n5;
|
|
mapNormals[nCounter + 4] = n5;
|
|
mapNormals[nCounter + 5] = n5;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y + backTexUV.height };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ backTexUV.x, backTexUV.y };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
|
|
tcCounter += 6;
|
|
}
|
|
|
|
if (((x < cubicmap.width - 1) &&
|
|
(cubicmapPixels[z*cubicmap.width + (x + 1)].r == 0) &&
|
|
(cubicmapPixels[z*cubicmap.width + (x + 1)].g == 0) &&
|
|
(cubicmapPixels[z*cubicmap.width + (x + 1)].b == 0)) || (x == cubicmap.width - 1))
|
|
{
|
|
// Define right triangles (2 tris, 6 vertex) --> v3 v8 v4, v4 v8 v5
|
|
// NOTE: Collateral occluded faces are not generated
|
|
mapVertices[vCounter] = v3;
|
|
mapVertices[vCounter + 1] = v8;
|
|
mapVertices[vCounter + 2] = v4;
|
|
mapVertices[vCounter + 3] = v4;
|
|
mapVertices[vCounter + 4] = v8;
|
|
mapVertices[vCounter + 5] = v5;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n1;
|
|
mapNormals[nCounter + 1] = n1;
|
|
mapNormals[nCounter + 2] = n1;
|
|
mapNormals[nCounter + 3] = n1;
|
|
mapNormals[nCounter + 4] = n1;
|
|
mapNormals[nCounter + 5] = n1;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ rightTexUV.x, rightTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y + rightTexUV.height };
|
|
tcCounter += 6;
|
|
}
|
|
|
|
if (((x > 0) &&
|
|
(cubicmapPixels[z*cubicmap.width + (x - 1)].r == 0) &&
|
|
(cubicmapPixels[z*cubicmap.width + (x - 1)].g == 0) &&
|
|
(cubicmapPixels[z*cubicmap.width + (x - 1)].b == 0)) || (x == 0))
|
|
{
|
|
// Define left triangles (2 tris, 6 vertex) --> v1 v7 v2, v1 v6 v7
|
|
// NOTE: Collateral occluded faces are not generated
|
|
mapVertices[vCounter] = v1;
|
|
mapVertices[vCounter + 1] = v7;
|
|
mapVertices[vCounter + 2] = v2;
|
|
mapVertices[vCounter + 3] = v1;
|
|
mapVertices[vCounter + 4] = v6;
|
|
mapVertices[vCounter + 5] = v7;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n2;
|
|
mapNormals[nCounter + 1] = n2;
|
|
mapNormals[nCounter + 2] = n2;
|
|
mapNormals[nCounter + 3] = n2;
|
|
mapNormals[nCounter + 4] = n2;
|
|
mapNormals[nCounter + 5] = n2;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ leftTexUV.x, leftTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ leftTexUV.x, leftTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ leftTexUV.x, leftTexUV.y + leftTexUV.height };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
|
|
tcCounter += 6;
|
|
}
|
|
}
|
|
// We check pixel color to be BLACK, we will only draw floor and roof
|
|
else if ((cubicmapPixels[z*cubicmap.width + x].r == 0) &&
|
|
(cubicmapPixels[z*cubicmap.width + x].g == 0) &&
|
|
(cubicmapPixels[z*cubicmap.width + x].b == 0))
|
|
{
|
|
// Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
|
|
mapVertices[vCounter] = v1;
|
|
mapVertices[vCounter + 1] = v3;
|
|
mapVertices[vCounter + 2] = v2;
|
|
mapVertices[vCounter + 3] = v1;
|
|
mapVertices[vCounter + 4] = v4;
|
|
mapVertices[vCounter + 5] = v3;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n4;
|
|
mapNormals[nCounter + 1] = n4;
|
|
mapNormals[nCounter + 2] = n4;
|
|
mapNormals[nCounter + 3] = n4;
|
|
mapNormals[nCounter + 4] = n4;
|
|
mapNormals[nCounter + 5] = n4;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
|
|
tcCounter += 6;
|
|
|
|
// Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
|
|
mapVertices[vCounter] = v6;
|
|
mapVertices[vCounter + 1] = v7;
|
|
mapVertices[vCounter + 2] = v8;
|
|
mapVertices[vCounter + 3] = v6;
|
|
mapVertices[vCounter + 4] = v8;
|
|
mapVertices[vCounter + 5] = v5;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n3;
|
|
mapNormals[nCounter + 1] = n3;
|
|
mapNormals[nCounter + 2] = n3;
|
|
mapNormals[nCounter + 3] = n3;
|
|
mapNormals[nCounter + 4] = n3;
|
|
mapNormals[nCounter + 5] = n3;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
|
|
tcCounter += 6;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Move data from mapVertices temp arays to vertices float array
|
|
mesh.vertexCount = vCounter;
|
|
mesh.triangleCount = vCounter/3;
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
|
|
mesh.colors = NULL;
|
|
|
|
int fCounter = 0;
|
|
|
|
// Move vertices data
|
|
for (int i = 0; i < vCounter; i++)
|
|
{
|
|
mesh.vertices[fCounter] = mapVertices[i].x;
|
|
mesh.vertices[fCounter + 1] = mapVertices[i].y;
|
|
mesh.vertices[fCounter + 2] = mapVertices[i].z;
|
|
fCounter += 3;
|
|
}
|
|
|
|
fCounter = 0;
|
|
|
|
// Move normals data
|
|
for (int i = 0; i < nCounter; i++)
|
|
{
|
|
mesh.normals[fCounter] = mapNormals[i].x;
|
|
mesh.normals[fCounter + 1] = mapNormals[i].y;
|
|
mesh.normals[fCounter + 2] = mapNormals[i].z;
|
|
fCounter += 3;
|
|
}
|
|
|
|
fCounter = 0;
|
|
|
|
// Move texcoords data
|
|
for (int i = 0; i < tcCounter; i++)
|
|
{
|
|
mesh.texcoords[fCounter] = mapTexcoords[i].x;
|
|
mesh.texcoords[fCounter + 1] = mapTexcoords[i].y;
|
|
fCounter += 2;
|
|
}
|
|
|
|
RL_FREE(mapVertices);
|
|
RL_FREE(mapNormals);
|
|
RL_FREE(mapTexcoords);
|
|
|
|
RL_FREE(cubicmapPixels); // Free image pixel data
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
rlLoadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
#endif // SUPPORT_MESH_GENERATION
|
|
|
|
// Compute mesh bounding box limits
|
|
// NOTE: minVertex and maxVertex should be transformed by model transform matrix
|
|
BoundingBox MeshBoundingBox(Mesh mesh)
|
|
{
|
|
// Get min and max vertex to construct bounds (AABB)
|
|
Vector3 minVertex = { 0 };
|
|
Vector3 maxVertex = { 0 };
|
|
|
|
if (mesh.vertices != NULL)
|
|
{
|
|
minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
|
|
maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
|
|
|
|
for (int i = 1; i < mesh.vertexCount; i++)
|
|
{
|
|
minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
|
|
maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
|
|
}
|
|
}
|
|
|
|
// Create the bounding box
|
|
BoundingBox box = { 0 };
|
|
box.min = minVertex;
|
|
box.max = maxVertex;
|
|
|
|
return box;
|
|
}
|
|
|
|
// Compute mesh tangents
|
|
// NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates
|
|
// Implementation base don: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html
|
|
void MeshTangents(Mesh *mesh)
|
|
{
|
|
if (mesh->tangents == NULL) mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float));
|
|
else TRACELOG(LOG_WARNING, "Mesh tangents already exist");
|
|
|
|
Vector3 *tan1 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3));
|
|
Vector3 *tan2 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3));
|
|
|
|
for (int i = 0; i < mesh->vertexCount; i += 3)
|
|
{
|
|
// Get triangle vertices
|
|
Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] };
|
|
Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] };
|
|
Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] };
|
|
|
|
// Get triangle texcoords
|
|
Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] };
|
|
Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] };
|
|
Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] };
|
|
|
|
float x1 = v2.x - v1.x;
|
|
float y1 = v2.y - v1.y;
|
|
float z1 = v2.z - v1.z;
|
|
float x2 = v3.x - v1.x;
|
|
float y2 = v3.y - v1.y;
|
|
float z2 = v3.z - v1.z;
|
|
|
|
float s1 = uv2.x - uv1.x;
|
|
float t1 = uv2.y - uv1.y;
|
|
float s2 = uv3.x - uv1.x;
|
|
float t2 = uv3.y - uv1.y;
|
|
|
|
float div = s1*t2 - s2*t1;
|
|
float r = (div == 0.0f)? 0.0f : 1.0f/div;
|
|
|
|
Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r };
|
|
Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r };
|
|
|
|
tan1[i + 0] = sdir;
|
|
tan1[i + 1] = sdir;
|
|
tan1[i + 2] = sdir;
|
|
|
|
tan2[i + 0] = tdir;
|
|
tan2[i + 1] = tdir;
|
|
tan2[i + 2] = tdir;
|
|
}
|
|
|
|
// Compute tangents considering normals
|
|
for (int i = 0; i < mesh->vertexCount; ++i)
|
|
{
|
|
Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
|
|
Vector3 tangent = tan1[i];
|
|
|
|
// TODO: Review, not sure if tangent computation is right, just used reference proposed maths...
|
|
#if defined(COMPUTE_TANGENTS_METHOD_01)
|
|
Vector3 tmp = Vector3Subtract(tangent, Vector3Scale(normal, Vector3DotProduct(normal, tangent)));
|
|
tmp = Vector3Normalize(tmp);
|
|
mesh->tangents[i*4 + 0] = tmp.x;
|
|
mesh->tangents[i*4 + 1] = tmp.y;
|
|
mesh->tangents[i*4 + 2] = tmp.z;
|
|
mesh->tangents[i*4 + 3] = 1.0f;
|
|
#else
|
|
Vector3OrthoNormalize(&normal, &tangent);
|
|
mesh->tangents[i*4 + 0] = tangent.x;
|
|
mesh->tangents[i*4 + 1] = tangent.y;
|
|
mesh->tangents[i*4 + 2] = tangent.z;
|
|
mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f;
|
|
#endif
|
|
}
|
|
|
|
RL_FREE(tan1);
|
|
RL_FREE(tan2);
|
|
|
|
// Load a new tangent attributes buffer
|
|
mesh->vboId[LOC_VERTEX_TANGENT] = rlLoadAttribBuffer(mesh->vaoId, LOC_VERTEX_TANGENT, mesh->tangents, mesh->vertexCount*4*sizeof(float), false);
|
|
|
|
TRACELOG(LOG_INFO, "Tangents computed for mesh");
|
|
}
|
|
|
|
// Compute mesh binormals (aka bitangent)
|
|
void MeshBinormals(Mesh *mesh)
|
|
{
|
|
for (int i = 0; i < mesh->vertexCount; i++)
|
|
{
|
|
//Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
|
|
//Vector3 tangent = { mesh->tangents[i*4 + 0], mesh->tangents[i*4 + 1], mesh->tangents[i*4 + 2] };
|
|
//Vector3 binormal = Vector3Scale(Vector3CrossProduct(normal, tangent), mesh->tangents[i*4 + 3]);
|
|
|
|
// TODO: Register computed binormal in mesh->binormal?
|
|
}
|
|
}
|
|
|
|
// Draw a model (with texture if set)
|
|
void DrawModel(Model model, Vector3 position, float scale, Color tint)
|
|
{
|
|
Vector3 vScale = { scale, scale, scale };
|
|
Vector3 rotationAxis = { 0.0f, 1.0f, 0.0f };
|
|
|
|
DrawModelEx(model, position, rotationAxis, 0.0f, vScale, tint);
|
|
}
|
|
|
|
// Draw a model with extended parameters
|
|
void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
|
|
{
|
|
// Calculate transformation matrix from function parameters
|
|
// Get transform matrix (rotation -> scale -> translation)
|
|
Matrix matScale = MatrixScale(scale.x, scale.y, scale.z);
|
|
Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD);
|
|
Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z);
|
|
|
|
Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation);
|
|
|
|
// Combine model transformation matrix (model.transform) with matrix generated by function parameters (matTransform)
|
|
model.transform = MatrixMultiply(model.transform, matTransform);
|
|
|
|
for (int i = 0; i < model.meshCount; i++)
|
|
{
|
|
// TODO: Review color + tint premultiplication mechanism
|
|
Color color = model.materials[model.meshMaterial[i]].maps[MAP_DIFFUSE].color;
|
|
|
|
Color colorTint = WHITE;
|
|
colorTint.r = (((float)color.r/255.0)*((float)tint.r/255.0))*255;
|
|
colorTint.g = (((float)color.g/255.0)*((float)tint.g/255.0))*255;
|
|
colorTint.b = (((float)color.b/255.0)*((float)tint.b/255.0))*255;
|
|
colorTint.a = (((float)color.a/255.0)*((float)tint.a/255.0))*255;
|
|
|
|
model.materials[model.meshMaterial[i]].maps[MAP_DIFFUSE].color = colorTint;
|
|
rlDrawMesh(model.meshes[i], model.materials[model.meshMaterial[i]], model.transform);
|
|
model.materials[model.meshMaterial[i]].maps[MAP_DIFFUSE].color = color;
|
|
}
|
|
}
|
|
|
|
// Draw a model wires (with texture if set)
|
|
void DrawModelWires(Model model, Vector3 position, float scale, Color tint)
|
|
{
|
|
rlEnableWireMode();
|
|
|
|
DrawModel(model, position, scale, tint);
|
|
|
|
rlDisableWireMode();
|
|
}
|
|
|
|
// Draw a model wires (with texture if set) with extended parameters
|
|
void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
|
|
{
|
|
rlEnableWireMode();
|
|
|
|
DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint);
|
|
|
|
rlDisableWireMode();
|
|
}
|
|
|
|
// Draw a billboard
|
|
void DrawBillboard(Camera camera, Texture2D texture, Vector3 center, float size, Color tint)
|
|
{
|
|
Rectangle sourceRec = { 0.0f, 0.0f, (float)texture.width, (float)texture.height };
|
|
|
|
DrawBillboardRec(camera, texture, sourceRec, center, size, tint);
|
|
}
|
|
|
|
// Draw a billboard (part of a texture defined by a rectangle)
|
|
void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle sourceRec, Vector3 center, float size, Color tint)
|
|
{
|
|
// NOTE: Billboard size will maintain sourceRec aspect ratio, size will represent billboard width
|
|
Vector2 sizeRatio = { size, size*(float)sourceRec.height/sourceRec.width };
|
|
|
|
Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up);
|
|
|
|
Vector3 right = { matView.m0, matView.m4, matView.m8 };
|
|
//Vector3 up = { matView.m1, matView.m5, matView.m9 };
|
|
|
|
// NOTE: Billboard locked on axis-Y
|
|
Vector3 up = { 0.0f, 1.0f, 0.0f };
|
|
/*
|
|
a-------b
|
|
| |
|
|
| * |
|
|
| |
|
|
d-------c
|
|
*/
|
|
right = Vector3Scale(right, sizeRatio.x/2);
|
|
up = Vector3Scale(up, sizeRatio.y/2);
|
|
|
|
Vector3 p1 = Vector3Add(right, up);
|
|
Vector3 p2 = Vector3Subtract(right, up);
|
|
|
|
Vector3 a = Vector3Subtract(center, p2);
|
|
Vector3 b = Vector3Add(center, p1);
|
|
Vector3 c = Vector3Add(center, p2);
|
|
Vector3 d = Vector3Subtract(center, p1);
|
|
|
|
if (rlCheckBufferLimit(4)) rlglDraw();
|
|
|
|
rlEnableTexture(texture.id);
|
|
|
|
rlBegin(RL_QUADS);
|
|
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
|
|
|
|
// Bottom-left corner for texture and quad
|
|
rlTexCoord2f((float)sourceRec.x/texture.width, (float)sourceRec.y/texture.height);
|
|
rlVertex3f(a.x, a.y, a.z);
|
|
|
|
// Top-left corner for texture and quad
|
|
rlTexCoord2f((float)sourceRec.x/texture.width, (float)(sourceRec.y + sourceRec.height)/texture.height);
|
|
rlVertex3f(d.x, d.y, d.z);
|
|
|
|
// Top-right corner for texture and quad
|
|
rlTexCoord2f((float)(sourceRec.x + sourceRec.width)/texture.width, (float)(sourceRec.y + sourceRec.height)/texture.height);
|
|
rlVertex3f(c.x, c.y, c.z);
|
|
|
|
// Bottom-right corner for texture and quad
|
|
rlTexCoord2f((float)(sourceRec.x + sourceRec.width)/texture.width, (float)sourceRec.y/texture.height);
|
|
rlVertex3f(b.x, b.y, b.z);
|
|
rlEnd();
|
|
|
|
rlDisableTexture();
|
|
}
|
|
|
|
// Draw a bounding box with wires
|
|
void DrawBoundingBox(BoundingBox box, Color color)
|
|
{
|
|
Vector3 size;
|
|
|
|
size.x = fabsf(box.max.x - box.min.x);
|
|
size.y = fabsf(box.max.y - box.min.y);
|
|
size.z = fabsf(box.max.z - box.min.z);
|
|
|
|
Vector3 center = { box.min.x + size.x/2.0f, box.min.y + size.y/2.0f, box.min.z + size.z/2.0f };
|
|
|
|
DrawCubeWires(center, size.x, size.y, size.z, color);
|
|
}
|
|
|
|
// Detect collision between two spheres
|
|
bool CheckCollisionSpheres(Vector3 centerA, float radiusA, Vector3 centerB, float radiusB)
|
|
{
|
|
bool collision = false;
|
|
|
|
// Simple way to check for collision, just checking distance between two points
|
|
// Unfortunately, sqrtf() is a costly operation, so we avoid it with following solution
|
|
/*
|
|
float dx = centerA.x - centerB.x; // X distance between centers
|
|
float dy = centerA.y - centerB.y; // Y distance between centers
|
|
float dz = centerA.z - centerB.z; // Z distance between centers
|
|
|
|
float distance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance between centers
|
|
|
|
if (distance <= (radiusA + radiusB)) collision = true;
|
|
*/
|
|
|
|
// Check for distances squared to avoid sqrtf()
|
|
if (Vector3DotProduct(Vector3Subtract(centerB, centerA), Vector3Subtract(centerB, centerA)) <= (radiusA + radiusB)*(radiusA + radiusB)) collision = true;
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Detect collision between two boxes
|
|
// NOTE: Boxes are defined by two points minimum and maximum
|
|
bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2)
|
|
{
|
|
bool collision = true;
|
|
|
|
if ((box1.max.x >= box2.min.x) && (box1.min.x <= box2.max.x))
|
|
{
|
|
if ((box1.max.y < box2.min.y) || (box1.min.y > box2.max.y)) collision = false;
|
|
if ((box1.max.z < box2.min.z) || (box1.min.z > box2.max.z)) collision = false;
|
|
}
|
|
else collision = false;
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Detect collision between box and sphere
|
|
bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius)
|
|
{
|
|
bool collision = false;
|
|
|
|
float dmin = 0;
|
|
|
|
if (center.x < box.min.x) dmin += powf(center.x - box.min.x, 2);
|
|
else if (center.x > box.max.x) dmin += powf(center.x - box.max.x, 2);
|
|
|
|
if (center.y < box.min.y) dmin += powf(center.y - box.min.y, 2);
|
|
else if (center.y > box.max.y) dmin += powf(center.y - box.max.y, 2);
|
|
|
|
if (center.z < box.min.z) dmin += powf(center.z - box.min.z, 2);
|
|
else if (center.z > box.max.z) dmin += powf(center.z - box.max.z, 2);
|
|
|
|
if (dmin <= (radius*radius)) collision = true;
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Detect collision between ray and sphere
|
|
bool CheckCollisionRaySphere(Ray ray, Vector3 center, float radius)
|
|
{
|
|
bool collision = false;
|
|
|
|
Vector3 raySpherePos = Vector3Subtract(center, ray.position);
|
|
float distance = Vector3Length(raySpherePos);
|
|
float vector = Vector3DotProduct(raySpherePos, ray.direction);
|
|
float d = radius*radius - (distance*distance - vector*vector);
|
|
|
|
if (d >= 0.0f) collision = true;
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Detect collision between ray and sphere with extended parameters and collision point detection
|
|
bool CheckCollisionRaySphereEx(Ray ray, Vector3 center, float radius, Vector3 *collisionPoint)
|
|
{
|
|
bool collision = false;
|
|
|
|
Vector3 raySpherePos = Vector3Subtract(center, ray.position);
|
|
float distance = Vector3Length(raySpherePos);
|
|
float vector = Vector3DotProduct(raySpherePos, ray.direction);
|
|
float d = radius*radius - (distance*distance - vector*vector);
|
|
|
|
if (d >= 0.0f) collision = true;
|
|
|
|
// Check if ray origin is inside the sphere to calculate the correct collision point
|
|
float collisionDistance = 0;
|
|
|
|
if (distance < radius) collisionDistance = vector + sqrtf(d);
|
|
else collisionDistance = vector - sqrtf(d);
|
|
|
|
// Calculate collision point
|
|
Vector3 cPoint = Vector3Add(ray.position, Vector3Scale(ray.direction, collisionDistance));
|
|
|
|
collisionPoint->x = cPoint.x;
|
|
collisionPoint->y = cPoint.y;
|
|
collisionPoint->z = cPoint.z;
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Detect collision between ray and bounding box
|
|
bool CheckCollisionRayBox(Ray ray, BoundingBox box)
|
|
{
|
|
bool collision = false;
|
|
|
|
float t[8];
|
|
t[0] = (box.min.x - ray.position.x)/ray.direction.x;
|
|
t[1] = (box.max.x - ray.position.x)/ray.direction.x;
|
|
t[2] = (box.min.y - ray.position.y)/ray.direction.y;
|
|
t[3] = (box.max.y - ray.position.y)/ray.direction.y;
|
|
t[4] = (box.min.z - ray.position.z)/ray.direction.z;
|
|
t[5] = (box.max.z - ray.position.z)/ray.direction.z;
|
|
t[6] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5]));
|
|
t[7] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5]));
|
|
|
|
collision = !(t[7] < 0 || t[6] > t[7]);
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Get collision info between ray and model
|
|
RayHitInfo GetCollisionRayModel(Ray ray, Model model)
|
|
{
|
|
RayHitInfo result = { 0 };
|
|
|
|
for (int m = 0; m < model.meshCount; m++)
|
|
{
|
|
// Check if meshhas vertex data on CPU for testing
|
|
if (model.meshes[m].vertices != NULL)
|
|
{
|
|
// model->mesh.triangleCount may not be set, vertexCount is more reliable
|
|
int triangleCount = model.meshes[m].vertexCount/3;
|
|
|
|
// Test against all triangles in mesh
|
|
for (int i = 0; i < triangleCount; i++)
|
|
{
|
|
Vector3 a, b, c;
|
|
Vector3 *vertdata = (Vector3 *)model.meshes[m].vertices;
|
|
|
|
if (model.meshes[m].indices)
|
|
{
|
|
a = vertdata[model.meshes[m].indices[i*3 + 0]];
|
|
b = vertdata[model.meshes[m].indices[i*3 + 1]];
|
|
c = vertdata[model.meshes[m].indices[i*3 + 2]];
|
|
}
|
|
else
|
|
{
|
|
a = vertdata[i*3 + 0];
|
|
b = vertdata[i*3 + 1];
|
|
c = vertdata[i*3 + 2];
|
|
}
|
|
|
|
a = Vector3Transform(a, model.transform);
|
|
b = Vector3Transform(b, model.transform);
|
|
c = Vector3Transform(c, model.transform);
|
|
|
|
RayHitInfo triHitInfo = GetCollisionRayTriangle(ray, a, b, c);
|
|
|
|
if (triHitInfo.hit)
|
|
{
|
|
// Save the closest hit triangle
|
|
if ((!result.hit) || (result.distance > triHitInfo.distance)) result = triHitInfo;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Get collision info between ray and triangle
|
|
// NOTE: Based on https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
|
|
RayHitInfo GetCollisionRayTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3)
|
|
{
|
|
#define EPSILON 0.000001 // A small number
|
|
|
|
Vector3 edge1, edge2;
|
|
Vector3 p, q, tv;
|
|
float det, invDet, u, v, t;
|
|
RayHitInfo result = {0};
|
|
|
|
// Find vectors for two edges sharing V1
|
|
edge1 = Vector3Subtract(p2, p1);
|
|
edge2 = Vector3Subtract(p3, p1);
|
|
|
|
// Begin calculating determinant - also used to calculate u parameter
|
|
p = Vector3CrossProduct(ray.direction, edge2);
|
|
|
|
// If determinant is near zero, ray lies in plane of triangle or ray is parallel to plane of triangle
|
|
det = Vector3DotProduct(edge1, p);
|
|
|
|
// Avoid culling!
|
|
if ((det > -EPSILON) && (det < EPSILON)) return result;
|
|
|
|
invDet = 1.0f/det;
|
|
|
|
// Calculate distance from V1 to ray origin
|
|
tv = Vector3Subtract(ray.position, p1);
|
|
|
|
// Calculate u parameter and test bound
|
|
u = Vector3DotProduct(tv, p)*invDet;
|
|
|
|
// The intersection lies outside of the triangle
|
|
if ((u < 0.0f) || (u > 1.0f)) return result;
|
|
|
|
// Prepare to test v parameter
|
|
q = Vector3CrossProduct(tv, edge1);
|
|
|
|
// Calculate V parameter and test bound
|
|
v = Vector3DotProduct(ray.direction, q)*invDet;
|
|
|
|
// The intersection lies outside of the triangle
|
|
if ((v < 0.0f) || ((u + v) > 1.0f)) return result;
|
|
|
|
t = Vector3DotProduct(edge2, q)*invDet;
|
|
|
|
if (t > EPSILON)
|
|
{
|
|
// Ray hit, get hit point and normal
|
|
result.hit = true;
|
|
result.distance = t;
|
|
result.hit = true;
|
|
result.normal = Vector3Normalize(Vector3CrossProduct(edge1, edge2));
|
|
result.position = Vector3Add(ray.position, Vector3Scale(ray.direction, t));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Get collision info between ray and ground plane (Y-normal plane)
|
|
RayHitInfo GetCollisionRayGround(Ray ray, float groundHeight)
|
|
{
|
|
#define EPSILON 0.000001 // A small number
|
|
|
|
RayHitInfo result = { 0 };
|
|
|
|
if (fabsf(ray.direction.y) > EPSILON)
|
|
{
|
|
float distance = (ray.position.y - groundHeight)/-ray.direction.y;
|
|
|
|
if (distance >= 0.0)
|
|
{
|
|
result.hit = true;
|
|
result.distance = distance;
|
|
result.normal = (Vector3){ 0.0, 1.0, 0.0 };
|
|
result.position = Vector3Add(ray.position, Vector3Scale(ray.direction, distance));
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module specific Functions Definition
|
|
//----------------------------------------------------------------------------------
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_OBJ)
|
|
// Load OBJ mesh data
|
|
static Model LoadOBJ(const char *fileName)
|
|
{
|
|
Model model = { 0 };
|
|
|
|
tinyobj_attrib_t attrib;
|
|
tinyobj_shape_t *meshes = NULL;
|
|
unsigned int meshCount = 0;
|
|
|
|
tinyobj_material_t *materials = NULL;
|
|
unsigned int materialCount = 0;
|
|
|
|
int dataLength = 0;
|
|
char *data = NULL;
|
|
|
|
// Load model data
|
|
FILE *objFile = fopen(fileName, "rb");
|
|
|
|
if (objFile != NULL)
|
|
{
|
|
fseek(objFile, 0, SEEK_END);
|
|
long length = ftell(objFile); // Get file size
|
|
fseek(objFile, 0, SEEK_SET); // Reset file pointer
|
|
|
|
data = (char *)RL_MALLOC(length);
|
|
|
|
fread(data, length, 1, objFile);
|
|
dataLength = length;
|
|
fclose(objFile);
|
|
}
|
|
|
|
if (data != NULL)
|
|
{
|
|
unsigned int flags = TINYOBJ_FLAG_TRIANGULATE;
|
|
int ret = tinyobj_parse_obj(&attrib, &meshes, &meshCount, &materials, &materialCount, data, dataLength, flags);
|
|
|
|
if (ret != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "[%s] Model data could not be loaded", fileName);
|
|
else TRACELOG(LOG_INFO, "[%s] Model data loaded successfully: %i meshes / %i materials", fileName, meshCount, materialCount);
|
|
|
|
// Init model meshes array
|
|
// TODO: Support multiple meshes... in the meantime, only one mesh is returned
|
|
//model.meshCount = meshCount;
|
|
model.meshCount = 1;
|
|
model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
|
|
|
|
// Init model materials array
|
|
if (materialCount > 0)
|
|
{
|
|
model.materialCount = materialCount;
|
|
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
|
|
}
|
|
|
|
model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
|
|
|
|
/*
|
|
// Multiple meshes data reference
|
|
// NOTE: They are provided as a faces offset
|
|
typedef struct {
|
|
char *name; // group name or object name
|
|
unsigned int face_offset;
|
|
unsigned int length;
|
|
} tinyobj_shape_t;
|
|
*/
|
|
|
|
// Init model meshes
|
|
for (int m = 0; m < 1; m++)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
memset(&mesh, 0, sizeof(Mesh));
|
|
mesh.vertexCount = attrib.num_faces*3;
|
|
mesh.triangleCount = attrib.num_faces;
|
|
mesh.vertices = (float *)RL_CALLOC(mesh.vertexCount*3, sizeof(float));
|
|
mesh.texcoords = (float *)RL_CALLOC(mesh.vertexCount*2, sizeof(float));
|
|
mesh.normals = (float *)RL_CALLOC(mesh.vertexCount*3, sizeof(float));
|
|
mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
|
|
int vCount = 0;
|
|
int vtCount = 0;
|
|
int vnCount = 0;
|
|
|
|
for (int f = 0; f < attrib.num_faces; f++)
|
|
{
|
|
// Get indices for the face
|
|
tinyobj_vertex_index_t idx0 = attrib.faces[3*f + 0];
|
|
tinyobj_vertex_index_t idx1 = attrib.faces[3*f + 1];
|
|
tinyobj_vertex_index_t idx2 = attrib.faces[3*f + 2];
|
|
|
|
// TRACELOGD("Face %i index: v %i/%i/%i . vt %i/%i/%i . vn %i/%i/%i\n", f, idx0.v_idx, idx1.v_idx, idx2.v_idx, idx0.vt_idx, idx1.vt_idx, idx2.vt_idx, idx0.vn_idx, idx1.vn_idx, idx2.vn_idx);
|
|
|
|
// Fill vertices buffer (float) using vertex index of the face
|
|
for (int v = 0; v < 3; v++) { mesh.vertices[vCount + v] = attrib.vertices[idx0.v_idx*3 + v]; } vCount +=3;
|
|
for (int v = 0; v < 3; v++) { mesh.vertices[vCount + v] = attrib.vertices[idx1.v_idx*3 + v]; } vCount +=3;
|
|
for (int v = 0; v < 3; v++) { mesh.vertices[vCount + v] = attrib.vertices[idx2.v_idx*3 + v]; } vCount +=3;
|
|
|
|
// Fill texcoords buffer (float) using vertex index of the face
|
|
// NOTE: Y-coordinate must be flipped upside-down
|
|
mesh.texcoords[vtCount + 0] = attrib.texcoords[idx0.vt_idx*2 + 0];
|
|
mesh.texcoords[vtCount + 1] = 1.0f - attrib.texcoords[idx0.vt_idx*2 + 1]; vtCount += 2;
|
|
mesh.texcoords[vtCount + 0] = attrib.texcoords[idx1.vt_idx*2 + 0];
|
|
mesh.texcoords[vtCount + 1] = 1.0f - attrib.texcoords[idx1.vt_idx*2 + 1]; vtCount += 2;
|
|
mesh.texcoords[vtCount + 0] = attrib.texcoords[idx2.vt_idx*2 + 0];
|
|
mesh.texcoords[vtCount + 1] = 1.0f - attrib.texcoords[idx2.vt_idx*2 + 1]; vtCount += 2;
|
|
|
|
// Fill normals buffer (float) using vertex index of the face
|
|
for (int v = 0; v < 3; v++) { mesh.normals[vnCount + v] = attrib.normals[idx0.vn_idx*3 + v]; } vnCount +=3;
|
|
for (int v = 0; v < 3; v++) { mesh.normals[vnCount + v] = attrib.normals[idx1.vn_idx*3 + v]; } vnCount +=3;
|
|
for (int v = 0; v < 3; v++) { mesh.normals[vnCount + v] = attrib.normals[idx2.vn_idx*3 + v]; } vnCount +=3;
|
|
}
|
|
|
|
model.meshes[m] = mesh; // Assign mesh data to model
|
|
|
|
// Assign mesh material for current mesh
|
|
model.meshMaterial[m] = attrib.material_ids[m];
|
|
|
|
// Set unfound materials to default
|
|
if (model.meshMaterial[m] == -1) model.meshMaterial[m] = 0;
|
|
}
|
|
|
|
// Init model materials
|
|
for (int m = 0; m < materialCount; m++)
|
|
{
|
|
// Init material to default
|
|
// NOTE: Uses default shader, only MAP_DIFFUSE supported
|
|
model.materials[m] = LoadMaterialDefault();
|
|
|
|
/*
|
|
typedef struct {
|
|
char *name;
|
|
|
|
float ambient[3];
|
|
float diffuse[3];
|
|
float specular[3];
|
|
float transmittance[3];
|
|
float emission[3];
|
|
float shininess;
|
|
float ior; // index of refraction
|
|
float dissolve; // 1 == opaque; 0 == fully transparent
|
|
// illumination model (Ref: http://www.fileformat.info/format/material/)
|
|
int illum;
|
|
|
|
int pad0;
|
|
|
|
char *ambient_texname; // map_Ka
|
|
char *diffuse_texname; // map_Kd
|
|
char *specular_texname; // map_Ks
|
|
char *specular_highlight_texname; // map_Ns
|
|
char *bump_texname; // map_bump, bump
|
|
char *displacement_texname; // disp
|
|
char *alpha_texname; // map_d
|
|
} tinyobj_material_t;
|
|
*/
|
|
|
|
model.materials[m].maps[MAP_DIFFUSE].texture = GetTextureDefault(); // Get default texture, in case no texture is defined
|
|
|
|
if (materials[m].diffuse_texname != NULL) model.materials[m].maps[MAP_DIFFUSE].texture = LoadTexture(materials[m].diffuse_texname); //char *diffuse_texname; // map_Kd
|
|
model.materials[m].maps[MAP_DIFFUSE].color = (Color){ (float)(materials[m].diffuse[0]*255.0f), (float)(materials[m].diffuse[1]*255.0f), (float)(materials[m].diffuse[2]*255.0f), 255 }; //float diffuse[3];
|
|
model.materials[m].maps[MAP_DIFFUSE].value = 0.0f;
|
|
|
|
if (materials[m].specular_texname != NULL) model.materials[m].maps[MAP_SPECULAR].texture = LoadTexture(materials[m].specular_texname); //char *specular_texname; // map_Ks
|
|
model.materials[m].maps[MAP_SPECULAR].color = (Color){ (float)(materials[m].specular[0]*255.0f), (float)(materials[m].specular[1]*255.0f), (float)(materials[m].specular[2]*255.0f), 255 }; //float specular[3];
|
|
model.materials[m].maps[MAP_SPECULAR].value = 0.0f;
|
|
|
|
if (materials[m].bump_texname != NULL) model.materials[m].maps[MAP_NORMAL].texture = LoadTexture(materials[m].bump_texname); //char *bump_texname; // map_bump, bump
|
|
model.materials[m].maps[MAP_NORMAL].color = WHITE;
|
|
model.materials[m].maps[MAP_NORMAL].value = materials[m].shininess;
|
|
|
|
model.materials[m].maps[MAP_EMISSION].color = (Color){ (float)(materials[m].emission[0]*255.0f), (float)(materials[m].emission[1]*255.0f), (float)(materials[m].emission[2]*255.0f), 255 }; //float emission[3];
|
|
|
|
if (materials[m].displacement_texname != NULL) model.materials[m].maps[MAP_HEIGHT].texture = LoadTexture(materials[m].displacement_texname); //char *displacement_texname; // disp
|
|
}
|
|
|
|
tinyobj_attrib_free(&attrib);
|
|
tinyobj_shapes_free(meshes, meshCount);
|
|
tinyobj_materials_free(materials, materialCount);
|
|
|
|
RL_FREE(data);
|
|
}
|
|
|
|
// NOTE: At this point we have all model data loaded
|
|
TRACELOG(LOG_INFO, "[%s] Model loaded successfully in RAM (CPU)", fileName);
|
|
|
|
return model;
|
|
}
|
|
#endif
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_IQM)
|
|
// Load IQM mesh data
|
|
static Model LoadIQM(const char *fileName)
|
|
{
|
|
#define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
|
|
#define IQM_VERSION 2 // only IQM version 2 supported
|
|
|
|
#define BONE_NAME_LENGTH 32 // BoneInfo name string length
|
|
#define MESH_NAME_LENGTH 32 // Mesh name string length
|
|
|
|
// IQM file structs
|
|
//-----------------------------------------------------------------------------------
|
|
typedef struct IQMHeader {
|
|
char magic[16];
|
|
unsigned int version;
|
|
unsigned int filesize;
|
|
unsigned int flags;
|
|
unsigned int num_text, ofs_text;
|
|
unsigned int num_meshes, ofs_meshes;
|
|
unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
|
|
unsigned int num_triangles, ofs_triangles, ofs_adjacency;
|
|
unsigned int num_joints, ofs_joints;
|
|
unsigned int num_poses, ofs_poses;
|
|
unsigned int num_anims, ofs_anims;
|
|
unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
|
|
unsigned int num_comment, ofs_comment;
|
|
unsigned int num_extensions, ofs_extensions;
|
|
} IQMHeader;
|
|
|
|
typedef struct IQMMesh {
|
|
unsigned int name;
|
|
unsigned int material;
|
|
unsigned int first_vertex, num_vertexes;
|
|
unsigned int first_triangle, num_triangles;
|
|
} IQMMesh;
|
|
|
|
typedef struct IQMTriangle {
|
|
unsigned int vertex[3];
|
|
} IQMTriangle;
|
|
|
|
typedef struct IQMJoint {
|
|
unsigned int name;
|
|
int parent;
|
|
float translate[3], rotate[4], scale[3];
|
|
} IQMJoint;
|
|
|
|
typedef struct IQMVertexArray {
|
|
unsigned int type;
|
|
unsigned int flags;
|
|
unsigned int format;
|
|
unsigned int size;
|
|
unsigned int offset;
|
|
} IQMVertexArray;
|
|
|
|
// NOTE: Below IQM structures are not used but listed for reference
|
|
/*
|
|
typedef struct IQMAdjacency {
|
|
unsigned int triangle[3];
|
|
} IQMAdjacency;
|
|
|
|
typedef struct IQMPose {
|
|
int parent;
|
|
unsigned int mask;
|
|
float channeloffset[10];
|
|
float channelscale[10];
|
|
} IQMPose;
|
|
|
|
typedef struct IQMAnim {
|
|
unsigned int name;
|
|
unsigned int first_frame, num_frames;
|
|
float framerate;
|
|
unsigned int flags;
|
|
} IQMAnim;
|
|
|
|
typedef struct IQMBounds {
|
|
float bbmin[3], bbmax[3];
|
|
float xyradius, radius;
|
|
} IQMBounds;
|
|
*/
|
|
//-----------------------------------------------------------------------------------
|
|
|
|
// IQM vertex data types
|
|
enum {
|
|
IQM_POSITION = 0,
|
|
IQM_TEXCOORD = 1,
|
|
IQM_NORMAL = 2,
|
|
IQM_TANGENT = 3, // NOTE: Tangents unused by default
|
|
IQM_BLENDINDEXES = 4,
|
|
IQM_BLENDWEIGHTS = 5,
|
|
IQM_COLOR = 6, // NOTE: Vertex colors unused by default
|
|
IQM_CUSTOM = 0x10 // NOTE: Custom vertex values unused by default
|
|
};
|
|
|
|
Model model = { 0 };
|
|
|
|
FILE *iqmFile = NULL;
|
|
IQMHeader iqm;
|
|
|
|
IQMMesh *imesh;
|
|
IQMTriangle *tri;
|
|
IQMVertexArray *va;
|
|
IQMJoint *ijoint;
|
|
|
|
float *vertex = NULL;
|
|
float *normal = NULL;
|
|
float *text = NULL;
|
|
char *blendi = NULL;
|
|
unsigned char *blendw = NULL;
|
|
|
|
iqmFile = fopen(fileName, "rb");
|
|
|
|
if (iqmFile == NULL)
|
|
{
|
|
TRACELOG(LOG_WARNING, "[%s] IQM file could not be opened", fileName);
|
|
return model;
|
|
}
|
|
|
|
fread(&iqm,sizeof(IQMHeader), 1, iqmFile); // Read IQM header
|
|
|
|
if (strncmp(iqm.magic, IQM_MAGIC, sizeof(IQM_MAGIC)))
|
|
{
|
|
TRACELOG(LOG_WARNING, "[%s] IQM file does not seem to be valid", fileName);
|
|
fclose(iqmFile);
|
|
return model;
|
|
}
|
|
|
|
if (iqm.version != IQM_VERSION)
|
|
{
|
|
TRACELOG(LOG_WARNING, "[%s] IQM file version is not supported (%i).", fileName, iqm.version);
|
|
fclose(iqmFile);
|
|
return model;
|
|
}
|
|
|
|
// Meshes data processing
|
|
imesh = RL_MALLOC(sizeof(IQMMesh)*iqm.num_meshes);
|
|
fseek(iqmFile, iqm.ofs_meshes, SEEK_SET);
|
|
fread(imesh, sizeof(IQMMesh)*iqm.num_meshes, 1, iqmFile);
|
|
|
|
model.meshCount = iqm.num_meshes;
|
|
model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
|
|
|
|
char name[MESH_NAME_LENGTH] = { 0 };
|
|
|
|
for (int i = 0; i < model.meshCount; i++)
|
|
{
|
|
fseek(iqmFile, iqm.ofs_text + imesh[i].name, SEEK_SET);
|
|
fread(name, sizeof(char)*MESH_NAME_LENGTH, 1, iqmFile); // Mesh name not used...
|
|
model.meshes[i].vertexCount = imesh[i].num_vertexes;
|
|
|
|
model.meshes[i].vertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex positions
|
|
model.meshes[i].normals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex normals
|
|
model.meshes[i].texcoords = RL_CALLOC(model.meshes[i].vertexCount*2, sizeof(float)); // Default vertex texcoords
|
|
|
|
model.meshes[i].boneIds = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported!
|
|
model.meshes[i].boneWeights = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported!
|
|
|
|
model.meshes[i].triangleCount = imesh[i].num_triangles;
|
|
model.meshes[i].indices = RL_CALLOC(model.meshes[i].triangleCount*3, sizeof(unsigned short));
|
|
|
|
// Animated verted data, what we actually process for rendering
|
|
// NOTE: Animated vertex should be re-uploaded to GPU (if not using GPU skinning)
|
|
model.meshes[i].animVertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
|
|
model.meshes[i].animNormals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
|
|
|
|
model.meshes[i].vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
}
|
|
|
|
// Triangles data processing
|
|
tri = RL_MALLOC(iqm.num_triangles*sizeof(IQMTriangle));
|
|
fseek(iqmFile, iqm.ofs_triangles, SEEK_SET);
|
|
fread(tri, iqm.num_triangles*sizeof(IQMTriangle), 1, iqmFile);
|
|
|
|
for (int m = 0; m < model.meshCount; m++)
|
|
{
|
|
int tcounter = 0;
|
|
|
|
for (int i = imesh[m].first_triangle; i < (imesh[m].first_triangle + imesh[m].num_triangles); i++)
|
|
{
|
|
// IQM triangles are stored counter clockwise, but raylib sets opengl to clockwise drawing, so we swap them around
|
|
model.meshes[m].indices[tcounter + 2] = tri[i].vertex[0] - imesh[m].first_vertex;
|
|
model.meshes[m].indices[tcounter + 1] = tri[i].vertex[1] - imesh[m].first_vertex;
|
|
model.meshes[m].indices[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex;
|
|
tcounter += 3;
|
|
}
|
|
}
|
|
|
|
// Vertex arrays data processing
|
|
va = RL_MALLOC(iqm.num_vertexarrays*sizeof(IQMVertexArray));
|
|
fseek(iqmFile, iqm.ofs_vertexarrays, SEEK_SET);
|
|
fread(va, iqm.num_vertexarrays*sizeof(IQMVertexArray), 1, iqmFile);
|
|
|
|
for (int i = 0; i < iqm.num_vertexarrays; i++)
|
|
{
|
|
switch (va[i].type)
|
|
{
|
|
case IQM_POSITION:
|
|
{
|
|
vertex = RL_MALLOC(iqm.num_vertexes*3*sizeof(float));
|
|
fseek(iqmFile, va[i].offset, SEEK_SET);
|
|
fread(vertex, iqm.num_vertexes*3*sizeof(float), 1, iqmFile);
|
|
|
|
for (int m = 0; m < iqm.num_meshes; m++)
|
|
{
|
|
int vCounter = 0;
|
|
for (int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
|
|
{
|
|
model.meshes[m].vertices[vCounter] = vertex[i];
|
|
model.meshes[m].animVertices[vCounter] = vertex[i];
|
|
vCounter++;
|
|
}
|
|
}
|
|
} break;
|
|
case IQM_NORMAL:
|
|
{
|
|
normal = RL_MALLOC(iqm.num_vertexes*3*sizeof(float));
|
|
fseek(iqmFile, va[i].offset, SEEK_SET);
|
|
fread(normal, iqm.num_vertexes*3*sizeof(float), 1, iqmFile);
|
|
|
|
for (int m = 0; m < iqm.num_meshes; m++)
|
|
{
|
|
int vCounter = 0;
|
|
for (int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
|
|
{
|
|
model.meshes[m].normals[vCounter] = normal[i];
|
|
model.meshes[m].animNormals[vCounter] = normal[i];
|
|
vCounter++;
|
|
}
|
|
}
|
|
} break;
|
|
case IQM_TEXCOORD:
|
|
{
|
|
text = RL_MALLOC(iqm.num_vertexes*2*sizeof(float));
|
|
fseek(iqmFile, va[i].offset, SEEK_SET);
|
|
fread(text, iqm.num_vertexes*2*sizeof(float), 1, iqmFile);
|
|
|
|
for (int m = 0; m < iqm.num_meshes; m++)
|
|
{
|
|
int vCounter = 0;
|
|
for (int i = imesh[m].first_vertex*2; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*2; i++)
|
|
{
|
|
model.meshes[m].texcoords[vCounter] = text[i];
|
|
vCounter++;
|
|
}
|
|
}
|
|
} break;
|
|
case IQM_BLENDINDEXES:
|
|
{
|
|
blendi = RL_MALLOC(iqm.num_vertexes*4*sizeof(char));
|
|
fseek(iqmFile, va[i].offset, SEEK_SET);
|
|
fread(blendi, iqm.num_vertexes*4*sizeof(char), 1, iqmFile);
|
|
|
|
for (int m = 0; m < iqm.num_meshes; m++)
|
|
{
|
|
int boneCounter = 0;
|
|
for (int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
|
|
{
|
|
model.meshes[m].boneIds[boneCounter] = blendi[i];
|
|
boneCounter++;
|
|
}
|
|
}
|
|
} break;
|
|
case IQM_BLENDWEIGHTS:
|
|
{
|
|
blendw = RL_MALLOC(iqm.num_vertexes*4*sizeof(unsigned char));
|
|
fseek(iqmFile, va[i].offset, SEEK_SET);
|
|
fread(blendw, iqm.num_vertexes*4*sizeof(unsigned char), 1, iqmFile);
|
|
|
|
for (int m = 0; m < iqm.num_meshes; m++)
|
|
{
|
|
int boneCounter = 0;
|
|
for (int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
|
|
{
|
|
model.meshes[m].boneWeights[boneCounter] = blendw[i]/255.0f;
|
|
boneCounter++;
|
|
}
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// Bones (joints) data processing
|
|
ijoint = RL_MALLOC(iqm.num_joints*sizeof(IQMJoint));
|
|
fseek(iqmFile, iqm.ofs_joints, SEEK_SET);
|
|
fread(ijoint, iqm.num_joints*sizeof(IQMJoint), 1, iqmFile);
|
|
|
|
model.boneCount = iqm.num_joints;
|
|
model.bones = RL_MALLOC(iqm.num_joints*sizeof(BoneInfo));
|
|
model.bindPose = RL_MALLOC(iqm.num_joints*sizeof(Transform));
|
|
|
|
for (int i = 0; i < iqm.num_joints; i++)
|
|
{
|
|
// Bones
|
|
model.bones[i].parent = ijoint[i].parent;
|
|
fseek(iqmFile, iqm.ofs_text + ijoint[i].name, SEEK_SET);
|
|
fread(model.bones[i].name, BONE_NAME_LENGTH*sizeof(char), 1, iqmFile);
|
|
|
|
// Bind pose (base pose)
|
|
model.bindPose[i].translation.x = ijoint[i].translate[0];
|
|
model.bindPose[i].translation.y = ijoint[i].translate[1];
|
|
model.bindPose[i].translation.z = ijoint[i].translate[2];
|
|
|
|
model.bindPose[i].rotation.x = ijoint[i].rotate[0];
|
|
model.bindPose[i].rotation.y = ijoint[i].rotate[1];
|
|
model.bindPose[i].rotation.z = ijoint[i].rotate[2];
|
|
model.bindPose[i].rotation.w = ijoint[i].rotate[3];
|
|
|
|
model.bindPose[i].scale.x = ijoint[i].scale[0];
|
|
model.bindPose[i].scale.y = ijoint[i].scale[1];
|
|
model.bindPose[i].scale.z = ijoint[i].scale[2];
|
|
}
|
|
|
|
// Build bind pose from parent joints
|
|
for (int i = 0; i < model.boneCount; i++)
|
|
{
|
|
if (model.bones[i].parent >= 0)
|
|
{
|
|
model.bindPose[i].rotation = QuaternionMultiply(model.bindPose[model.bones[i].parent].rotation, model.bindPose[i].rotation);
|
|
model.bindPose[i].translation = Vector3RotateByQuaternion(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].rotation);
|
|
model.bindPose[i].translation = Vector3Add(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].translation);
|
|
model.bindPose[i].scale = Vector3Multiply(model.bindPose[i].scale, model.bindPose[model.bones[i].parent].scale);
|
|
}
|
|
}
|
|
|
|
fclose(iqmFile);
|
|
RL_FREE(imesh);
|
|
RL_FREE(tri);
|
|
RL_FREE(va);
|
|
RL_FREE(vertex);
|
|
RL_FREE(normal);
|
|
RL_FREE(text);
|
|
RL_FREE(blendi);
|
|
RL_FREE(blendw);
|
|
RL_FREE(ijoint);
|
|
|
|
return model;
|
|
}
|
|
#endif
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_GLTF)
|
|
|
|
static const unsigned char base64Table[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 62, 0, 0, 0, 63, 52, 53,
|
|
54, 55, 56, 57, 58, 59, 60, 61, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 1, 2, 3, 4,
|
|
5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
|
|
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
|
|
25, 0, 0, 0, 0, 0, 0, 26, 27, 28,
|
|
29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
|
|
39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
|
|
49, 50, 51
|
|
};
|
|
|
|
static int GetSizeBase64(char *input)
|
|
{
|
|
int size = 0;
|
|
|
|
for (int i = 0; input[4*i] != 0; i++)
|
|
{
|
|
if (input[4*i + 3] == '=')
|
|
{
|
|
if (input[4*i + 2] == '=') size += 1;
|
|
else size += 2;
|
|
}
|
|
else size += 3;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
static unsigned char *DecodeBase64(char *input, int *size)
|
|
{
|
|
*size = GetSizeBase64(input);
|
|
|
|
unsigned char *buf = (unsigned char *)RL_MALLOC(*size);
|
|
for (int i = 0; i < *size/3; i++)
|
|
{
|
|
unsigned char a = base64Table[(int)input[4*i]];
|
|
unsigned char b = base64Table[(int)input[4*i + 1]];
|
|
unsigned char c = base64Table[(int)input[4*i + 2]];
|
|
unsigned char d = base64Table[(int)input[4*i + 3]];
|
|
|
|
buf[3*i] = (a << 2) | (b >> 4);
|
|
buf[3*i + 1] = (b << 4) | (c >> 2);
|
|
buf[3*i + 2] = (c << 6) | d;
|
|
}
|
|
|
|
if (*size%3 == 1)
|
|
{
|
|
int n = *size/3;
|
|
unsigned char a = base64Table[(int)input[4*n]];
|
|
unsigned char b = base64Table[(int)input[4*n + 1]];
|
|
buf[*size - 1] = (a << 2) | (b >> 4);
|
|
}
|
|
else if (*size%3 == 2)
|
|
{
|
|
int n = *size/3;
|
|
unsigned char a = base64Table[(int)input[4*n]];
|
|
unsigned char b = base64Table[(int)input[4*n + 1]];
|
|
unsigned char c = base64Table[(int)input[4*n + 2]];
|
|
buf[*size - 2] = (a << 2) | (b >> 4);
|
|
buf[*size - 1] = (b << 4) | (c >> 2);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
// Load texture from cgltf_image
|
|
static Image LoadImageFromCgltfImage(cgltf_image *image, const char *texPath, Color tint)
|
|
{
|
|
Image rimage = { 0 };
|
|
|
|
if (image->uri)
|
|
{
|
|
if ((strlen(image->uri) > 5) &&
|
|
(image->uri[0] == 'd') &&
|
|
(image->uri[1] == 'a') &&
|
|
(image->uri[2] == 't') &&
|
|
(image->uri[3] == 'a') &&
|
|
(image->uri[4] == ':'))
|
|
{
|
|
// Data URI
|
|
// Format: data:<mediatype>;base64,<data>
|
|
|
|
// Find the comma
|
|
int i = 0;
|
|
while ((image->uri[i] != ',') && (image->uri[i] != 0)) i++;
|
|
|
|
if (image->uri[i] == 0) TRACELOG(LOG_WARNING, "CGLTF Image: Invalid data URI");
|
|
else
|
|
{
|
|
int size;
|
|
unsigned char *data = DecodeBase64(image->uri + i + 1, &size);
|
|
|
|
int w, h;
|
|
unsigned char *raw = stbi_load_from_memory(data, size, &w, &h, NULL, 4);
|
|
|
|
rimage = LoadImagePro(raw, w, h, UNCOMPRESSED_R8G8B8A8);
|
|
|
|
// TODO: Tint shouldn't be applied here!
|
|
ImageColorTint(&rimage, tint);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
rimage = LoadImage(TextFormat("%s/%s", texPath, image->uri));
|
|
|
|
// TODO: Tint shouldn't be applied here!
|
|
ImageColorTint(&rimage, tint);
|
|
}
|
|
}
|
|
else if (image->buffer_view)
|
|
{
|
|
unsigned char *data = RL_MALLOC(image->buffer_view->size);
|
|
int n = image->buffer_view->offset;
|
|
int stride = image->buffer_view->stride ? image->buffer_view->stride : 1;
|
|
|
|
for (int i = 0; i < image->buffer_view->size; i++)
|
|
{
|
|
data[i] = ((unsigned char *)image->buffer_view->buffer->data)[n];
|
|
n += stride;
|
|
}
|
|
|
|
int w, h;
|
|
unsigned char *raw = stbi_load_from_memory(data, image->buffer_view->size, &w, &h, NULL, 4);
|
|
free(data);
|
|
|
|
rimage = LoadImagePro(raw, w, h, UNCOMPRESSED_R8G8B8A8);
|
|
free(raw);
|
|
|
|
// TODO: Tint shouldn't be applied here!
|
|
ImageColorTint(&rimage, tint);
|
|
}
|
|
else
|
|
{
|
|
rimage = LoadImageEx(&tint, 1, 1);
|
|
}
|
|
|
|
return rimage;
|
|
}
|
|
|
|
// LoadGLTF loads in model data from given filename, supporting both .gltf and .glb
|
|
static Model LoadGLTF(const char *fileName)
|
|
{
|
|
/***********************************************************************************
|
|
|
|
Function implemented by Wilhem Barbier(@wbrbr), with modifications by Tyler Bezera(@gamerfiend)
|
|
|
|
Features:
|
|
- Supports .gltf and .glb files
|
|
- Supports embedded (base64) or external textures
|
|
- Loads all raylib supported material textures, values and colors
|
|
- Supports multiple mesh per model and multiple primitives per model
|
|
|
|
Some restrictions (not exhaustive):
|
|
- Triangle-only meshes
|
|
- Not supported node hierarchies or transforms
|
|
- Only supports unsigned short indices (no byte/unsigned int)
|
|
- Only supports float for texture coordinates (no byte/unsigned short)
|
|
|
|
*************************************************************************************/
|
|
|
|
#define LOAD_ACCESSOR(type, nbcomp, acc, dst) \
|
|
{ \
|
|
int n = 0; \
|
|
type* buf = (type*)acc->buffer_view->buffer->data+acc->buffer_view->offset/sizeof(type)+acc->offset/sizeof(type); \
|
|
for (int k = 0; k < acc->count; k++) {\
|
|
for (int l = 0; l < nbcomp; l++) {\
|
|
dst[nbcomp*k+l] = buf[n+l];\
|
|
}\
|
|
n += acc->stride/sizeof(type);\
|
|
}\
|
|
}
|
|
|
|
Model model = { 0 };
|
|
|
|
// glTF file loading
|
|
FILE *gltfFile = fopen(fileName, "rb");
|
|
|
|
if (gltfFile == NULL)
|
|
{
|
|
TRACELOG(LOG_WARNING, "[%s] glTF file could not be opened", fileName);
|
|
return model;
|
|
}
|
|
|
|
fseek(gltfFile, 0, SEEK_END);
|
|
int size = ftell(gltfFile);
|
|
fseek(gltfFile, 0, SEEK_SET);
|
|
|
|
void *buffer = RL_MALLOC(size);
|
|
fread(buffer, size, 1, gltfFile);
|
|
|
|
fclose(gltfFile);
|
|
|
|
// glTF data loading
|
|
cgltf_options options = { 0 };
|
|
cgltf_data *data = NULL;
|
|
cgltf_result result = cgltf_parse(&options, buffer, size, &data);
|
|
|
|
if (result == cgltf_result_success)
|
|
{
|
|
TRACELOG(LOG_INFO, "[%s][%s] Model meshes/materials: %i/%i", fileName, (data->file_type == 2)? "glb" : "gltf", data->meshes_count, data->materials_count);
|
|
|
|
// Read data buffers
|
|
result = cgltf_load_buffers(&options, data, fileName);
|
|
if (result != cgltf_result_success) TRACELOG(LOG_INFO, "[%s][%s] Error loading mesh/material buffers", fileName, (data->file_type == 2)? "glb" : "gltf");
|
|
|
|
int primitivesCount = 0;
|
|
|
|
for (int i = 0; i < data->meshes_count; i++) primitivesCount += (int)data->meshes[i].primitives_count;
|
|
|
|
// Process glTF data and map to model
|
|
model.meshCount = primitivesCount;
|
|
model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
|
|
model.materialCount = data->materials_count + 1;
|
|
model.materials = RL_MALLOC(model.materialCount*sizeof(Material));
|
|
model.meshMaterial = RL_MALLOC(model.meshCount*sizeof(int));
|
|
|
|
for (int i = 0; i < model.meshCount; i++) model.meshes[i].vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
|
|
|
|
for (int i = 0; i < model.materialCount - 1; i++)
|
|
{
|
|
model.materials[i] = LoadMaterialDefault();
|
|
Color tint = (Color){ 255, 255, 255, 255 };
|
|
const char *texPath = GetDirectoryPath(fileName);
|
|
|
|
//Ensure material follows raylib support for PBR (metallic/roughness flow)
|
|
if (data->materials[i].has_pbr_metallic_roughness)
|
|
{
|
|
tint.r = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[0] * 255);
|
|
tint.g = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[1] * 255);
|
|
tint.b = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[2] * 255);
|
|
tint.a = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[3] * 255);
|
|
|
|
model.materials[i].maps[MAP_ALBEDO].color = tint;
|
|
|
|
if (data->materials[i].pbr_metallic_roughness.base_color_texture.texture)
|
|
{
|
|
Image albedo = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.base_color_texture.texture->image, texPath, tint);
|
|
model.materials[i].maps[MAP_ALBEDO].texture = LoadTextureFromImage(albedo);
|
|
UnloadImage(albedo);
|
|
}
|
|
|
|
//Set tint to white after it's been used by Albedo
|
|
tint = WHITE;
|
|
|
|
if (data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture)
|
|
{
|
|
Image metallicRoughness = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture->image, texPath, tint);
|
|
model.materials[i].maps[MAP_ROUGHNESS].texture = LoadTextureFromImage(metallicRoughness);
|
|
|
|
float roughness = data->materials[i].pbr_metallic_roughness.roughness_factor;
|
|
model.materials[i].maps[MAP_ROUGHNESS].value = roughness;
|
|
|
|
float metallic = data->materials[i].pbr_metallic_roughness.metallic_factor;
|
|
model.materials[i].maps[MAP_METALNESS].value = metallic;
|
|
|
|
UnloadImage(metallicRoughness);
|
|
}
|
|
|
|
|
|
|
|
if (data->materials[i].normal_texture.texture)
|
|
{
|
|
Image normalImage = LoadImageFromCgltfImage(data->materials[i].normal_texture.texture->image, texPath, tint);
|
|
model.materials[i].maps[MAP_NORMAL].texture = LoadTextureFromImage(normalImage);
|
|
UnloadImage(normalImage);
|
|
}
|
|
|
|
if (data->materials[i].occlusion_texture.texture)
|
|
{
|
|
Image occulsionImage = LoadImageFromCgltfImage(data->materials[i].occlusion_texture.texture->image, texPath, tint);
|
|
model.materials[i].maps[MAP_OCCLUSION].texture = LoadTextureFromImage(occulsionImage);
|
|
UnloadImage(occulsionImage);
|
|
}
|
|
|
|
if (data->materials[i].emissive_texture.texture)
|
|
{
|
|
Image emissiveImage = LoadImageFromCgltfImage(data->materials[i].emissive_texture.texture->image, texPath, tint);
|
|
model.materials[i].maps[MAP_EMISSION].texture = LoadTextureFromImage(emissiveImage);
|
|
tint.r = (unsigned char)(data->materials[i].emissive_factor[0] * 255);
|
|
tint.g = (unsigned char)(data->materials[i].emissive_factor[1] * 255);
|
|
tint.b = (unsigned char)(data->materials[i].emissive_factor[2] * 255);
|
|
model.materials[i].maps[MAP_EMISSION].color = tint;
|
|
UnloadImage(emissiveImage);
|
|
}
|
|
}
|
|
}
|
|
|
|
model.materials[model.materialCount - 1] = LoadMaterialDefault();
|
|
|
|
int primitiveIndex = 0;
|
|
|
|
for (int i = 0; i < data->meshes_count; i++)
|
|
{
|
|
for (int p = 0; p < data->meshes[i].primitives_count; p++)
|
|
{
|
|
for (int j = 0; j < data->meshes[i].primitives[p].attributes_count; j++)
|
|
{
|
|
if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_position)
|
|
{
|
|
cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
|
|
model.meshes[primitiveIndex].vertexCount = acc->count;
|
|
model.meshes[primitiveIndex].vertices = RL_MALLOC(sizeof(float)*model.meshes[primitiveIndex].vertexCount*3);
|
|
|
|
LOAD_ACCESSOR(float, 3, acc, model.meshes[primitiveIndex].vertices)
|
|
}
|
|
else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_normal)
|
|
{
|
|
cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
|
|
model.meshes[primitiveIndex].normals = RL_MALLOC(sizeof(float)*acc->count*3);
|
|
|
|
LOAD_ACCESSOR(float, 3, acc, model.meshes[primitiveIndex].normals)
|
|
}
|
|
else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_texcoord)
|
|
{
|
|
cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
|
|
|
|
if (acc->component_type == cgltf_component_type_r_32f)
|
|
{
|
|
model.meshes[primitiveIndex].texcoords = RL_MALLOC(sizeof(float)*acc->count*2);
|
|
LOAD_ACCESSOR(float, 2, acc, model.meshes[primitiveIndex].texcoords)
|
|
}
|
|
else
|
|
{
|
|
// TODO: Support normalized unsigned byte/unsigned short texture coordinates
|
|
TRACELOG(LOG_WARNING, "[%s] Texture coordinates must be float", fileName);
|
|
}
|
|
}
|
|
}
|
|
|
|
cgltf_accessor *acc = data->meshes[i].primitives[p].indices;
|
|
|
|
if (acc)
|
|
{
|
|
if (acc->component_type == cgltf_component_type_r_16u)
|
|
{
|
|
model.meshes[primitiveIndex].triangleCount = acc->count/3;
|
|
model.meshes[primitiveIndex].indices = RL_MALLOC(sizeof(unsigned short)*model.meshes[primitiveIndex].triangleCount*3);
|
|
LOAD_ACCESSOR(unsigned short, 1, acc, model.meshes[primitiveIndex].indices)
|
|
}
|
|
else
|
|
{
|
|
// TODO: Support unsigned byte/unsigned int
|
|
TRACELOG(LOG_WARNING, "[%s] Indices must be unsigned short", fileName);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Unindexed mesh
|
|
model.meshes[primitiveIndex].triangleCount = model.meshes[primitiveIndex].vertexCount/3;
|
|
}
|
|
|
|
if (data->meshes[i].primitives[p].material)
|
|
{
|
|
// Compute the offset
|
|
model.meshMaterial[primitiveIndex] = data->meshes[i].primitives[p].material - data->materials;
|
|
}
|
|
else
|
|
{
|
|
model.meshMaterial[primitiveIndex] = model.materialCount - 1;;
|
|
}
|
|
|
|
primitiveIndex++;
|
|
}
|
|
}
|
|
|
|
cgltf_free(data);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "[%s] glTF data could not be loaded", fileName);
|
|
|
|
RL_FREE(buffer);
|
|
|
|
return model;
|
|
}
|
|
#endif
|