151 lines
4.3 KiB
GLSL
151 lines
4.3 KiB
GLSL
#version 330
|
|
|
|
in vec3 fragPosition;
|
|
in vec2 fragTexCoord;
|
|
in vec4 fragColor;
|
|
in vec3 fragNormal;
|
|
|
|
out vec4 finalColor;
|
|
|
|
uniform sampler2D texture0;
|
|
uniform sampler2D texture1;
|
|
uniform sampler2D texture2;
|
|
|
|
uniform vec4 colAmbient;
|
|
uniform vec4 colDiffuse;
|
|
uniform vec4 colSpecular;
|
|
uniform float glossiness;
|
|
|
|
uniform int useNormal;
|
|
uniform int useSpecular;
|
|
|
|
uniform mat4 modelMatrix;
|
|
uniform vec3 viewDir;
|
|
|
|
struct Light {
|
|
int enabled;
|
|
int type;
|
|
vec3 position;
|
|
vec3 direction;
|
|
vec4 diffuse;
|
|
float intensity;
|
|
float radius;
|
|
float coneAngle;
|
|
};
|
|
|
|
const int maxLights = 8;
|
|
uniform Light lights[maxLights];
|
|
|
|
vec3 ComputeLightPoint(Light l, vec3 n, vec3 v, float s)
|
|
{
|
|
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));
|
|
vec3 surfaceToLight = l.position - surfacePos;
|
|
|
|
// Diffuse shading
|
|
float brightness = clamp(float(dot(n, surfaceToLight)/(length(surfaceToLight)*length(n))), 0.0, 1.0);
|
|
float diff = 1.0/dot(surfaceToLight/l.radius, surfaceToLight/l.radius)*brightness*l.intensity;
|
|
|
|
// Specular shading
|
|
float spec = 0.0;
|
|
if (diff > 0.0)
|
|
{
|
|
vec3 h = normalize(-l.direction + v);
|
|
spec = pow(abs(dot(n, h)), 3.0 + glossiness)*s;
|
|
}
|
|
|
|
return (diff*l.diffuse.rgb + spec*colSpecular.rgb);
|
|
}
|
|
|
|
vec3 ComputeLightDirectional(Light l, vec3 n, vec3 v, float s)
|
|
{
|
|
vec3 lightDir = normalize(-l.direction);
|
|
|
|
// Diffuse shading
|
|
float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity;
|
|
|
|
// Specular shading
|
|
float spec = 0.0;
|
|
if (diff > 0.0)
|
|
{
|
|
vec3 h = normalize(lightDir + v);
|
|
spec = pow(abs(dot(n, h)), 3.0 + glossiness)*s;
|
|
}
|
|
|
|
// Combine results
|
|
return (diff*l.intensity*l.diffuse.rgb + spec*colSpecular.rgb);
|
|
}
|
|
|
|
vec3 ComputeLightSpot(Light l, vec3 n, vec3 v, float s)
|
|
{
|
|
vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1));
|
|
vec3 lightToSurface = normalize(surfacePos - l.position);
|
|
vec3 lightDir = normalize(-l.direction);
|
|
|
|
// Diffuse shading
|
|
float diff = clamp(float(dot(n, lightDir)), 0.0, 1.0)*l.intensity;
|
|
|
|
// Spot attenuation
|
|
float attenuation = clamp(float(dot(n, lightToSurface)), 0.0, 1.0);
|
|
attenuation = dot(lightToSurface, -lightDir);
|
|
|
|
float lightToSurfaceAngle = degrees(acos(attenuation));
|
|
if (lightToSurfaceAngle > l.coneAngle) attenuation = 0.0;
|
|
|
|
float falloff = (l.coneAngle - lightToSurfaceAngle)/l.coneAngle;
|
|
|
|
// Combine diffuse and attenuation
|
|
float diffAttenuation = diff*attenuation;
|
|
|
|
// Specular shading
|
|
float spec = 0.0;
|
|
if (diffAttenuation > 0.0)
|
|
{
|
|
vec3 h = normalize(lightDir + v);
|
|
spec = pow(abs(dot(n, h)), 3.0 + glossiness)*s;
|
|
}
|
|
|
|
return (falloff*(diffAttenuation*l.diffuse.rgb + spec*colSpecular.rgb));
|
|
}
|
|
|
|
void main()
|
|
{
|
|
// Calculate fragment normal in screen space
|
|
// NOTE: important to multiply model matrix by fragment normal to apply model transformation (rotation and scale)
|
|
mat3 normalMatrix = mat3(modelMatrix);
|
|
vec3 normal = normalize(normalMatrix*fragNormal);
|
|
|
|
// Normalize normal and view direction vectors
|
|
vec3 n = normalize(normal);
|
|
vec3 v = normalize(viewDir);
|
|
|
|
// Calculate diffuse texture color fetching
|
|
vec4 texelColor = texture(texture0, fragTexCoord);
|
|
vec3 lighting = colAmbient.rgb;
|
|
|
|
// Calculate normal texture color fetching or set to maximum normal value by default
|
|
if (useNormal == 1)
|
|
{
|
|
n *= texture(texture1, fragTexCoord).rgb;
|
|
n = normalize(n);
|
|
}
|
|
|
|
// Calculate specular texture color fetching or set to maximum specular value by default
|
|
float spec = 1.0;
|
|
if (useSpecular == 1) spec = texture(texture2, fragTexCoord).r;
|
|
|
|
for (int i = 0; i < maxLights; i++)
|
|
{
|
|
// Check if light is enabled
|
|
if (lights[i].enabled == 1)
|
|
{
|
|
// Calculate lighting based on light type
|
|
if (lights[i].type == 0) lighting += ComputeLightPoint(lights[i], n, v, spec);
|
|
else if (lights[i].type == 1) lighting += ComputeLightDirectional(lights[i], n, v, spec);
|
|
else if (lights[i].type == 2) lighting += ComputeLightSpot(lights[i], n, v, spec);
|
|
}
|
|
}
|
|
|
|
// Calculate final fragment color
|
|
finalColor = vec4(texelColor.rgb*lighting*colDiffuse.rgb, texelColor.a*colDiffuse.a);
|
|
}
|