raylib/examples/others/iqm_loader/riqm.h
2018-07-05 23:35:53 +02:00

1260 lines
46 KiB
C

/**********************************************************************************************
*
* riqm - InterQuake Model format (IQM) loader for animated meshes
*
* CONFIGURATION:
*
* #define RIQM_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2018 Jonas Daeyaert (@culacant) and Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#ifndef RIQM_H
#define RIQM_H
// TODO dont break everything
static bool vaoSupported = false;
static Matrix modelview;
static Matrix projection;
#include <stdio.h> // Required for: FILE
//#define RIQM_STATIC
#ifdef RIQM_STATIC
#define RIQMDEF static // Functions just visible to module including this file
#else
#ifdef __cplusplus
#define RIQMDEF extern "C" // Functions visible from other files (no name mangling of functions in C++)
#else
#define RIQMDEF extern // Functions visible from other files
#endif
#endif
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
#define JOINT_NAME_LENGTH 32 // Joint name string length
#define MESH_NAME_LENGTH 32 // Mesh name string length
typedef struct Joint {
char name[JOINT_NAME_LENGTH];
int parent;
} Joint;
typedef struct Pose {
Vector3 translation;
Quaternion rotation;
Vector3 scale;
} Pose;
typedef struct Animation {
int jointCount;
Joint *joints; // NOTE: Joints in anims do not have names
int frameCount;
float framerate;
Pose **framepose;
} Animation;
typedef struct AnimatedMesh {
char name[MESH_NAME_LENGTH];
int vertexCount;
int triangleCount;
float *vertices;
float *normals;
float *texcoords;
float *animVertices;
float *animNormals;
unsigned short *triangles;
int *weightId;
float *weightBias;
unsigned int vaoId;
unsigned int vboId[7];
} AnimatedMesh;
typedef struct AnimatedModel {
int meshCount;
AnimatedMesh *mesh;
int materialCount;
int *meshMaterialId;
Material *materials;
int jointCount;
Joint *joints;
Pose *basepose;
Matrix transform;
} AnimatedModel;
//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------
// Loading/Unloading functions
RIQMDEF AnimatedModel LoadAnimatedModel(const char *filename);
RIQMDEF void UnloadAnimatedModel(AnimatedModel model);
RIQMDEF Animation LoadAnimation(const char *filename);
RIQMDEF void UnloadAnimation(Animation anim);
RIQMDEF AnimatedModel AnimatedModelAddTexture(AnimatedModel model,const char *filename); // GENERIC!
RIQMDEF AnimatedModel SetMeshMaterial(AnimatedModel model,int meshid, int textureid); // GENERIC!
// Usage functionality
RIQMDEF bool CheckSkeletonsMatch(AnimatedModel model, Animation anim);
RIQMDEF void AnimateModel(AnimatedModel model, Animation anim, int frame);
RIQMDEF void DrawAnimatedModel(AnimatedModel model,Vector3 position,float scale,Color tint);
RIQMDEF void DrawAnimatedModelEx(AnimatedModel model,Vector3 position,Vector3 rotationAxis,float rotationAngle, Vector3 scale,Color tint);
#endif // RIQM_H
/***********************************************************************************
*
* RIQM IMPLEMENTATION
*
************************************************************************************/
#if defined(RIQM_IMPLEMENTATION)
//#include "utils.h" // Required for: fopen() Android mapping
#include <stdio.h> // Required for: FILE, fopen(), fclose(), feof(), fseek(), fread()
#include <stdlib.h> // Required for: malloc(), free()
#include <string.h> // Required for: strncmp(),strcpy()
#include "raymath.h" // Required for: Vector3, Quaternion functions
#include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2
#include "glad.h"
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
#define IQM_VERSION 2 // only IQM version 2 supported
#define ANIMJOINTNAME "ANIMJOINT" // default joint name (used in Animation)
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// iqm file structs
typedef struct IQMHeader {
char magic[16];
unsigned int version;
unsigned int filesize;
unsigned int flags;
unsigned int num_text, ofs_text;
unsigned int num_meshes, ofs_meshes;
unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
unsigned int num_triangles, ofs_triangles, ofs_adjacency;
unsigned int num_joints, ofs_joints;
unsigned int num_poses, ofs_poses;
unsigned int num_anims, ofs_anims;
unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
unsigned int num_comment, ofs_comment;
unsigned int num_extensions, ofs_extensions;
} IQMHeader;
typedef struct IQMMesh {
unsigned int name;
unsigned int material;
unsigned int first_vertex, num_vertexes;
unsigned int first_triangle, num_triangles;
} IQMMesh;
typedef enum {
IQM_POSITION = 0,
IQM_TEXCOORD = 1,
IQM_NORMAL = 2,
IQM_TANGENT = 3, // tangents unused by default
IQM_BLENDINDEXES = 4,
IQM_BLENDWEIGHTS = 5,
IQM_COLOR = 6, // vertex colors unused by default
IQM_CUSTOM = 0x10 // custom vertex values unused by default
} IQMVertexType;
typedef struct IQMTriangle {
unsigned int vertex[3];
} IQMTriangle;
typedef struct IQMAdjacency { // adjacency unused by default
unsigned int triangle[3];
} IQMAdjacency;
typedef struct IQMJoint {
unsigned int name;
int parent;
float translate[3], rotate[4], scale[3];
} IQMJoint;
typedef struct IQMPose {
int parent;
unsigned int mask;
float channeloffset[10];
float channelscale[10];
} IQMPose;
typedef struct IQMAnim {
unsigned int name;
unsigned int first_frame, num_frames;
float framerate;
unsigned int flags;
} IQMAnim;
typedef struct IQMVertexArray {
unsigned int type;
unsigned int flags;
unsigned int format;
unsigned int size;
unsigned int offset;
} IQMVertexArray;
typedef struct IQMBounds { // bounds unused by default
float bbmin[3], bbmax[3];
float xyradius, radius;
} IQMBounds;
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
void rlLoadAnimatedMesh(AnimatedMesh *amesh, bool dynamic);
void rlUnloadAnimatedMesh(AnimatedMesh *amesh);
void rlUpdateAnimatedMesh(AnimatedMesh *amesh);
void rlDrawAnimatedMesh(AnimatedMesh amesh, Material material, Matrix transform);
static AnimatedModel LoadIQM(const char *filename);
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
void rlLoadAnimatedMesh(AnimatedMesh *amesh, bool dynamic)
{
amesh->vaoId = 0; // Vertex Array Object
amesh->vboId[0] = 0; // Vertex positions VBO << these are the animated vertices in animVertices
amesh->vboId[1] = 0; // Vertex texcoords VBO
amesh->vboId[2] = 0; // Vertex normals VBO << these are the animated normals in animNormals
amesh->vboId[3] = 0; // Vertex colors VBO
amesh->vboId[4] = 0; // Vertex tangents VBO UNUSED
amesh->vboId[5] = 0; // Vertex texcoords2 VBO UNUSED
amesh->vboId[6] = 0; // Vertex indices VBO
#if defined(GRAPHICS_API_OPENGL_11)
TraceLog(LOG_WARNING, "OGL 11");
#endif
#if defined(GRAPHICS_API_OPENGL_21)
TraceLog(LOG_WARNING, "OGL 21");
#endif
#if defined(GRAPHICS_API_OPENGL_33)
TraceLog(LOG_WARNING, "OGL 33");
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
TraceLog(LOG_WARNING, "OGL ES2");
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
int drawHint = GL_STATIC_DRAW;
if (dynamic) drawHint = GL_DYNAMIC_DRAW;
if (vaoSupported)
{
// Initialize Quads VAO (Buffer A)
glGenVertexArrays(1, &amesh->vaoId);
glBindVertexArray(amesh->vaoId);
}
// NOTE: Attributes must be uploaded considering default locations points
// Enable vertex attributes: position (shader-location = 0)
glGenBuffers(1, &amesh->vboId[0]);
glBindBuffer(GL_ARRAY_BUFFER, amesh->vboId[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*amesh->vertexCount, amesh->animVertices, drawHint);
glVertexAttribPointer(0, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(0);
// Enable vertex attributes: texcoords (shader-location = 1)
glGenBuffers(1, &amesh->vboId[1]);
glBindBuffer(GL_ARRAY_BUFFER, amesh->vboId[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*amesh->vertexCount, amesh->texcoords, drawHint);
glVertexAttribPointer(1, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(1);
// Enable vertex attributes: normals (shader-location = 2)
if (amesh->animNormals != NULL)
{
glGenBuffers(1, &amesh->vboId[2]);
glBindBuffer(GL_ARRAY_BUFFER, amesh->vboId[2]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*amesh->vertexCount, amesh->animNormals, drawHint);
glVertexAttribPointer(2, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(2);
}
else
{
// Default color vertex attribute set to WHITE
glVertexAttrib3f(2, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(2);
}
// colors UNUSED
/*
// Default color vertex attribute (shader-location = 3)
if (mesh->colors != NULL)
{
glGenBuffers(1, &amesh->vboId[3]);
glBindBuffer(GL_ARRAY_BUFFER, amesh->vboId[3]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*mesh->vertexCount, mesh->colors, drawHint);
glVertexAttribPointer(3, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(3);
}
else
{
// Default color vertex attribute set to WHITE
glVertexAttrib4f(3, 1.0f, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(3);
}
*/
// colors to default
glVertexAttrib4f(3, 1.0f, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(3);
// tangents UNUSED
/*
// Default tangent vertex attribute (shader-location = 4)
if (mesh->tangents != NULL)
{
glGenBuffers(1, &mesh->vboId[4]);
glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[4]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*mesh->vertexCount, mesh->tangents, drawHint);
glVertexAttribPointer(4, 4, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(4);
}
else
{
// Default tangents vertex attribute
glVertexAttrib4f(4, 0.0f, 0.0f, 0.0f, 0.0f);
glDisableVertexAttribArray(4);
}
*/
// tangents to default
glVertexAttrib4f(4, 0.0f, 0.0f, 0.0f, 0.0f);
glDisableVertexAttribArray(4);
// texcoords2 UNUSED
/*
// Default texcoord2 vertex attribute (shader-location = 5)
if (mesh->texcoords2 != NULL)
{
glGenBuffers(1, &mesh->vboId[5]);
glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[5]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*mesh->vertexCount, mesh->texcoords2, drawHint);
glVertexAttribPointer(5, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(5);
}
else
{
// Default texcoord2 vertex attribute
glVertexAttrib2f(5, 0.0f, 0.0f);
glDisableVertexAttribArray(5);
}
*/
// texcoords2 to default
glVertexAttrib2f(5, 0.0f, 0.0f);
glDisableVertexAttribArray(5);
if (amesh->triangles != NULL)
{
glGenBuffers(1, &amesh->vboId[6]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, amesh->vboId[6]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(unsigned short)*amesh->triangleCount*3, amesh->triangles, GL_STATIC_DRAW);
}
if (vaoSupported)
{
if (amesh->vaoId > 0) TraceLog(LOG_INFO, "[VAO ID %i] Mesh uploaded successfully to VRAM (GPU)", amesh->vaoId);
else TraceLog(LOG_WARNING, "Mesh could not be uploaded to VRAM (GPU)");
}
else
{
TraceLog(LOG_INFO, "[VBOs] Mesh uploaded successfully to VRAM (GPU)");
}
#endif
}
// Unload mesh data from CPU and GPU
void rlUnloadAnimatedMesh(AnimatedMesh *amesh)
{
if (amesh->vertices != NULL) free(amesh->vertices);
if (amesh->animVertices != NULL) free(amesh->animVertices);
if (amesh->texcoords != NULL) free(amesh->texcoords);
if (amesh->normals != NULL) free(amesh->normals);
if (amesh->animNormals != NULL) free(amesh->animNormals);
// if (mesh->colors != NULL) free(mesh->colors);
// if (mesh->tangents != NULL) free(mesh->tangents);
// if (mesh->texcoords2 != NULL) free(mesh->texcoords2);
if (amesh->triangles != NULL) free(amesh->triangles);
if (amesh->weightId != NULL) free(amesh->weightId);
if (amesh->weightBias != NULL) free(amesh->weightBias);
rlDeleteBuffers(amesh->vboId[0]); // vertex
rlDeleteBuffers(amesh->vboId[1]); // texcoords
rlDeleteBuffers(amesh->vboId[2]); // normals
rlDeleteBuffers(amesh->vboId[3]); // colors
rlDeleteBuffers(amesh->vboId[4]); // tangents
rlDeleteBuffers(amesh->vboId[5]); // texcoords2
rlDeleteBuffers(amesh->vboId[6]); // indices
rlDeleteVertexArrays(amesh->vaoId);
}
// Update vertex and normal data into GPU
void rlUpdateAnimatedMesh(AnimatedMesh *amesh)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Activate mesh VAO
if (vaoSupported) glBindVertexArray(amesh->vaoId);
// Update positions data
glBindBuffer(GL_ARRAY_BUFFER, amesh->vboId[0]);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*amesh->vertexCount, amesh->animVertices);
// Update normals data
glBindBuffer(GL_ARRAY_BUFFER, amesh->vboId[2]);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*amesh->vertexCount, amesh->animNormals);
// Unbind the current VAO
if (vaoSupported) glBindVertexArray(0);
//mesh.vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE);
// Now we can modify vertices
//glUnmapBuffer(GL_ARRAY_BUFFER);
#endif
}
// Draw a 3d mesh with material and transform
void rlDrawAnimatedMesh(AnimatedMesh amesh, Material material, Matrix transform)
{
#if defined(GRAPHICS_API_OPENGL_11)
/*
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, material.maps[MAP_DIFFUSE].texture.id);
// NOTE: On OpenGL 1.1 we use Vertex Arrays to draw model
glEnableClientState(GL_VERTEX_ARRAY); // Enable vertex array
glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Enable texture coords array
//if (amesh.normals != NULL) glEnableClientState(GL_NORMAL_ARRAY); // Enable normals array
//if (amesh.colors != NULL) glEnableClientState(GL_COLOR_ARRAY); // Enable colors array
glVertexPointer(3, GL_FLOAT, 0, amesh.animVertices); // Pointer to vertex coords array
glTexCoordPointer(2, GL_FLOAT, 0, amesh.texcoords); // Pointer to texture coords array
if (amesh.animNormals != NULL) glNormalPointer(GL_FLOAT, 0, amesh.animNormals); // Pointer to normals array
//if (mesh.colors != NULL) glColorPointer(4, GL_UNSIGNED_BYTE, 0, mesh.colors); // Pointer to colors array
rlPushMatrix();
rlMultMatrixf(MatrixToFloat(transform));
rlColor4ub(material.maps[MAP_DIFFUSE].color.r, material.maps[MAP_DIFFUSE].color.g, material.maps[MAP_DIFFUSE].color.b, material.maps[MAP_DIFFUSE].color.a);
if (amesh.triangles != NULL) glDrawElements(GL_TRIANGLES, amesh.triangleCount*3, GL_UNSIGNED_SHORT, amesh.triangles);
else glDrawArrays(GL_TRIANGLES, 0, amesh.vertexCount);
rlPopMatrix();
glDisableClientState(GL_VERTEX_ARRAY); // Disable vertex array
glDisableClientState(GL_TEXTURE_COORD_ARRAY); // Disable texture coords array
if (amesh.animNormals != NULL) glDisableClientState(GL_NORMAL_ARRAY); // Disable normals array
//if (mesh.colors != NULL) glDisableClientState(GL_NORMAL_ARRAY); // Disable colors array
glDisable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
*/
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Bind shader program
glUseProgram(material.shader.id);
// Matrices and other values required by shader
//-----------------------------------------------------
// Calculate and send to shader model matrix (used by PBR shader)
if (material.shader.locs[LOC_MATRIX_MODEL] != -1) SetShaderValueMatrix(material.shader, material.shader.locs[LOC_MATRIX_MODEL], transform);
// Upload to shader material.colDiffuse
if (material.shader.locs[LOC_COLOR_DIFFUSE] != -1)
glUniform4f(material.shader.locs[LOC_COLOR_DIFFUSE], (float)material.maps[MAP_DIFFUSE].color.r/255.0f,
(float)material.maps[MAP_DIFFUSE].color.g/255.0f,
(float)material.maps[MAP_DIFFUSE].color.b/255.0f,
(float)material.maps[MAP_DIFFUSE].color.a/255.0f);
// Upload to shader material.colSpecular (if available)
if (material.shader.locs[LOC_COLOR_SPECULAR] != -1)
glUniform4f(material.shader.locs[LOC_COLOR_SPECULAR], (float)material.maps[MAP_SPECULAR].color.r/255.0f,
(float)material.maps[MAP_SPECULAR].color.g/255.0f,
(float)material.maps[MAP_SPECULAR].color.b/255.0f,
(float)material.maps[MAP_SPECULAR].color.a/255.0f);
if (material.shader.locs[LOC_MATRIX_VIEW] != -1) SetShaderValueMatrix(material.shader, material.shader.locs[LOC_MATRIX_VIEW], modelview);
if (material.shader.locs[LOC_MATRIX_PROJECTION] != -1) SetShaderValueMatrix(material.shader, material.shader.locs[LOC_MATRIX_PROJECTION], projection);
// At this point the modelview matrix just contains the view matrix (camera)
// That's because BeginMode3D() sets it an no model-drawing function modifies it, all use rlPushMatrix() and rlPopMatrix()
Matrix matView = modelview; // View matrix (camera)
Matrix matProjection = projection; // Projection matrix (perspective)
// Calculate model-view matrix combining matModel and matView
Matrix matModelView = MatrixMultiply(transform, matView); // Transform to camera-space coordinates
//-----------------------------------------------------
// Bind active texture maps (if available)
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
if (material.maps[i].texture.id > 0)
{
glActiveTexture(GL_TEXTURE0 + i);
if ((i == MAP_IRRADIANCE) || (i == MAP_PREFILTER) || (i == MAP_CUBEMAP)) glBindTexture(GL_TEXTURE_CUBE_MAP, material.maps[i].texture.id);
else glBindTexture(GL_TEXTURE_2D, material.maps[i].texture.id);
glUniform1i(material.shader.locs[LOC_MAP_DIFFUSE + i], i);
}
}
// Bind vertex array objects (or VBOs)
if (vaoSupported) glBindVertexArray(amesh.vaoId);
else
{
// TODO: Simplify VBO binding into a for loop
// Bind mesh VBO data: vertex position (shader-location = 0)
glBindBuffer(GL_ARRAY_BUFFER, amesh.vboId[0]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_POSITION]);
// Bind mesh VBO data: vertex texcoords (shader-location = 1)
glBindBuffer(GL_ARRAY_BUFFER, amesh.vboId[1]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_TEXCOORD01]);
// Bind mesh VBO data: vertex normals (shader-location = 2, if available)
if (material.shader.locs[LOC_VERTEX_NORMAL] != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, amesh.vboId[2]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_NORMAL], 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_NORMAL]);
}
// Bind mesh VBO data: vertex colors (shader-location = 3, if available)
if (material.shader.locs[LOC_VERTEX_COLOR] != -1)
{
if (amesh.vboId[3] != 0)
{
glBindBuffer(GL_ARRAY_BUFFER, amesh.vboId[3]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_COLOR]);
}
else
{
// Set default value for unused attribute
// NOTE: Required when using default shader and no VAO support
glVertexAttrib4f(material.shader.locs[LOC_VERTEX_COLOR], 1.0f, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(material.shader.locs[LOC_VERTEX_COLOR]);
}
}
// Bind mesh VBO data: vertex tangents (shader-location = 4, if available)
if (material.shader.locs[LOC_VERTEX_TANGENT] != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, amesh.vboId[4]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_TANGENT], 4, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_TANGENT]);
}
// Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available)
if (material.shader.locs[LOC_VERTEX_TEXCOORD02] != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, amesh.vboId[5]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_TEXCOORD02], 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_TEXCOORD02]);
}
if (amesh.triangles != NULL) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, amesh.vboId[6]);
}
int eyesCount = 1;
#if defined(SUPPORT_VR_SIMULATOR)
if (vrStereoRender) eyesCount = 2;
#endif
for (int eye = 0; eye < eyesCount; eye++)
{
if (eyesCount == 1) modelview = matModelView;
#if defined(SUPPORT_VR_SIMULATOR)
else SetStereoView(eye, matProjection, matModelView);
#endif
// Calculate model-view-projection matrix (MVP)
Matrix matMVP = MatrixMultiply(modelview, projection); // Transform to screen-space coordinates
// Send combined model-view-projection matrix to shader
glUniformMatrix4fv(material.shader.locs[LOC_MATRIX_MVP], 1, false, MatrixToFloat(matMVP));
// Draw call!
if (amesh.triangles != NULL) glDrawElements(GL_TRIANGLES, amesh.triangleCount*3, GL_UNSIGNED_SHORT, 0); // Indexed vertices draw
else glDrawArrays(GL_TRIANGLES, 0, amesh.vertexCount);
}
// Unbind all binded texture maps
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
glActiveTexture(GL_TEXTURE0 + i); // Set shader active texture
if ((i == MAP_IRRADIANCE) || (i == MAP_PREFILTER) || (i == MAP_CUBEMAP)) glBindTexture(GL_TEXTURE_CUBE_MAP, 0);
else glBindTexture(GL_TEXTURE_2D, 0); // Unbind current active texture
}
// Unind vertex array objects (or VBOs)
if (vaoSupported) glBindVertexArray(0);
else
{
glBindBuffer(GL_ARRAY_BUFFER, 0);
if (amesh.triangles != NULL) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
// Unbind shader program
glUseProgram(0);
// Restore projection/modelview matrices
// NOTE: In stereo rendering matrices are being modified to fit every eye
projection = matProjection;
modelview = matView;
#endif
}
#ifdef __cplusplus
extern "C" { // Prevents name mangling of functions
#endif
// Load .iqm file and initialize animated model
AnimatedModel LoadAnimatedModel(const char *filename)
{
AnimatedModel out = LoadIQM(filename);
for (int i = 0; i < out.meshCount; i++) rlLoadAnimatedMesh(&out.mesh[i], false);
out.transform = MatrixIdentity();
out.meshMaterialId = malloc(sizeof(int)*out.meshCount);
out.materials = NULL;
out.materialCount = 0;
for (int i = 0; i < out.meshCount; i++) out.meshMaterialId[i] = -1;
return out;
}
// Add a texture to an animated model
AnimatedModel AnimatedModelAddTexture(AnimatedModel model, const char *filename)
{
Texture2D texture = LoadTexture(filename);
model.materials = realloc(model.materials, sizeof(Material)*(model.materialCount + 1));
model.materials[model.materialCount] = LoadMaterialDefault();
model.materials[model.materialCount].maps[MAP_DIFFUSE].texture = texture;
model.materialCount++;
return model;
}
// Set the material for a mesh
AnimatedModel SetMeshMaterial(AnimatedModel model, int meshid, int textureid)
{
if (meshid > model.meshCount)
{
TraceLog(LOG_WARNING, "MeshId greater than meshCount\n");
return model;
}
if (textureid > model.materialCount)
{
TraceLog(LOG_WARNING,"textureid greater than materialCount\n");
return model;
}
model.meshMaterialId[meshid] = textureid;
return model;
}
// Load animations from a .iqm file
Animation LoadAnimationFromIQM(const char *filename)
{
Animation animation = { 0 };
FILE *iqmFile;
IQMHeader iqm;
iqmFile = fopen(filename,"rb");
if (!iqmFile)
{
TraceLog(LOG_ERROR, "[%s] Unable to open file", filename);
return animation;
}
// header
fread(&iqm, sizeof(IQMHeader), 1, iqmFile);
if (strncmp(iqm.magic, IQM_MAGIC, sizeof(IQM_MAGIC)))
{
TraceLog(LOG_ERROR, "Magic Number \"%s\"does not match.", iqm.magic);
fclose(iqmFile);
return animation;
}
if (iqm.version != IQM_VERSION)
{
TraceLog(LOG_ERROR, "IQM version %i is incorrect.", iqm.version);
fclose(iqmFile);
return animation;
}
// header
if (iqm.num_anims > 1) TraceLog(LOG_WARNING, "More than 1 animation in file, only the first one will get loaded");
// joints
IQMPose *poses;
poses = malloc(sizeof(IQMPose)*iqm.num_poses);
fseek(iqmFile, iqm.ofs_poses, SEEK_SET);
fread(poses, sizeof(IQMPose)*iqm.num_poses, 1, iqmFile);
animation.jointCount = iqm.num_poses;
animation.joints = malloc(sizeof(Joint)*iqm.num_poses);
for (int j = 0; j < iqm.num_poses; j++)
{
strcpy(animation.joints[j].name, ANIMJOINTNAME);
animation.joints[j].parent = poses[j].parent;
}
// animations
IQMAnim anim = {0};
fseek(iqmFile, iqm.ofs_anims, SEEK_SET);
fread(&anim, sizeof(IQMAnim), 1, iqmFile);
animation.frameCount = anim.num_frames;
animation.framerate = anim.framerate;
// frameposes
unsigned short *framedata = malloc(sizeof(unsigned short)*iqm.num_frames*iqm.num_framechannels);
fseek(iqmFile, iqm.ofs_frames, SEEK_SET);
fread(framedata, sizeof(unsigned short)*iqm.num_frames*iqm.num_framechannels, 1, iqmFile);
animation.framepose = malloc(sizeof(Pose*)*anim.num_frames);
for (int j = 0; j < anim.num_frames; j++) animation.framepose[j] = malloc(sizeof(Pose)*iqm.num_poses);
int dcounter = anim.first_frame*iqm.num_framechannels;
for (int frame = 0; frame < anim.num_frames; frame++)
{
for (int i = 0; i < iqm.num_poses; i++)
{
animation.framepose[frame][i].translation.x = poses[i].channeloffset[0];
if (poses[i].mask & 0x01)
{
animation.framepose[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0];
dcounter++;
}
animation.framepose[frame][i].translation.y = poses[i].channeloffset[1];
if (poses[i].mask & 0x02)
{
animation.framepose[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1];
dcounter++;
}
animation.framepose[frame][i].translation.z = poses[i].channeloffset[2];
if (poses[i].mask & 0x04)
{
animation.framepose[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2];
dcounter++;
}
animation.framepose[frame][i].rotation.x = poses[i].channeloffset[3];
if (poses[i].mask & 0x08)
{
animation.framepose[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3];
dcounter++;
}
animation.framepose[frame][i].rotation.y = poses[i].channeloffset[4];
if (poses[i].mask & 0x10)
{
animation.framepose[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4];
dcounter++;
}
animation.framepose[frame][i].rotation.z = poses[i].channeloffset[5];
if (poses[i].mask & 0x20)
{
animation.framepose[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5];
dcounter++;
}
animation.framepose[frame][i].rotation.w = poses[i].channeloffset[6];
if (poses[i].mask & 0x40)
{
animation.framepose[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6];
dcounter++;
}
animation.framepose[frame][i].scale.x = poses[i].channeloffset[7];
if (poses[i].mask & 0x80)
{
animation.framepose[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7];
dcounter++;
}
animation.framepose[frame][i].scale.y = poses[i].channeloffset[8];
if (poses[i].mask & 0x100)
{
animation.framepose[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8];
dcounter++;
}
animation.framepose[frame][i].scale.z = poses[i].channeloffset[9];
if (poses[i].mask & 0x200)
{
animation.framepose[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9];
dcounter++;
}
animation.framepose[frame][i].rotation = QuaternionNormalize(animation.framepose[frame][i].rotation);
}
}
// Build frameposes
for (int frame = 0; frame < anim.num_frames; frame++)
{
for (int i = 0; i < animation.jointCount; i++)
{
if (animation.joints[i].parent >= 0)
{
animation.framepose[frame][i].rotation = QuaternionMultiply(animation.framepose[frame][animation.joints[i].parent].rotation, animation.framepose[frame][i].rotation);
animation.framepose[frame][i].translation = Vector3RotateByQuaternion(animation.framepose[frame][i].translation, animation.framepose[frame][animation.joints[i].parent].rotation);
animation.framepose[frame][i].translation = Vector3Add(animation.framepose[frame][i].translation, animation.framepose[frame][animation.joints[i].parent].translation);
animation.framepose[frame][i].scale = Vector3MultiplyV(animation.framepose[frame][i].scale, animation.framepose[frame][animation.joints[i].parent].scale);
}
}
}
free(framedata);
free(poses);
fclose(iqmFile);
return animation;
}
// Unload animated model
void UnloadAnimatedModel(AnimatedModel model)
{
free(model.materials);
free(model.meshMaterialId);
free(model.joints);
free(model.basepose);
for (int i = 0; i < model.meshCount; i++) rlUnloadAnimatedMesh(&model.mesh[i]);
free(model.mesh);
}
// Unload animation
void UnloadAnimation(Animation anim)
{
free(anim.joints);
free(anim.framepose);
for (int i = 0; i < anim.frameCount; i++) free(anim.framepose[i]);
}
// Check if skeletons match, only parents and jointCount are checked
bool CheckSkeletonsMatch(AnimatedModel model, Animation anim)
{
if (model.jointCount != anim.jointCount) return 0;
for (int i = 0; i < model.jointCount; i++)
{
if (model.joints[i].parent != anim.joints[i].parent) return 0;
}
return 1;
}
// Calculate the animated vertex positions and normals based on an animation at a given frame
void AnimateModel(AnimatedModel model, Animation anim, int frame)
{
if (frame >= anim.frameCount) frame = frame%anim.frameCount;
for (int m = 0; m < model.meshCount; m++)
{
Vector3 outv = {0};
Vector3 outn = {0};
Vector3 baset = {0};
Quaternion baser = {0};
Vector3 bases = {0};
Vector3 outt = {0};
Quaternion outr = {0};
Vector3 outs = {0};
int vcounter = 0;
int wcounter = 0;
int weightId = 0;
for (int i = 0; i < model.mesh[m].vertexCount; i++)
{
weightId = model.mesh[m].weightId[wcounter];
baset = model.basepose[weightId].translation;
baser = model.basepose[weightId].rotation;
bases = model.basepose[weightId].scale;
outt = anim.framepose[frame][weightId].translation;
outr = anim.framepose[frame][weightId].rotation;
outs = anim.framepose[frame][weightId].scale;
// vertices
outv = (Vector3){model.mesh[m].vertices[vcounter],model.mesh[m].vertices[vcounter + 1],model.mesh[m].vertices[vcounter + 2]};
outv = Vector3MultiplyV(outv,outs);
outv = Vector3Subtract(outv,baset);
outv = Vector3RotateByQuaternion(outv,QuaternionMultiply(outr,QuaternionInvert(baser)));
outv = Vector3Add(outv,outt);
model.mesh[m].animVertices[vcounter] = outv.x;
model.mesh[m].animVertices[vcounter + 1] = outv.y;
model.mesh[m].animVertices[vcounter + 2] = outv.z;
// normals
outn = (Vector3){model.mesh[m].normals[vcounter],model.mesh[m].normals[vcounter + 1],model.mesh[m].normals[vcounter + 2]};
outn = Vector3RotateByQuaternion(outn,QuaternionMultiply(outr,QuaternionInvert(baser)));
model.mesh[m].animNormals[vcounter] = outn.x;
model.mesh[m].animNormals[vcounter + 1] = outn.y;
model.mesh[m].animNormals[vcounter + 2] = outn.z;
vcounter += 3;
wcounter += 4;
}
}
}
// Draw an animated model
void DrawAnimatedModel(AnimatedModel model,Vector3 position,float scale,Color tint)
{
Vector3 vScale = { scale, scale, scale };
Vector3 rotationAxis = { 0.0f,0.0f,0.0f };
DrawAnimatedModelEx(model, position, rotationAxis, 0.0f, vScale, tint);
}
// Draw an animated model with extended parameters
void DrawAnimatedModelEx(AnimatedModel model,Vector3 position,Vector3 rotationAxis,float rotationAngle, Vector3 scale,Color tint)
{
if (model.materialCount == 0)
{
TraceLog(LOG_WARNING,"No materials set, can't draw animated mesh\n");
return;
}
Matrix matScale = MatrixScale(scale.x,scale.y,scale.z);
Matrix matRotation = MatrixRotate(rotationAxis,rotationAngle*DEG2RAD);
Matrix matTranslation = MatrixTranslate(position.x,position.y,position.z);
Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale,matRotation),matTranslation);
model.transform = MatrixMultiply(model.transform,matTransform);
for (int i = 0; i < model.meshCount; i++)
{
rlUpdateAnimatedMesh(&model.mesh[i]);
rlDrawAnimatedMesh(model.mesh[i],model.materials[model.meshMaterialId[i]],MatrixIdentity());
}
}
// Load animated model meshes from IQM file
static AnimatedModel LoadIQM(const char *filename)
{
AnimatedModel model = { 0 };
FILE *iqmFile;
IQMHeader iqm;
IQMMesh *imesh;
IQMTriangle *tri;
IQMVertexArray *va;
IQMJoint *ijoint;
float *vertex;
float *normal;
float *text;
char *blendi;
unsigned char *blendw;
iqmFile = fopen(filename, "rb");
if (!iqmFile)
{
TraceLog(LOG_ERROR, "[%s] Unable to open file", filename);
return model;
}
// header
fread(&iqm,sizeof(IQMHeader), 1, iqmFile);
if (strncmp(iqm.magic, IQM_MAGIC, sizeof(IQM_MAGIC)))
{
TraceLog(LOG_ERROR, "Magic Number \"%s\"does not match.", iqm.magic);
fclose(iqmFile);
return model;
}
if(iqm.version != IQM_VERSION)
{
TraceLog(LOG_ERROR, "IQM version %i is incorrect.", iqm.version);
fclose(iqmFile);
return model;
}
// meshes
imesh = malloc(sizeof(IQMMesh)*iqm.num_meshes);
fseek(iqmFile, iqm.ofs_meshes, SEEK_SET);
fread(imesh, sizeof(IQMMesh)*iqm.num_meshes, 1, iqmFile);
model.meshCount = iqm.num_meshes;
model.mesh = malloc(sizeof(AnimatedMesh)*iqm.num_meshes);
for (int i = 0; i < iqm.num_meshes; i++)
{
fseek(iqmFile,iqm.ofs_text+imesh[i].name,SEEK_SET);
fread(model.mesh[i].name, sizeof(char)*MESH_NAME_LENGTH, 1, iqmFile);
model.mesh[i].vertexCount = imesh[i].num_vertexes;
model.mesh[i].vertices = malloc(sizeof(float)*imesh[i].num_vertexes*3);
model.mesh[i].normals = malloc(sizeof(float)*imesh[i].num_vertexes*3);
model.mesh[i].texcoords = malloc(sizeof(float)*imesh[i].num_vertexes*2);
model.mesh[i].weightId = malloc(sizeof(int)*imesh[i].num_vertexes*4);
model.mesh[i].weightBias = malloc(sizeof(float)*imesh[i].num_vertexes*4);
model.mesh[i].triangleCount = imesh[i].num_triangles;
model.mesh[i].triangles = malloc(sizeof(unsigned short)*imesh[i].num_triangles*3);
model.mesh[i].animVertices = malloc(sizeof(float)*imesh[i].num_vertexes*3);
model.mesh[i].animNormals = malloc(sizeof(float)*imesh[i].num_vertexes*3);
}
// tris
tri = malloc(sizeof(IQMTriangle)*iqm.num_triangles);
fseek(iqmFile, iqm.ofs_triangles, SEEK_SET);
fread(tri, sizeof(IQMTriangle)*iqm.num_triangles, 1, iqmFile);
for (int m = 0; m < iqm.num_meshes; m++)
{
int tcounter = 0;
for (int i=imesh[m].first_triangle; i < imesh[m].first_triangle+imesh[m].num_triangles; i++)
{
// IQM triangles are stored counter clockwise, but raylib sets opengl to clockwise drawing, so we swap them around
model.mesh[m].triangles[tcounter+2] = tri[i].vertex[0] - imesh[m].first_vertex;
model.mesh[m].triangles[tcounter+1] = tri[i].vertex[1] - imesh[m].first_vertex;
model.mesh[m].triangles[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex;
tcounter += 3;
}
}
// vertarrays
va = malloc(sizeof(IQMVertexArray)*iqm.num_vertexarrays);
fseek(iqmFile, iqm.ofs_vertexarrays, SEEK_SET);
fread(va, sizeof(IQMVertexArray)*iqm.num_vertexarrays, 1, iqmFile);
for (int i = 0; i < iqm.num_vertexarrays; i++)
{
switch (va[i].type)
{
case IQM_POSITION:
{
vertex = malloc(sizeof(float)*iqm.num_vertexes*3);
fseek(iqmFile, va[i].offset, SEEK_SET);
fread(vertex, sizeof(float)*iqm.num_vertexes*3, 1, iqmFile);
for (int m = 0; m < iqm.num_meshes; m++)
{
int vcounter = 0;
for (int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
{
model.mesh[m].vertices[vcounter] = vertex[i];
model.mesh[m].animVertices[vcounter] = vertex[i];
vcounter++;
}
}
} break;
case IQM_NORMAL:
{
normal = malloc(sizeof(float)*iqm.num_vertexes*3);
fseek(iqmFile, va[i].offset, SEEK_SET);
fread(normal, sizeof(float)*iqm.num_vertexes*3, 1, iqmFile);
for (int m = 0; m < iqm.num_meshes; m++)
{
int vcounter = 0;
for (int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
{
model.mesh[m].normals[vcounter] = normal[i];
model.mesh[m].animNormals[vcounter] = normal[i];
vcounter++;
}
}
} break;
case IQM_TEXCOORD:
{
text = malloc(sizeof(float)*iqm.num_vertexes*2);
fseek(iqmFile, va[i].offset, SEEK_SET);
fread(text, sizeof(float)*iqm.num_vertexes*2, 1, iqmFile);
for (int m = 0; m < iqm.num_meshes; m++)
{
int vcounter = 0;
for (int i = imesh[m].first_vertex*2; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*2; i++)
{
model.mesh[m].texcoords[vcounter] = text[i];
vcounter++;
}
}
} break;
case IQM_BLENDINDEXES:
{
blendi = malloc(sizeof(char)*iqm.num_vertexes*4);
fseek(iqmFile, va[i].offset, SEEK_SET);
fread(blendi, sizeof(char)*iqm.num_vertexes*4, 1, iqmFile);
for (int m = 0; m < iqm.num_meshes; m++)
{
int vcounter = 0;
for (int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
{
model.mesh[m].weightId[vcounter] = blendi[i];
vcounter++;
}
}
} break;
case IQM_BLENDWEIGHTS:
{
blendw = malloc(sizeof(unsigned char)*iqm.num_vertexes*4);
fseek(iqmFile,va[i].offset,SEEK_SET);
fread(blendw,sizeof(unsigned char)*iqm.num_vertexes*4,1,iqmFile);
for (int m = 0; m < iqm.num_meshes; m++)
{
int vcounter = 0;
for (int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
{
model.mesh[m].weightBias[vcounter] = blendw[i]/255.0f;
vcounter++;
}
}
} break;
}
}
// joints, include base poses
ijoint = malloc(sizeof(IQMJoint)*iqm.num_joints);
fseek(iqmFile, iqm.ofs_joints, SEEK_SET);
fread(ijoint, sizeof(IQMJoint)*iqm.num_joints, 1, iqmFile);
model.jointCount = iqm.num_joints;
model.joints = malloc(sizeof(Joint)*iqm.num_joints);
model.basepose = malloc(sizeof(Pose)*iqm.num_joints);
for (int i = 0; i < iqm.num_joints; i++)
{
// joints
model.joints[i].parent = ijoint[i].parent;
fseek(iqmFile, iqm.ofs_text + ijoint[i].name, SEEK_SET);
fread(model.joints[i].name,sizeof(char)*JOINT_NAME_LENGTH, 1, iqmFile);
// basepose
model.basepose[i].translation.x = ijoint[i].translate[0];
model.basepose[i].translation.y = ijoint[i].translate[1];
model.basepose[i].translation.z = ijoint[i].translate[2];
model.basepose[i].rotation.x = ijoint[i].rotate[0];
model.basepose[i].rotation.y = ijoint[i].rotate[1];
model.basepose[i].rotation.z = ijoint[i].rotate[2];
model.basepose[i].rotation.w = ijoint[i].rotate[3];
model.basepose[i].scale.x = ijoint[i].scale[0];
model.basepose[i].scale.y = ijoint[i].scale[1];
model.basepose[i].scale.z = ijoint[i].scale[2];
}
// build base pose
for (int i = 0; i < model.jointCount; i++)
{
if (model.joints[i].parent >= 0)
{
model.basepose[i].rotation = QuaternionMultiply(model.basepose[model.joints[i].parent].rotation, model.basepose[i].rotation);
model.basepose[i].translation = Vector3RotateByQuaternion(model.basepose[i].translation, model.basepose[model.joints[i].parent].rotation);
model.basepose[i].translation = Vector3Add(model.basepose[i].translation, model.basepose[model.joints[i].parent].translation);
model.basepose[i].scale = Vector3MultiplyV(model.basepose[i].scale, model.basepose[model.joints[i].parent].scale);
}
}
fclose(iqmFile);
free(imesh);
free(tri);
free(va);
free(vertex);
free(normal);
free(text);
free(blendi);
free(blendw);
free(ijoint);
return model;
}
#endif