3725 lines
138 KiB
C
3725 lines
138 KiB
C
// WAV audio loader and writer. Public domain. See "unlicense" statement at the end of this file.
|
|
// dr_wav - v0.8.1 - 2018-06-29
|
|
//
|
|
// David Reid - mackron@gmail.com
|
|
|
|
// USAGE
|
|
//
|
|
// This is a single-file library. To use it, do something like the following in one .c file.
|
|
// #define DR_WAV_IMPLEMENTATION
|
|
// #include "dr_wav.h"
|
|
//
|
|
// You can then #include this file in other parts of the program as you would with any other header file. Do something
|
|
// like the following to read audio data:
|
|
//
|
|
// drwav wav;
|
|
// if (!drwav_init_file(&wav, "my_song.wav")) {
|
|
// // Error opening WAV file.
|
|
// }
|
|
//
|
|
// drwav_int32* pDecodedInterleavedSamples = malloc(wav.totalSampleCount * sizeof(drwav_int32));
|
|
// size_t numberOfSamplesActuallyDecoded = drwav_read_s32(&wav, wav.totalSampleCount, pDecodedInterleavedSamples);
|
|
//
|
|
// ...
|
|
//
|
|
// drwav_uninit(&wav);
|
|
//
|
|
// You can also use drwav_open() to allocate and initialize the loader for you:
|
|
//
|
|
// drwav* pWav = drwav_open_file("my_song.wav");
|
|
// if (pWav == NULL) {
|
|
// // Error opening WAV file.
|
|
// }
|
|
//
|
|
// ...
|
|
//
|
|
// drwav_close(pWav);
|
|
//
|
|
// If you just want to quickly open and read the audio data in a single operation you can do something like this:
|
|
//
|
|
// unsigned int channels;
|
|
// unsigned int sampleRate;
|
|
// drwav_uint64 totalSampleCount;
|
|
// float* pSampleData = drwav_open_and_read_file_s32("my_song.wav", &channels, &sampleRate, &totalSampleCount);
|
|
// if (pSampleData == NULL) {
|
|
// // Error opening and reading WAV file.
|
|
// }
|
|
//
|
|
// ...
|
|
//
|
|
// drwav_free(pSampleData);
|
|
//
|
|
// The examples above use versions of the API that convert the audio data to a consistent format (32-bit signed PCM, in
|
|
// this case), but you can still output the audio data in its internal format (see notes below for supported formats):
|
|
//
|
|
// size_t samplesRead = drwav_read(&wav, wav.totalSampleCount, pDecodedInterleavedSamples);
|
|
//
|
|
// You can also read the raw bytes of audio data, which could be useful if dr_wav does not have native support for
|
|
// a particular data format:
|
|
//
|
|
// size_t bytesRead = drwav_read_raw(&wav, bytesToRead, pRawDataBuffer);
|
|
//
|
|
//
|
|
// dr_wav has seamless support the Sony Wave64 format. The decoder will automatically detect it and it should Just Work
|
|
// without any manual intervention.
|
|
//
|
|
//
|
|
// dr_wav can also be used to output WAV files. This does not currently support compressed formats. To use this, look at
|
|
// drwav_open_write(), drwav_open_file_write(), etc. Use drwav_write() to write samples, or drwav_write_raw() to write
|
|
// raw data in the "data" chunk.
|
|
//
|
|
// drwav_data_format format;
|
|
// format.container = drwav_container_riff; // <-- drwav_container_riff = normal WAV files, drwav_container_w64 = Sony Wave64.
|
|
// format.format = DR_WAVE_FORMAT_PCM; // <-- Any of the DR_WAVE_FORMAT_* codes.
|
|
// format.channels = 2;
|
|
// format.sampleRate = 44100;
|
|
// format.bitsPerSample = 16;
|
|
// drwav* pWav = drwav_open_file_write("data/recording.wav", &format);
|
|
//
|
|
// ...
|
|
//
|
|
// drwav_uint64 samplesWritten = drwav_write(pWav, sampleCount, pSamples);
|
|
//
|
|
//
|
|
//
|
|
// OPTIONS
|
|
// #define these options before including this file.
|
|
//
|
|
// #define DR_WAV_NO_CONVERSION_API
|
|
// Disables conversion APIs such as drwav_read_f32() and drwav_s16_to_f32().
|
|
//
|
|
// #define DR_WAV_NO_STDIO
|
|
// Disables drwav_open_file(), drwav_open_file_write(), etc.
|
|
//
|
|
//
|
|
//
|
|
// QUICK NOTES
|
|
// - Samples are always interleaved.
|
|
// - The default read function does not do any data conversion. Use drwav_read_f32() to read and convert audio data
|
|
// to IEEE 32-bit floating point samples, drwav_read_s32() to read samples as signed 32-bit PCM and drwav_read_s16()
|
|
// to read samples as signed 16-bit PCM. Tested and supported internal formats include the following:
|
|
// - Unsigned 8-bit PCM
|
|
// - Signed 12-bit PCM
|
|
// - Signed 16-bit PCM
|
|
// - Signed 24-bit PCM
|
|
// - Signed 32-bit PCM
|
|
// - IEEE 32-bit floating point
|
|
// - IEEE 64-bit floating point
|
|
// - A-law and u-law
|
|
// - Microsoft ADPCM
|
|
// - IMA ADPCM (DVI, format code 0x11)
|
|
// - dr_wav will try to read the WAV file as best it can, even if it's not strictly conformant to the WAV format.
|
|
|
|
|
|
#ifndef dr_wav_h
|
|
#define dr_wav_h
|
|
|
|
#include <stddef.h>
|
|
|
|
#if defined(_MSC_VER) && _MSC_VER < 1600
|
|
typedef signed char drwav_int8;
|
|
typedef unsigned char drwav_uint8;
|
|
typedef signed short drwav_int16;
|
|
typedef unsigned short drwav_uint16;
|
|
typedef signed int drwav_int32;
|
|
typedef unsigned int drwav_uint32;
|
|
typedef signed __int64 drwav_int64;
|
|
typedef unsigned __int64 drwav_uint64;
|
|
#else
|
|
#include <stdint.h>
|
|
typedef int8_t drwav_int8;
|
|
typedef uint8_t drwav_uint8;
|
|
typedef int16_t drwav_int16;
|
|
typedef uint16_t drwav_uint16;
|
|
typedef int32_t drwav_int32;
|
|
typedef uint32_t drwav_uint32;
|
|
typedef int64_t drwav_int64;
|
|
typedef uint64_t drwav_uint64;
|
|
#endif
|
|
typedef drwav_uint8 drwav_bool8;
|
|
typedef drwav_uint32 drwav_bool32;
|
|
#define DRWAV_TRUE 1
|
|
#define DRWAV_FALSE 0
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
// Common data formats.
|
|
#define DR_WAVE_FORMAT_PCM 0x1
|
|
#define DR_WAVE_FORMAT_ADPCM 0x2
|
|
#define DR_WAVE_FORMAT_IEEE_FLOAT 0x3
|
|
#define DR_WAVE_FORMAT_ALAW 0x6
|
|
#define DR_WAVE_FORMAT_MULAW 0x7
|
|
#define DR_WAVE_FORMAT_DVI_ADPCM 0x11
|
|
#define DR_WAVE_FORMAT_EXTENSIBLE 0xFFFE
|
|
|
|
typedef enum
|
|
{
|
|
drwav_seek_origin_start,
|
|
drwav_seek_origin_current
|
|
} drwav_seek_origin;
|
|
|
|
typedef enum
|
|
{
|
|
drwav_container_riff,
|
|
drwav_container_w64
|
|
} drwav_container;
|
|
|
|
// Callback for when data is read. Return value is the number of bytes actually read.
|
|
//
|
|
// pUserData [in] The user data that was passed to drwav_init(), drwav_open() and family.
|
|
// pBufferOut [out] The output buffer.
|
|
// bytesToRead [in] The number of bytes to read.
|
|
//
|
|
// Returns the number of bytes actually read.
|
|
//
|
|
// A return value of less than bytesToRead indicates the end of the stream. Do _not_ return from this callback until
|
|
// either the entire bytesToRead is filled or you have reached the end of the stream.
|
|
typedef size_t (* drwav_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead);
|
|
|
|
// Callback for when data is written. Returns value is the number of bytes actually written.
|
|
//
|
|
// pUserData [in] The user data that was passed to drwav_init_write(), drwav_open_write() and family.
|
|
// pData [out] A pointer to the data to write.
|
|
// bytesToWrite [in] The number of bytes to write.
|
|
//
|
|
// Returns the number of bytes actually written.
|
|
//
|
|
// If the return value differs from bytesToWrite, it indicates an error.
|
|
typedef size_t (* drwav_write_proc)(void* pUserData, const void* pData, size_t bytesToWrite);
|
|
|
|
// Callback for when data needs to be seeked.
|
|
//
|
|
// pUserData [in] The user data that was passed to drwav_init(), drwav_open() and family.
|
|
// offset [in] The number of bytes to move, relative to the origin. Will never be negative.
|
|
// origin [in] The origin of the seek - the current position or the start of the stream.
|
|
//
|
|
// Returns whether or not the seek was successful.
|
|
//
|
|
// Whether or not it is relative to the beginning or current position is determined by the "origin" parameter which
|
|
// will be either drwav_seek_origin_start or drwav_seek_origin_current.
|
|
typedef drwav_bool32 (* drwav_seek_proc)(void* pUserData, int offset, drwav_seek_origin origin);
|
|
|
|
// Structure for internal use. Only used for loaders opened with drwav_open_memory().
|
|
typedef struct
|
|
{
|
|
const drwav_uint8* data;
|
|
size_t dataSize;
|
|
size_t currentReadPos;
|
|
} drwav__memory_stream;
|
|
|
|
// Structure for internal use. Only used for writers opened with drwav_open_memory_write().
|
|
typedef struct
|
|
{
|
|
void** ppData;
|
|
size_t* pDataSize;
|
|
size_t dataSize;
|
|
size_t dataCapacity;
|
|
size_t currentWritePos;
|
|
} drwav__memory_stream_write;
|
|
|
|
typedef struct
|
|
{
|
|
drwav_container container; // RIFF, W64.
|
|
drwav_uint32 format; // DR_WAVE_FORMAT_*
|
|
drwav_uint32 channels;
|
|
drwav_uint32 sampleRate;
|
|
drwav_uint32 bitsPerSample;
|
|
} drwav_data_format;
|
|
|
|
typedef struct
|
|
{
|
|
// The format tag exactly as specified in the wave file's "fmt" chunk. This can be used by applications
|
|
// that require support for data formats not natively supported by dr_wav.
|
|
drwav_uint16 formatTag;
|
|
|
|
// The number of channels making up the audio data. When this is set to 1 it is mono, 2 is stereo, etc.
|
|
drwav_uint16 channels;
|
|
|
|
// The sample rate. Usually set to something like 44100.
|
|
drwav_uint32 sampleRate;
|
|
|
|
// Average bytes per second. You probably don't need this, but it's left here for informational purposes.
|
|
drwav_uint32 avgBytesPerSec;
|
|
|
|
// Block align. This is equal to the number of channels * bytes per sample.
|
|
drwav_uint16 blockAlign;
|
|
|
|
// Bits per sample.
|
|
drwav_uint16 bitsPerSample;
|
|
|
|
// The size of the extended data. Only used internally for validation, but left here for informational purposes.
|
|
drwav_uint16 extendedSize;
|
|
|
|
// The number of valid bits per sample. When <formatTag> is equal to WAVE_FORMAT_EXTENSIBLE, <bitsPerSample>
|
|
// is always rounded up to the nearest multiple of 8. This variable contains information about exactly how
|
|
// many bits a valid per sample. Mainly used for informational purposes.
|
|
drwav_uint16 validBitsPerSample;
|
|
|
|
// The channel mask. Not used at the moment.
|
|
drwav_uint32 channelMask;
|
|
|
|
// The sub-format, exactly as specified by the wave file.
|
|
drwav_uint8 subFormat[16];
|
|
} drwav_fmt;
|
|
|
|
typedef struct
|
|
{
|
|
// A pointer to the function to call when more data is needed.
|
|
drwav_read_proc onRead;
|
|
|
|
// A pointer to the function to call when data needs to be written. Only used when the drwav object is opened in write mode.
|
|
drwav_write_proc onWrite;
|
|
|
|
// A pointer to the function to call when the wav file needs to be seeked.
|
|
drwav_seek_proc onSeek;
|
|
|
|
// The user data to pass to callbacks.
|
|
void* pUserData;
|
|
|
|
|
|
// Whether or not the WAV file is formatted as a standard RIFF file or W64.
|
|
drwav_container container;
|
|
|
|
|
|
// Structure containing format information exactly as specified by the wav file.
|
|
drwav_fmt fmt;
|
|
|
|
// The sample rate. Will be set to something like 44100.
|
|
drwav_uint32 sampleRate;
|
|
|
|
// The number of channels. This will be set to 1 for monaural streams, 2 for stereo, etc.
|
|
drwav_uint16 channels;
|
|
|
|
// The bits per sample. Will be set to something like 16, 24, etc.
|
|
drwav_uint16 bitsPerSample;
|
|
|
|
// The number of bytes per sample.
|
|
drwav_uint16 bytesPerSample;
|
|
|
|
// Equal to fmt.formatTag, or the value specified by fmt.subFormat if fmt.formatTag is equal to 65534 (WAVE_FORMAT_EXTENSIBLE).
|
|
drwav_uint16 translatedFormatTag;
|
|
|
|
// The total number of samples making up the audio data. Use <totalSampleCount> * <bytesPerSample> to calculate
|
|
// the required size of a buffer to hold the entire audio data.
|
|
drwav_uint64 totalSampleCount;
|
|
|
|
|
|
// The size in bytes of the data chunk.
|
|
drwav_uint64 dataChunkDataSize;
|
|
|
|
// The position in the stream of the first byte of the data chunk. This is used for seeking.
|
|
drwav_uint64 dataChunkDataPos;
|
|
|
|
// The number of bytes remaining in the data chunk.
|
|
drwav_uint64 bytesRemaining;
|
|
|
|
|
|
// Only used in sequential write mode. Keeps track of the desired size of the "data" chunk at the point of initialization time. Always
|
|
// set to 0 for non-sequential writes and when the drwav object is opened in read mode. Used for validation.
|
|
drwav_uint64 dataChunkDataSizeTargetWrite;
|
|
|
|
// Keeps track of whether or not the wav writer was initialized in sequential mode.
|
|
drwav_bool32 isSequentialWrite;
|
|
|
|
|
|
// A hack to avoid a DRWAV_MALLOC() when opening a decoder with drwav_open_memory().
|
|
drwav__memory_stream memoryStream;
|
|
drwav__memory_stream_write memoryStreamWrite;
|
|
|
|
// Generic data for compressed formats. This data is shared across all block-compressed formats.
|
|
struct
|
|
{
|
|
drwav_uint64 iCurrentSample; // The index of the next sample that will be read by drwav_read_*(). This is used with "totalSampleCount" to ensure we don't read excess samples at the end of the last block.
|
|
} compressed;
|
|
|
|
// Microsoft ADPCM specific data.
|
|
struct
|
|
{
|
|
drwav_uint32 bytesRemainingInBlock;
|
|
drwav_uint16 predictor[2];
|
|
drwav_int32 delta[2];
|
|
drwav_int32 cachedSamples[4]; // Samples are stored in this cache during decoding.
|
|
drwav_uint32 cachedSampleCount;
|
|
drwav_int32 prevSamples[2][2]; // The previous 2 samples for each channel (2 channels at most).
|
|
} msadpcm;
|
|
|
|
// IMA ADPCM specific data.
|
|
struct
|
|
{
|
|
drwav_uint32 bytesRemainingInBlock;
|
|
drwav_int32 predictor[2];
|
|
drwav_int32 stepIndex[2];
|
|
drwav_int32 cachedSamples[16]; // Samples are stored in this cache during decoding.
|
|
drwav_uint32 cachedSampleCount;
|
|
} ima;
|
|
} drwav;
|
|
|
|
|
|
// Initializes a pre-allocated drwav object.
|
|
//
|
|
// onRead [in] The function to call when data needs to be read from the client.
|
|
// onSeek [in] The function to call when the read position of the client data needs to move.
|
|
// pUserData [in, optional] A pointer to application defined data that will be passed to onRead and onSeek.
|
|
//
|
|
// Returns true if successful; false otherwise.
|
|
//
|
|
// Close the loader with drwav_uninit().
|
|
//
|
|
// This is the lowest level function for initializing a WAV file. You can also use drwav_init_file() and drwav_init_memory()
|
|
// to open the stream from a file or from a block of memory respectively.
|
|
//
|
|
// If you want dr_wav to manage the memory allocation for you, consider using drwav_open() instead. This will allocate
|
|
// a drwav object on the heap and return a pointer to it.
|
|
//
|
|
// See also: drwav_init_file(), drwav_init_memory(), drwav_uninit()
|
|
drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData);
|
|
|
|
// Initializes a pre-allocated drwav object for writing.
|
|
//
|
|
// onWrite [in] The function to call when data needs to be written.
|
|
// onSeek [in] The function to call when the write position needs to move.
|
|
// pUserData [in, optional] A pointer to application defined data that will be passed to onWrite and onSeek.
|
|
//
|
|
// Returns true if successful; false otherwise.
|
|
//
|
|
// Close the writer with drwav_uninit().
|
|
//
|
|
// This is the lowest level function for initializing a WAV file. You can also use drwav_init_file() and drwav_init_memory()
|
|
// to open the stream from a file or from a block of memory respectively.
|
|
//
|
|
// If the total sample count is known, you can use drwav_init_write_sequential(). This avoids the need for dr_wav to perform
|
|
// a post-processing step for storing the total sample count and the size of the data chunk which requires a backwards seek.
|
|
//
|
|
// If you want dr_wav to manage the memory allocation for you, consider using drwav_open() instead. This will allocate
|
|
// a drwav object on the heap and return a pointer to it.
|
|
//
|
|
// See also: drwav_init_file_write(), drwav_init_memory_write(), drwav_uninit()
|
|
drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData);
|
|
drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData);
|
|
|
|
// Uninitializes the given drwav object.
|
|
//
|
|
// Use this only for objects initialized with drwav_init().
|
|
void drwav_uninit(drwav* pWav);
|
|
|
|
|
|
// Opens a wav file using the given callbacks.
|
|
//
|
|
// onRead [in] The function to call when data needs to be read from the client.
|
|
// onSeek [in] The function to call when the read position of the client data needs to move.
|
|
// pUserData [in, optional] A pointer to application defined data that will be passed to onRead and onSeek.
|
|
//
|
|
// Returns null on error.
|
|
//
|
|
// Close the loader with drwav_close().
|
|
//
|
|
// You can also use drwav_open_file() and drwav_open_memory() to open the stream from a file or from a block of
|
|
// memory respectively.
|
|
//
|
|
// This is different from drwav_init() in that it will allocate the drwav object for you via DRWAV_MALLOC() before
|
|
// initializing it.
|
|
//
|
|
// See also: drwav_open_file(), drwav_open_memory(), drwav_close()
|
|
drwav* drwav_open(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData);
|
|
|
|
// Opens a wav file for writing using the given callbacks.
|
|
//
|
|
// onWrite [in] The function to call when data needs to be written.
|
|
// onSeek [in] The function to call when the write position needs to move.
|
|
// pUserData [in, optional] A pointer to application defined data that will be passed to onWrite and onSeek.
|
|
//
|
|
// Returns null on error.
|
|
//
|
|
// Close the loader with drwav_close().
|
|
//
|
|
// You can also use drwav_open_file_write() and drwav_open_memory_write() to open the stream from a file or from a block
|
|
// of memory respectively.
|
|
//
|
|
// This is different from drwav_init_write() in that it will allocate the drwav object for you via DRWAV_MALLOC() before
|
|
// initializing it.
|
|
//
|
|
// See also: drwav_open_file_write(), drwav_open_memory_write(), drwav_close()
|
|
drwav* drwav_open_write(const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData);
|
|
drwav* drwav_open_write_sequential(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData);
|
|
|
|
// Uninitializes and deletes the the given drwav object.
|
|
//
|
|
// Use this only for objects created with drwav_open().
|
|
void drwav_close(drwav* pWav);
|
|
|
|
|
|
// Reads raw audio data.
|
|
//
|
|
// This is the lowest level function for reading audio data. It simply reads the given number of
|
|
// bytes of the raw internal sample data.
|
|
//
|
|
// Consider using drwav_read_s16(), drwav_read_s32() or drwav_read_f32() for reading sample data in
|
|
// a consistent format.
|
|
//
|
|
// Returns the number of bytes actually read.
|
|
size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut);
|
|
|
|
// Reads a chunk of audio data in the native internal format.
|
|
//
|
|
// This is typically the most efficient way to retrieve audio data, but it does not do any format
|
|
// conversions which means you'll need to convert the data manually if required.
|
|
//
|
|
// If the return value is less than <samplesToRead> it means the end of the file has been reached or
|
|
// you have requested more samples than can possibly fit in the output buffer.
|
|
//
|
|
// This function will only work when sample data is of a fixed size and uncompressed. If you are
|
|
// using a compressed format consider using drwav_read_raw() or drwav_read_s16/s32/f32/etc().
|
|
drwav_uint64 drwav_read(drwav* pWav, drwav_uint64 samplesToRead, void* pBufferOut);
|
|
|
|
// Seeks to the given sample.
|
|
//
|
|
// Returns true if successful; false otherwise.
|
|
drwav_bool32 drwav_seek_to_sample(drwav* pWav, drwav_uint64 sample);
|
|
|
|
|
|
// Writes raw audio data.
|
|
//
|
|
// Returns the number of bytes actually written. If this differs from bytesToWrite, it indicates an error.
|
|
size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData);
|
|
|
|
// Writes audio data based on sample counts.
|
|
//
|
|
// Returns the number of samples written.
|
|
drwav_uint64 drwav_write(drwav* pWav, drwav_uint64 samplesToWrite, const void* pData);
|
|
|
|
|
|
|
|
//// Conversion Utilities ////
|
|
#ifndef DR_WAV_NO_CONVERSION_API
|
|
|
|
// Reads a chunk of audio data and converts it to signed 16-bit PCM samples.
|
|
//
|
|
// Returns the number of samples actually read.
|
|
//
|
|
// If the return value is less than <samplesToRead> it means the end of the file has been reached.
|
|
drwav_uint64 drwav_read_s16(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
|
|
|
|
// Low-level function for converting unsigned 8-bit PCM samples to signed 16-bit PCM samples.
|
|
void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting signed 24-bit PCM samples to signed 16-bit PCM samples.
|
|
void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting signed 32-bit PCM samples to signed 16-bit PCM samples.
|
|
void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting IEEE 32-bit floating point samples to signed 16-bit PCM samples.
|
|
void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting IEEE 64-bit floating point samples to signed 16-bit PCM samples.
|
|
void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting A-law samples to signed 16-bit PCM samples.
|
|
void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting u-law samples to signed 16-bit PCM samples.
|
|
void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
|
|
|
|
|
|
// Reads a chunk of audio data and converts it to IEEE 32-bit floating point samples.
|
|
//
|
|
// Returns the number of samples actually read.
|
|
//
|
|
// If the return value is less than <samplesToRead> it means the end of the file has been reached.
|
|
drwav_uint64 drwav_read_f32(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut);
|
|
|
|
// Low-level function for converting unsigned 8-bit PCM samples to IEEE 32-bit floating point samples.
|
|
void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting signed 16-bit PCM samples to IEEE 32-bit floating point samples.
|
|
void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting signed 24-bit PCM samples to IEEE 32-bit floating point samples.
|
|
void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting signed 32-bit PCM samples to IEEE 32-bit floating point samples.
|
|
void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting IEEE 64-bit floating point samples to IEEE 32-bit floating point samples.
|
|
void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting A-law samples to IEEE 32-bit floating point samples.
|
|
void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting u-law samples to IEEE 32-bit floating point samples.
|
|
void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
|
|
|
|
|
|
// Reads a chunk of audio data and converts it to signed 32-bit PCM samples.
|
|
//
|
|
// Returns the number of samples actually read.
|
|
//
|
|
// If the return value is less than <samplesToRead> it means the end of the file has been reached.
|
|
drwav_uint64 drwav_read_s32(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut);
|
|
|
|
// Low-level function for converting unsigned 8-bit PCM samples to signed 32-bit PCM samples.
|
|
void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting signed 16-bit PCM samples to signed 32-bit PCM samples.
|
|
void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting signed 24-bit PCM samples to signed 32-bit PCM samples.
|
|
void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting IEEE 32-bit floating point samples to signed 32-bit PCM samples.
|
|
void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting IEEE 64-bit floating point samples to signed 32-bit PCM samples.
|
|
void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting A-law samples to signed 32-bit PCM samples.
|
|
void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
|
|
|
|
// Low-level function for converting u-law samples to signed 32-bit PCM samples.
|
|
void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
|
|
|
|
#endif //DR_WAV_NO_CONVERSION_API
|
|
|
|
|
|
//// High-Level Convenience Helpers ////
|
|
|
|
#ifndef DR_WAV_NO_STDIO
|
|
|
|
// Helper for initializing a wave file using stdio.
|
|
//
|
|
// This holds the internal FILE object until drwav_uninit() is called. Keep this in mind if you're caching drwav
|
|
// objects because the operating system may restrict the number of file handles an application can have open at
|
|
// any given time.
|
|
drwav_bool32 drwav_init_file(drwav* pWav, const char* filename);
|
|
|
|
// Helper for initializing a wave file for writing using stdio.
|
|
//
|
|
// This holds the internal FILE object until drwav_uninit() is called. Keep this in mind if you're caching drwav
|
|
// objects because the operating system may restrict the number of file handles an application can have open at
|
|
// any given time.
|
|
drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat);
|
|
drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
|
|
|
|
// Helper for opening a wave file using stdio.
|
|
//
|
|
// This holds the internal FILE object until drwav_close() is called. Keep this in mind if you're caching drwav
|
|
// objects because the operating system may restrict the number of file handles an application can have open at
|
|
// any given time.
|
|
drwav* drwav_open_file(const char* filename);
|
|
|
|
// Helper for opening a wave file for writing using stdio.
|
|
//
|
|
// This holds the internal FILE object until drwav_close() is called. Keep this in mind if you're caching drwav
|
|
// objects because the operating system may restrict the number of file handles an application can have open at
|
|
// any given time.
|
|
drwav* drwav_open_file_write(const char* filename, const drwav_data_format* pFormat);
|
|
drwav* drwav_open_file_write_sequential(const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
|
|
|
|
#endif //DR_WAV_NO_STDIO
|
|
|
|
// Helper for initializing a loader from a pre-allocated memory buffer.
|
|
//
|
|
// This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for
|
|
// the lifetime of the drwav object.
|
|
//
|
|
// The buffer should contain the contents of the entire wave file, not just the sample data.
|
|
drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize);
|
|
|
|
// Helper for initializing a writer which outputs data to a memory buffer.
|
|
//
|
|
// dr_wav will manage the memory allocations, however it is up to the caller to free the data with drwav_free().
|
|
//
|
|
// The buffer will remain allocated even after drwav_uninit() is called. Indeed, the buffer should not be
|
|
// considered valid until after drwav_uninit() has been called anyway.
|
|
drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat);
|
|
drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
|
|
|
|
// Helper for opening a loader from a pre-allocated memory buffer.
|
|
//
|
|
// This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for
|
|
// the lifetime of the drwav object.
|
|
//
|
|
// The buffer should contain the contents of the entire wave file, not just the sample data.
|
|
drwav* drwav_open_memory(const void* data, size_t dataSize);
|
|
|
|
// Helper for opening a writer which outputs data to a memory buffer.
|
|
//
|
|
// dr_wav will manage the memory allocations, however it is up to the caller to free the data with drwav_free().
|
|
//
|
|
// The buffer will remain allocated even after drwav_close() is called. Indeed, the buffer should not be
|
|
// considered valid until after drwav_close() has been called anyway.
|
|
drwav* drwav_open_memory_write(void** ppData, size_t* pDataSize, const drwav_data_format* pFormat);
|
|
drwav* drwav_open_memory_write_sequential(void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
|
|
|
|
|
|
#ifndef DR_WAV_NO_CONVERSION_API
|
|
// Opens and reads a wav file in a single operation.
|
|
drwav_int16* drwav_open_and_read_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount);
|
|
float* drwav_open_and_read_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount);
|
|
drwav_int32* drwav_open_and_read_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount);
|
|
#ifndef DR_WAV_NO_STDIO
|
|
// Opens and decodes a wav file in a single operation.
|
|
drwav_int16* drwav_open_and_read_file_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount);
|
|
float* drwav_open_and_read_file_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount);
|
|
drwav_int32* drwav_open_and_read_file_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount);
|
|
#endif
|
|
|
|
// Opens and decodes a wav file from a block of memory in a single operation.
|
|
drwav_int16* drwav_open_and_read_memory_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount);
|
|
float* drwav_open_and_read_memory_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount);
|
|
drwav_int32* drwav_open_and_read_memory_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount);
|
|
#endif
|
|
|
|
// Frees data that was allocated internally by dr_wav.
|
|
void drwav_free(void* pDataReturnedByOpenAndRead);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
#endif // dr_wav_h
|
|
|
|
|
|
/////////////////////////////////////////////////////
|
|
//
|
|
// IMPLEMENTATION
|
|
//
|
|
/////////////////////////////////////////////////////
|
|
|
|
#ifdef DR_WAV_IMPLEMENTATION
|
|
#include <stdlib.h>
|
|
#include <string.h> // For memcpy(), memset()
|
|
#include <limits.h> // For INT_MAX
|
|
|
|
#ifndef DR_WAV_NO_STDIO
|
|
#include <stdio.h>
|
|
#endif
|
|
|
|
// Standard library stuff.
|
|
#ifndef DRWAV_ASSERT
|
|
#include <assert.h>
|
|
#define DRWAV_ASSERT(expression) assert(expression)
|
|
#endif
|
|
#ifndef DRWAV_MALLOC
|
|
#define DRWAV_MALLOC(sz) malloc((sz))
|
|
#endif
|
|
#ifndef DRWAV_REALLOC
|
|
#define DRWAV_REALLOC(p, sz) realloc((p), (sz))
|
|
#endif
|
|
#ifndef DRWAV_FREE
|
|
#define DRWAV_FREE(p) free((p))
|
|
#endif
|
|
#ifndef DRWAV_COPY_MEMORY
|
|
#define DRWAV_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz))
|
|
#endif
|
|
#ifndef DRWAV_ZERO_MEMORY
|
|
#define DRWAV_ZERO_MEMORY(p, sz) memset((p), 0, (sz))
|
|
#endif
|
|
|
|
#define drwav_countof(x) (sizeof(x) / sizeof(x[0]))
|
|
#define drwav_align(x, a) ((((x) + (a) - 1) / (a)) * (a))
|
|
#define drwav_min(a, b) (((a) < (b)) ? (a) : (b))
|
|
#define drwav_max(a, b) (((a) > (b)) ? (a) : (b))
|
|
#define drwav_clamp(x, lo, hi) (drwav_max((lo), drwav_min((hi), (x))))
|
|
|
|
#define drwav_assert DRWAV_ASSERT
|
|
#define drwav_copy_memory DRWAV_COPY_MEMORY
|
|
#define drwav_zero_memory DRWAV_ZERO_MEMORY
|
|
|
|
|
|
#define DRWAV_MAX_SIMD_VECTOR_SIZE 64 // 64 for AVX-512 in the future.
|
|
|
|
#ifdef _MSC_VER
|
|
#define DRWAV_INLINE __forceinline
|
|
#else
|
|
#ifdef __GNUC__
|
|
#define DRWAV_INLINE inline __attribute__((always_inline))
|
|
#else
|
|
#define DRWAV_INLINE inline
|
|
#endif
|
|
#endif
|
|
|
|
// I couldn't figure out where SIZE_MAX was defined for VC6. If anybody knows, let me know.
|
|
#if defined(_MSC_VER) && _MSC_VER <= 1200
|
|
#if defined(_WIN64)
|
|
#define SIZE_MAX ((drwav_uint64)0xFFFFFFFFFFFFFFFF)
|
|
#else
|
|
#define SIZE_MAX 0xFFFFFFFF
|
|
#endif
|
|
#endif
|
|
|
|
static const drwav_uint8 drwavGUID_W64_RIFF[16] = {0x72,0x69,0x66,0x66, 0x2E,0x91, 0xCF,0x11, 0xA5,0xD6, 0x28,0xDB,0x04,0xC1,0x00,0x00}; // 66666972-912E-11CF-A5D6-28DB04C10000
|
|
static const drwav_uint8 drwavGUID_W64_WAVE[16] = {0x77,0x61,0x76,0x65, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; // 65766177-ACF3-11D3-8CD1-00C04F8EDB8A
|
|
static const drwav_uint8 drwavGUID_W64_JUNK[16] = {0x6A,0x75,0x6E,0x6B, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; // 6B6E756A-ACF3-11D3-8CD1-00C04F8EDB8A
|
|
static const drwav_uint8 drwavGUID_W64_FMT [16] = {0x66,0x6D,0x74,0x20, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; // 20746D66-ACF3-11D3-8CD1-00C04F8EDB8A
|
|
static const drwav_uint8 drwavGUID_W64_FACT[16] = {0x66,0x61,0x63,0x74, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; // 74636166-ACF3-11D3-8CD1-00C04F8EDB8A
|
|
static const drwav_uint8 drwavGUID_W64_DATA[16] = {0x64,0x61,0x74,0x61, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; // 61746164-ACF3-11D3-8CD1-00C04F8EDB8A
|
|
|
|
static DRWAV_INLINE drwav_bool32 drwav__guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16])
|
|
{
|
|
const drwav_uint32* a32 = (const drwav_uint32*)a;
|
|
const drwav_uint32* b32 = (const drwav_uint32*)b;
|
|
|
|
return
|
|
a32[0] == b32[0] &&
|
|
a32[1] == b32[1] &&
|
|
a32[2] == b32[2] &&
|
|
a32[3] == b32[3];
|
|
}
|
|
|
|
static DRWAV_INLINE drwav_bool32 drwav__fourcc_equal(const unsigned char* a, const char* b)
|
|
{
|
|
return
|
|
a[0] == b[0] &&
|
|
a[1] == b[1] &&
|
|
a[2] == b[2] &&
|
|
a[3] == b[3];
|
|
}
|
|
|
|
|
|
|
|
static DRWAV_INLINE int drwav__is_little_endian()
|
|
{
|
|
int n = 1;
|
|
return (*(char*)&n) == 1;
|
|
}
|
|
|
|
static DRWAV_INLINE unsigned short drwav__bytes_to_u16(const unsigned char* data)
|
|
{
|
|
if (drwav__is_little_endian()) {
|
|
return (data[0] << 0) | (data[1] << 8);
|
|
} else {
|
|
return (data[1] << 0) | (data[0] << 8);
|
|
}
|
|
}
|
|
|
|
static DRWAV_INLINE short drwav__bytes_to_s16(const unsigned char* data)
|
|
{
|
|
return (short)drwav__bytes_to_u16(data);
|
|
}
|
|
|
|
static DRWAV_INLINE unsigned int drwav__bytes_to_u32(const unsigned char* data)
|
|
{
|
|
if (drwav__is_little_endian()) {
|
|
return (data[0] << 0) | (data[1] << 8) | (data[2] << 16) | (data[3] << 24);
|
|
} else {
|
|
return (data[3] << 0) | (data[2] << 8) | (data[1] << 16) | (data[0] << 24);
|
|
}
|
|
}
|
|
|
|
static DRWAV_INLINE drwav_uint64 drwav__bytes_to_u64(const unsigned char* data)
|
|
{
|
|
if (drwav__is_little_endian()) {
|
|
return
|
|
((drwav_uint64)data[0] << 0) | ((drwav_uint64)data[1] << 8) | ((drwav_uint64)data[2] << 16) | ((drwav_uint64)data[3] << 24) |
|
|
((drwav_uint64)data[4] << 32) | ((drwav_uint64)data[5] << 40) | ((drwav_uint64)data[6] << 48) | ((drwav_uint64)data[7] << 56);
|
|
} else {
|
|
return
|
|
((drwav_uint64)data[7] << 0) | ((drwav_uint64)data[6] << 8) | ((drwav_uint64)data[5] << 16) | ((drwav_uint64)data[4] << 24) |
|
|
((drwav_uint64)data[3] << 32) | ((drwav_uint64)data[2] << 40) | ((drwav_uint64)data[1] << 48) | ((drwav_uint64)data[0] << 56);
|
|
}
|
|
}
|
|
|
|
static DRWAV_INLINE void drwav__bytes_to_guid(const unsigned char* data, drwav_uint8* guid)
|
|
{
|
|
for (int i = 0; i < 16; ++i) {
|
|
guid[i] = data[i];
|
|
}
|
|
}
|
|
|
|
|
|
static DRWAV_INLINE drwav_bool32 drwav__is_compressed_format_tag(drwav_uint16 formatTag)
|
|
{
|
|
return
|
|
formatTag == DR_WAVE_FORMAT_ADPCM ||
|
|
formatTag == DR_WAVE_FORMAT_DVI_ADPCM;
|
|
}
|
|
|
|
|
|
drwav_uint64 drwav_read_s16__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
|
|
drwav_uint64 drwav_read_s16__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
|
|
drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData);
|
|
drwav* drwav_open_write__internal(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData);
|
|
|
|
typedef struct
|
|
{
|
|
union
|
|
{
|
|
drwav_uint8 fourcc[4];
|
|
drwav_uint8 guid[16];
|
|
} id;
|
|
|
|
// The size in bytes of the chunk.
|
|
drwav_uint64 sizeInBytes;
|
|
|
|
// RIFF = 2 byte alignment.
|
|
// W64 = 8 byte alignment.
|
|
unsigned int paddingSize;
|
|
|
|
} drwav__chunk_header;
|
|
|
|
static drwav_bool32 drwav__read_chunk_header(drwav_read_proc onRead, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav__chunk_header* pHeaderOut)
|
|
{
|
|
if (container == drwav_container_riff) {
|
|
if (onRead(pUserData, pHeaderOut->id.fourcc, 4) != 4) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
unsigned char sizeInBytes[4];
|
|
if (onRead(pUserData, sizeInBytes, 4) != 4) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
pHeaderOut->sizeInBytes = drwav__bytes_to_u32(sizeInBytes);
|
|
pHeaderOut->paddingSize = (unsigned int)(pHeaderOut->sizeInBytes % 2);
|
|
*pRunningBytesReadOut += 8;
|
|
} else {
|
|
if (onRead(pUserData, pHeaderOut->id.guid, 16) != 16) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
unsigned char sizeInBytes[8];
|
|
if (onRead(pUserData, sizeInBytes, 8) != 8) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
pHeaderOut->sizeInBytes = drwav__bytes_to_u64(sizeInBytes) - 24; // <-- Subtract 24 because w64 includes the size of the header.
|
|
pHeaderOut->paddingSize = (unsigned int)(pHeaderOut->sizeInBytes % 8);
|
|
*pRunningBytesReadOut += 24;
|
|
}
|
|
|
|
return DRWAV_TRUE;
|
|
}
|
|
|
|
static drwav_bool32 drwav__seek_forward(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData)
|
|
{
|
|
drwav_uint64 bytesRemainingToSeek = offset;
|
|
while (bytesRemainingToSeek > 0) {
|
|
if (bytesRemainingToSeek > 0x7FFFFFFF) {
|
|
if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
bytesRemainingToSeek -= 0x7FFFFFFF;
|
|
} else {
|
|
if (!onSeek(pUserData, (int)bytesRemainingToSeek, drwav_seek_origin_current)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
bytesRemainingToSeek = 0;
|
|
}
|
|
}
|
|
|
|
return DRWAV_TRUE;
|
|
}
|
|
|
|
|
|
static drwav_bool32 drwav__read_fmt(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_fmt* fmtOut)
|
|
{
|
|
drwav__chunk_header header;
|
|
if (!drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
|
|
// Skip non-fmt chunks.
|
|
if ((container == drwav_container_riff && !drwav__fourcc_equal(header.id.fourcc, "fmt ")) || (container == drwav_container_w64 && !drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT))) {
|
|
if (!drwav__seek_forward(onSeek, header.sizeInBytes + header.paddingSize, pUserData)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
*pRunningBytesReadOut += header.sizeInBytes + header.paddingSize;
|
|
|
|
return drwav__read_fmt(onRead, onSeek, pUserData, container, pRunningBytesReadOut, fmtOut);
|
|
}
|
|
|
|
|
|
// Validation.
|
|
if (container == drwav_container_riff) {
|
|
if (!drwav__fourcc_equal(header.id.fourcc, "fmt ")) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
} else {
|
|
if (!drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
}
|
|
|
|
|
|
unsigned char fmt[16];
|
|
if (onRead(pUserData, fmt, sizeof(fmt)) != sizeof(fmt)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
*pRunningBytesReadOut += sizeof(fmt);
|
|
|
|
fmtOut->formatTag = drwav__bytes_to_u16(fmt + 0);
|
|
fmtOut->channels = drwav__bytes_to_u16(fmt + 2);
|
|
fmtOut->sampleRate = drwav__bytes_to_u32(fmt + 4);
|
|
fmtOut->avgBytesPerSec = drwav__bytes_to_u32(fmt + 8);
|
|
fmtOut->blockAlign = drwav__bytes_to_u16(fmt + 12);
|
|
fmtOut->bitsPerSample = drwav__bytes_to_u16(fmt + 14);
|
|
|
|
fmtOut->extendedSize = 0;
|
|
fmtOut->validBitsPerSample = 0;
|
|
fmtOut->channelMask = 0;
|
|
memset(fmtOut->subFormat, 0, sizeof(fmtOut->subFormat));
|
|
|
|
if (header.sizeInBytes > 16) {
|
|
unsigned char fmt_cbSize[2];
|
|
if (onRead(pUserData, fmt_cbSize, sizeof(fmt_cbSize)) != sizeof(fmt_cbSize)) {
|
|
return DRWAV_FALSE; // Expecting more data.
|
|
}
|
|
*pRunningBytesReadOut += sizeof(fmt_cbSize);
|
|
|
|
int bytesReadSoFar = 18;
|
|
|
|
fmtOut->extendedSize = drwav__bytes_to_u16(fmt_cbSize);
|
|
if (fmtOut->extendedSize > 0) {
|
|
// Simple validation.
|
|
if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
|
|
if (fmtOut->extendedSize != 22) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
}
|
|
|
|
if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
|
|
unsigned char fmtext[22];
|
|
if (onRead(pUserData, fmtext, fmtOut->extendedSize) != fmtOut->extendedSize) {
|
|
return DRWAV_FALSE; // Expecting more data.
|
|
}
|
|
|
|
fmtOut->validBitsPerSample = drwav__bytes_to_u16(fmtext + 0);
|
|
fmtOut->channelMask = drwav__bytes_to_u32(fmtext + 2);
|
|
drwav__bytes_to_guid(fmtext + 6, fmtOut->subFormat);
|
|
} else {
|
|
if (!onSeek(pUserData, fmtOut->extendedSize, drwav_seek_origin_current)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
}
|
|
*pRunningBytesReadOut += fmtOut->extendedSize;
|
|
|
|
bytesReadSoFar += fmtOut->extendedSize;
|
|
}
|
|
|
|
// Seek past any leftover bytes. For w64 the leftover will be defined based on the chunk size.
|
|
if (!onSeek(pUserData, (int)(header.sizeInBytes - bytesReadSoFar), drwav_seek_origin_current)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
*pRunningBytesReadOut += (header.sizeInBytes - bytesReadSoFar);
|
|
}
|
|
|
|
if (header.paddingSize > 0) {
|
|
if (!onSeek(pUserData, header.paddingSize, drwav_seek_origin_current)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
*pRunningBytesReadOut += header.paddingSize;
|
|
}
|
|
|
|
return DRWAV_TRUE;
|
|
}
|
|
|
|
|
|
#ifndef DR_WAV_NO_STDIO
|
|
FILE* drwav_fopen(const char* filePath, const char* openMode)
|
|
{
|
|
FILE* pFile;
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1400
|
|
if (fopen_s(&pFile, filePath, openMode) != 0) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
#else
|
|
pFile = fopen(filePath, openMode);
|
|
if (pFile == NULL) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
#endif
|
|
|
|
return pFile;
|
|
}
|
|
|
|
static size_t drwav__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead)
|
|
{
|
|
return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData);
|
|
}
|
|
|
|
static size_t drwav__on_write_stdio(void* pUserData, const void* pData, size_t bytesToWrite)
|
|
{
|
|
return fwrite(pData, 1, bytesToWrite, (FILE*)pUserData);
|
|
}
|
|
|
|
static drwav_bool32 drwav__on_seek_stdio(void* pUserData, int offset, drwav_seek_origin origin)
|
|
{
|
|
return fseek((FILE*)pUserData, offset, (origin == drwav_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
|
|
}
|
|
|
|
drwav_bool32 drwav_init_file(drwav* pWav, const char* filename)
|
|
{
|
|
FILE* pFile = drwav_fopen(filename, "rb");
|
|
if (pFile == NULL) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
return drwav_init(pWav, drwav__on_read_stdio, drwav__on_seek_stdio, (void*)pFile);
|
|
}
|
|
|
|
|
|
drwav_bool32 drwav_init_file_write__internal(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential)
|
|
{
|
|
FILE* pFile = drwav_fopen(filename, "wb");
|
|
if (pFile == NULL) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
return drwav_init_write__internal(pWav, pFormat, totalSampleCount, isSequential, drwav__on_write_stdio, drwav__on_seek_stdio, (void*)pFile);
|
|
}
|
|
|
|
drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat)
|
|
{
|
|
return drwav_init_file_write__internal(pWav, filename, pFormat, 0, DRWAV_FALSE);
|
|
}
|
|
|
|
drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
|
|
{
|
|
return drwav_init_file_write__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE);
|
|
}
|
|
|
|
drwav* drwav_open_file(const char* filename)
|
|
{
|
|
FILE* pFile = drwav_fopen(filename, "rb");
|
|
if (pFile == NULL) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
drwav* pWav = drwav_open(drwav__on_read_stdio, drwav__on_seek_stdio, (void*)pFile);
|
|
if (pWav == NULL) {
|
|
fclose(pFile);
|
|
return NULL;
|
|
}
|
|
|
|
return pWav;
|
|
}
|
|
|
|
|
|
drwav* drwav_open_file_write__internal(const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential)
|
|
{
|
|
FILE* pFile = drwav_fopen(filename, "wb");
|
|
if (pFile == NULL) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
drwav* pWav = drwav_open_write__internal(pFormat, totalSampleCount, isSequential, drwav__on_write_stdio, drwav__on_seek_stdio, (void*)pFile);
|
|
if (pWav == NULL) {
|
|
fclose(pFile);
|
|
return NULL;
|
|
}
|
|
|
|
return pWav;
|
|
}
|
|
|
|
drwav* drwav_open_file_write(const char* filename, const drwav_data_format* pFormat)
|
|
{
|
|
return drwav_open_file_write__internal(filename, pFormat, 0, DRWAV_FALSE);
|
|
}
|
|
|
|
drwav* drwav_open_file_write_sequential(const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
|
|
{
|
|
return drwav_open_file_write__internal(filename, pFormat, totalSampleCount, DRWAV_TRUE);
|
|
}
|
|
#endif //DR_WAV_NO_STDIO
|
|
|
|
|
|
static size_t drwav__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead)
|
|
{
|
|
drwav__memory_stream* memory = (drwav__memory_stream*)pUserData;
|
|
drwav_assert(memory != NULL);
|
|
drwav_assert(memory->dataSize >= memory->currentReadPos);
|
|
|
|
size_t bytesRemaining = memory->dataSize - memory->currentReadPos;
|
|
if (bytesToRead > bytesRemaining) {
|
|
bytesToRead = bytesRemaining;
|
|
}
|
|
|
|
if (bytesToRead > 0) {
|
|
DRWAV_COPY_MEMORY(pBufferOut, memory->data + memory->currentReadPos, bytesToRead);
|
|
memory->currentReadPos += bytesToRead;
|
|
}
|
|
|
|
return bytesToRead;
|
|
}
|
|
|
|
static drwav_bool32 drwav__on_seek_memory(void* pUserData, int offset, drwav_seek_origin origin)
|
|
{
|
|
drwav__memory_stream* memory = (drwav__memory_stream*)pUserData;
|
|
drwav_assert(memory != NULL);
|
|
|
|
if (origin == drwav_seek_origin_current) {
|
|
if (offset > 0) {
|
|
if (memory->currentReadPos + offset > memory->dataSize) {
|
|
offset = (int)(memory->dataSize - memory->currentReadPos); // Trying to seek too far forward.
|
|
}
|
|
} else {
|
|
if (memory->currentReadPos < (size_t)-offset) {
|
|
offset = -(int)memory->currentReadPos; // Trying to seek too far backwards.
|
|
}
|
|
}
|
|
|
|
// This will never underflow thanks to the clamps above.
|
|
memory->currentReadPos += offset;
|
|
} else {
|
|
if ((drwav_uint32)offset <= memory->dataSize) {
|
|
memory->currentReadPos = offset;
|
|
} else {
|
|
memory->currentReadPos = memory->dataSize; // Trying to seek too far forward.
|
|
}
|
|
}
|
|
|
|
return DRWAV_TRUE;
|
|
}
|
|
|
|
static size_t drwav__on_write_memory(void* pUserData, const void* pDataIn, size_t bytesToWrite)
|
|
{
|
|
drwav__memory_stream_write* memory = (drwav__memory_stream_write*)pUserData;
|
|
drwav_assert(memory != NULL);
|
|
drwav_assert(memory->dataCapacity >= memory->currentWritePos);
|
|
|
|
size_t bytesRemaining = memory->dataCapacity - memory->currentWritePos;
|
|
if (bytesRemaining < bytesToWrite) {
|
|
// Need to reallocate.
|
|
size_t newDataCapacity = (memory->dataCapacity == 0) ? 256 : memory->dataCapacity * 2;
|
|
|
|
// If doubling wasn't enough, just make it the minimum required size to write the data.
|
|
if ((newDataCapacity - memory->currentWritePos) < bytesToWrite) {
|
|
newDataCapacity = memory->currentWritePos + bytesToWrite;
|
|
}
|
|
|
|
void* pNewData = DRWAV_REALLOC(*memory->ppData, newDataCapacity);
|
|
if (pNewData == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
*memory->ppData = pNewData;
|
|
memory->dataCapacity = newDataCapacity;
|
|
}
|
|
|
|
drwav_uint8* pDataOut = (drwav_uint8*)(*memory->ppData);
|
|
DRWAV_COPY_MEMORY(pDataOut + memory->currentWritePos, pDataIn, bytesToWrite);
|
|
|
|
memory->currentWritePos += bytesToWrite;
|
|
if (memory->dataSize < memory->currentWritePos) {
|
|
memory->dataSize = memory->currentWritePos;
|
|
}
|
|
|
|
*memory->pDataSize = memory->dataSize;
|
|
|
|
return bytesToWrite;
|
|
}
|
|
|
|
static drwav_bool32 drwav__on_seek_memory_write(void* pUserData, int offset, drwav_seek_origin origin)
|
|
{
|
|
drwav__memory_stream_write* memory = (drwav__memory_stream_write*)pUserData;
|
|
drwav_assert(memory != NULL);
|
|
|
|
if (origin == drwav_seek_origin_current) {
|
|
if (offset > 0) {
|
|
if (memory->currentWritePos + offset > memory->dataSize) {
|
|
offset = (int)(memory->dataSize - memory->currentWritePos); // Trying to seek too far forward.
|
|
}
|
|
} else {
|
|
if (memory->currentWritePos < (size_t)-offset) {
|
|
offset = -(int)memory->currentWritePos; // Trying to seek too far backwards.
|
|
}
|
|
}
|
|
|
|
// This will never underflow thanks to the clamps above.
|
|
memory->currentWritePos += offset;
|
|
} else {
|
|
if ((drwav_uint32)offset <= memory->dataSize) {
|
|
memory->currentWritePos = offset;
|
|
} else {
|
|
memory->currentWritePos = memory->dataSize; // Trying to seek too far forward.
|
|
}
|
|
}
|
|
|
|
return DRWAV_TRUE;
|
|
}
|
|
|
|
drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize)
|
|
{
|
|
if (data == NULL || dataSize == 0) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
drwav__memory_stream memoryStream;
|
|
drwav_zero_memory(&memoryStream, sizeof(memoryStream));
|
|
memoryStream.data = (const unsigned char*)data;
|
|
memoryStream.dataSize = dataSize;
|
|
memoryStream.currentReadPos = 0;
|
|
|
|
if (!drwav_init(pWav, drwav__on_read_memory, drwav__on_seek_memory, (void*)&memoryStream)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
pWav->memoryStream = memoryStream;
|
|
pWav->pUserData = &pWav->memoryStream;
|
|
return DRWAV_TRUE;
|
|
}
|
|
|
|
|
|
drwav_bool32 drwav_init_memory_write__internal(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential)
|
|
{
|
|
if (ppData == NULL) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
*ppData = NULL; // Important because we're using realloc()!
|
|
*pDataSize = 0;
|
|
|
|
drwav__memory_stream_write memoryStreamWrite;
|
|
drwav_zero_memory(&memoryStreamWrite, sizeof(memoryStreamWrite));
|
|
memoryStreamWrite.ppData = ppData;
|
|
memoryStreamWrite.pDataSize = pDataSize;
|
|
memoryStreamWrite.dataSize = 0;
|
|
memoryStreamWrite.dataCapacity = 0;
|
|
memoryStreamWrite.currentWritePos = 0;
|
|
|
|
if (!drwav_init_write__internal(pWav, pFormat, totalSampleCount, isSequential, drwav__on_write_memory, drwav__on_seek_memory_write, (void*)&memoryStreamWrite)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
pWav->memoryStreamWrite = memoryStreamWrite;
|
|
pWav->pUserData = &pWav->memoryStreamWrite;
|
|
return DRWAV_TRUE;
|
|
}
|
|
|
|
drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat)
|
|
{
|
|
return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, 0, DRWAV_FALSE);
|
|
}
|
|
|
|
drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
|
|
{
|
|
return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, totalSampleCount, DRWAV_TRUE);
|
|
}
|
|
|
|
|
|
drwav* drwav_open_memory(const void* data, size_t dataSize)
|
|
{
|
|
if (data == NULL || dataSize == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
drwav__memory_stream memoryStream;
|
|
drwav_zero_memory(&memoryStream, sizeof(memoryStream));
|
|
memoryStream.data = (const unsigned char*)data;
|
|
memoryStream.dataSize = dataSize;
|
|
memoryStream.currentReadPos = 0;
|
|
|
|
drwav* pWav = drwav_open(drwav__on_read_memory, drwav__on_seek_memory, (void*)&memoryStream);
|
|
if (pWav == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
pWav->memoryStream = memoryStream;
|
|
pWav->pUserData = &pWav->memoryStream;
|
|
return pWav;
|
|
}
|
|
|
|
|
|
drwav* drwav_open_memory_write__internal(void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential)
|
|
{
|
|
if (ppData == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
*ppData = NULL; // Important because we're using realloc()!
|
|
*pDataSize = 0;
|
|
|
|
drwav__memory_stream_write memoryStreamWrite;
|
|
drwav_zero_memory(&memoryStreamWrite, sizeof(memoryStreamWrite));
|
|
memoryStreamWrite.ppData = ppData;
|
|
memoryStreamWrite.pDataSize = pDataSize;
|
|
memoryStreamWrite.dataSize = 0;
|
|
memoryStreamWrite.dataCapacity = 0;
|
|
memoryStreamWrite.currentWritePos = 0;
|
|
|
|
drwav* pWav = drwav_open_write__internal(pFormat, totalSampleCount, isSequential, drwav__on_write_memory, drwav__on_seek_memory_write, (void*)&memoryStreamWrite);
|
|
if (pWav == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
pWav->memoryStreamWrite = memoryStreamWrite;
|
|
pWav->pUserData = &pWav->memoryStreamWrite;
|
|
return pWav;
|
|
}
|
|
|
|
drwav* drwav_open_memory_write(void** ppData, size_t* pDataSize, const drwav_data_format* pFormat)
|
|
{
|
|
return drwav_open_memory_write__internal(ppData, pDataSize, pFormat, 0, DRWAV_FALSE);
|
|
}
|
|
|
|
drwav* drwav_open_memory_write_sequential(void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
|
|
{
|
|
return drwav_open_memory_write__internal(ppData, pDataSize, pFormat, totalSampleCount, DRWAV_TRUE);
|
|
}
|
|
|
|
|
|
drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData)
|
|
{
|
|
if (onRead == NULL || onSeek == NULL) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
drwav_zero_memory(pWav, sizeof(*pWav));
|
|
|
|
|
|
// The first 4 bytes should be the RIFF identifier.
|
|
unsigned char riff[4];
|
|
if (onRead(pUserData, riff, sizeof(riff)) != sizeof(riff)) {
|
|
return DRWAV_FALSE; // Failed to read data.
|
|
}
|
|
|
|
// The first 4 bytes can be used to identify the container. For RIFF files it will start with "RIFF" and for
|
|
// w64 it will start with "riff".
|
|
if (drwav__fourcc_equal(riff, "RIFF")) {
|
|
pWav->container = drwav_container_riff;
|
|
} else if (drwav__fourcc_equal(riff, "riff")) {
|
|
pWav->container = drwav_container_w64;
|
|
|
|
// Check the rest of the GUID for validity.
|
|
drwav_uint8 riff2[12];
|
|
if (onRead(pUserData, riff2, sizeof(riff2)) != sizeof(riff2)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
for (int i = 0; i < 12; ++i) {
|
|
if (riff2[i] != drwavGUID_W64_RIFF[i+4]) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
}
|
|
} else {
|
|
return DRWAV_FALSE; // Unknown or unsupported container.
|
|
}
|
|
|
|
|
|
if (pWav->container == drwav_container_riff) {
|
|
// RIFF/WAVE
|
|
unsigned char chunkSizeBytes[4];
|
|
if (onRead(pUserData, chunkSizeBytes, sizeof(chunkSizeBytes)) != sizeof(chunkSizeBytes)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
unsigned int chunkSize = drwav__bytes_to_u32(chunkSizeBytes);
|
|
if (chunkSize < 36) {
|
|
return DRWAV_FALSE; // Chunk size should always be at least 36 bytes.
|
|
}
|
|
|
|
unsigned char wave[4];
|
|
if (onRead(pUserData, wave, sizeof(wave)) != sizeof(wave)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
if (!drwav__fourcc_equal(wave, "WAVE")) {
|
|
return DRWAV_FALSE; // Expecting "WAVE".
|
|
}
|
|
|
|
pWav->dataChunkDataPos = 4 + sizeof(chunkSizeBytes) + sizeof(wave);
|
|
} else {
|
|
// W64
|
|
unsigned char chunkSize[8];
|
|
if (onRead(pUserData, chunkSize, sizeof(chunkSize)) != sizeof(chunkSize)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
if (drwav__bytes_to_u64(chunkSize) < 80) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
drwav_uint8 wave[16];
|
|
if (onRead(pUserData, wave, sizeof(wave)) != sizeof(wave)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
if (!drwav__guid_equal(wave, drwavGUID_W64_WAVE)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
pWav->dataChunkDataPos = 16 + sizeof(chunkSize) + sizeof(wave);
|
|
}
|
|
|
|
|
|
// The next bytes should be the "fmt " chunk.
|
|
drwav_fmt fmt;
|
|
if (!drwav__read_fmt(onRead, onSeek, pUserData, pWav->container, &pWav->dataChunkDataPos, &fmt)) {
|
|
return DRWAV_FALSE; // Failed to read the "fmt " chunk.
|
|
}
|
|
|
|
// Basic validation.
|
|
if (fmt.sampleRate == 0 || fmt.channels == 0 || fmt.bitsPerSample == 0 || fmt.blockAlign == 0) {
|
|
return DRWAV_FALSE; // Invalid channel count. Probably an invalid WAV file.
|
|
}
|
|
|
|
|
|
// Translate the internal format.
|
|
unsigned short translatedFormatTag = fmt.formatTag;
|
|
if (translatedFormatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
|
|
translatedFormatTag = drwav__bytes_to_u16(fmt.subFormat + 0);
|
|
}
|
|
|
|
|
|
drwav_uint64 sampleCountFromFactChunk = 0;
|
|
|
|
// The next chunk we care about is the "data" chunk. This is not necessarily the next chunk so we'll need to loop.
|
|
drwav_uint64 dataSize;
|
|
for (;;)
|
|
{
|
|
drwav__chunk_header header;
|
|
if (!drwav__read_chunk_header(onRead, pUserData, pWav->container, &pWav->dataChunkDataPos, &header)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
dataSize = header.sizeInBytes;
|
|
if (pWav->container == drwav_container_riff) {
|
|
if (drwav__fourcc_equal(header.id.fourcc, "data")) {
|
|
break;
|
|
}
|
|
} else {
|
|
if (drwav__guid_equal(header.id.guid, drwavGUID_W64_DATA)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Optional. Get the total sample count from the FACT chunk. This is useful for compressed formats.
|
|
if (pWav->container == drwav_container_riff) {
|
|
if (drwav__fourcc_equal(header.id.fourcc, "fact")) {
|
|
drwav_uint32 sampleCount;
|
|
if (onRead(pUserData, &sampleCount, 4) != 4) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
pWav->dataChunkDataPos += 4;
|
|
dataSize -= 4;
|
|
|
|
// The sample count in the "fact" chunk is either unreliable, or I'm not understanding it properly. For now I am only enabling this
|
|
// for Microsoft ADPCM formats.
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
|
|
sampleCountFromFactChunk = sampleCount;
|
|
} else {
|
|
sampleCountFromFactChunk = 0;
|
|
}
|
|
}
|
|
} else {
|
|
if (drwav__guid_equal(header.id.guid, drwavGUID_W64_FACT)) {
|
|
if (onRead(pUserData, &sampleCountFromFactChunk, 8) != 8) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
pWav->dataChunkDataPos += 8;
|
|
dataSize -= 8;
|
|
}
|
|
}
|
|
|
|
// If we get here it means we didn't find the "data" chunk. Seek past it.
|
|
|
|
// Make sure we seek past the padding.
|
|
dataSize += header.paddingSize;
|
|
drwav__seek_forward(onSeek, dataSize, pUserData);
|
|
pWav->dataChunkDataPos += dataSize;
|
|
}
|
|
|
|
// At this point we should be sitting on the first byte of the raw audio data.
|
|
|
|
pWav->onRead = onRead;
|
|
pWav->onSeek = onSeek;
|
|
pWav->pUserData = pUserData;
|
|
pWav->fmt = fmt;
|
|
pWav->sampleRate = fmt.sampleRate;
|
|
pWav->channels = fmt.channels;
|
|
pWav->bitsPerSample = fmt.bitsPerSample;
|
|
pWav->bytesPerSample = fmt.blockAlign / fmt.channels;
|
|
pWav->bytesRemaining = dataSize;
|
|
pWav->translatedFormatTag = translatedFormatTag;
|
|
pWav->dataChunkDataSize = dataSize;
|
|
|
|
// The bytes per sample should never be 0 at this point. This would indicate an invalid WAV file.
|
|
if (pWav->bytesPerSample == 0) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
if (sampleCountFromFactChunk != 0) {
|
|
pWav->totalSampleCount = sampleCountFromFactChunk * fmt.channels;
|
|
} else {
|
|
pWav->totalSampleCount = dataSize / pWav->bytesPerSample;
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
|
|
drwav_uint64 blockCount = dataSize / fmt.blockAlign;
|
|
pWav->totalSampleCount = (blockCount * (fmt.blockAlign - (6*pWav->channels))) * 2; // x2 because two samples per byte.
|
|
}
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
|
|
drwav_uint64 blockCount = dataSize / fmt.blockAlign;
|
|
pWav->totalSampleCount = ((blockCount * (fmt.blockAlign - (4*pWav->channels))) * 2) + (blockCount * pWav->channels);
|
|
}
|
|
}
|
|
|
|
// The way we calculate the bytes per sample does not make sense for compressed formats so we just set it to 0.
|
|
if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
|
|
pWav->bytesPerSample = 0;
|
|
}
|
|
|
|
// Some formats only support a certain number of channels.
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
|
|
if (pWav->channels > 2) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
}
|
|
|
|
#ifdef DR_WAV_LIBSNDFILE_COMPAT
|
|
// I use libsndfile as a benchmark for testing, however in the version I'm using (from the Windows installer on the libsndfile website),
|
|
// it appears the total sample count libsndfile uses for MS-ADPCM is incorrect. It would seem they are computing the total sample count
|
|
// from the number of blocks, however this results in the inclusion of extra silent samples at the end of the last block. The correct
|
|
// way to know the total sample count is to inspect the "fact" chunk, which should always be present for compressed formats, and should
|
|
// always include the sample count. This little block of code below is only used to emulate the libsndfile logic so I can properly run my
|
|
// correctness tests against libsndfile, and is disabled by default.
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
|
|
drwav_uint64 blockCount = dataSize / fmt.blockAlign;
|
|
pWav->totalSampleCount = (blockCount * (fmt.blockAlign - (6*pWav->channels))) * 2; // x2 because two samples per byte.
|
|
}
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
|
|
drwav_uint64 blockCount = dataSize / fmt.blockAlign;
|
|
pWav->totalSampleCount = ((blockCount * (fmt.blockAlign - (4*pWav->channels))) * 2) + (blockCount * pWav->channels);
|
|
}
|
|
#endif
|
|
|
|
return DRWAV_TRUE;
|
|
}
|
|
|
|
|
|
drwav_uint32 drwav_riff_chunk_size_riff(drwav_uint64 dataChunkSize)
|
|
{
|
|
if (dataChunkSize <= (0xFFFFFFFF - 36)) {
|
|
return 36 + (drwav_uint32)dataChunkSize;
|
|
} else {
|
|
return 0xFFFFFFFF;
|
|
}
|
|
}
|
|
|
|
drwav_uint32 drwav_data_chunk_size_riff(drwav_uint64 dataChunkSize)
|
|
{
|
|
if (dataChunkSize <= 0xFFFFFFFF) {
|
|
return (drwav_uint32)dataChunkSize;
|
|
} else {
|
|
return 0xFFFFFFFF;
|
|
}
|
|
}
|
|
|
|
drwav_uint64 drwav_riff_chunk_size_w64(drwav_uint64 dataChunkSize)
|
|
{
|
|
return 80 + 24 + dataChunkSize; // +24 because W64 includes the size of the GUID and size fields.
|
|
}
|
|
|
|
drwav_uint64 drwav_data_chunk_size_w64(drwav_uint64 dataChunkSize)
|
|
{
|
|
return 24 + dataChunkSize; // +24 because W64 includes the size of the GUID and size fields.
|
|
}
|
|
|
|
|
|
drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData)
|
|
{
|
|
if (pWav == NULL) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
if (onWrite == NULL) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
if (!isSequential && onSeek == NULL) {
|
|
return DRWAV_FALSE; // <-- onSeek is required when in non-sequential mode.
|
|
}
|
|
|
|
|
|
// Not currently supporting compressed formats. Will need to add support for the "fact" chunk before we enable this.
|
|
if (pFormat->format == DR_WAVE_FORMAT_EXTENSIBLE) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
if (pFormat->format == DR_WAVE_FORMAT_ADPCM || pFormat->format == DR_WAVE_FORMAT_DVI_ADPCM) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
|
|
drwav_zero_memory(pWav, sizeof(*pWav));
|
|
pWav->onWrite = onWrite;
|
|
pWav->onSeek = onSeek;
|
|
pWav->pUserData = pUserData;
|
|
pWav->fmt.formatTag = (drwav_uint16)pFormat->format;
|
|
pWav->fmt.channels = (drwav_uint16)pFormat->channels;
|
|
pWav->fmt.sampleRate = pFormat->sampleRate;
|
|
pWav->fmt.avgBytesPerSec = (drwav_uint32)((pFormat->bitsPerSample * pFormat->sampleRate * pFormat->channels) / 8);
|
|
pWav->fmt.blockAlign = (drwav_uint16)((pFormat->channels * pFormat->bitsPerSample) / 8);
|
|
pWav->fmt.bitsPerSample = (drwav_uint16)pFormat->bitsPerSample;
|
|
pWav->fmt.extendedSize = 0;
|
|
pWav->isSequentialWrite = isSequential;
|
|
|
|
|
|
size_t runningPos = 0;
|
|
|
|
// The initial values for the "RIFF" and "data" chunks depends on whether or not we are initializing in sequential mode or not. In
|
|
// sequential mode we set this to its final values straight away since they can be calculated from the total sample count. In non-
|
|
// sequential mode we initialize it all to zero and fill it out in drwav_uninit() using a backwards seek.
|
|
drwav_uint64 initialDataChunkSize = 0;
|
|
if (isSequential) {
|
|
initialDataChunkSize = (totalSampleCount * pWav->fmt.bitsPerSample) / 8;
|
|
|
|
// The RIFF container has a limit on the number of samples. drwav is not allowing this. There's no practical limits for Wave64
|
|
// so for the sake of simplicity I'm not doing any validation for that.
|
|
if (pFormat->container == drwav_container_riff) {
|
|
if (initialDataChunkSize > (0xFFFFFFFF - 36)) {
|
|
return DRWAV_FALSE; // Not enough room to store every sample.
|
|
}
|
|
}
|
|
}
|
|
|
|
pWav->dataChunkDataSizeTargetWrite = initialDataChunkSize;
|
|
|
|
|
|
// "RIFF" chunk.
|
|
if (pFormat->container == drwav_container_riff) {
|
|
drwav_uint32 chunkSizeRIFF = 36 + (drwav_uint32)initialDataChunkSize; // +36 = "RIFF"+[RIFF Chunk Size]+"WAVE" + [sizeof "fmt " chunk]
|
|
runningPos += pWav->onWrite(pUserData, "RIFF", 4);
|
|
runningPos += pWav->onWrite(pUserData, &chunkSizeRIFF, 4);
|
|
runningPos += pWav->onWrite(pUserData, "WAVE", 4);
|
|
} else {
|
|
drwav_uint64 chunkSizeRIFF = 80 + 24 + initialDataChunkSize; // +24 because W64 includes the size of the GUID and size fields.
|
|
runningPos += pWav->onWrite(pUserData, drwavGUID_W64_RIFF, 16);
|
|
runningPos += pWav->onWrite(pUserData, &chunkSizeRIFF, 8);
|
|
runningPos += pWav->onWrite(pUserData, drwavGUID_W64_WAVE, 16);
|
|
}
|
|
|
|
// "fmt " chunk.
|
|
drwav_uint64 chunkSizeFMT;
|
|
if (pFormat->container == drwav_container_riff) {
|
|
chunkSizeFMT = 16;
|
|
runningPos += pWav->onWrite(pUserData, "fmt ", 4);
|
|
runningPos += pWav->onWrite(pUserData, &chunkSizeFMT, 4);
|
|
} else {
|
|
chunkSizeFMT = 40;
|
|
runningPos += pWav->onWrite(pUserData, drwavGUID_W64_FMT, 16);
|
|
runningPos += pWav->onWrite(pUserData, &chunkSizeFMT, 8);
|
|
}
|
|
|
|
runningPos += pWav->onWrite(pUserData, &pWav->fmt.formatTag, 2);
|
|
runningPos += pWav->onWrite(pUserData, &pWav->fmt.channels, 2);
|
|
runningPos += pWav->onWrite(pUserData, &pWav->fmt.sampleRate, 4);
|
|
runningPos += pWav->onWrite(pUserData, &pWav->fmt.avgBytesPerSec, 4);
|
|
runningPos += pWav->onWrite(pUserData, &pWav->fmt.blockAlign, 2);
|
|
runningPos += pWav->onWrite(pUserData, &pWav->fmt.bitsPerSample, 2);
|
|
|
|
pWav->dataChunkDataPos = runningPos;
|
|
|
|
// "data" chunk.
|
|
if (pFormat->container == drwav_container_riff) {
|
|
drwav_uint32 chunkSizeDATA = (drwav_uint32)initialDataChunkSize;
|
|
runningPos += pWav->onWrite(pUserData, "data", 4);
|
|
runningPos += pWav->onWrite(pUserData, &chunkSizeDATA, 4);
|
|
} else {
|
|
drwav_uint64 chunkSizeDATA = 24 + initialDataChunkSize; // +24 because W64 includes the size of the GUID and size fields.
|
|
runningPos += pWav->onWrite(pUserData, drwavGUID_W64_DATA, 16);
|
|
runningPos += pWav->onWrite(pUserData, &chunkSizeDATA, 8);
|
|
}
|
|
|
|
|
|
// Simple validation.
|
|
if (pFormat->container == drwav_container_riff) {
|
|
if (runningPos != 20 + chunkSizeFMT + 8) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
} else {
|
|
if (runningPos != 40 + chunkSizeFMT + 24) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// Set some properties for the client's convenience.
|
|
pWav->container = pFormat->container;
|
|
pWav->channels = (drwav_uint16)pFormat->channels;
|
|
pWav->sampleRate = pFormat->sampleRate;
|
|
pWav->bitsPerSample = (drwav_uint16)pFormat->bitsPerSample;
|
|
pWav->bytesPerSample = (drwav_uint16)(pFormat->bitsPerSample >> 3);
|
|
pWav->translatedFormatTag = (drwav_uint16)pFormat->format;
|
|
|
|
return DRWAV_TRUE;
|
|
}
|
|
|
|
|
|
drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData)
|
|
{
|
|
return drwav_init_write__internal(pWav, pFormat, 0, DRWAV_FALSE, onWrite, onSeek, pUserData); // DRWAV_FALSE = Not Sequential
|
|
}
|
|
|
|
drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData)
|
|
{
|
|
return drwav_init_write__internal(pWav, pFormat, totalSampleCount, DRWAV_TRUE, onWrite, NULL, pUserData); // DRWAV_TRUE = Sequential
|
|
}
|
|
|
|
void drwav_uninit(drwav* pWav)
|
|
{
|
|
if (pWav == NULL) {
|
|
return;
|
|
}
|
|
|
|
// If the drwav object was opened in write mode we'll need to finalize a few things:
|
|
// - Make sure the "data" chunk is aligned to 16-bits for RIFF containers, or 64 bits for W64 containers.
|
|
// - Set the size of the "data" chunk.
|
|
if (pWav->onWrite != NULL) {
|
|
// Validation for sequential mode.
|
|
if (pWav->isSequentialWrite) {
|
|
drwav_assert(pWav->dataChunkDataSize == pWav->dataChunkDataSizeTargetWrite);
|
|
}
|
|
|
|
// Padding. Do not adjust pWav->dataChunkDataSize - this should not include the padding.
|
|
drwav_uint32 paddingSize = 0;
|
|
if (pWav->container == drwav_container_riff) {
|
|
paddingSize = (drwav_uint32)(pWav->dataChunkDataSize % 2);
|
|
} else {
|
|
paddingSize = (drwav_uint32)(pWav->dataChunkDataSize % 8);
|
|
}
|
|
|
|
if (paddingSize > 0) {
|
|
drwav_uint64 paddingData = 0;
|
|
pWav->onWrite(pWav->pUserData, &paddingData, paddingSize);
|
|
}
|
|
|
|
|
|
// Chunk sizes. When using sequential mode, these will have been filled in at initialization time. We only need
|
|
// to do this when using non-sequential mode.
|
|
if (pWav->onSeek && !pWav->isSequentialWrite) {
|
|
if (pWav->container == drwav_container_riff) {
|
|
// The "RIFF" chunk size.
|
|
if (pWav->onSeek(pWav->pUserData, 4, drwav_seek_origin_start)) {
|
|
drwav_uint32 riffChunkSize = drwav_riff_chunk_size_riff(pWav->dataChunkDataSize);
|
|
pWav->onWrite(pWav->pUserData, &riffChunkSize, 4);
|
|
}
|
|
|
|
// the "data" chunk size.
|
|
if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 4, drwav_seek_origin_start)) {
|
|
drwav_uint32 dataChunkSize = drwav_data_chunk_size_riff(pWav->dataChunkDataSize);
|
|
pWav->onWrite(pWav->pUserData, &dataChunkSize, 4);
|
|
}
|
|
} else {
|
|
// The "RIFF" chunk size.
|
|
if (pWav->onSeek(pWav->pUserData, 16, drwav_seek_origin_start)) {
|
|
drwav_uint64 riffChunkSize = drwav_riff_chunk_size_w64(pWav->dataChunkDataSize);
|
|
pWav->onWrite(pWav->pUserData, &riffChunkSize, 8);
|
|
}
|
|
|
|
// The "data" chunk size.
|
|
if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 16, drwav_seek_origin_start)) {
|
|
drwav_uint64 dataChunkSize = drwav_data_chunk_size_w64(pWav->dataChunkDataSize);
|
|
pWav->onWrite(pWav->pUserData, &dataChunkSize, 8);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef DR_WAV_NO_STDIO
|
|
// If we opened the file with drwav_open_file() we will want to close the file handle. We can know whether or not drwav_open_file()
|
|
// was used by looking at the onRead and onSeek callbacks.
|
|
if (pWav->onRead == drwav__on_read_stdio || pWav->onWrite == drwav__on_write_stdio) {
|
|
fclose((FILE*)pWav->pUserData);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
drwav* drwav_open(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData)
|
|
{
|
|
drwav* pWav = (drwav*)DRWAV_MALLOC(sizeof(*pWav));
|
|
if (pWav == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (!drwav_init(pWav, onRead, onSeek, pUserData)) {
|
|
DRWAV_FREE(pWav);
|
|
return NULL;
|
|
}
|
|
|
|
return pWav;
|
|
}
|
|
|
|
|
|
drwav* drwav_open_write__internal(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData)
|
|
{
|
|
drwav* pWav = (drwav*)DRWAV_MALLOC(sizeof(*pWav));
|
|
if (pWav == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (!drwav_init_write__internal(pWav, pFormat, totalSampleCount, isSequential, onWrite, onSeek, pUserData)) {
|
|
DRWAV_FREE(pWav);
|
|
return NULL;
|
|
}
|
|
|
|
return pWav;
|
|
}
|
|
|
|
drwav* drwav_open_write(const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData)
|
|
{
|
|
return drwav_open_write__internal(pFormat, 0, DRWAV_FALSE, onWrite, onSeek, pUserData);
|
|
}
|
|
|
|
drwav* drwav_open_write_sequential(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData)
|
|
{
|
|
return drwav_open_write__internal(pFormat, totalSampleCount, DRWAV_TRUE, onWrite, NULL, pUserData);
|
|
}
|
|
|
|
void drwav_close(drwav* pWav)
|
|
{
|
|
drwav_uninit(pWav);
|
|
DRWAV_FREE(pWav);
|
|
}
|
|
|
|
|
|
size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut)
|
|
{
|
|
if (pWav == NULL || bytesToRead == 0 || pBufferOut == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (bytesToRead > pWav->bytesRemaining) {
|
|
bytesToRead = (size_t)pWav->bytesRemaining;
|
|
}
|
|
|
|
size_t bytesRead = pWav->onRead(pWav->pUserData, pBufferOut, bytesToRead);
|
|
|
|
pWav->bytesRemaining -= bytesRead;
|
|
return bytesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read(drwav* pWav, drwav_uint64 samplesToRead, void* pBufferOut)
|
|
{
|
|
if (pWav == NULL || samplesToRead == 0 || pBufferOut == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
// Cannot use this function for compressed formats.
|
|
if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
|
|
return 0;
|
|
}
|
|
|
|
// Don't try to read more samples than can potentially fit in the output buffer.
|
|
if (samplesToRead * pWav->bytesPerSample > SIZE_MAX) {
|
|
samplesToRead = SIZE_MAX / pWav->bytesPerSample;
|
|
}
|
|
|
|
size_t bytesRead = drwav_read_raw(pWav, (size_t)(samplesToRead * pWav->bytesPerSample), pBufferOut);
|
|
return bytesRead / pWav->bytesPerSample;
|
|
}
|
|
|
|
drwav_bool32 drwav_seek_to_first_sample(drwav* pWav)
|
|
{
|
|
if (pWav->onWrite != NULL) {
|
|
return DRWAV_FALSE; // No seeking in write mode.
|
|
}
|
|
|
|
if (!pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos, drwav_seek_origin_start)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
|
|
pWav->compressed.iCurrentSample = 0;
|
|
}
|
|
|
|
pWav->bytesRemaining = pWav->dataChunkDataSize;
|
|
return DRWAV_TRUE;
|
|
}
|
|
|
|
drwav_bool32 drwav_seek_to_sample(drwav* pWav, drwav_uint64 sample)
|
|
{
|
|
// Seeking should be compatible with wave files > 2GB.
|
|
|
|
if (pWav->onWrite != NULL) {
|
|
return DRWAV_FALSE; // No seeking in write mode.
|
|
}
|
|
|
|
if (pWav == NULL || pWav->onSeek == NULL) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
// If there are no samples, just return DRWAV_TRUE without doing anything.
|
|
if (pWav->totalSampleCount == 0) {
|
|
return DRWAV_TRUE;
|
|
}
|
|
|
|
// Make sure the sample is clamped.
|
|
if (sample >= pWav->totalSampleCount) {
|
|
sample = pWav->totalSampleCount - 1;
|
|
}
|
|
|
|
|
|
// For compressed formats we just use a slow generic seek. If we are seeking forward we just seek forward. If we are going backwards we need
|
|
// to seek back to the start.
|
|
if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
|
|
// TODO: This can be optimized.
|
|
|
|
// If we're seeking forward it's simple - just keep reading samples until we hit the sample we're requesting. If we're seeking backwards,
|
|
// we first need to seek back to the start and then just do the same thing as a forward seek.
|
|
if (sample < pWav->compressed.iCurrentSample) {
|
|
if (!drwav_seek_to_first_sample(pWav)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
}
|
|
|
|
if (sample > pWav->compressed.iCurrentSample) {
|
|
drwav_uint64 offset = sample - pWav->compressed.iCurrentSample;
|
|
|
|
drwav_int16 devnull[2048];
|
|
while (offset > 0) {
|
|
drwav_uint64 samplesToRead = offset;
|
|
if (samplesToRead > 2048) {
|
|
samplesToRead = 2048;
|
|
}
|
|
|
|
drwav_uint64 samplesRead = 0;
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
|
|
samplesRead = drwav_read_s16__msadpcm(pWav, samplesToRead, devnull);
|
|
} else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
|
|
samplesRead = drwav_read_s16__ima(pWav, samplesToRead, devnull);
|
|
} else {
|
|
assert(DRWAV_FALSE); // If this assertion is triggered it means I've implemented a new compressed format but forgot to add a branch for it here.
|
|
}
|
|
|
|
if (samplesRead != samplesToRead) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
offset -= samplesRead;
|
|
}
|
|
}
|
|
} else {
|
|
drwav_uint64 totalSizeInBytes = pWav->totalSampleCount * pWav->bytesPerSample;
|
|
drwav_assert(totalSizeInBytes >= pWav->bytesRemaining);
|
|
|
|
drwav_uint64 currentBytePos = totalSizeInBytes - pWav->bytesRemaining;
|
|
drwav_uint64 targetBytePos = sample * pWav->bytesPerSample;
|
|
|
|
drwav_uint64 offset;
|
|
if (currentBytePos < targetBytePos) {
|
|
// Offset forwards.
|
|
offset = (targetBytePos - currentBytePos);
|
|
} else {
|
|
// Offset backwards.
|
|
if (!drwav_seek_to_first_sample(pWav)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
offset = targetBytePos;
|
|
}
|
|
|
|
while (offset > 0) {
|
|
int offset32 = ((offset > INT_MAX) ? INT_MAX : (int)offset);
|
|
if (!pWav->onSeek(pWav->pUserData, offset32, drwav_seek_origin_current)) {
|
|
return DRWAV_FALSE;
|
|
}
|
|
|
|
pWav->bytesRemaining -= offset32;
|
|
offset -= offset32;
|
|
}
|
|
}
|
|
|
|
return DRWAV_TRUE;
|
|
}
|
|
|
|
|
|
size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData)
|
|
{
|
|
if (pWav == NULL || bytesToWrite == 0 || pData == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
size_t bytesWritten = pWav->onWrite(pWav->pUserData, pData, bytesToWrite);
|
|
pWav->dataChunkDataSize += bytesWritten;
|
|
|
|
return bytesWritten;
|
|
}
|
|
|
|
drwav_uint64 drwav_write(drwav* pWav, drwav_uint64 samplesToWrite, const void* pData)
|
|
{
|
|
if (pWav == NULL || samplesToWrite == 0 || pData == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
drwav_uint64 bytesToWrite = ((samplesToWrite * pWav->bitsPerSample) / 8);
|
|
if (bytesToWrite > SIZE_MAX) {
|
|
return 0;
|
|
}
|
|
|
|
drwav_uint64 bytesWritten = 0;
|
|
const drwav_uint8* pRunningData = (const drwav_uint8*)pData;
|
|
while (bytesToWrite > 0) {
|
|
drwav_uint64 bytesToWriteThisIteration = bytesToWrite;
|
|
if (bytesToWriteThisIteration > SIZE_MAX) {
|
|
bytesToWriteThisIteration = SIZE_MAX;
|
|
}
|
|
|
|
size_t bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, pRunningData);
|
|
if (bytesJustWritten == 0) {
|
|
break;
|
|
}
|
|
|
|
bytesToWrite -= bytesJustWritten;
|
|
bytesWritten += bytesJustWritten;
|
|
pRunningData += bytesJustWritten;
|
|
}
|
|
|
|
return (bytesWritten * 8) / pWav->bitsPerSample;
|
|
}
|
|
|
|
|
|
|
|
drwav_uint64 drwav_read_s16__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut)
|
|
{
|
|
drwav_assert(pWav != NULL);
|
|
drwav_assert(samplesToRead > 0);
|
|
drwav_assert(pBufferOut != NULL);
|
|
|
|
// TODO: Lots of room for optimization here.
|
|
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
|
|
while (samplesToRead > 0 && pWav->compressed.iCurrentSample < pWav->totalSampleCount) {
|
|
// If there are no cached samples we need to load a new block.
|
|
if (pWav->msadpcm.cachedSampleCount == 0 && pWav->msadpcm.bytesRemainingInBlock == 0) {
|
|
if (pWav->channels == 1) {
|
|
// Mono.
|
|
drwav_uint8 header[7];
|
|
if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
|
|
return totalSamplesRead;
|
|
}
|
|
pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
|
|
|
|
pWav->msadpcm.predictor[0] = header[0];
|
|
pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 1);
|
|
pWav->msadpcm.prevSamples[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 3);
|
|
pWav->msadpcm.prevSamples[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 5);
|
|
pWav->msadpcm.cachedSamples[2] = pWav->msadpcm.prevSamples[0][0];
|
|
pWav->msadpcm.cachedSamples[3] = pWav->msadpcm.prevSamples[0][1];
|
|
pWav->msadpcm.cachedSampleCount = 2;
|
|
} else {
|
|
// Stereo.
|
|
drwav_uint8 header[14];
|
|
if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
|
|
return totalSamplesRead;
|
|
}
|
|
pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
|
|
|
|
pWav->msadpcm.predictor[0] = header[0];
|
|
pWav->msadpcm.predictor[1] = header[1];
|
|
pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 2);
|
|
pWav->msadpcm.delta[1] = drwav__bytes_to_s16(header + 4);
|
|
pWav->msadpcm.prevSamples[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 6);
|
|
pWav->msadpcm.prevSamples[1][1] = (drwav_int32)drwav__bytes_to_s16(header + 8);
|
|
pWav->msadpcm.prevSamples[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 10);
|
|
pWav->msadpcm.prevSamples[1][0] = (drwav_int32)drwav__bytes_to_s16(header + 12);
|
|
|
|
pWav->msadpcm.cachedSamples[0] = pWav->msadpcm.prevSamples[0][0];
|
|
pWav->msadpcm.cachedSamples[1] = pWav->msadpcm.prevSamples[1][0];
|
|
pWav->msadpcm.cachedSamples[2] = pWav->msadpcm.prevSamples[0][1];
|
|
pWav->msadpcm.cachedSamples[3] = pWav->msadpcm.prevSamples[1][1];
|
|
pWav->msadpcm.cachedSampleCount = 4;
|
|
}
|
|
}
|
|
|
|
// Output anything that's cached.
|
|
while (samplesToRead > 0 && pWav->msadpcm.cachedSampleCount > 0 && pWav->compressed.iCurrentSample < pWav->totalSampleCount) {
|
|
pBufferOut[0] = (drwav_int16)pWav->msadpcm.cachedSamples[drwav_countof(pWav->msadpcm.cachedSamples) - pWav->msadpcm.cachedSampleCount];
|
|
pWav->msadpcm.cachedSampleCount -= 1;
|
|
|
|
pBufferOut += 1;
|
|
samplesToRead -= 1;
|
|
totalSamplesRead += 1;
|
|
pWav->compressed.iCurrentSample += 1;
|
|
}
|
|
|
|
if (samplesToRead == 0) {
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
|
|
// If there's nothing left in the cache, just go ahead and load more. If there's nothing left to load in the current block we just continue to the next
|
|
// loop iteration which will trigger the loading of a new block.
|
|
if (pWav->msadpcm.cachedSampleCount == 0) {
|
|
if (pWav->msadpcm.bytesRemainingInBlock == 0) {
|
|
continue;
|
|
} else {
|
|
drwav_uint8 nibbles;
|
|
if (pWav->onRead(pWav->pUserData, &nibbles, 1) != 1) {
|
|
return totalSamplesRead;
|
|
}
|
|
pWav->msadpcm.bytesRemainingInBlock -= 1;
|
|
|
|
// TODO: Optimize away these if statements.
|
|
drwav_int32 nibble0 = ((nibbles & 0xF0) >> 4); if ((nibbles & 0x80)) { nibble0 |= 0xFFFFFFF0UL; }
|
|
drwav_int32 nibble1 = ((nibbles & 0x0F) >> 0); if ((nibbles & 0x08)) { nibble1 |= 0xFFFFFFF0UL; }
|
|
|
|
static drwav_int32 adaptationTable[] = {
|
|
230, 230, 230, 230, 307, 409, 512, 614,
|
|
768, 614, 512, 409, 307, 230, 230, 230
|
|
};
|
|
static drwav_int32 coeff1Table[] = { 256, 512, 0, 192, 240, 460, 392 };
|
|
static drwav_int32 coeff2Table[] = { 0, -256, 0, 64, 0, -208, -232 };
|
|
|
|
if (pWav->channels == 1) {
|
|
// Mono.
|
|
drwav_int32 newSample0;
|
|
newSample0 = ((pWav->msadpcm.prevSamples[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevSamples[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
|
|
newSample0 += nibble0 * pWav->msadpcm.delta[0];
|
|
newSample0 = drwav_clamp(newSample0, -32768, 32767);
|
|
|
|
pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8;
|
|
if (pWav->msadpcm.delta[0] < 16) {
|
|
pWav->msadpcm.delta[0] = 16;
|
|
}
|
|
|
|
pWav->msadpcm.prevSamples[0][0] = pWav->msadpcm.prevSamples[0][1];
|
|
pWav->msadpcm.prevSamples[0][1] = newSample0;
|
|
|
|
|
|
drwav_int32 newSample1;
|
|
newSample1 = ((pWav->msadpcm.prevSamples[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevSamples[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
|
|
newSample1 += nibble1 * pWav->msadpcm.delta[0];
|
|
newSample1 = drwav_clamp(newSample1, -32768, 32767);
|
|
|
|
pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[0]) >> 8;
|
|
if (pWav->msadpcm.delta[0] < 16) {
|
|
pWav->msadpcm.delta[0] = 16;
|
|
}
|
|
|
|
pWav->msadpcm.prevSamples[0][0] = pWav->msadpcm.prevSamples[0][1];
|
|
pWav->msadpcm.prevSamples[0][1] = newSample1;
|
|
|
|
|
|
pWav->msadpcm.cachedSamples[2] = newSample0;
|
|
pWav->msadpcm.cachedSamples[3] = newSample1;
|
|
pWav->msadpcm.cachedSampleCount = 2;
|
|
} else {
|
|
// Stereo.
|
|
|
|
// Left.
|
|
drwav_int32 newSample0;
|
|
newSample0 = ((pWav->msadpcm.prevSamples[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevSamples[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
|
|
newSample0 += nibble0 * pWav->msadpcm.delta[0];
|
|
newSample0 = drwav_clamp(newSample0, -32768, 32767);
|
|
|
|
pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8;
|
|
if (pWav->msadpcm.delta[0] < 16) {
|
|
pWav->msadpcm.delta[0] = 16;
|
|
}
|
|
|
|
pWav->msadpcm.prevSamples[0][0] = pWav->msadpcm.prevSamples[0][1];
|
|
pWav->msadpcm.prevSamples[0][1] = newSample0;
|
|
|
|
|
|
// Right.
|
|
drwav_int32 newSample1;
|
|
newSample1 = ((pWav->msadpcm.prevSamples[1][1] * coeff1Table[pWav->msadpcm.predictor[1]]) + (pWav->msadpcm.prevSamples[1][0] * coeff2Table[pWav->msadpcm.predictor[1]])) >> 8;
|
|
newSample1 += nibble1 * pWav->msadpcm.delta[1];
|
|
newSample1 = drwav_clamp(newSample1, -32768, 32767);
|
|
|
|
pWav->msadpcm.delta[1] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[1]) >> 8;
|
|
if (pWav->msadpcm.delta[1] < 16) {
|
|
pWav->msadpcm.delta[1] = 16;
|
|
}
|
|
|
|
pWav->msadpcm.prevSamples[1][0] = pWav->msadpcm.prevSamples[1][1];
|
|
pWav->msadpcm.prevSamples[1][1] = newSample1;
|
|
|
|
pWav->msadpcm.cachedSamples[2] = newSample0;
|
|
pWav->msadpcm.cachedSamples[3] = newSample1;
|
|
pWav->msadpcm.cachedSampleCount = 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_s16__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut)
|
|
{
|
|
drwav_assert(pWav != NULL);
|
|
drwav_assert(samplesToRead > 0);
|
|
drwav_assert(pBufferOut != NULL);
|
|
|
|
// TODO: Lots of room for optimization here.
|
|
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
|
|
while (samplesToRead > 0 && pWav->compressed.iCurrentSample < pWav->totalSampleCount) {
|
|
// If there are no cached samples we need to load a new block.
|
|
if (pWav->ima.cachedSampleCount == 0 && pWav->ima.bytesRemainingInBlock == 0) {
|
|
if (pWav->channels == 1) {
|
|
// Mono.
|
|
drwav_uint8 header[4];
|
|
if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
|
|
return totalSamplesRead;
|
|
}
|
|
pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
|
|
|
|
pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0);
|
|
pWav->ima.stepIndex[0] = header[2];
|
|
pWav->ima.cachedSamples[drwav_countof(pWav->ima.cachedSamples) - 1] = pWav->ima.predictor[0];
|
|
pWav->ima.cachedSampleCount = 1;
|
|
} else {
|
|
// Stereo.
|
|
drwav_uint8 header[8];
|
|
if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
|
|
return totalSamplesRead;
|
|
}
|
|
pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
|
|
|
|
pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0);
|
|
pWav->ima.stepIndex[0] = header[2];
|
|
pWav->ima.predictor[1] = drwav__bytes_to_s16(header + 4);
|
|
pWav->ima.stepIndex[1] = header[6];
|
|
|
|
pWav->ima.cachedSamples[drwav_countof(pWav->ima.cachedSamples) - 2] = pWav->ima.predictor[0];
|
|
pWav->ima.cachedSamples[drwav_countof(pWav->ima.cachedSamples) - 1] = pWav->ima.predictor[1];
|
|
pWav->ima.cachedSampleCount = 2;
|
|
}
|
|
}
|
|
|
|
// Output anything that's cached.
|
|
while (samplesToRead > 0 && pWav->ima.cachedSampleCount > 0 && pWav->compressed.iCurrentSample < pWav->totalSampleCount) {
|
|
pBufferOut[0] = (drwav_int16)pWav->ima.cachedSamples[drwav_countof(pWav->ima.cachedSamples) - pWav->ima.cachedSampleCount];
|
|
pWav->ima.cachedSampleCount -= 1;
|
|
|
|
pBufferOut += 1;
|
|
samplesToRead -= 1;
|
|
totalSamplesRead += 1;
|
|
pWav->compressed.iCurrentSample += 1;
|
|
}
|
|
|
|
if (samplesToRead == 0) {
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
// If there's nothing left in the cache, just go ahead and load more. If there's nothing left to load in the current block we just continue to the next
|
|
// loop iteration which will trigger the loading of a new block.
|
|
if (pWav->ima.cachedSampleCount == 0) {
|
|
if (pWav->ima.bytesRemainingInBlock == 0) {
|
|
continue;
|
|
} else {
|
|
static drwav_int32 indexTable[16] = {
|
|
-1, -1, -1, -1, 2, 4, 6, 8,
|
|
-1, -1, -1, -1, 2, 4, 6, 8
|
|
};
|
|
|
|
static drwav_int32 stepTable[89] = {
|
|
7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
|
|
19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
|
|
50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
|
|
130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
|
|
337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
|
|
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
|
|
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
|
|
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
|
|
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
|
|
};
|
|
|
|
// From what I can tell with stereo streams, it looks like every 4 bytes (8 samples) is for one channel. So it goes 4 bytes for the
|
|
// left channel, 4 bytes for the right channel.
|
|
pWav->ima.cachedSampleCount = 8 * pWav->channels;
|
|
for (drwav_uint32 iChannel = 0; iChannel < pWav->channels; ++iChannel) {
|
|
drwav_uint8 nibbles[4];
|
|
if (pWav->onRead(pWav->pUserData, &nibbles, 4) != 4) {
|
|
return totalSamplesRead;
|
|
}
|
|
pWav->ima.bytesRemainingInBlock -= 4;
|
|
|
|
for (drwav_uint32 iByte = 0; iByte < 4; ++iByte) {
|
|
drwav_uint8 nibble0 = ((nibbles[iByte] & 0x0F) >> 0);
|
|
drwav_uint8 nibble1 = ((nibbles[iByte] & 0xF0) >> 4);
|
|
|
|
drwav_int32 step = stepTable[pWav->ima.stepIndex[iChannel]];
|
|
drwav_int32 predictor = pWav->ima.predictor[iChannel];
|
|
|
|
drwav_int32 diff = step >> 3;
|
|
if (nibble0 & 1) diff += step >> 2;
|
|
if (nibble0 & 2) diff += step >> 1;
|
|
if (nibble0 & 4) diff += step;
|
|
if (nibble0 & 8) diff = -diff;
|
|
|
|
predictor = drwav_clamp(predictor + diff, -32768, 32767);
|
|
pWav->ima.predictor[iChannel] = predictor;
|
|
pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble0], 0, (drwav_int32)drwav_countof(stepTable)-1);
|
|
pWav->ima.cachedSamples[(drwav_countof(pWav->ima.cachedSamples) - pWav->ima.cachedSampleCount) + (iByte*2+0)*pWav->channels + iChannel] = predictor;
|
|
|
|
|
|
step = stepTable[pWav->ima.stepIndex[iChannel]];
|
|
predictor = pWav->ima.predictor[iChannel];
|
|
|
|
diff = step >> 3;
|
|
if (nibble1 & 1) diff += step >> 2;
|
|
if (nibble1 & 2) diff += step >> 1;
|
|
if (nibble1 & 4) diff += step;
|
|
if (nibble1 & 8) diff = -diff;
|
|
|
|
predictor = drwav_clamp(predictor + diff, -32768, 32767);
|
|
pWav->ima.predictor[iChannel] = predictor;
|
|
pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble1], 0, (drwav_int32)drwav_countof(stepTable)-1);
|
|
pWav->ima.cachedSamples[(drwav_countof(pWav->ima.cachedSamples) - pWav->ima.cachedSampleCount) + (iByte*2+1)*pWav->channels + iChannel] = predictor;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
|
|
#ifndef DR_WAV_NO_CONVERSION_API
|
|
static unsigned short g_drwavAlawTable[256] = {
|
|
0xEA80, 0xEB80, 0xE880, 0xE980, 0xEE80, 0xEF80, 0xEC80, 0xED80, 0xE280, 0xE380, 0xE080, 0xE180, 0xE680, 0xE780, 0xE480, 0xE580,
|
|
0xF540, 0xF5C0, 0xF440, 0xF4C0, 0xF740, 0xF7C0, 0xF640, 0xF6C0, 0xF140, 0xF1C0, 0xF040, 0xF0C0, 0xF340, 0xF3C0, 0xF240, 0xF2C0,
|
|
0xAA00, 0xAE00, 0xA200, 0xA600, 0xBA00, 0xBE00, 0xB200, 0xB600, 0x8A00, 0x8E00, 0x8200, 0x8600, 0x9A00, 0x9E00, 0x9200, 0x9600,
|
|
0xD500, 0xD700, 0xD100, 0xD300, 0xDD00, 0xDF00, 0xD900, 0xDB00, 0xC500, 0xC700, 0xC100, 0xC300, 0xCD00, 0xCF00, 0xC900, 0xCB00,
|
|
0xFEA8, 0xFEB8, 0xFE88, 0xFE98, 0xFEE8, 0xFEF8, 0xFEC8, 0xFED8, 0xFE28, 0xFE38, 0xFE08, 0xFE18, 0xFE68, 0xFE78, 0xFE48, 0xFE58,
|
|
0xFFA8, 0xFFB8, 0xFF88, 0xFF98, 0xFFE8, 0xFFF8, 0xFFC8, 0xFFD8, 0xFF28, 0xFF38, 0xFF08, 0xFF18, 0xFF68, 0xFF78, 0xFF48, 0xFF58,
|
|
0xFAA0, 0xFAE0, 0xFA20, 0xFA60, 0xFBA0, 0xFBE0, 0xFB20, 0xFB60, 0xF8A0, 0xF8E0, 0xF820, 0xF860, 0xF9A0, 0xF9E0, 0xF920, 0xF960,
|
|
0xFD50, 0xFD70, 0xFD10, 0xFD30, 0xFDD0, 0xFDF0, 0xFD90, 0xFDB0, 0xFC50, 0xFC70, 0xFC10, 0xFC30, 0xFCD0, 0xFCF0, 0xFC90, 0xFCB0,
|
|
0x1580, 0x1480, 0x1780, 0x1680, 0x1180, 0x1080, 0x1380, 0x1280, 0x1D80, 0x1C80, 0x1F80, 0x1E80, 0x1980, 0x1880, 0x1B80, 0x1A80,
|
|
0x0AC0, 0x0A40, 0x0BC0, 0x0B40, 0x08C0, 0x0840, 0x09C0, 0x0940, 0x0EC0, 0x0E40, 0x0FC0, 0x0F40, 0x0CC0, 0x0C40, 0x0DC0, 0x0D40,
|
|
0x5600, 0x5200, 0x5E00, 0x5A00, 0x4600, 0x4200, 0x4E00, 0x4A00, 0x7600, 0x7200, 0x7E00, 0x7A00, 0x6600, 0x6200, 0x6E00, 0x6A00,
|
|
0x2B00, 0x2900, 0x2F00, 0x2D00, 0x2300, 0x2100, 0x2700, 0x2500, 0x3B00, 0x3900, 0x3F00, 0x3D00, 0x3300, 0x3100, 0x3700, 0x3500,
|
|
0x0158, 0x0148, 0x0178, 0x0168, 0x0118, 0x0108, 0x0138, 0x0128, 0x01D8, 0x01C8, 0x01F8, 0x01E8, 0x0198, 0x0188, 0x01B8, 0x01A8,
|
|
0x0058, 0x0048, 0x0078, 0x0068, 0x0018, 0x0008, 0x0038, 0x0028, 0x00D8, 0x00C8, 0x00F8, 0x00E8, 0x0098, 0x0088, 0x00B8, 0x00A8,
|
|
0x0560, 0x0520, 0x05E0, 0x05A0, 0x0460, 0x0420, 0x04E0, 0x04A0, 0x0760, 0x0720, 0x07E0, 0x07A0, 0x0660, 0x0620, 0x06E0, 0x06A0,
|
|
0x02B0, 0x0290, 0x02F0, 0x02D0, 0x0230, 0x0210, 0x0270, 0x0250, 0x03B0, 0x0390, 0x03F0, 0x03D0, 0x0330, 0x0310, 0x0370, 0x0350
|
|
};
|
|
|
|
static unsigned short g_drwavMulawTable[256] = {
|
|
0x8284, 0x8684, 0x8A84, 0x8E84, 0x9284, 0x9684, 0x9A84, 0x9E84, 0xA284, 0xA684, 0xAA84, 0xAE84, 0xB284, 0xB684, 0xBA84, 0xBE84,
|
|
0xC184, 0xC384, 0xC584, 0xC784, 0xC984, 0xCB84, 0xCD84, 0xCF84, 0xD184, 0xD384, 0xD584, 0xD784, 0xD984, 0xDB84, 0xDD84, 0xDF84,
|
|
0xE104, 0xE204, 0xE304, 0xE404, 0xE504, 0xE604, 0xE704, 0xE804, 0xE904, 0xEA04, 0xEB04, 0xEC04, 0xED04, 0xEE04, 0xEF04, 0xF004,
|
|
0xF0C4, 0xF144, 0xF1C4, 0xF244, 0xF2C4, 0xF344, 0xF3C4, 0xF444, 0xF4C4, 0xF544, 0xF5C4, 0xF644, 0xF6C4, 0xF744, 0xF7C4, 0xF844,
|
|
0xF8A4, 0xF8E4, 0xF924, 0xF964, 0xF9A4, 0xF9E4, 0xFA24, 0xFA64, 0xFAA4, 0xFAE4, 0xFB24, 0xFB64, 0xFBA4, 0xFBE4, 0xFC24, 0xFC64,
|
|
0xFC94, 0xFCB4, 0xFCD4, 0xFCF4, 0xFD14, 0xFD34, 0xFD54, 0xFD74, 0xFD94, 0xFDB4, 0xFDD4, 0xFDF4, 0xFE14, 0xFE34, 0xFE54, 0xFE74,
|
|
0xFE8C, 0xFE9C, 0xFEAC, 0xFEBC, 0xFECC, 0xFEDC, 0xFEEC, 0xFEFC, 0xFF0C, 0xFF1C, 0xFF2C, 0xFF3C, 0xFF4C, 0xFF5C, 0xFF6C, 0xFF7C,
|
|
0xFF88, 0xFF90, 0xFF98, 0xFFA0, 0xFFA8, 0xFFB0, 0xFFB8, 0xFFC0, 0xFFC8, 0xFFD0, 0xFFD8, 0xFFE0, 0xFFE8, 0xFFF0, 0xFFF8, 0x0000,
|
|
0x7D7C, 0x797C, 0x757C, 0x717C, 0x6D7C, 0x697C, 0x657C, 0x617C, 0x5D7C, 0x597C, 0x557C, 0x517C, 0x4D7C, 0x497C, 0x457C, 0x417C,
|
|
0x3E7C, 0x3C7C, 0x3A7C, 0x387C, 0x367C, 0x347C, 0x327C, 0x307C, 0x2E7C, 0x2C7C, 0x2A7C, 0x287C, 0x267C, 0x247C, 0x227C, 0x207C,
|
|
0x1EFC, 0x1DFC, 0x1CFC, 0x1BFC, 0x1AFC, 0x19FC, 0x18FC, 0x17FC, 0x16FC, 0x15FC, 0x14FC, 0x13FC, 0x12FC, 0x11FC, 0x10FC, 0x0FFC,
|
|
0x0F3C, 0x0EBC, 0x0E3C, 0x0DBC, 0x0D3C, 0x0CBC, 0x0C3C, 0x0BBC, 0x0B3C, 0x0ABC, 0x0A3C, 0x09BC, 0x093C, 0x08BC, 0x083C, 0x07BC,
|
|
0x075C, 0x071C, 0x06DC, 0x069C, 0x065C, 0x061C, 0x05DC, 0x059C, 0x055C, 0x051C, 0x04DC, 0x049C, 0x045C, 0x041C, 0x03DC, 0x039C,
|
|
0x036C, 0x034C, 0x032C, 0x030C, 0x02EC, 0x02CC, 0x02AC, 0x028C, 0x026C, 0x024C, 0x022C, 0x020C, 0x01EC, 0x01CC, 0x01AC, 0x018C,
|
|
0x0174, 0x0164, 0x0154, 0x0144, 0x0134, 0x0124, 0x0114, 0x0104, 0x00F4, 0x00E4, 0x00D4, 0x00C4, 0x00B4, 0x00A4, 0x0094, 0x0084,
|
|
0x0078, 0x0070, 0x0068, 0x0060, 0x0058, 0x0050, 0x0048, 0x0040, 0x0038, 0x0030, 0x0028, 0x0020, 0x0018, 0x0010, 0x0008, 0x0000
|
|
};
|
|
|
|
static DRWAV_INLINE drwav_int16 drwav__alaw_to_s16(drwav_uint8 sampleIn)
|
|
{
|
|
return (short)g_drwavAlawTable[sampleIn];
|
|
}
|
|
|
|
static DRWAV_INLINE drwav_int16 drwav__mulaw_to_s16(drwav_uint8 sampleIn)
|
|
{
|
|
return (short)g_drwavMulawTable[sampleIn];
|
|
}
|
|
|
|
|
|
|
|
static void drwav__pcm_to_s16(drwav_int16* pOut, const unsigned char* pIn, size_t totalSampleCount, unsigned short bytesPerSample)
|
|
{
|
|
// Special case for 8-bit sample data because it's treated as unsigned.
|
|
if (bytesPerSample == 1) {
|
|
drwav_u8_to_s16(pOut, pIn, totalSampleCount);
|
|
return;
|
|
}
|
|
|
|
|
|
// Slightly more optimal implementation for common formats.
|
|
if (bytesPerSample == 2) {
|
|
for (unsigned int i = 0; i < totalSampleCount; ++i) {
|
|
*pOut++ = ((drwav_int16*)pIn)[i];
|
|
}
|
|
return;
|
|
}
|
|
if (bytesPerSample == 3) {
|
|
drwav_s24_to_s16(pOut, pIn, totalSampleCount);
|
|
return;
|
|
}
|
|
if (bytesPerSample == 4) {
|
|
drwav_s32_to_s16(pOut, (const drwav_int32*)pIn, totalSampleCount);
|
|
return;
|
|
}
|
|
|
|
|
|
// Anything more than 64 bits per sample is not supported.
|
|
if (bytesPerSample > 8) {
|
|
drwav_zero_memory(pOut, totalSampleCount * sizeof(*pOut));
|
|
return;
|
|
}
|
|
|
|
|
|
// Generic, slow converter.
|
|
for (unsigned int i = 0; i < totalSampleCount; ++i) {
|
|
drwav_uint64 sample = 0;
|
|
unsigned int shift = (8 - bytesPerSample) * 8;
|
|
|
|
unsigned int j;
|
|
for (j = 0; j < bytesPerSample && j < 8; j += 1) {
|
|
sample |= (drwav_uint64)(pIn[j]) << shift;
|
|
shift += 8;
|
|
}
|
|
|
|
pIn += j;
|
|
*pOut++ = (drwav_int16)((drwav_int64)sample >> 48);
|
|
}
|
|
}
|
|
|
|
static void drwav__ieee_to_s16(drwav_int16* pOut, const unsigned char* pIn, size_t totalSampleCount, unsigned short bytesPerSample)
|
|
{
|
|
if (bytesPerSample == 4) {
|
|
drwav_f32_to_s16(pOut, (float*)pIn, totalSampleCount);
|
|
return;
|
|
} else if (bytesPerSample == 8) {
|
|
drwav_f64_to_s16(pOut, (double*)pIn, totalSampleCount);
|
|
return;
|
|
} else {
|
|
// Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float.
|
|
drwav_zero_memory(pOut, totalSampleCount * sizeof(*pOut));
|
|
return;
|
|
}
|
|
}
|
|
|
|
drwav_uint64 drwav_read_s16__pcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut)
|
|
{
|
|
// Fast path.
|
|
if (pWav->bytesPerSample == 2) {
|
|
return drwav_read(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
unsigned char sampleData[4096];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav__pcm_to_s16(pBufferOut, sampleData, (size_t)samplesRead, pWav->bytesPerSample);
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_s16__ieee(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut)
|
|
{
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
unsigned char sampleData[4096];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav__ieee_to_s16(pBufferOut, sampleData, (size_t)samplesRead, pWav->bytesPerSample);
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_s16__alaw(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut)
|
|
{
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
unsigned char sampleData[4096];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav_alaw_to_s16(pBufferOut, sampleData, (size_t)samplesRead);
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_s16__mulaw(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut)
|
|
{
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
unsigned char sampleData[4096];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav_mulaw_to_s16(pBufferOut, sampleData, (size_t)samplesRead);
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_s16(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut)
|
|
{
|
|
if (pWav == NULL || samplesToRead == 0 || pBufferOut == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
// Don't try to read more samples than can potentially fit in the output buffer.
|
|
if (samplesToRead * sizeof(drwav_int16) > SIZE_MAX) {
|
|
samplesToRead = SIZE_MAX / sizeof(drwav_int16);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
|
|
return drwav_read_s16__pcm(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
|
|
return drwav_read_s16__msadpcm(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
|
|
return drwav_read_s16__ieee(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
|
|
return drwav_read_s16__alaw(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
|
|
return drwav_read_s16__mulaw(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
|
|
return drwav_read_s16__ima(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
|
|
{
|
|
int r;
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
int x = pIn[i];
|
|
r = x - 128;
|
|
r = r << 8;
|
|
pOut[i] = (short)r;
|
|
}
|
|
}
|
|
|
|
void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
|
|
{
|
|
int r;
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
int x = ((int)(((unsigned int)(((unsigned char*)pIn)[i*3+0]) << 8) | ((unsigned int)(((unsigned char*)pIn)[i*3+1]) << 16) | ((unsigned int)(((unsigned char*)pIn)[i*3+2])) << 24)) >> 8;
|
|
r = x >> 8;
|
|
pOut[i] = (short)r;
|
|
}
|
|
}
|
|
|
|
void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount)
|
|
{
|
|
int r;
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
int x = pIn[i];
|
|
r = x >> 16;
|
|
pOut[i] = (short)r;
|
|
}
|
|
}
|
|
|
|
void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount)
|
|
{
|
|
int r;
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
float x = pIn[i];
|
|
float c;
|
|
c = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
|
|
c = c + 1;
|
|
r = (int)(c * 32767.5f);
|
|
r = r - 32768;
|
|
pOut[i] = (short)r;
|
|
}
|
|
}
|
|
|
|
void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount)
|
|
{
|
|
int r;
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
double x = pIn[i];
|
|
double c;
|
|
c = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
|
|
c = c + 1;
|
|
r = (int)(c * 32767.5);
|
|
r = r - 32768;
|
|
pOut[i] = (short)r;
|
|
}
|
|
}
|
|
|
|
void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
|
|
{
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
pOut[i] = drwav__alaw_to_s16(pIn[i]);
|
|
}
|
|
}
|
|
|
|
void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
|
|
{
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
pOut[i] = drwav__mulaw_to_s16(pIn[i]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void drwav__pcm_to_f32(float* pOut, const unsigned char* pIn, size_t sampleCount, unsigned short bytesPerSample)
|
|
{
|
|
// Special case for 8-bit sample data because it's treated as unsigned.
|
|
if (bytesPerSample == 1) {
|
|
drwav_u8_to_f32(pOut, pIn, sampleCount);
|
|
return;
|
|
}
|
|
|
|
// Slightly more optimal implementation for common formats.
|
|
if (bytesPerSample == 2) {
|
|
drwav_s16_to_f32(pOut, (const drwav_int16*)pIn, sampleCount);
|
|
return;
|
|
}
|
|
if (bytesPerSample == 3) {
|
|
drwav_s24_to_f32(pOut, pIn, sampleCount);
|
|
return;
|
|
}
|
|
if (bytesPerSample == 4) {
|
|
drwav_s32_to_f32(pOut, (const drwav_int32*)pIn, sampleCount);
|
|
return;
|
|
}
|
|
|
|
|
|
// Anything more than 64 bits per sample is not supported.
|
|
if (bytesPerSample > 8) {
|
|
drwav_zero_memory(pOut, sampleCount * sizeof(*pOut));
|
|
return;
|
|
}
|
|
|
|
|
|
// Generic, slow converter.
|
|
for (unsigned int i = 0; i < sampleCount; ++i) {
|
|
drwav_uint64 sample = 0;
|
|
unsigned int shift = (8 - bytesPerSample) * 8;
|
|
|
|
unsigned int j;
|
|
for (j = 0; j < bytesPerSample && j < 8; j += 1) {
|
|
sample |= (drwav_uint64)(pIn[j]) << shift;
|
|
shift += 8;
|
|
}
|
|
|
|
pIn += j;
|
|
*pOut++ = (float)((drwav_int64)sample / 9223372036854775807.0);
|
|
}
|
|
}
|
|
|
|
static void drwav__ieee_to_f32(float* pOut, const unsigned char* pIn, size_t sampleCount, unsigned short bytesPerSample)
|
|
{
|
|
if (bytesPerSample == 4) {
|
|
for (unsigned int i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = ((float*)pIn)[i];
|
|
}
|
|
return;
|
|
} else if (bytesPerSample == 8) {
|
|
drwav_f64_to_f32(pOut, (double*)pIn, sampleCount);
|
|
return;
|
|
} else {
|
|
// Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float.
|
|
drwav_zero_memory(pOut, sampleCount * sizeof(*pOut));
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
drwav_uint64 drwav_read_f32__pcm(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut)
|
|
{
|
|
if (pWav->bytesPerSample == 0) {
|
|
return 0;
|
|
}
|
|
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
unsigned char sampleData[4096];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav__pcm_to_f32(pBufferOut, sampleData, (size_t)samplesRead, pWav->bytesPerSample);
|
|
pBufferOut += samplesRead;
|
|
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_f32__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut)
|
|
{
|
|
// We're just going to borrow the implementation from the drwav_read_s16() since ADPCM is a little bit more complicated than other formats and I don't
|
|
// want to duplicate that code.
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
drwav_int16 samples16[2048];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read_s16(pWav, drwav_min(samplesToRead, 2048), samples16);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav_s16_to_f32(pBufferOut, samples16, (size_t)samplesRead); // <-- Safe cast because we're clamping to 2048.
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_f32__ima(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut)
|
|
{
|
|
// We're just going to borrow the implementation from the drwav_read_s16() since IMA-ADPCM is a little bit more complicated than other formats and I don't
|
|
// want to duplicate that code.
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
drwav_int16 samples16[2048];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read_s16(pWav, drwav_min(samplesToRead, 2048), samples16);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav_s16_to_f32(pBufferOut, samples16, (size_t)samplesRead); // <-- Safe cast because we're clamping to 2048.
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_f32__ieee(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut)
|
|
{
|
|
// Fast path.
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT && pWav->bytesPerSample == 4) {
|
|
return drwav_read(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->bytesPerSample == 0) {
|
|
return 0;
|
|
}
|
|
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
unsigned char sampleData[4096];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav__ieee_to_f32(pBufferOut, sampleData, (size_t)samplesRead, pWav->bytesPerSample);
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_f32__alaw(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut)
|
|
{
|
|
if (pWav->bytesPerSample == 0) {
|
|
return 0;
|
|
}
|
|
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
unsigned char sampleData[4096];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav_alaw_to_f32(pBufferOut, sampleData, (size_t)samplesRead);
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_f32__mulaw(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut)
|
|
{
|
|
if (pWav->bytesPerSample == 0) {
|
|
return 0;
|
|
}
|
|
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
unsigned char sampleData[4096];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav_mulaw_to_f32(pBufferOut, sampleData, (size_t)samplesRead);
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_f32(drwav* pWav, drwav_uint64 samplesToRead, float* pBufferOut)
|
|
{
|
|
if (pWav == NULL || samplesToRead == 0 || pBufferOut == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
// Don't try to read more samples than can potentially fit in the output buffer.
|
|
if (samplesToRead * sizeof(float) > SIZE_MAX) {
|
|
samplesToRead = SIZE_MAX / sizeof(float);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
|
|
return drwav_read_f32__pcm(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
|
|
return drwav_read_f32__msadpcm(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
|
|
return drwav_read_f32__ieee(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
|
|
return drwav_read_f32__alaw(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
|
|
return drwav_read_f32__mulaw(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
|
|
return drwav_read_f32__ima(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
#ifdef DR_WAV_LIBSNDFILE_COMPAT
|
|
// It appears libsndfile uses slightly different logic for the u8 -> f32 conversion to dr_wav, which in my opinion is incorrect. It appears
|
|
// libsndfile performs the conversion something like "f32 = (u8 / 256) * 2 - 1", however I think it should be "f32 = (u8 / 255) * 2 - 1" (note
|
|
// the divisor of 256 vs 255). I use libsndfile as a benchmark for testing, so I'm therefore leaving this block here just for my automated
|
|
// correctness testing. This is disabled by default.
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = (pIn[i] / 256.0f) * 2 - 1;
|
|
}
|
|
#else
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = (pIn[i] / 255.0f) * 2 - 1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = pIn[i] / 32768.0f;
|
|
}
|
|
}
|
|
|
|
void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
unsigned int s0 = pIn[i*3 + 0];
|
|
unsigned int s1 = pIn[i*3 + 1];
|
|
unsigned int s2 = pIn[i*3 + 2];
|
|
|
|
int sample32 = (int)((s0 << 8) | (s1 << 16) | (s2 << 24));
|
|
*pOut++ = (float)(sample32 / 2147483648.0);
|
|
}
|
|
}
|
|
|
|
void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = (float)(pIn[i] / 2147483648.0);
|
|
}
|
|
}
|
|
|
|
void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = (float)pIn[i];
|
|
}
|
|
}
|
|
|
|
void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = drwav__alaw_to_s16(pIn[i]) / 32768.0f;
|
|
}
|
|
}
|
|
|
|
void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = drwav__mulaw_to_s16(pIn[i]) / 32768.0f;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void drwav__pcm_to_s32(drwav_int32* pOut, const unsigned char* pIn, size_t totalSampleCount, unsigned short bytesPerSample)
|
|
{
|
|
// Special case for 8-bit sample data because it's treated as unsigned.
|
|
if (bytesPerSample == 1) {
|
|
drwav_u8_to_s32(pOut, pIn, totalSampleCount);
|
|
return;
|
|
}
|
|
|
|
// Slightly more optimal implementation for common formats.
|
|
if (bytesPerSample == 2) {
|
|
drwav_s16_to_s32(pOut, (const drwav_int16*)pIn, totalSampleCount);
|
|
return;
|
|
}
|
|
if (bytesPerSample == 3) {
|
|
drwav_s24_to_s32(pOut, pIn, totalSampleCount);
|
|
return;
|
|
}
|
|
if (bytesPerSample == 4) {
|
|
for (unsigned int i = 0; i < totalSampleCount; ++i) {
|
|
*pOut++ = ((drwav_int32*)pIn)[i];
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
// Anything more than 64 bits per sample is not supported.
|
|
if (bytesPerSample > 8) {
|
|
drwav_zero_memory(pOut, totalSampleCount * sizeof(*pOut));
|
|
return;
|
|
}
|
|
|
|
|
|
// Generic, slow converter.
|
|
for (unsigned int i = 0; i < totalSampleCount; ++i) {
|
|
drwav_uint64 sample = 0;
|
|
unsigned int shift = (8 - bytesPerSample) * 8;
|
|
|
|
unsigned int j;
|
|
for (j = 0; j < bytesPerSample && j < 8; j += 1) {
|
|
sample |= (drwav_uint64)(pIn[j]) << shift;
|
|
shift += 8;
|
|
}
|
|
|
|
pIn += j;
|
|
*pOut++ = (drwav_int32)((drwav_int64)sample >> 32);
|
|
}
|
|
}
|
|
|
|
static void drwav__ieee_to_s32(drwav_int32* pOut, const unsigned char* pIn, size_t totalSampleCount, unsigned short bytesPerSample)
|
|
{
|
|
if (bytesPerSample == 4) {
|
|
drwav_f32_to_s32(pOut, (float*)pIn, totalSampleCount);
|
|
return;
|
|
} else if (bytesPerSample == 8) {
|
|
drwav_f64_to_s32(pOut, (double*)pIn, totalSampleCount);
|
|
return;
|
|
} else {
|
|
// Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float.
|
|
drwav_zero_memory(pOut, totalSampleCount * sizeof(*pOut));
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
drwav_uint64 drwav_read_s32__pcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut)
|
|
{
|
|
// Fast path.
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bytesPerSample == 4) {
|
|
return drwav_read(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->bytesPerSample == 0) {
|
|
return 0;
|
|
}
|
|
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
unsigned char sampleData[4096];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav__pcm_to_s32(pBufferOut, sampleData, (size_t)samplesRead, pWav->bytesPerSample);
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_s32__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut)
|
|
{
|
|
// We're just going to borrow the implementation from the drwav_read_s16() since ADPCM is a little bit more complicated than other formats and I don't
|
|
// want to duplicate that code.
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
drwav_int16 samples16[2048];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read_s16(pWav, drwav_min(samplesToRead, 2048), samples16);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav_s16_to_s32(pBufferOut, samples16, (size_t)samplesRead); // <-- Safe cast because we're clamping to 2048.
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_s32__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut)
|
|
{
|
|
// We're just going to borrow the implementation from the drwav_read_s16() since IMA-ADPCM is a little bit more complicated than other formats and I don't
|
|
// want to duplicate that code.
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
drwav_int16 samples16[2048];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read_s16(pWav, drwav_min(samplesToRead, 2048), samples16);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav_s16_to_s32(pBufferOut, samples16, (size_t)samplesRead); // <-- Safe cast because we're clamping to 2048.
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_s32__ieee(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut)
|
|
{
|
|
if (pWav->bytesPerSample == 0) {
|
|
return 0;
|
|
}
|
|
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
unsigned char sampleData[4096];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav__ieee_to_s32(pBufferOut, sampleData, (size_t)samplesRead, pWav->bytesPerSample);
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_s32__alaw(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut)
|
|
{
|
|
if (pWav->bytesPerSample == 0) {
|
|
return 0;
|
|
}
|
|
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
unsigned char sampleData[4096];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav_alaw_to_s32(pBufferOut, sampleData, (size_t)samplesRead);
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_s32__mulaw(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut)
|
|
{
|
|
if (pWav->bytesPerSample == 0) {
|
|
return 0;
|
|
}
|
|
|
|
drwav_uint64 totalSamplesRead = 0;
|
|
unsigned char sampleData[4096];
|
|
while (samplesToRead > 0) {
|
|
drwav_uint64 samplesRead = drwav_read(pWav, drwav_min(samplesToRead, sizeof(sampleData)/pWav->bytesPerSample), sampleData);
|
|
if (samplesRead == 0) {
|
|
break;
|
|
}
|
|
|
|
drwav_mulaw_to_s32(pBufferOut, sampleData, (size_t)samplesRead);
|
|
|
|
pBufferOut += samplesRead;
|
|
samplesToRead -= samplesRead;
|
|
totalSamplesRead += samplesRead;
|
|
}
|
|
|
|
return totalSamplesRead;
|
|
}
|
|
|
|
drwav_uint64 drwav_read_s32(drwav* pWav, drwav_uint64 samplesToRead, drwav_int32* pBufferOut)
|
|
{
|
|
if (pWav == NULL || samplesToRead == 0 || pBufferOut == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
// Don't try to read more samples than can potentially fit in the output buffer.
|
|
if (samplesToRead * sizeof(drwav_int32) > SIZE_MAX) {
|
|
samplesToRead = SIZE_MAX / sizeof(drwav_int32);
|
|
}
|
|
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
|
|
return drwav_read_s32__pcm(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
|
|
return drwav_read_s32__msadpcm(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
|
|
return drwav_read_s32__ieee(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
|
|
return drwav_read_s32__alaw(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
|
|
return drwav_read_s32__mulaw(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
|
|
return drwav_read_s32__ima(pWav, samplesToRead, pBufferOut);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = ((int)pIn[i] - 128) << 24;
|
|
}
|
|
}
|
|
|
|
void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = pIn[i] << 16;
|
|
}
|
|
}
|
|
|
|
void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
unsigned int s0 = pIn[i*3 + 0];
|
|
unsigned int s1 = pIn[i*3 + 1];
|
|
unsigned int s2 = pIn[i*3 + 2];
|
|
|
|
drwav_int32 sample32 = (drwav_int32)((s0 << 8) | (s1 << 16) | (s2 << 24));
|
|
*pOut++ = sample32;
|
|
}
|
|
}
|
|
|
|
void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = (drwav_int32)(2147483648.0 * pIn[i]);
|
|
}
|
|
}
|
|
|
|
void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = (drwav_int32)(2147483648.0 * pIn[i]);
|
|
}
|
|
}
|
|
|
|
void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i = 0; i < sampleCount; ++i) {
|
|
*pOut++ = ((drwav_int32)drwav__alaw_to_s16(pIn[i])) << 16;
|
|
}
|
|
}
|
|
|
|
void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
|
|
{
|
|
if (pOut == NULL || pIn == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (size_t i= 0; i < sampleCount; ++i) {
|
|
*pOut++ = ((drwav_int32)drwav__mulaw_to_s16(pIn[i])) << 16;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
drwav_int16* drwav__read_and_close_s16(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount)
|
|
{
|
|
drwav_assert(pWav != NULL);
|
|
|
|
drwav_uint64 sampleDataSize = pWav->totalSampleCount * sizeof(drwav_int16);
|
|
if (sampleDataSize > SIZE_MAX) {
|
|
drwav_uninit(pWav);
|
|
return NULL; // File's too big.
|
|
}
|
|
|
|
drwav_int16* pSampleData = (drwav_int16*)DRWAV_MALLOC((size_t)sampleDataSize); // <-- Safe cast due to the check above.
|
|
if (pSampleData == NULL) {
|
|
drwav_uninit(pWav);
|
|
return NULL; // Failed to allocate memory.
|
|
}
|
|
|
|
drwav_uint64 samplesRead = drwav_read_s16(pWav, (size_t)pWav->totalSampleCount, pSampleData);
|
|
if (samplesRead != pWav->totalSampleCount) {
|
|
DRWAV_FREE(pSampleData);
|
|
drwav_uninit(pWav);
|
|
return NULL; // There was an error reading the samples.
|
|
}
|
|
|
|
drwav_uninit(pWav);
|
|
|
|
if (sampleRate) *sampleRate = pWav->sampleRate;
|
|
if (channels) *channels = pWav->channels;
|
|
if (totalSampleCount) *totalSampleCount = pWav->totalSampleCount;
|
|
return pSampleData;
|
|
}
|
|
|
|
float* drwav__read_and_close_f32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount)
|
|
{
|
|
drwav_assert(pWav != NULL);
|
|
|
|
drwav_uint64 sampleDataSize = pWav->totalSampleCount * sizeof(float);
|
|
if (sampleDataSize > SIZE_MAX) {
|
|
drwav_uninit(pWav);
|
|
return NULL; // File's too big.
|
|
}
|
|
|
|
float* pSampleData = (float*)DRWAV_MALLOC((size_t)sampleDataSize); // <-- Safe cast due to the check above.
|
|
if (pSampleData == NULL) {
|
|
drwav_uninit(pWav);
|
|
return NULL; // Failed to allocate memory.
|
|
}
|
|
|
|
drwav_uint64 samplesRead = drwav_read_f32(pWav, (size_t)pWav->totalSampleCount, pSampleData);
|
|
if (samplesRead != pWav->totalSampleCount) {
|
|
DRWAV_FREE(pSampleData);
|
|
drwav_uninit(pWav);
|
|
return NULL; // There was an error reading the samples.
|
|
}
|
|
|
|
drwav_uninit(pWav);
|
|
|
|
if (sampleRate) *sampleRate = pWav->sampleRate;
|
|
if (channels) *channels = pWav->channels;
|
|
if (totalSampleCount) *totalSampleCount = pWav->totalSampleCount;
|
|
return pSampleData;
|
|
}
|
|
|
|
drwav_int32* drwav__read_and_close_s32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount)
|
|
{
|
|
drwav_assert(pWav != NULL);
|
|
|
|
drwav_uint64 sampleDataSize = pWav->totalSampleCount * sizeof(drwav_int32);
|
|
if (sampleDataSize > SIZE_MAX) {
|
|
drwav_uninit(pWav);
|
|
return NULL; // File's too big.
|
|
}
|
|
|
|
drwav_int32* pSampleData = (drwav_int32*)DRWAV_MALLOC((size_t)sampleDataSize); // <-- Safe cast due to the check above.
|
|
if (pSampleData == NULL) {
|
|
drwav_uninit(pWav);
|
|
return NULL; // Failed to allocate memory.
|
|
}
|
|
|
|
drwav_uint64 samplesRead = drwav_read_s32(pWav, (size_t)pWav->totalSampleCount, pSampleData);
|
|
if (samplesRead != pWav->totalSampleCount) {
|
|
DRWAV_FREE(pSampleData);
|
|
drwav_uninit(pWav);
|
|
return NULL; // There was an error reading the samples.
|
|
}
|
|
|
|
drwav_uninit(pWav);
|
|
|
|
if (sampleRate) *sampleRate = pWav->sampleRate;
|
|
if (channels) *channels = pWav->channels;
|
|
if (totalSampleCount) *totalSampleCount = pWav->totalSampleCount;
|
|
return pSampleData;
|
|
}
|
|
|
|
|
|
drwav_int16* drwav_open_and_read_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount)
|
|
{
|
|
if (sampleRate) *sampleRate = 0;
|
|
if (channels) *channels = 0;
|
|
if (totalSampleCount) *totalSampleCount = 0;
|
|
|
|
drwav wav;
|
|
if (!drwav_init(&wav, onRead, onSeek, pUserData)) {
|
|
return NULL;
|
|
}
|
|
|
|
return drwav__read_and_close_s16(&wav, channels, sampleRate, totalSampleCount);
|
|
}
|
|
|
|
float* drwav_open_and_read_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount)
|
|
{
|
|
if (sampleRate) *sampleRate = 0;
|
|
if (channels) *channels = 0;
|
|
if (totalSampleCount) *totalSampleCount = 0;
|
|
|
|
drwav wav;
|
|
if (!drwav_init(&wav, onRead, onSeek, pUserData)) {
|
|
return NULL;
|
|
}
|
|
|
|
return drwav__read_and_close_f32(&wav, channels, sampleRate, totalSampleCount);
|
|
}
|
|
|
|
drwav_int32* drwav_open_and_read_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount)
|
|
{
|
|
if (sampleRate) *sampleRate = 0;
|
|
if (channels) *channels = 0;
|
|
if (totalSampleCount) *totalSampleCount = 0;
|
|
|
|
drwav wav;
|
|
if (!drwav_init(&wav, onRead, onSeek, pUserData)) {
|
|
return NULL;
|
|
}
|
|
|
|
return drwav__read_and_close_s32(&wav, channels, sampleRate, totalSampleCount);
|
|
}
|
|
|
|
#ifndef DR_WAV_NO_STDIO
|
|
drwav_int16* drwav_open_and_read_file_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount)
|
|
{
|
|
if (sampleRate) *sampleRate = 0;
|
|
if (channels) *channels = 0;
|
|
if (totalSampleCount) *totalSampleCount = 0;
|
|
|
|
drwav wav;
|
|
if (!drwav_init_file(&wav, filename)) {
|
|
return NULL;
|
|
}
|
|
|
|
return drwav__read_and_close_s16(&wav, channels, sampleRate, totalSampleCount);
|
|
}
|
|
|
|
float* drwav_open_and_read_file_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount)
|
|
{
|
|
if (sampleRate) *sampleRate = 0;
|
|
if (channels) *channels = 0;
|
|
if (totalSampleCount) *totalSampleCount = 0;
|
|
|
|
drwav wav;
|
|
if (!drwav_init_file(&wav, filename)) {
|
|
return NULL;
|
|
}
|
|
|
|
return drwav__read_and_close_f32(&wav, channels, sampleRate, totalSampleCount);
|
|
}
|
|
|
|
drwav_int32* drwav_open_and_read_file_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount)
|
|
{
|
|
if (sampleRate) *sampleRate = 0;
|
|
if (channels) *channels = 0;
|
|
if (totalSampleCount) *totalSampleCount = 0;
|
|
|
|
drwav wav;
|
|
if (!drwav_init_file(&wav, filename)) {
|
|
return NULL;
|
|
}
|
|
|
|
return drwav__read_and_close_s32(&wav, channels, sampleRate, totalSampleCount);
|
|
}
|
|
#endif
|
|
|
|
drwav_int16* drwav_open_and_read_memory_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount)
|
|
{
|
|
if (sampleRate) *sampleRate = 0;
|
|
if (channels) *channels = 0;
|
|
if (totalSampleCount) *totalSampleCount = 0;
|
|
|
|
drwav wav;
|
|
if (!drwav_init_memory(&wav, data, dataSize)) {
|
|
return NULL;
|
|
}
|
|
|
|
return drwav__read_and_close_s16(&wav, channels, sampleRate, totalSampleCount);
|
|
}
|
|
|
|
float* drwav_open_and_read_memory_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount)
|
|
{
|
|
if (sampleRate) *sampleRate = 0;
|
|
if (channels) *channels = 0;
|
|
if (totalSampleCount) *totalSampleCount = 0;
|
|
|
|
drwav wav;
|
|
if (!drwav_init_memory(&wav, data, dataSize)) {
|
|
return NULL;
|
|
}
|
|
|
|
return drwav__read_and_close_f32(&wav, channels, sampleRate, totalSampleCount);
|
|
}
|
|
|
|
drwav_int32* drwav_open_and_read_memory_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalSampleCount)
|
|
{
|
|
if (sampleRate) *sampleRate = 0;
|
|
if (channels) *channels = 0;
|
|
if (totalSampleCount) *totalSampleCount = 0;
|
|
|
|
drwav wav;
|
|
if (!drwav_init_memory(&wav, data, dataSize)) {
|
|
return NULL;
|
|
}
|
|
|
|
return drwav__read_and_close_s32(&wav, channels, sampleRate, totalSampleCount);
|
|
}
|
|
#endif //DR_WAV_NO_CONVERSION_API
|
|
|
|
|
|
void drwav_free(void* pDataReturnedByOpenAndRead)
|
|
{
|
|
DRWAV_FREE(pDataReturnedByOpenAndRead);
|
|
}
|
|
|
|
#endif //DR_WAV_IMPLEMENTATION
|
|
|
|
|
|
// REVISION HISTORY
|
|
//
|
|
// v0.8.1 - 2018-06-29
|
|
// - Add support for sequential writing APIs.
|
|
// - Disable seeking in write mode.
|
|
// - Fix bugs with Wave64.
|
|
// - Fix typos.
|
|
//
|
|
// v0.8 - 2018-04-27
|
|
// - Bug fix.
|
|
// - Start using major.minor.revision versioning.
|
|
//
|
|
// v0.7f - 2018-02-05
|
|
// - Restrict ADPCM formats to a maximum of 2 channels.
|
|
//
|
|
// v0.7e - 2018-02-02
|
|
// - Fix a crash.
|
|
//
|
|
// v0.7d - 2018-02-01
|
|
// - Fix a crash.
|
|
//
|
|
// v0.7c - 2018-02-01
|
|
// - Set drwav.bytesPerSample to 0 for all compressed formats.
|
|
// - Fix a crash when reading 16-bit floating point WAV files. In this case dr_wav will output silence for
|
|
// all format conversion reading APIs (*_s16, *_s32, *_f32 APIs).
|
|
// - Fix some divide-by-zero errors.
|
|
//
|
|
// v0.7b - 2018-01-22
|
|
// - Fix errors with seeking of compressed formats.
|
|
// - Fix compilation error when DR_WAV_NO_CONVERSION_API
|
|
//
|
|
// v0.7a - 2017-11-17
|
|
// - Fix some GCC warnings.
|
|
//
|
|
// v0.7 - 2017-11-04
|
|
// - Add writing APIs.
|
|
//
|
|
// v0.6 - 2017-08-16
|
|
// - API CHANGE: Rename dr_* types to drwav_*.
|
|
// - Add support for custom implementations of malloc(), realloc(), etc.
|
|
// - Add support for Microsoft ADPCM.
|
|
// - Add support for IMA ADPCM (DVI, format code 0x11).
|
|
// - Optimizations to drwav_read_s16().
|
|
// - Bug fixes.
|
|
//
|
|
// v0.5g - 2017-07-16
|
|
// - Change underlying type for booleans to unsigned.
|
|
//
|
|
// v0.5f - 2017-04-04
|
|
// - Fix a minor bug with drwav_open_and_read_s16() and family.
|
|
//
|
|
// v0.5e - 2016-12-29
|
|
// - Added support for reading samples as signed 16-bit integers. Use the _s16() family of APIs for this.
|
|
// - Minor fixes to documentation.
|
|
//
|
|
// v0.5d - 2016-12-28
|
|
// - Use drwav_int*/drwav_uint* sized types to improve compiler support.
|
|
//
|
|
// v0.5c - 2016-11-11
|
|
// - Properly handle JUNK chunks that come before the FMT chunk.
|
|
//
|
|
// v0.5b - 2016-10-23
|
|
// - A minor change to drwav_bool8 and drwav_bool32 types.
|
|
//
|
|
// v0.5a - 2016-10-11
|
|
// - Fixed a bug with drwav_open_and_read() and family due to incorrect argument ordering.
|
|
// - Improve A-law and mu-law efficiency.
|
|
//
|
|
// v0.5 - 2016-09-29
|
|
// - API CHANGE. Swap the order of "channels" and "sampleRate" parameters in drwav_open_and_read*(). Rationale for this is to
|
|
// keep it consistent with dr_audio and dr_flac.
|
|
//
|
|
// v0.4b - 2016-09-18
|
|
// - Fixed a typo in documentation.
|
|
//
|
|
// v0.4a - 2016-09-18
|
|
// - Fixed a typo.
|
|
// - Change date format to ISO 8601 (YYYY-MM-DD)
|
|
//
|
|
// v0.4 - 2016-07-13
|
|
// - API CHANGE. Make onSeek consistent with dr_flac.
|
|
// - API CHANGE. Rename drwav_seek() to drwav_seek_to_sample() for clarity and consistency with dr_flac.
|
|
// - Added support for Sony Wave64.
|
|
//
|
|
// v0.3a - 2016-05-28
|
|
// - API CHANGE. Return drwav_bool32 instead of int in onSeek callback.
|
|
// - Fixed a memory leak.
|
|
//
|
|
// v0.3 - 2016-05-22
|
|
// - Lots of API changes for consistency.
|
|
//
|
|
// v0.2a - 2016-05-16
|
|
// - Fixed Linux/GCC build.
|
|
//
|
|
// v0.2 - 2016-05-11
|
|
// - Added support for reading data as signed 32-bit PCM for consistency with dr_flac.
|
|
//
|
|
// v0.1a - 2016-05-07
|
|
// - Fixed a bug in drwav_open_file() where the file handle would not be closed if the loader failed to initialize.
|
|
//
|
|
// v0.1 - 2016-05-04
|
|
// - Initial versioned release.
|
|
|
|
|
|
/*
|
|
This is free and unencumbered software released into the public domain.
|
|
|
|
Anyone is free to copy, modify, publish, use, compile, sell, or
|
|
distribute this software, either in source code form or as a compiled
|
|
binary, for any purpose, commercial or non-commercial, and by any
|
|
means.
|
|
|
|
In jurisdictions that recognize copyright laws, the author or authors
|
|
of this software dedicate any and all copyright interest in the
|
|
software to the public domain. We make this dedication for the benefit
|
|
of the public at large and to the detriment of our heirs and
|
|
successors. We intend this dedication to be an overt act of
|
|
relinquishment in perpetuity of all present and future rights to this
|
|
software under copyright law.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
For more information, please refer to <http://unlicense.org/>
|
|
*/
|