raylib/src/models.c
2017-04-23 12:30:36 +02:00

2095 lines
85 KiB
C

/**********************************************************************************************
*
* raylib.models - Basic functions to deal with 3d shapes and 3d models
*
* CONFIGURATION:
*
* #define SUPPORT_FILEFORMAT_OBJ
* Selected desired fileformats to be supported for loading.
*
* #define SUPPORT_FILEFORMAT_MTL
* Selected desired fileformats to be supported for loading.
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2014-2017 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
// Default configuration flags (supported features)
//-------------------------------------------------
#define SUPPORT_FILEFORMAT_OBJ
#define SUPPORT_FILEFORMAT_MTL
//-------------------------------------------------
#include "raylib.h"
#if defined(PLATFORM_ANDROID)
#include "utils.h" // Android fopen function map
#endif
#include <stdio.h> // Required for: FILE, fopen(), fclose(), fscanf(), feof(), rewind(), fgets()
#include <stdlib.h> // Required for: malloc(), free()
#include <string.h> // Required for: strcmp()
#include <math.h> // Required for: sin(), cos()
#include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
#if defined(SUPPORT_FILEFORMAT_OBJ)
static Mesh LoadOBJ(const char *fileName); // Load OBJ mesh data
#endif
#if defined(SUPPORT_FILEFORMAT_MTL)
static Material LoadMTL(const char *fileName); // Load MTL material data
#endif
static Mesh GenMeshHeightmap(Image image, Vector3 size);
static Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize);
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Draw a line in 3D world space
void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color)
{
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex3f(startPos.x, startPos.y, startPos.z);
rlVertex3f(endPos.x, endPos.y, endPos.z);
rlEnd();
}
// Draw a circle in 3D world space
void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color)
{
rlPushMatrix();
rlTranslatef(center.x, center.y, center.z);
rlRotatef(rotationAngle, rotationAxis.x, rotationAxis.y, rotationAxis.z);
rlBegin(RL_LINES);
for (int i = 0; i < 360; i += 10)
{
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex3f(sinf(DEG2RAD*i)*radius, cosf(DEG2RAD*i)*radius, 0.0f);
rlVertex3f(sinf(DEG2RAD*(i + 10))*radius, cosf(DEG2RAD*(i + 10))*radius, 0.0f);
}
rlEnd();
rlPopMatrix();
}
// Draw cube
// NOTE: Cube position is the center position
void DrawCube(Vector3 position, float width, float height, float length, Color color)
{
float x = 0.0f;
float y = 0.0f;
float z = 0.0f;
rlPushMatrix();
// NOTE: Be careful! Function order matters (rotate -> scale -> translate)
rlTranslatef(position.x, position.y, position.z);
//rlScalef(2.0f, 2.0f, 2.0f);
//rlRotatef(45, 0, 1, 0);
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front Face -----------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
// Back Face ------------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
// Top Face -------------------------------------------------------
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x-width/2, y+height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y+height/2, z+length/2); // Bottom Right
// Bottom Face ----------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left
// Right face -----------------------------------------------------
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Left
// Left Face ------------------------------------------------------
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Right
rlEnd();
rlPopMatrix();
}
// Draw cube (Vector version)
void DrawCubeV(Vector3 position, Vector3 size, Color color)
{
DrawCube(position, size.x, size.y, size.z, color);
}
// Draw cube wires
void DrawCubeWires(Vector3 position, float width, float height, float length, Color color)
{
float x = 0.0f;
float y = 0.0f;
float z = 0.0f;
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
//rlRotatef(45, 0, 1, 0);
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front Face -----------------------------------------------------
// Bottom Line
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
// Left Line
rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
// Top Line
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
// Right Line
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
// Back Face ------------------------------------------------------
// Bottom Line
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
// Left Line
rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
// Top Line
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
// Right Line
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
// Top Face -------------------------------------------------------
// Left Line
rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left Front
rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left Back
// Right Line
rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right Front
rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right Back
// Bottom Face ---------------------------------------------------
// Left Line
rlVertex3f(x-width/2, y-height/2, z+length/2); // Top Left Front
rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left Back
// Right Line
rlVertex3f(x+width/2, y-height/2, z+length/2); // Top Right Front
rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right Back
rlEnd();
rlPopMatrix();
}
// Draw cube
// NOTE: Cube position is the center position
void DrawCubeTexture(Texture2D texture, Vector3 position, float width, float height, float length, Color color)
{
float x = position.x;
float y = position.y;
float z = position.z;
rlEnableTexture(texture.id);
//rlPushMatrix();
// NOTE: Be careful! Function order matters (scale, translate, rotate)
//rlScalef(2.0f, 2.0f, 2.0f);
//rlTranslatef(2.0f, 0.0f, 0.0f);
//rlRotatef(45, 0, 1, 0);
rlBegin(RL_QUADS);
rlColor4ub(color.r, color.g, color.b, color.a);
// Front Face
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal Pointing Towards Viewer
rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left Of The Texture and Quad
rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right Of The Texture and Quad
rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right Of The Texture and Quad
rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left Of The Texture and Quad
// Back Face
rlNormal3f(0.0f, 0.0f,-1.0f); // Normal Pointing Away From Viewer
rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Right Of The Texture and Quad
rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Right Of The Texture and Quad
rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Left Of The Texture and Quad
rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Left Of The Texture and Quad
// Top Face
rlNormal3f(0.0f, 1.0f, 0.0f); // Normal Pointing Up
rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left Of The Texture and Quad
rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x-width/2, y+height/2, z+length/2); // Bottom Left Of The Texture and Quad
rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x+width/2, y+height/2, z+length/2); // Bottom Right Of The Texture and Quad
rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right Of The Texture and Quad
// Bottom Face
rlNormal3f(0.0f,-1.0f, 0.0f); // Normal Pointing Down
rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Right Of The Texture and Quad
rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Left Of The Texture and Quad
rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Left Of The Texture and Quad
rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Right Of The Texture and Quad
// Right face
rlNormal3f(1.0f, 0.0f, 0.0f); // Normal Pointing Right
rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right Of The Texture and Quad
rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right Of The Texture and Quad
rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Left Of The Texture and Quad
rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Left Of The Texture and Quad
// Left Face
rlNormal3f(-1.0f, 0.0f, 0.0f); // Normal Pointing Left
rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left Of The Texture and Quad
rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Right Of The Texture and Quad
rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Right Of The Texture and Quad
rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left Of The Texture and Quad
rlEnd();
//rlPopMatrix();
rlDisableTexture();
}
// Draw sphere
void DrawSphere(Vector3 centerPos, float radius, Color color)
{
DrawSphereEx(centerPos, radius, 16, 16, color);
}
// Draw sphere with extended parameters
void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color)
{
rlPushMatrix();
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
rlScalef(radius, radius, radius);
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
for (int i = 0; i < (rings + 2); i++)
{
for (int j = 0; j < slices; j++)
{
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i)))*sinf(DEG2RAD*((j+1)*360/slices)),
sinf(DEG2RAD*(270+(180/(rings + 1))*(i))),
cosf(DEG2RAD*(270+(180/(rings + 1))*(i)))*cosf(DEG2RAD*((j+1)*360/slices)));
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
}
}
rlEnd();
rlPopMatrix();
}
// Draw sphere wires
void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color)
{
rlPushMatrix();
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
rlScalef(radius, radius, radius);
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
for (int i = 0; i < (rings + 2); i++)
{
for (int j = 0; j < slices; j++)
{
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
}
}
rlEnd();
rlPopMatrix();
}
// Draw a cylinder
// NOTE: It could be also used for pyramid and cone
void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
{
if (sides < 3) sides = 3;
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
if (radiusTop > 0)
{
// Draw Body -------------------------------------------------------------------------------------
for (int i = 0; i < 360; i += 360/sides)
{
rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left
rlVertex3f(sinf(DEG2RAD*(i+360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i+360/sides))*radiusBottom); //Bottom Right
rlVertex3f(sinf(DEG2RAD*(i+360/sides))*radiusTop, height, cosf(DEG2RAD*(i+360/sides))*radiusTop); //Top Right
rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); //Top Left
rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left
rlVertex3f(sinf(DEG2RAD*(i+360/sides))*radiusTop, height, cosf(DEG2RAD*(i+360/sides))*radiusTop); //Top Right
}
// Draw Cap --------------------------------------------------------------------------------------
for (int i = 0; i < 360; i += 360/sides)
{
rlVertex3f(0, height, 0);
rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
rlVertex3f(sinf(DEG2RAD*(i+360/sides))*radiusTop, height, cosf(DEG2RAD*(i+360/sides))*radiusTop);
}
}
else
{
// Draw Cone -------------------------------------------------------------------------------------
for (int i = 0; i < 360; i += 360/sides)
{
rlVertex3f(0, height, 0);
rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
rlVertex3f(sinf(DEG2RAD*(i+360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i+360/sides))*radiusBottom);
}
}
// Draw Base -----------------------------------------------------------------------------------------
for (int i = 0; i < 360; i += 360/sides)
{
rlVertex3f(0, 0, 0);
rlVertex3f(sinf(DEG2RAD*(i+360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i+360/sides))*radiusBottom);
rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
}
rlEnd();
rlPopMatrix();
}
// Draw a wired cylinder
// NOTE: It could be also used for pyramid and cone
void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
{
if (sides < 3) sides = 3;
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
for (int i = 0; i < 360; i += 360/sides)
{
rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
rlVertex3f(sinf(DEG2RAD*(i+360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i+360/sides))*radiusBottom);
rlVertex3f(sinf(DEG2RAD*(i+360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i+360/sides))*radiusBottom);
rlVertex3f(sinf(DEG2RAD*(i+360/sides))*radiusTop, height, cosf(DEG2RAD*(i+360/sides))*radiusTop);
rlVertex3f(sinf(DEG2RAD*(i+360/sides))*radiusTop, height, cosf(DEG2RAD*(i+360/sides))*radiusTop);
rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
}
rlEnd();
rlPopMatrix();
}
// Draw a plane
void DrawPlane(Vector3 centerPos, Vector2 size, Color color)
{
// NOTE: Plane is always created on XZ ground
rlPushMatrix();
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
rlScalef(size.x, 1.0f, size.y);
rlBegin(RL_TRIANGLES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlNormal3f(0.0f, 1.0f, 0.0f);
rlVertex3f(0.5f, 0.0f, -0.5f);
rlVertex3f(-0.5f, 0.0f, -0.5f);
rlVertex3f(-0.5f, 0.0f, 0.5f);
rlVertex3f(-0.5f, 0.0f, 0.5f);
rlVertex3f(0.5f, 0.0f, 0.5f);
rlVertex3f(0.5f, 0.0f, -0.5f);
rlEnd();
rlPopMatrix();
}
// Draw a ray line
void DrawRay(Ray ray, Color color)
{
float scale = 10000;
rlBegin(RL_LINES);
rlColor4ub(color.r, color.g, color.b, color.a);
rlColor4ub(color.r, color.g, color.b, color.a);
rlVertex3f(ray.position.x, ray.position.y, ray.position.z);
rlVertex3f(ray.position.x + ray.direction.x*scale, ray.position.y + ray.direction.y*scale, ray.position.z + ray.direction.z*scale);
rlEnd();
}
// Draw a grid centered at (0, 0, 0)
void DrawGrid(int slices, float spacing)
{
int halfSlices = slices/2;
rlBegin(RL_LINES);
for (int i = -halfSlices; i <= halfSlices; i++)
{
if (i == 0)
{
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
rlColor3f(0.5f, 0.5f, 0.5f);
}
else
{
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
rlColor3f(0.75f, 0.75f, 0.75f);
}
rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing);
rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing);
rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing);
rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing);
}
rlEnd();
}
// Draw gizmo
void DrawGizmo(Vector3 position)
{
// NOTE: RGB = XYZ
float length = 1.0f;
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
//rlRotatef(rotation, 0, 1, 0);
rlScalef(length, length, length);
rlBegin(RL_LINES);
rlColor3f(1.0f, 0.0f, 0.0f); rlVertex3f(0.0f, 0.0f, 0.0f);
rlColor3f(1.0f, 0.0f, 0.0f); rlVertex3f(1.0f, 0.0f, 0.0f);
rlColor3f(0.0f, 1.0f, 0.0f); rlVertex3f(0.0f, 0.0f, 0.0f);
rlColor3f(0.0f, 1.0f, 0.0f); rlVertex3f(0.0f, 1.0f, 0.0f);
rlColor3f(0.0f, 0.0f, 1.0f); rlVertex3f(0.0f, 0.0f, 0.0f);
rlColor3f(0.0f, 0.0f, 1.0f); rlVertex3f(0.0f, 0.0f, 1.0f);
rlEnd();
rlPopMatrix();
}
// Load mesh from file
Mesh LoadMesh(const char *fileName)
{
Mesh mesh = { 0 };
#if defined(SUPPORT_FILEFORMAT_OBJ)
if (IsFileExtension(fileName, ".obj")) mesh = LoadOBJ(fileName);
#else
TraceLog(WARNING, "[%s] Mesh fileformat not supported, it can't be loaded", fileName);
#endif
if (mesh.vertexCount == 0) TraceLog(WARNING, "Mesh could not be loaded");
else rlglLoadMesh(&mesh, false); // Upload vertex data to GPU (static mesh)
// TODO: Initialize default mesh data in case loading fails, maybe a cube?
return mesh;
}
// Load mesh from vertex data
// NOTE: All vertex data arrays must be same size: vertexCount
Mesh LoadMeshEx(int vertexCount, float *vData, float *vtData, float *vnData, Color *cData)
{
Mesh mesh = { 0 };
mesh.vertexCount = vertexCount;
mesh.triangleCount = vertexCount/3;
mesh.vertices = vData;
mesh.texcoords = vtData;
mesh.texcoords2 = NULL;
mesh.normals = vnData;
mesh.tangents = NULL;
mesh.colors = (unsigned char *)cData;
mesh.indices = NULL;
rlglLoadMesh(&mesh, false); // Upload vertex data to GPU (static mesh)
return mesh;
}
// Load model from file
Model LoadModel(const char *fileName)
{
Model model = { 0 };
model.mesh = LoadMesh(fileName);
model.transform = MatrixIdentity();
model.material = LoadDefaultMaterial();
return model;
}
// Load model from mesh data
Model LoadModelFromMesh(Mesh data, bool dynamic)
{
Model model = { 0 };
model.mesh = data;
rlglLoadMesh(&model.mesh, dynamic); // Upload vertex data to GPU
model.transform = MatrixIdentity();
model.material = LoadDefaultMaterial();
return model;
}
// Load heightmap model from image data
// NOTE: model map size is defined in generic units
Model LoadHeightmap(Image heightmap, Vector3 size)
{
Model model = { 0 };
model.mesh = GenMeshHeightmap(heightmap, size);
rlglLoadMesh(&model.mesh, false); // Upload vertex data to GPU (static model)
model.transform = MatrixIdentity();
model.material = LoadDefaultMaterial();
return model;
}
// Load cubes-based map model from image data
Model LoadCubicmap(Image cubicmap)
{
Model model = { 0 };
model.mesh = GenMeshCubicmap(cubicmap, (Vector3){ 1.0f, 1.5f, 1.0f });
rlglLoadMesh(&model.mesh, false); // Upload vertex data to GPU (static model)
model.transform = MatrixIdentity();
model.material = LoadDefaultMaterial();
return model;
}
// Unload mesh from memory (RAM and/or VRAM)
void UnloadMesh(Mesh *mesh)
{
rlglUnloadMesh(mesh);
}
// Unload model from memory (RAM and/or VRAM)
void UnloadModel(Model model)
{
UnloadMesh(&model.mesh);
UnloadMaterial(model.material);
TraceLog(INFO, "Unloaded model data (mesh and material) from RAM and VRAM");
}
// Load material data (from file)
Material LoadMaterial(const char *fileName)
{
Material material = { 0 };
#if defined(SUPPORT_FILEFORMAT_MTL)
if (IsFileExtension(fileName, ".mtl")) material = LoadMTL(fileName);
#else
TraceLog(WARNING, "[%s] Material fileformat not supported, it can't be loaded", fileName);
#endif
return material;
}
// Load default material (uses default models shader)
Material LoadDefaultMaterial(void)
{
Material material = { 0 };
material.shader = GetDefaultShader();
material.texDiffuse = GetDefaultTexture(); // White texture (1x1 pixel)
//material.texNormal; // NOTE: By default, not set
//material.texSpecular; // NOTE: By default, not set
material.colDiffuse = WHITE; // Diffuse color
material.colAmbient = WHITE; // Ambient color
material.colSpecular = WHITE; // Specular color
material.glossiness = 100.0f; // Glossiness level
return material;
}
// Unload material from memory
void UnloadMaterial(Material material)
{
rlDeleteTextures(material.texDiffuse.id);
rlDeleteTextures(material.texNormal.id);
rlDeleteTextures(material.texSpecular.id);
}
// Generate a mesh from heightmap
static Mesh GenMeshHeightmap(Image heightmap, Vector3 size)
{
#define GRAY_VALUE(c) ((c.r+c.g+c.b)/3)
Mesh mesh = { 0 };
int mapX = heightmap.width;
int mapZ = heightmap.height;
Color *pixels = GetImageData(heightmap);
// NOTE: One vertex per pixel
int triangleCount = (mapX-1)*(mapZ-1)*2; // One quad every four pixels
mesh.vertexCount = triangleCount*3;
mesh.vertices = (float *)malloc(mesh.vertexCount*3*sizeof(float));
mesh.normals = (float *)malloc(mesh.vertexCount*3*sizeof(float));
mesh.texcoords = (float *)malloc(mesh.vertexCount*2*sizeof(float));
mesh.colors = NULL;
int vCounter = 0; // Used to count vertices float by float
int tcCounter = 0; // Used to count texcoords float by float
int nCounter = 0; // Used to count normals float by float
int trisCounter = 0;
Vector3 scaleFactor = { size.x/mapX, size.y/255.0f, size.z/mapZ };
for (int z = 0; z < mapZ-1; z++)
{
for (int x = 0; x < mapX-1; x++)
{
// Fill vertices array with data
//----------------------------------------------------------
// one triangle - 3 vertex
mesh.vertices[vCounter] = (float)x*scaleFactor.x;
mesh.vertices[vCounter + 1] = (float)GRAY_VALUE(pixels[x + z*mapX])*scaleFactor.y;
mesh.vertices[vCounter + 2] = (float)z*scaleFactor.z;
mesh.vertices[vCounter + 3] = (float)x*scaleFactor.x;
mesh.vertices[vCounter + 4] = (float)GRAY_VALUE(pixels[x + (z + 1)*mapX])*scaleFactor.y;
mesh.vertices[vCounter + 5] = (float)(z + 1)*scaleFactor.z;
mesh.vertices[vCounter + 6] = (float)(x + 1)*scaleFactor.x;
mesh.vertices[vCounter + 7] = (float)GRAY_VALUE(pixels[(x + 1) + z*mapX])*scaleFactor.y;
mesh.vertices[vCounter + 8] = (float)z*scaleFactor.z;
// another triangle - 3 vertex
mesh.vertices[vCounter + 9] = mesh.vertices[vCounter + 6];
mesh.vertices[vCounter + 10] = mesh.vertices[vCounter + 7];
mesh.vertices[vCounter + 11] = mesh.vertices[vCounter + 8];
mesh.vertices[vCounter + 12] = mesh.vertices[vCounter + 3];
mesh.vertices[vCounter + 13] = mesh.vertices[vCounter + 4];
mesh.vertices[vCounter + 14] = mesh.vertices[vCounter + 5];
mesh.vertices[vCounter + 15] = (float)(x + 1)*scaleFactor.x;
mesh.vertices[vCounter + 16] = (float)GRAY_VALUE(pixels[(x + 1) + (z + 1)*mapX])*scaleFactor.y;
mesh.vertices[vCounter + 17] = (float)(z + 1)*scaleFactor.z;
vCounter += 18; // 6 vertex, 18 floats
// Fill texcoords array with data
//--------------------------------------------------------------
mesh.texcoords[tcCounter] = (float)x/(mapX - 1);
mesh.texcoords[tcCounter + 1] = (float)z/(mapZ - 1);
mesh.texcoords[tcCounter + 2] = (float)x/(mapX - 1);
mesh.texcoords[tcCounter + 3] = (float)(z + 1)/(mapZ - 1);
mesh.texcoords[tcCounter + 4] = (float)(x + 1)/(mapX - 1);
mesh.texcoords[tcCounter + 5] = (float)z/(mapZ - 1);
mesh.texcoords[tcCounter + 6] = mesh.texcoords[tcCounter + 4];
mesh.texcoords[tcCounter + 7] = mesh.texcoords[tcCounter + 5];
mesh.texcoords[tcCounter + 8] = mesh.texcoords[tcCounter + 2];
mesh.texcoords[tcCounter + 9] = mesh.texcoords[tcCounter + 3];
mesh.texcoords[tcCounter + 10] = (float)(x + 1)/(mapX - 1);
mesh.texcoords[tcCounter + 11] = (float)(z + 1)/(mapZ - 1);
tcCounter += 12; // 6 texcoords, 12 floats
// Fill normals array with data
//--------------------------------------------------------------
for (int i = 0; i < 18; i += 3)
{
mesh.normals[nCounter + i] = 0.0f;
mesh.normals[nCounter + i + 1] = 1.0f;
mesh.normals[nCounter + i + 2] = 0.0f;
}
// TODO: Calculate normals in an efficient way
nCounter += 18; // 6 vertex, 18 floats
trisCounter += 2;
}
}
free(pixels);
return mesh;
}
static Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize)
{
Mesh mesh = { 0 };
Color *cubicmapPixels = GetImageData(cubicmap);
int mapWidth = cubicmap.width;
int mapHeight = cubicmap.height;
// NOTE: Max possible number of triangles numCubes * (12 triangles by cube)
int maxTriangles = cubicmap.width*cubicmap.height*12;
int vCounter = 0; // Used to count vertices
int tcCounter = 0; // Used to count texcoords
int nCounter = 0; // Used to count normals
float w = cubeSize.x;
float h = cubeSize.z;
float h2 = cubeSize.y;
Vector3 *mapVertices = (Vector3 *)malloc(maxTriangles*3*sizeof(Vector3));
Vector2 *mapTexcoords = (Vector2 *)malloc(maxTriangles*3*sizeof(Vector2));
Vector3 *mapNormals = (Vector3 *)malloc(maxTriangles*3*sizeof(Vector3));
// Define the 6 normals of the cube, we will combine them accordingly later...
Vector3 n1 = { 1.0f, 0.0f, 0.0f };
Vector3 n2 = { -1.0f, 0.0f, 0.0f };
Vector3 n3 = { 0.0f, 1.0f, 0.0f };
Vector3 n4 = { 0.0f, -1.0f, 0.0f };
Vector3 n5 = { 0.0f, 0.0f, 1.0f };
Vector3 n6 = { 0.0f, 0.0f, -1.0f };
// NOTE: We use texture rectangles to define different textures for top-bottom-front-back-right-left (6)
typedef struct RectangleF {
float x;
float y;
float width;
float height;
} RectangleF;
RectangleF rightTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
RectangleF leftTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
RectangleF frontTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
RectangleF backTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
RectangleF topTexUV = { 0.0f, 0.5f, 0.5f, 0.5f };
RectangleF bottomTexUV = { 0.5f, 0.5f, 0.5f, 0.5f };
for (int z = 0; z < mapHeight; ++z)
{
for (int x = 0; x < mapWidth; ++x)
{
// Define the 8 vertex of the cube, we will combine them accordingly later...
Vector3 v1 = { w*(x - 0.5f), h2, h*(z - 0.5f) };
Vector3 v2 = { w*(x - 0.5f), h2, h*(z + 0.5f) };
Vector3 v3 = { w*(x + 0.5f), h2, h*(z + 0.5f) };
Vector3 v4 = { w*(x + 0.5f), h2, h*(z - 0.5f) };
Vector3 v5 = { w*(x + 0.5f), 0, h*(z - 0.5f) };
Vector3 v6 = { w*(x - 0.5f), 0, h*(z - 0.5f) };
Vector3 v7 = { w*(x - 0.5f), 0, h*(z + 0.5f) };
Vector3 v8 = { w*(x + 0.5f), 0, h*(z + 0.5f) };
// We check pixel color to be WHITE, we will full cubes
if ((cubicmapPixels[z*cubicmap.width + x].r == 255) &&
(cubicmapPixels[z*cubicmap.width + x].g == 255) &&
(cubicmapPixels[z*cubicmap.width + x].b == 255))
{
// Define triangles (Checking Collateral Cubes!)
//----------------------------------------------
// Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
mapVertices[vCounter] = v1;
mapVertices[vCounter + 1] = v2;
mapVertices[vCounter + 2] = v3;
mapVertices[vCounter + 3] = v1;
mapVertices[vCounter + 4] = v3;
mapVertices[vCounter + 5] = v4;
vCounter += 6;
mapNormals[nCounter] = n3;
mapNormals[nCounter + 1] = n3;
mapNormals[nCounter + 2] = n3;
mapNormals[nCounter + 3] = n3;
mapNormals[nCounter + 4] = n3;
mapNormals[nCounter + 5] = n3;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
tcCounter += 6;
// Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
mapVertices[vCounter] = v6;
mapVertices[vCounter + 1] = v8;
mapVertices[vCounter + 2] = v7;
mapVertices[vCounter + 3] = v6;
mapVertices[vCounter + 4] = v5;
mapVertices[vCounter + 5] = v8;
vCounter += 6;
mapNormals[nCounter] = n4;
mapNormals[nCounter + 1] = n4;
mapNormals[nCounter + 2] = n4;
mapNormals[nCounter + 3] = n4;
mapNormals[nCounter + 4] = n4;
mapNormals[nCounter + 5] = n4;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
tcCounter += 6;
if (((z < cubicmap.height - 1) &&
(cubicmapPixels[(z + 1)*cubicmap.width + x].r == 0) &&
(cubicmapPixels[(z + 1)*cubicmap.width + x].g == 0) &&
(cubicmapPixels[(z + 1)*cubicmap.width + x].b == 0)) || (z == cubicmap.height - 1))
{
// Define front triangles (2 tris, 6 vertex) --> v2 v7 v3, v3 v7 v8
// NOTE: Collateral occluded faces are not generated
mapVertices[vCounter] = v2;
mapVertices[vCounter + 1] = v7;
mapVertices[vCounter + 2] = v3;
mapVertices[vCounter + 3] = v3;
mapVertices[vCounter + 4] = v7;
mapVertices[vCounter + 5] = v8;
vCounter += 6;
mapNormals[nCounter] = n6;
mapNormals[nCounter + 1] = n6;
mapNormals[nCounter + 2] = n6;
mapNormals[nCounter + 3] = n6;
mapNormals[nCounter + 4] = n6;
mapNormals[nCounter + 5] = n6;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ frontTexUV.x, frontTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
mapTexcoords[tcCounter + 3] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
mapTexcoords[tcCounter + 5] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y + frontTexUV.height };
tcCounter += 6;
}
if (((z > 0) &&
(cubicmapPixels[(z - 1)*cubicmap.width + x].r == 0) &&
(cubicmapPixels[(z - 1)*cubicmap.width + x].g == 0) &&
(cubicmapPixels[(z - 1)*cubicmap.width + x].b == 0)) || (z == 0))
{
// Define back triangles (2 tris, 6 vertex) --> v1 v5 v6, v1 v4 v5
// NOTE: Collateral occluded faces are not generated
mapVertices[vCounter] = v1;
mapVertices[vCounter + 1] = v5;
mapVertices[vCounter + 2] = v6;
mapVertices[vCounter + 3] = v1;
mapVertices[vCounter + 4] = v4;
mapVertices[vCounter + 5] = v5;
vCounter += 6;
mapNormals[nCounter] = n5;
mapNormals[nCounter + 1] = n5;
mapNormals[nCounter + 2] = n5;
mapNormals[nCounter + 3] = n5;
mapNormals[nCounter + 4] = n5;
mapNormals[nCounter + 5] = n5;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y + backTexUV.height };
mapTexcoords[tcCounter + 3] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ backTexUV.x, backTexUV.y };
mapTexcoords[tcCounter + 5] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
tcCounter += 6;
}
if (((x < cubicmap.width - 1) &&
(cubicmapPixels[z*cubicmap.width + (x + 1)].r == 0) &&
(cubicmapPixels[z*cubicmap.width + (x + 1)].g == 0) &&
(cubicmapPixels[z*cubicmap.width + (x + 1)].b == 0)) || (x == cubicmap.width - 1))
{
// Define right triangles (2 tris, 6 vertex) --> v3 v8 v4, v4 v8 v5
// NOTE: Collateral occluded faces are not generated
mapVertices[vCounter] = v3;
mapVertices[vCounter + 1] = v8;
mapVertices[vCounter + 2] = v4;
mapVertices[vCounter + 3] = v4;
mapVertices[vCounter + 4] = v8;
mapVertices[vCounter + 5] = v5;
vCounter += 6;
mapNormals[nCounter] = n1;
mapNormals[nCounter + 1] = n1;
mapNormals[nCounter + 2] = n1;
mapNormals[nCounter + 3] = n1;
mapNormals[nCounter + 4] = n1;
mapNormals[nCounter + 5] = n1;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ rightTexUV.x, rightTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
mapTexcoords[tcCounter + 3] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
mapTexcoords[tcCounter + 5] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y + rightTexUV.height };
tcCounter += 6;
}
if (((x > 0) &&
(cubicmapPixels[z*cubicmap.width + (x - 1)].r == 0) &&
(cubicmapPixels[z*cubicmap.width + (x - 1)].g == 0) &&
(cubicmapPixels[z*cubicmap.width + (x - 1)].b == 0)) || (x == 0))
{
// Define left triangles (2 tris, 6 vertex) --> v1 v7 v2, v1 v6 v7
// NOTE: Collateral occluded faces are not generated
mapVertices[vCounter] = v1;
mapVertices[vCounter + 1] = v7;
mapVertices[vCounter + 2] = v2;
mapVertices[vCounter + 3] = v1;
mapVertices[vCounter + 4] = v6;
mapVertices[vCounter + 5] = v7;
vCounter += 6;
mapNormals[nCounter] = n2;
mapNormals[nCounter + 1] = n2;
mapNormals[nCounter + 2] = n2;
mapNormals[nCounter + 3] = n2;
mapNormals[nCounter + 4] = n2;
mapNormals[nCounter + 5] = n2;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ leftTexUV.x, leftTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y };
mapTexcoords[tcCounter + 3] = (Vector2){ leftTexUV.x, leftTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ leftTexUV.x, leftTexUV.y + leftTexUV.height };
mapTexcoords[tcCounter + 5] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
tcCounter += 6;
}
}
// We check pixel color to be BLACK, we will only draw floor and roof
else if ((cubicmapPixels[z*cubicmap.width + x].r == 0) &&
(cubicmapPixels[z*cubicmap.width + x].g == 0) &&
(cubicmapPixels[z*cubicmap.width + x].b == 0))
{
// Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
mapVertices[vCounter] = v1;
mapVertices[vCounter + 1] = v3;
mapVertices[vCounter + 2] = v2;
mapVertices[vCounter + 3] = v1;
mapVertices[vCounter + 4] = v4;
mapVertices[vCounter + 5] = v3;
vCounter += 6;
mapNormals[nCounter] = n4;
mapNormals[nCounter + 1] = n4;
mapNormals[nCounter + 2] = n4;
mapNormals[nCounter + 3] = n4;
mapNormals[nCounter + 4] = n4;
mapNormals[nCounter + 5] = n4;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
tcCounter += 6;
// Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
mapVertices[vCounter] = v6;
mapVertices[vCounter + 1] = v7;
mapVertices[vCounter + 2] = v8;
mapVertices[vCounter + 3] = v6;
mapVertices[vCounter + 4] = v8;
mapVertices[vCounter + 5] = v5;
vCounter += 6;
mapNormals[nCounter] = n3;
mapNormals[nCounter + 1] = n3;
mapNormals[nCounter + 2] = n3;
mapNormals[nCounter + 3] = n3;
mapNormals[nCounter + 4] = n3;
mapNormals[nCounter + 5] = n3;
nCounter += 6;
mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
tcCounter += 6;
}
}
}
// Move data from mapVertices temp arays to vertices float array
mesh.vertexCount = vCounter;
mesh.vertices = (float *)malloc(mesh.vertexCount*3*sizeof(float));
mesh.normals = (float *)malloc(mesh.vertexCount*3*sizeof(float));
mesh.texcoords = (float *)malloc(mesh.vertexCount*2*sizeof(float));
mesh.colors = NULL;
int fCounter = 0;
// Move vertices data
for (int i = 0; i < vCounter; i++)
{
mesh.vertices[fCounter] = mapVertices[i].x;
mesh.vertices[fCounter + 1] = mapVertices[i].y;
mesh.vertices[fCounter + 2] = mapVertices[i].z;
fCounter += 3;
}
fCounter = 0;
// Move normals data
for (int i = 0; i < nCounter; i++)
{
mesh.normals[fCounter] = mapNormals[i].x;
mesh.normals[fCounter + 1] = mapNormals[i].y;
mesh.normals[fCounter + 2] = mapNormals[i].z;
fCounter += 3;
}
fCounter = 0;
// Move texcoords data
for (int i = 0; i < tcCounter; i++)
{
mesh.texcoords[fCounter] = mapTexcoords[i].x;
mesh.texcoords[fCounter + 1] = mapTexcoords[i].y;
fCounter += 2;
}
free(mapVertices);
free(mapNormals);
free(mapTexcoords);
free(cubicmapPixels); // Free image pixel data
return mesh;
}
// Draw a model (with texture if set)
void DrawModel(Model model, Vector3 position, float scale, Color tint)
{
Vector3 vScale = { scale, scale, scale };
Vector3 rotationAxis = { 0.0f, 0.0f, 0.0f };
DrawModelEx(model, position, rotationAxis, 0.0f, vScale, tint);
}
// Draw a model with extended parameters
void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
{
// Calculate transformation matrix from function parameters
// Get transform matrix (rotation -> scale -> translation)
Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD);
Matrix matScale = MatrixScale(scale.x, scale.y, scale.z);
Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z);
// Combine model transformation matrix (model.transform) with matrix generated by function parameters (matTransform)
//Matrix matModel = MatrixMultiply(model.transform, matTransform); // Transform to world-space coordinates
model.transform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation);
model.material.colDiffuse = tint; // TODO: Multiply tint color by diffuse color?
rlglDrawMesh(model.mesh, model.material, model.transform);
}
// Draw a model wires (with texture if set)
void DrawModelWires(Model model, Vector3 position, float scale, Color tint)
{
rlEnableWireMode();
DrawModel(model, position, scale, tint);
rlDisableWireMode();
}
// Draw a model wires (with texture if set) with extended parameters
void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
{
rlEnableWireMode();
DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint);
rlDisableWireMode();
}
// Draw a billboard
void DrawBillboard(Camera camera, Texture2D texture, Vector3 center, float size, Color tint)
{
Rectangle sourceRec = { 0, 0, texture.width, texture.height };
DrawBillboardRec(camera, texture, sourceRec, center, size, tint);
}
// Draw a billboard (part of a texture defined by a rectangle)
void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle sourceRec, Vector3 center, float size, Color tint)
{
// NOTE: Billboard size will maintain sourceRec aspect ratio, size will represent billboard width
Vector2 sizeRatio = { size, size*(float)sourceRec.height/sourceRec.width };
Matrix viewMatrix = MatrixLookAt(camera.position, camera.target, camera.up);
MatrixTranspose(&viewMatrix);
Vector3 right = { viewMatrix.m0, viewMatrix.m4, viewMatrix.m8 };
//Vector3 up = { viewMatrix.m1, viewMatrix.m5, viewMatrix.m9 };
// NOTE: Billboard locked on axis-Y
Vector3 up = { 0.0f, 1.0f, 0.0f };
/*
a-------b
| |
| * |
| |
d-------c
*/
VectorScale(&right, sizeRatio.x/2);
VectorScale(&up, sizeRatio.y/2);
Vector3 p1 = VectorAdd(right, up);
Vector3 p2 = VectorSubtract(right, up);
Vector3 a = VectorSubtract(center, p2);
Vector3 b = VectorAdd(center, p1);
Vector3 c = VectorAdd(center, p2);
Vector3 d = VectorSubtract(center, p1);
rlEnableTexture(texture.id);
rlBegin(RL_QUADS);
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
// Bottom-left corner for texture and quad
rlTexCoord2f((float)sourceRec.x/texture.width, (float)sourceRec.y/texture.height);
rlVertex3f(a.x, a.y, a.z);
// Top-left corner for texture and quad
rlTexCoord2f((float)sourceRec.x/texture.width, (float)(sourceRec.y + sourceRec.height)/texture.height);
rlVertex3f(d.x, d.y, d.z);
// Top-right corner for texture and quad
rlTexCoord2f((float)(sourceRec.x + sourceRec.width)/texture.width, (float)(sourceRec.y + sourceRec.height)/texture.height);
rlVertex3f(c.x, c.y, c.z);
// Bottom-right corner for texture and quad
rlTexCoord2f((float)(sourceRec.x + sourceRec.width)/texture.width, (float)sourceRec.y/texture.height);
rlVertex3f(b.x, b.y, b.z);
rlEnd();
rlDisableTexture();
}
// Draw a bounding box with wires
void DrawBoundingBox(BoundingBox box, Color color)
{
Vector3 size;
size.x = fabsf(box.max.x - box.min.x);
size.y = fabsf(box.max.y - box.min.y);
size.z = fabsf(box.max.z - box.min.z);
Vector3 center = { box.min.x + size.x/2.0f, box.min.y + size.y/2.0f, box.min.z + size.z/2.0f };
DrawCubeWires(center, size.x, size.y, size.z, color);
}
// Detect collision between two spheres
bool CheckCollisionSpheres(Vector3 centerA, float radiusA, Vector3 centerB, float radiusB)
{
bool collision = false;
float dx = centerA.x - centerB.x; // X distance between centers
float dy = centerA.y - centerB.y; // Y distance between centers
float dz = centerA.z - centerB.z; // Y distance between centers
float distance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance between centers
if (distance <= (radiusA + radiusB)) collision = true;
return collision;
}
// Detect collision between two boxes
// NOTE: Boxes are defined by two points minimum and maximum
bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2)
{
bool collision = true;
if ((box1.max.x >= box2.min.x) && (box1.min.x <= box2.max.x))
{
if ((box1.max.y < box2.min.y) || (box1.min.y > box2.max.y)) collision = false;
if ((box1.max.z < box2.min.z) || (box1.min.z > box2.max.z)) collision = false;
}
else collision = false;
return collision;
}
// Detect collision between box and sphere
bool CheckCollisionBoxSphere(BoundingBox box, Vector3 centerSphere, float radiusSphere)
{
bool collision = false;
float dmin = 0;
if (centerSphere.x < box.min.x) dmin += powf(centerSphere.x - box.min.x, 2);
else if (centerSphere.x > box.max.x) dmin += powf(centerSphere.x - box.max.x, 2);
if (centerSphere.y < box.min.y) dmin += powf(centerSphere.y - box.min.y, 2);
else if (centerSphere.y > box.max.y) dmin += powf(centerSphere.y - box.max.y, 2);
if (centerSphere.z < box.min.z) dmin += powf(centerSphere.z - box.min.z, 2);
else if (centerSphere.z > box.max.z) dmin += powf(centerSphere.z - box.max.z, 2);
if (dmin <= (radiusSphere*radiusSphere)) collision = true;
return collision;
}
// Detect collision between ray and sphere
bool CheckCollisionRaySphere(Ray ray, Vector3 spherePosition, float sphereRadius)
{
bool collision = false;
Vector3 raySpherePos = VectorSubtract(spherePosition, ray.position);
float distance = VectorLength(raySpherePos);
float vector = VectorDotProduct(raySpherePos, ray.direction);
float d = sphereRadius*sphereRadius - (distance*distance - vector*vector);
if (d >= 0.0f) collision = true;
return collision;
}
// Detect collision between ray and sphere with extended parameters and collision point detection
bool CheckCollisionRaySphereEx(Ray ray, Vector3 spherePosition, float sphereRadius, Vector3 *collisionPoint)
{
bool collision = false;
Vector3 raySpherePos = VectorSubtract(spherePosition, ray.position);
float distance = VectorLength(raySpherePos);
float vector = VectorDotProduct(raySpherePos, ray.direction);
float d = sphereRadius*sphereRadius - (distance*distance - vector*vector);
if (d >= 0.0f) collision = true;
// Calculate collision point
Vector3 offset = ray.direction;
float collisionDistance = 0;
// Check if ray origin is inside the sphere to calculate the correct collision point
if (distance < sphereRadius) collisionDistance = vector + sqrtf(d);
else collisionDistance = vector - sqrtf(d);
VectorScale(&offset, collisionDistance);
Vector3 cPoint = VectorAdd(ray.position, offset);
collisionPoint->x = cPoint.x;
collisionPoint->y = cPoint.y;
collisionPoint->z = cPoint.z;
return collision;
}
// Detect collision between ray and bounding box
bool CheckCollisionRayBox(Ray ray, BoundingBox box)
{
bool collision = false;
float t[8];
t[0] = (box.min.x - ray.position.x)/ray.direction.x;
t[1] = (box.max.x - ray.position.x)/ray.direction.x;
t[2] = (box.min.y - ray.position.y)/ray.direction.y;
t[3] = (box.max.y - ray.position.y)/ray.direction.y;
t[4] = (box.min.z - ray.position.z)/ray.direction.z;
t[5] = (box.max.z - ray.position.z)/ray.direction.z;
t[6] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5]));
t[7] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5]));
collision = !(t[7] < 0 || t[6] > t[7]);
return collision;
}
// Get collision info between ray and mesh
RayHitInfo GetCollisionRayMesh(Ray ray, Mesh *mesh)
{
RayHitInfo result = { 0 };
// If mesh doesn't have vertex data on CPU, can't test it.
if (!mesh->vertices) return result;
// mesh->triangleCount may not be set, vertexCount is more reliable
int triangleCount = mesh->vertexCount/3;
// Test against all triangles in mesh
for (int i = 0; i < triangleCount; i++)
{
Vector3 a, b, c;
Vector3 *vertdata = (Vector3 *)mesh->vertices;
if (mesh->indices)
{
a = vertdata[mesh->indices[i*3 + 0]];
b = vertdata[mesh->indices[i*3 + 1]];
c = vertdata[mesh->indices[i*3 + 2]];
}
else
{
a = vertdata[i*3 + 0];
b = vertdata[i*3 + 1];
c = vertdata[i*3 + 2];
}
RayHitInfo triHitInfo = GetCollisionRayTriangle(ray, a, b, c);
if (triHitInfo.hit)
{
// Save the closest hit triangle
if ((!result.hit) || (result.distance > triHitInfo.distance)) result = triHitInfo;
}
}
return result;
}
// Get collision info between ray and triangle
// NOTE: Based on https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
RayHitInfo GetCollisionRayTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3)
{
#define EPSILON 0.000001 // A small number
Vector3 edge1, edge2;
Vector3 p, q, tv;
float det, invDet, u, v, t;
RayHitInfo result = {0};
// Find vectors for two edges sharing V1
edge1 = VectorSubtract(p2, p1);
edge2 = VectorSubtract(p3, p1);
// Begin calculating determinant - also used to calculate u parameter
p = VectorCrossProduct(ray.direction, edge2);
// If determinant is near zero, ray lies in plane of triangle or ray is parallel to plane of triangle
det = VectorDotProduct(edge1, p);
// Avoid culling!
if ((det > -EPSILON) && (det < EPSILON)) return result;
invDet = 1.0f/det;
// Calculate distance from V1 to ray origin
tv = VectorSubtract(ray.position, p1);
// Calculate u parameter and test bound
u = VectorDotProduct(tv, p)*invDet;
// The intersection lies outside of the triangle
if ((u < 0.0f) || (u > 1.0f)) return result;
// Prepare to test v parameter
q = VectorCrossProduct(tv, edge1);
// Calculate V parameter and test bound
v = VectorDotProduct(ray.direction, q)*invDet;
// The intersection lies outside of the triangle
if ((v < 0.0f) || ((u + v) > 1.0f)) return result;
t = VectorDotProduct(edge2, q)*invDet;
if (t > EPSILON)
{
// Ray hit, get hit point and normal
result.hit = true;
result.distance = t;
result.hit = true;
result.hitNormal = VectorCrossProduct(edge1, edge2);
VectorNormalize(&result.hitNormal);
Vector3 rayDir = ray.direction;
VectorScale(&rayDir, t);
result.hitPosition = VectorAdd(ray.position, rayDir);
}
return result;
}
// Get collision info between ray and ground plane (Y-normal plane)
RayHitInfo GetCollisionRayGround(Ray ray, float groundHeight)
{
#define EPSILON 0.000001 // A small number
RayHitInfo result = { 0 };
if (fabsf(ray.direction.y) > EPSILON)
{
float t = (ray.position.y - groundHeight)/-ray.direction.y;
if (t >= 0.0)
{
Vector3 rayDir = ray.direction;
VectorScale(&rayDir, t);
result.hit = true;
result.distance = t;
result.hitNormal = (Vector3){ 0.0, 1.0, 0.0 };
result.hitPosition = VectorAdd(ray.position, rayDir);
}
}
return result;
}
// Calculate mesh bounding box limits
// NOTE: minVertex and maxVertex should be transformed by model transform matrix (position, scale, rotate)
BoundingBox CalculateBoundingBox(Mesh mesh)
{
// Get min and max vertex to construct bounds (AABB)
Vector3 minVertex = { 0 };
Vector3 maxVertex = { 0 };
if (mesh.vertices != NULL)
{
minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
for (int i = 1; i < mesh.vertexCount; i++)
{
minVertex = VectorMin(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
maxVertex = VectorMax(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
}
}
// Create the bounding box
BoundingBox box;
box.min = minVertex;
box.max = maxVertex;
return box;
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
#if defined(SUPPORT_FILEFORMAT_OBJ)
// Load OBJ mesh data
static Mesh LoadOBJ(const char *fileName)
{
Mesh mesh = { 0 };
char dataType;
char comments[200];
int vertexCount = 0;
int normalCount = 0;
int texcoordCount = 0;
int triangleCount = 0;
FILE *objFile;
objFile = fopen(fileName, "rt");
if (objFile == NULL)
{
TraceLog(WARNING, "[%s] OBJ file could not be opened", fileName);
return mesh;
}
// First reading pass: Get vertexCount, normalCount, texcoordCount, triangleCount
// NOTE: vertex, texcoords and normals could be optimized (to be used indexed on faces definition)
// NOTE: faces MUST be defined as TRIANGLES (3 vertex per face)
while (!feof(objFile))
{
fscanf(objFile, "%c", &dataType);
switch (dataType)
{
case '#': // Comments
case 'o': // Object name (One OBJ file can contain multible named meshes)
case 'g': // Group name
case 's': // Smoothing level
case 'm': // mtllib [external .mtl file name]
case 'u': // usemtl [material name]
{
fgets(comments, 200, objFile);
} break;
case 'v':
{
fscanf(objFile, "%c", &dataType);
if (dataType == 't') // Read texCoord
{
texcoordCount++;
fgets(comments, 200, objFile);
}
else if (dataType == 'n') // Read normals
{
normalCount++;
fgets(comments, 200, objFile);
}
else // Read vertex
{
vertexCount++;
fgets(comments, 200, objFile);
}
} break;
case 'f':
{
triangleCount++;
fgets(comments, 200, objFile);
} break;
default: break;
}
}
TraceLog(DEBUG, "[%s] Model vertices: %i", fileName, vertexCount);
TraceLog(DEBUG, "[%s] Model texcoords: %i", fileName, texcoordCount);
TraceLog(DEBUG, "[%s] Model normals: %i", fileName, normalCount);
TraceLog(DEBUG, "[%s] Model triangles: %i", fileName, triangleCount);
// Once we know the number of vertices to store, we create required arrays
Vector3 *midVertices = (Vector3 *)malloc(vertexCount*sizeof(Vector3));
Vector3 *midNormals = NULL;
if (normalCount > 0) midNormals = (Vector3 *)malloc(normalCount*sizeof(Vector3));
Vector2 *midTexCoords = NULL;
if (texcoordCount > 0) midTexCoords = (Vector2 *)malloc(texcoordCount*sizeof(Vector2));
int countVertex = 0;
int countNormals = 0;
int countTexCoords = 0;
rewind(objFile); // Return to the beginning of the file, to read again
// Second reading pass: Get vertex data to fill intermediate arrays
// NOTE: This second pass is required in case of multiple meshes defined in same OBJ
// TODO: Consider that different meshes can have different vertex data available (position, texcoords, normals)
while (!feof(objFile))
{
fscanf(objFile, "%c", &dataType);
switch (dataType)
{
case '#': case 'o': case 'g': case 's': case 'm': case 'u': case 'f': fgets(comments, 200, objFile); break;
case 'v':
{
fscanf(objFile, "%c", &dataType);
if (dataType == 't') // Read texCoord
{
fscanf(objFile, "%f %f%*[^\n]s\n", &midTexCoords[countTexCoords].x, &midTexCoords[countTexCoords].y);
countTexCoords++;
fscanf(objFile, "%c", &dataType);
}
else if (dataType == 'n') // Read normals
{
fscanf(objFile, "%f %f %f", &midNormals[countNormals].x, &midNormals[countNormals].y, &midNormals[countNormals].z);
countNormals++;
fscanf(objFile, "%c", &dataType);
}
else // Read vertex
{
fscanf(objFile, "%f %f %f", &midVertices[countVertex].x, &midVertices[countVertex].y, &midVertices[countVertex].z);
countVertex++;
fscanf(objFile, "%c", &dataType);
}
} break;
default: break;
}
}
// At this point all vertex data (v, vt, vn) has been gathered on midVertices, midTexCoords, midNormals
// Now we can organize that data into our Mesh struct
mesh.vertexCount = triangleCount*3;
// Additional arrays to store vertex data as floats
mesh.vertices = (float *)malloc(mesh.vertexCount*3*sizeof(float));
mesh.texcoords = (float *)malloc(mesh.vertexCount*2*sizeof(float));
mesh.normals = (float *)malloc(mesh.vertexCount*3*sizeof(float));
mesh.colors = NULL;
int vCounter = 0; // Used to count vertices float by float
int tcCounter = 0; // Used to count texcoords float by float
int nCounter = 0; // Used to count normals float by float
int vCount[3], vtCount[3], vnCount[3]; // Used to store triangle indices for v, vt, vn
rewind(objFile); // Return to the beginning of the file, to read again
if (normalCount == 0) TraceLog(INFO, "[%s] No normals data on OBJ, normals will be generated from faces data", fileName);
// Third reading pass: Get faces (triangles) data and fill VertexArray
while (!feof(objFile))
{
fscanf(objFile, "%c", &dataType);
switch (dataType)
{
case '#': case 'o': case 'g': case 's': case 'm': case 'u': case 'v': fgets(comments, 200, objFile); break;
case 'f':
{
// NOTE: It could be that OBJ does not have normals or texcoords defined!
if ((normalCount == 0) && (texcoordCount == 0)) fscanf(objFile, "%i %i %i", &vCount[0], &vCount[1], &vCount[2]);
else if (normalCount == 0) fscanf(objFile, "%i/%i %i/%i %i/%i", &vCount[0], &vtCount[0], &vCount[1], &vtCount[1], &vCount[2], &vtCount[2]);
else if (texcoordCount == 0) fscanf(objFile, "%i//%i %i//%i %i//%i", &vCount[0], &vnCount[0], &vCount[1], &vnCount[1], &vCount[2], &vnCount[2]);
else fscanf(objFile, "%i/%i/%i %i/%i/%i %i/%i/%i", &vCount[0], &vtCount[0], &vnCount[0], &vCount[1], &vtCount[1], &vnCount[1], &vCount[2], &vtCount[2], &vnCount[2]);
mesh.vertices[vCounter] = midVertices[vCount[0]-1].x;
mesh.vertices[vCounter + 1] = midVertices[vCount[0]-1].y;
mesh.vertices[vCounter + 2] = midVertices[vCount[0]-1].z;
vCounter += 3;
mesh.vertices[vCounter] = midVertices[vCount[1]-1].x;
mesh.vertices[vCounter + 1] = midVertices[vCount[1]-1].y;
mesh.vertices[vCounter + 2] = midVertices[vCount[1]-1].z;
vCounter += 3;
mesh.vertices[vCounter] = midVertices[vCount[2]-1].x;
mesh.vertices[vCounter + 1] = midVertices[vCount[2]-1].y;
mesh.vertices[vCounter + 2] = midVertices[vCount[2]-1].z;
vCounter += 3;
if (normalCount > 0)
{
mesh.normals[nCounter] = midNormals[vnCount[0]-1].x;
mesh.normals[nCounter + 1] = midNormals[vnCount[0]-1].y;
mesh.normals[nCounter + 2] = midNormals[vnCount[0]-1].z;
nCounter += 3;
mesh.normals[nCounter] = midNormals[vnCount[1]-1].x;
mesh.normals[nCounter + 1] = midNormals[vnCount[1]-1].y;
mesh.normals[nCounter + 2] = midNormals[vnCount[1]-1].z;
nCounter += 3;
mesh.normals[nCounter] = midNormals[vnCount[2]-1].x;
mesh.normals[nCounter + 1] = midNormals[vnCount[2]-1].y;
mesh.normals[nCounter + 2] = midNormals[vnCount[2]-1].z;
nCounter += 3;
}
else
{
// If normals not defined, they are calculated from the 3 vertices [N = (V2 - V1) x (V3 - V1)]
Vector3 norm = VectorCrossProduct(VectorSubtract(midVertices[vCount[1]-1], midVertices[vCount[0]-1]), VectorSubtract(midVertices[vCount[2]-1], midVertices[vCount[0]-1]));
VectorNormalize(&norm);
mesh.normals[nCounter] = norm.x;
mesh.normals[nCounter + 1] = norm.y;
mesh.normals[nCounter + 2] = norm.z;
nCounter += 3;
mesh.normals[nCounter] = norm.x;
mesh.normals[nCounter + 1] = norm.y;
mesh.normals[nCounter + 2] = norm.z;
nCounter += 3;
mesh.normals[nCounter] = norm.x;
mesh.normals[nCounter + 1] = norm.y;
mesh.normals[nCounter + 2] = norm.z;
nCounter += 3;
}
if (texcoordCount > 0)
{
// NOTE: If using negative texture coordinates with a texture filter of GL_CLAMP_TO_EDGE doesn't work!
// NOTE: Texture coordinates are Y flipped upside-down
mesh.texcoords[tcCounter] = midTexCoords[vtCount[0]-1].x;
mesh.texcoords[tcCounter + 1] = 1.0f - midTexCoords[vtCount[0]-1].y;
tcCounter += 2;
mesh.texcoords[tcCounter] = midTexCoords[vtCount[1]-1].x;
mesh.texcoords[tcCounter + 1] = 1.0f - midTexCoords[vtCount[1]-1].y;
tcCounter += 2;
mesh.texcoords[tcCounter] = midTexCoords[vtCount[2]-1].x;
mesh.texcoords[tcCounter + 1] = 1.0f - midTexCoords[vtCount[2]-1].y;
tcCounter += 2;
}
} break;
default: break;
}
}
fclose(objFile);
// Security check, just in case no normals or no texcoords defined in OBJ
if (texcoordCount == 0) for (int i = 0; i < (2*mesh.vertexCount); i++) mesh.texcoords[i] = 0.0f;
else
{
// Attempt to calculate mesh tangents and binormals using positions and texture coordinates
mesh.tangents = (float *)malloc(mesh.vertexCount*3*sizeof(float));
// mesh.binormals = (float *)malloc(mesh.vertexCount*3*sizeof(float));
int vCount = 0;
int uvCount = 0;
while (vCount < mesh.vertexCount*3)
{
// Calculate mesh vertex positions as Vector3
Vector3 v0 = { mesh.vertices[vCount], mesh.vertices[vCount + 1], mesh.vertices[vCount + 2] };
Vector3 v1 = { mesh.vertices[vCount + 3], mesh.vertices[vCount + 4], mesh.vertices[vCount + 5] };
Vector3 v2 = { mesh.vertices[vCount + 6], mesh.vertices[vCount + 7], mesh.vertices[vCount + 8] };
// Calculate mesh texture coordinates as Vector2
Vector2 uv0 = { mesh.texcoords[uvCount + 0], mesh.texcoords[uvCount + 1] };
Vector2 uv1 = { mesh.texcoords[uvCount + 2], mesh.texcoords[uvCount + 3] };
Vector2 uv2 = { mesh.texcoords[uvCount + 4], mesh.texcoords[uvCount + 5] };
// Calculate edges of the triangle (position delta)
Vector3 deltaPos1 = VectorSubtract(v1, v0);
Vector3 deltaPos2 = VectorSubtract(v2, v0);
// UV delta
Vector2 deltaUV1 = { uv1.x - uv0.x, uv1.y - uv0.y };
Vector2 deltaUV2 = { uv2.x - uv0.x, uv2.y - uv0.y };
float r = 1.0f/(deltaUV1.x*deltaUV2.y - deltaUV1.y*deltaUV2.x);
Vector3 t1 = { deltaPos1.x*deltaUV2.y, deltaPos1.y*deltaUV2.y, deltaPos1.z*deltaUV2.y };
Vector3 t2 = { deltaPos2.x*deltaUV1.y, deltaPos2.y*deltaUV1.y, deltaPos2.z*deltaUV1.y };
// Vector3 b1 = { deltaPos2.x*deltaUV1.x, deltaPos2.y*deltaUV1.x, deltaPos2.z*deltaUV1.x };
// Vector3 b2 = { deltaPos1.x*deltaUV2.x, deltaPos1.y*deltaUV2.x, deltaPos1.z*deltaUV2.x };
// Calculate vertex tangent
Vector3 tangent = VectorSubtract(t1, t2);
VectorScale(&tangent, r);
// Apply calculated tangents data to mesh struct
mesh.tangents[vCount + 0] = tangent.x;
mesh.tangents[vCount + 1] = tangent.y;
mesh.tangents[vCount + 2] = tangent.z;
mesh.tangents[vCount + 3] = tangent.x;
mesh.tangents[vCount + 4] = tangent.y;
mesh.tangents[vCount + 5] = tangent.z;
mesh.tangents[vCount + 6] = tangent.x;
mesh.tangents[vCount + 7] = tangent.y;
mesh.tangents[vCount + 8] = tangent.z;
// TODO: add binormals to mesh struct and assign buffers id and locations properly
/* // Calculate vertex binormal
Vector3 binormal = VectorSubtract(b1, b2);
VectorScale(&binormal, r);
// Apply calculated binormals data to mesh struct
mesh.binormals[vCount + 0] = binormal.x;
mesh.binormals[vCount + 1] = binormal.y;
mesh.binormals[vCount + 2] = binormal.z;
mesh.binormals[vCount + 3] = binormal.x;
mesh.binormals[vCount + 4] = binormal.y;
mesh.binormals[vCount + 5] = binormal.z;
mesh.binormals[vCount + 6] = binormal.x;
mesh.binormals[vCount + 7] = binormal.y;
mesh.binormals[vCount + 8] = binormal.z; */
// Update vertex position and texture coordinates counters
vCount += 9;
uvCount += 6;
}
}
// Now we can free temp mid* arrays
free(midVertices);
free(midNormals);
free(midTexCoords);
// NOTE: At this point we have all vertex, texcoord, normal data for the model in mesh struct
TraceLog(INFO, "[%s] Model loaded successfully in RAM (CPU)", fileName);
return mesh;
}
#endif
#if defined(SUPPORT_FILEFORMAT_MTL)
// Load MTL material data (specs: http://paulbourke.net/dataformats/mtl/)
// NOTE: Texture map parameters are not supported
static Material LoadMTL(const char *fileName)
{
#define MAX_BUFFER_SIZE 128
Material material = { 0 }; // LoadDefaultMaterial();
char buffer[MAX_BUFFER_SIZE];
Vector3 color = { 1.0f, 1.0f, 1.0f };
char mapFileName[128];
int result = 0;
FILE *mtlFile;
mtlFile = fopen(fileName, "rt");
if (mtlFile == NULL)
{
TraceLog(WARNING, "[%s] MTL file could not be opened", fileName);
return material;
}
while (!feof(mtlFile))
{
fgets(buffer, MAX_BUFFER_SIZE, mtlFile);
switch (buffer[0])
{
case 'n': // newmtl string Material name. Begins a new material description.
{
// TODO: Support multiple materials in a single .mtl
sscanf(buffer, "newmtl %s", mapFileName);
TraceLog(INFO, "[%s] Loading material...", mapFileName);
}
case 'i': // illum int Illumination model
{
// illum = 1 if specular disabled
// illum = 2 if specular enabled (lambertian model)
// ...
}
case 'K': // Ka, Kd, Ks, Ke
{
switch (buffer[1])
{
case 'a': // Ka float float float Ambient color (RGB)
{
sscanf(buffer, "Ka %f %f %f", &color.x, &color.y, &color.z);
material.colAmbient.r = (unsigned char)(color.x*255);
material.colAmbient.g = (unsigned char)(color.y*255);
material.colAmbient.b = (unsigned char)(color.z*255);
} break;
case 'd': // Kd float float float Diffuse color (RGB)
{
sscanf(buffer, "Kd %f %f %f", &color.x, &color.y, &color.z);
material.colDiffuse.r = (unsigned char)(color.x*255);
material.colDiffuse.g = (unsigned char)(color.y*255);
material.colDiffuse.b = (unsigned char)(color.z*255);
} break;
case 's': // Ks float float float Specular color (RGB)
{
sscanf(buffer, "Ks %f %f %f", &color.x, &color.y, &color.z);
material.colSpecular.r = (unsigned char)(color.x*255);
material.colSpecular.g = (unsigned char)(color.y*255);
material.colSpecular.b = (unsigned char)(color.z*255);
} break;
case 'e': // Ke float float float Emmisive color (RGB)
{
// TODO: Support Ke ?
} break;
default: break;
}
} break;
case 'N': // Ns, Ni
{
if (buffer[1] == 's') // Ns int Shininess (specular exponent). Ranges from 0 to 1000.
{
int shininess = 0;
sscanf(buffer, "Ns %i", &shininess);
material.glossiness = (float)shininess;
}
else if (buffer[1] == 'i') // Ni int Refraction index.
{
// Not supported...
}
} break;
case 'm': // map_Kd, map_Ks, map_Ka, map_Bump, map_d
{
switch (buffer[4])
{
case 'K': // Color texture maps
{
if (buffer[5] == 'd') // map_Kd string Diffuse color texture map.
{
result = sscanf(buffer, "map_Kd %s", mapFileName);
if (result != EOF) material.texDiffuse = LoadTexture(mapFileName);
}
else if (buffer[5] == 's') // map_Ks string Specular color texture map.
{
result = sscanf(buffer, "map_Ks %s", mapFileName);
if (result != EOF) material.texSpecular = LoadTexture(mapFileName);
}
else if (buffer[5] == 'a') // map_Ka string Ambient color texture map.
{
// Not supported...
}
} break;
case 'B': // map_Bump string Bump texture map.
{
result = sscanf(buffer, "map_Bump %s", mapFileName);
if (result != EOF) material.texNormal = LoadTexture(mapFileName);
} break;
case 'b': // map_bump string Bump texture map.
{
result = sscanf(buffer, "map_bump %s", mapFileName);
if (result != EOF) material.texNormal = LoadTexture(mapFileName);
} break;
case 'd': // map_d string Opacity texture map.
{
// Not supported...
} break;
default: break;
}
} break;
case 'd': // d, disp
{
if (buffer[1] == ' ') // d float Dissolve factor. d is inverse of Tr
{
float alpha = 1.0f;
sscanf(buffer, "d %f", &alpha);
material.colDiffuse.a = (unsigned char)(alpha*255);
}
else if (buffer[1] == 'i') // disp string Displacement map
{
// Not supported...
}
} break;
case 'b': // bump string Bump texture map
{
result = sscanf(buffer, "bump %s", mapFileName);
if (result != EOF) material.texNormal = LoadTexture(mapFileName);
} break;
case 'T': // Tr float Transparency Tr (alpha). Tr is inverse of d
{
float ialpha = 0.0f;
sscanf(buffer, "Tr %f", &ialpha);
material.colDiffuse.a = (unsigned char)((1.0f - ialpha)*255);
} break;
case 'r': // refl string Reflection texture map
default: break;
}
}
fclose(mtlFile);
// NOTE: At this point we have all material data
TraceLog(INFO, "[%s] Material loaded successfully", fileName);
return material;
}
#endif