raylib/examples/others/standard_lighting.c
Ray b80ec381c8 Reviewed lighting example...
No model available, this example should probably be redesigned...
2018-07-16 18:44:18 +02:00

482 lines
19 KiB
C

/*******************************************************************************************
*
* raylib [shaders] example - Standard lighting (materials and lights)
*
* NOTE: This example requires raylib OpenGL 3.3 or ES2 versions for shaders support,
* OpenGL 1.1 does not support shaders, recompile raylib to OpenGL 3.3 version.
*
* NOTE: Shaders used in this example are #version 330 (OpenGL 3.3), to test this example
* on OpenGL ES 2.0 platforms (Android, Raspberry Pi, HTML5), use #version 100 shaders
* raylib comes with shaders ready for both versions, check raylib/shaders install folder
*
* This example has been created using raylib 1.7 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2016-2017 Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include "raylib.h"
#include <stdlib.h> // Required for: NULL
#include <string.h> // Required for: strcpy()
#include <math.h> // Required for: vector math
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define MAX_LIGHTS 8 // Max lights supported by standard shader
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// Light type
typedef struct LightData {
unsigned int id; // Light unique id
bool enabled; // Light enabled
int type; // Light type: LIGHT_POINT, LIGHT_DIRECTIONAL, LIGHT_SPOT
Vector3 position; // Light position
Vector3 target; // Light direction: LIGHT_DIRECTIONAL and LIGHT_SPOT (cone direction target)
float radius; // Light attenuation radius light intensity reduced with distance (world distance)
Color diffuse; // Light diffuse color
float intensity; // Light intensity level
float coneAngle; // Light cone max angle: LIGHT_SPOT
} LightData, *Light;
// Light types
typedef enum { LIGHT_POINT, LIGHT_DIRECTIONAL, LIGHT_SPOT } LightType;
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static Light lights[MAX_LIGHTS]; // Lights pool
static int lightsCount = 0; // Enabled lights counter
static int lightsLocs[MAX_LIGHTS][8]; // Lights location points in shader: 8 possible points per light:
// enabled, type, position, target, radius, diffuse, intensity, coneAngle
//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------
static Light CreateLight(int type, Vector3 position, Color diffuse); // Create a new light, initialize it and add to pool
static void DestroyLight(Light light); // Destroy a light and take it out of the list
static void DrawLight(Light light); // Draw light in 3D world
static void GetShaderLightsLocations(Shader shader); // Get shader locations for lights (up to MAX_LIGHTS)
static void SetShaderLightsValues(Shader shader); // Set shader uniform values for lights
// Vector3 math functions
static float VectorLength(const Vector3 v); // Calculate vector length
static void VectorNormalize(Vector3 *v); // Normalize provided vector
static Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors
//https://www.gamedev.net/topic/655969-speed-gluniform-vs-uniform-buffer-objects/
//https://www.reddit.com/r/opengl/comments/4ri20g/is_gluniform_more_expensive_than_glprogramuniform/
//http://cg.alexandra.dk/?p=3778 - AZDO
//https://developer.apple.com/library/content/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/BestPracticesforShaders/BestPracticesforShaders.html
//------------------------------------------------------------------------------------
// Program main entry point
//------------------------------------------------------------------------------------
int main()
{
// Initialization
//--------------------------------------------------------------------------------------
int screenWidth = 800;
int screenHeight = 450;
SetConfigFlags(FLAG_MSAA_4X_HINT); // Enable Multi Sampling Anti Aliasing 4x (if available)
InitWindow(screenWidth, screenHeight, "raylib [shaders] example - model shader");
// Define the camera to look into our 3d world
Camera camera = {{ 4.0f, 4.0f, 4.0f }, { 0.0f, 1.5f, 0.0f }, { 0.0f, 1.0f, 0.0f }, 45.0f };
Vector3 position = { 0.0f, 0.0f, 0.0f }; // Set model position
Model dwarf = LoadModel("resources/model/dwarf.obj"); // Load OBJ model
Material material;// = LoadStandardMaterial();
material.shader = LoadShader("resources/shaders/glsl330/standard.vs",
"resources/shaders/glsl330/standard.fs");
// Try to get lights location points (if available)
GetShaderLightsLocations(material.shader);
material.maps[MAP_DIFFUSE].texture = LoadTexture("resources/model/dwarf_diffuse.png"); // Load model diffuse texture
material.maps[MAP_NORMAL].texture = LoadTexture("resources/model/dwarf_normal.png"); // Load model normal texture
material.maps[MAP_SPECULAR].texture = LoadTexture("resources/model/dwarf_specular.png"); // Load model specular texture
material.maps[MAP_DIFFUSE].color = WHITE;
material.maps[MAP_SPECULAR].color = WHITE;
dwarf.material = material; // Apply material to model
Light spotLight = CreateLight(LIGHT_SPOT, (Vector3){3.0f, 5.0f, 2.0f}, (Color){255, 255, 255, 255});
spotLight->target = (Vector3){0.0f, 0.0f, 0.0f};
spotLight->intensity = 2.0f;
spotLight->diffuse = (Color){255, 100, 100, 255};
spotLight->coneAngle = 60.0f;
Light dirLight = CreateLight(LIGHT_DIRECTIONAL, (Vector3){0.0f, -3.0f, -3.0f}, (Color){255, 255, 255, 255});
dirLight->target = (Vector3){1.0f, -2.0f, -2.0f};
dirLight->intensity = 2.0f;
dirLight->diffuse = (Color){100, 255, 100, 255};
Light pointLight = CreateLight(LIGHT_POINT, (Vector3){0.0f, 4.0f, 5.0f}, (Color){255, 255, 255, 255});
pointLight->intensity = 2.0f;
pointLight->diffuse = (Color){100, 100, 255, 255};
pointLight->radius = 3.0f;
// Set shader lights values for enabled lights
// NOTE: If values are not changed in real time, they can be set at initialization!!!
SetShaderLightsValues(material.shader);
//SetShaderActive(0);
// Setup orbital camera
SetCameraMode(camera, CAMERA_ORBITAL); // Set an orbital camera mode
SetTargetFPS(60); // Set our game to run at 60 frames-per-second
//--------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
UpdateCamera(&camera); // Update camera
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
BeginMode3D(camera);
DrawModel(dwarf, position, 2.0f, WHITE); // Draw 3d model with texture
DrawLight(spotLight); // Draw spot light
DrawLight(dirLight); // Draw directional light
DrawLight(pointLight); // Draw point light
DrawGrid(10, 1.0f); // Draw a grid
EndMode3D();
DrawText("(c) Dwarf 3D model by David Moreno", screenWidth - 200, screenHeight - 20, 10, GRAY);
DrawFPS(10, 10);
EndDrawing();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
UnloadMaterial(material); // Unload material and assigned textures
UnloadModel(dwarf); // Unload model
// Destroy all created lights
DestroyLight(pointLight);
DestroyLight(dirLight);
DestroyLight(spotLight);
// Unload lights
if (lightsCount > 0)
{
for (int i = 0; i < lightsCount; i++) free(lights[i]);
lightsCount = 0;
}
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------
return 0;
}
//--------------------------------------------------------------------------------------------
// Module Functions Definitions
//--------------------------------------------------------------------------------------------
// Create a new light, initialize it and add to pool
Light CreateLight(int type, Vector3 position, Color diffuse)
{
Light light = NULL;
if (lightsCount < MAX_LIGHTS)
{
// Allocate dynamic memory
light = (Light)malloc(sizeof(LightData));
// Initialize light values with generic values
light->id = lightsCount;
light->type = type;
light->enabled = true;
light->position = position;
light->target = (Vector3){ 0.0f, 0.0f, 0.0f };
light->intensity = 1.0f;
light->diffuse = diffuse;
// Add new light to the array
lights[lightsCount] = light;
// Increase enabled lights count
lightsCount++;
}
else
{
// NOTE: Returning latest created light to avoid crashes
light = lights[lightsCount];
}
return light;
}
// Destroy a light and take it out of the list
void DestroyLight(Light light)
{
if (light != NULL)
{
int lightId = light->id;
// Free dynamic memory allocation
free(lights[lightId]);
// Remove *obj from the pointers array
for (int i = lightId; i < lightsCount; i++)
{
// Resort all the following pointers of the array
if ((i + 1) < lightsCount)
{
lights[i] = lights[i + 1];
lights[i]->id = lights[i + 1]->id;
}
}
// Decrease enabled physic objects count
lightsCount--;
}
}
// Draw light in 3D world
void DrawLight(Light light)
{
switch (light->type)
{
case LIGHT_POINT:
{
DrawSphereWires(light->position, 0.3f*light->intensity, 8, 8, (light->enabled ? light->diffuse : GRAY));
DrawCircle3D(light->position, light->radius, (Vector3){ 0, 0, 0 }, 0.0f, (light->enabled ? light->diffuse : GRAY));
DrawCircle3D(light->position, light->radius, (Vector3){ 1, 0, 0 }, 90.0f, (light->enabled ? light->diffuse : GRAY));
DrawCircle3D(light->position, light->radius, (Vector3){ 0, 1, 0 },90.0f, (light->enabled ? light->diffuse : GRAY));
} break;
case LIGHT_DIRECTIONAL:
{
DrawLine3D(light->position, light->target, (light->enabled ? light->diffuse : GRAY));
DrawSphereWires(light->position, 0.3f*light->intensity, 8, 8, (light->enabled ? light->diffuse : GRAY));
DrawCubeWires(light->target, 0.3f, 0.3f, 0.3f, (light->enabled ? light->diffuse : GRAY));
} break;
case LIGHT_SPOT:
{
DrawLine3D(light->position, light->target, (light->enabled ? light->diffuse : GRAY));
Vector3 dir = VectorSubtract(light->target, light->position);
VectorNormalize(&dir);
DrawCircle3D(light->position, 0.5f, dir, 0.0f, (light->enabled ? light->diffuse : GRAY));
//DrawCylinderWires(light->position, 0.0f, 0.3f*light->coneAngle/50, 0.6f, 5, (light->enabled ? light->diffuse : GRAY));
DrawCubeWires(light->target, 0.3f, 0.3f, 0.3f, (light->enabled ? light->diffuse : GRAY));
} break;
default: break;
}
}
// Get shader locations for lights (up to MAX_LIGHTS)
static void GetShaderLightsLocations(Shader shader)
{
char locName[32] = "lights[x].\0";
char locNameUpdated[64];
for (int i = 0; i < MAX_LIGHTS; i++)
{
locName[7] = '0' + i;
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "enabled\0");
lightsLocs[i][0] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "type\0");
lightsLocs[i][1] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "position\0");
lightsLocs[i][2] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "direction\0");
lightsLocs[i][3] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "radius\0");
lightsLocs[i][4] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "diffuse\0");
lightsLocs[i][5] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "intensity\0");
lightsLocs[i][6] = GetShaderLocation(shader, locNameUpdated);
locNameUpdated[0] = '\0';
strcpy(locNameUpdated, locName);
strcat(locNameUpdated, "coneAngle\0");
lightsLocs[i][7] = GetShaderLocation(shader, locNameUpdated);
}
}
// Set shader uniform values for lights
// NOTE: It would be far easier with shader UBOs but are not supported on OpenGL ES 2.0
// TODO: Replace glUniform1i(), glUniform1f(), glUniform3f(), glUniform4f():
//SetShaderValue(Shader shader, int uniformLoc, float *value, int size)
//SetShaderValuei(Shader shader, int uniformLoc, int *value, int size)
static void SetShaderLightsValues(Shader shader)
{
int tempInt[8] = { 0 };
float tempFloat[8] = { 0.0f };
for (int i = 0; i < MAX_LIGHTS; i++)
{
if (i < lightsCount)
{
tempInt[0] = lights[i]->enabled;
SetShaderValuei(shader, lightsLocs[i][0], tempInt, 1); //glUniform1i(lightsLocs[i][0], lights[i]->enabled);
tempInt[0] = lights[i]->type;
SetShaderValuei(shader, lightsLocs[i][1], tempInt, 1); //glUniform1i(lightsLocs[i][1], lights[i]->type);
tempFloat[0] = (float)lights[i]->diffuse.r/255.0f;
tempFloat[1] = (float)lights[i]->diffuse.g/255.0f;
tempFloat[2] = (float)lights[i]->diffuse.b/255.0f;
tempFloat[3] = (float)lights[i]->diffuse.a/255.0f;
SetShaderValue(shader, lightsLocs[i][5], tempFloat, 4);
//glUniform4f(lightsLocs[i][5], (float)lights[i]->diffuse.r/255, (float)lights[i]->diffuse.g/255, (float)lights[i]->diffuse.b/255, (float)lights[i]->diffuse.a/255);
tempFloat[0] = lights[i]->intensity;
SetShaderValue(shader, lightsLocs[i][6], tempFloat, 1);
switch (lights[i]->type)
{
case LIGHT_POINT:
{
tempFloat[0] = lights[i]->position.x;
tempFloat[1] = lights[i]->position.y;
tempFloat[2] = lights[i]->position.z;
SetShaderValue(shader, lightsLocs[i][2], tempFloat, 3);
tempFloat[0] = lights[i]->radius;
SetShaderValue(shader, lightsLocs[i][4], tempFloat, 1);
//glUniform3f(lightsLocs[i][2], lights[i]->position.x, lights[i]->position.y, lights[i]->position.z);
//glUniform1f(lightsLocs[i][4], lights[i]->radius);
} break;
case LIGHT_DIRECTIONAL:
{
Vector3 direction = VectorSubtract(lights[i]->target, lights[i]->position);
VectorNormalize(&direction);
tempFloat[0] = direction.x;
tempFloat[1] = direction.y;
tempFloat[2] = direction.z;
SetShaderValue(shader, lightsLocs[i][3], tempFloat, 3);
//glUniform3f(lightsLocs[i][3], direction.x, direction.y, direction.z);
} break;
case LIGHT_SPOT:
{
tempFloat[0] = lights[i]->position.x;
tempFloat[1] = lights[i]->position.y;
tempFloat[2] = lights[i]->position.z;
SetShaderValue(shader, lightsLocs[i][2], tempFloat, 3);
//glUniform3f(lightsLocs[i][2], lights[i]->position.x, lights[i]->position.y, lights[i]->position.z);
Vector3 direction = VectorSubtract(lights[i]->target, lights[i]->position);
VectorNormalize(&direction);
tempFloat[0] = direction.x;
tempFloat[1] = direction.y;
tempFloat[2] = direction.z;
SetShaderValue(shader, lightsLocs[i][3], tempFloat, 3);
//glUniform3f(lightsLocs[i][3], direction.x, direction.y, direction.z);
tempFloat[0] = lights[i]->coneAngle;
SetShaderValue(shader, lightsLocs[i][7], tempFloat, 1);
//glUniform1f(lightsLocs[i][7], lights[i]->coneAngle);
} break;
default: break;
}
}
else
{
tempInt[0] = 0;
SetShaderValuei(shader, lightsLocs[i][0], tempInt, 1); //glUniform1i(lightsLocs[i][0], 0); // Light disabled
}
}
}
// Calculate vector length
float VectorLength(const Vector3 v)
{
float length;
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
return length;
}
// Normalize provided vector
void VectorNormalize(Vector3 *v)
{
float length, ilength;
length = VectorLength(*v);
if (length == 0.0f) length = 1.0f;
ilength = 1.0f/length;
v->x *= ilength;
v->y *= ilength;
v->z *= ilength;
}
// Substract two vectors
Vector3 VectorSubtract(Vector3 v1, Vector3 v2)
{
Vector3 result;
result.x = v1.x - v2.x;
result.y = v1.y - v2.y;
result.z = v1.z - v2.z;
return result;
}