raylib/src/physac.h
victorfisac 4e84ded7ef Fixed spacing and set UpdatePhysics() function as static...
and remove static from PhysicsThread().
2016-06-14 20:38:49 +02:00

824 lines
44 KiB
C

/**********************************************************************************************
*
* physac 1.0 - 2D Physics library for raylib (https://github.com/raysan5/raylib)
*
* // TODO: Description...
*
* CONFIGURATION:
*
* #define PHYSAC_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
* #define PHYSAC_STATIC (defined by default)
* The generated implementation will stay private inside implementation file and all
* internal symbols and functions will only be visible inside that file.
*
* #define PHYSAC_STANDALONE
* Avoid raylib.h header inclusion in this file. Data types defined on raylib are defined
* internally in the library and input management and drawing functions must be provided by
* the user (check library implementation for further details).
*
* #define PHYSAC_MALLOC()
* #define PHYSAC_FREE()
* You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
* Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
*
* LIMITATIONS:
*
* // TODO.
*
* VERSIONS:
*
* 1.0 (09-Jun-2016) Module names review and converted to header-only.
* 0.9 (23-Mar-2016) Complete module redesign, steps-based for better physics resolution.
* 0.3 (13-Feb-2016) Reviewed to add PhysicObjects pool.
* 0.2 (03-Jan-2016) Improved physics calculations.
* 0.1 (30-Dec-2015) Initial release.
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2016 Victor Fisac (main developer) and Ramon Santamaria
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#ifndef PHYSAC_H
#define PHYSAC_H
#if !defined(RAYGUI_STANDALONE)
#include "raylib.h"
#endif
#define PHYSAC_STATIC
#ifdef PHYSAC_STATIC
#define PHYSACDEF static // Functions just visible to module including this file
#else
#ifdef __cplusplus
#define PHYSACDEF extern "C" // Functions visible from other files (no name mangling of functions in C++)
#else
#define PHYSACDEF extern // Functions visible from other files
#endif
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Types and Structures Definition
// NOTE: Below types are required for PHYSAC_STANDALONE usage
//----------------------------------------------------------------------------------
#if defined(PHYSAC_STANDALONE)
#ifndef __cplusplus
// Boolean type
#ifndef true
typedef enum { false, true } bool;
#endif
#endif
// Vector2 type
typedef struct Vector2 {
float x;
float y;
} Vector2;
// Rectangle type
typedef struct Rectangle {
int x;
int y;
int width;
int height;
} Rectangle;
#endif
typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
typedef struct Transform {
Vector2 position;
float rotation; // Radians (not used)
Vector2 scale; // Just for rectangle physic objects, for circle physic objects use collider radius and keep scale as { 0, 0 }
} Transform;
typedef struct Rigidbody {
bool enabled; // Acts as kinematic state (collisions are calculated anyway)
float mass;
Vector2 acceleration;
Vector2 velocity;
bool applyGravity;
bool isGrounded;
float friction; // Normalized value
float bounciness;
} Rigidbody;
typedef struct Collider {
bool enabled;
ColliderType type;
Rectangle bounds; // Used for COLLIDER_RECTANGLE
int radius; // Used for COLLIDER_CIRCLE
} Collider;
typedef struct PhysicBodyData {
unsigned int id;
Transform transform;
Rigidbody rigidbody;
Collider collider;
bool enabled;
} PhysicBodyData, *PhysicBody;
//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------
PHYSACDEF void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
PHYSACDEF void* PhysicsThread(void *arg); // Physics calculations thread function
PHYSACDEF void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
PHYSACDEF PhysicBody CreatePhysicBody(Vector2 position, float rotation, Vector2 scale); // Create a new physic body dinamically, initialize it and add to pool
PHYSACDEF void DestroyPhysicBody(PhysicBody pbody); // Destroy a specific physic body and take it out of the list
PHYSACDEF void ApplyForce(PhysicBody pbody, Vector2 force); // Apply directional force to a physic body
PHYSACDEF void ApplyForceAtPosition(Vector2 position, float force, float radius); // Apply radial force to all physic objects in range
PHYSACDEF Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
#endif // PHYSAC_H
/***********************************************************************************
*
* PHYSAC IMPLEMENTATION
*
************************************************************************************/
#if defined(PHYSAC_IMPLEMENTATION)
// Check if custom malloc/free functions defined, if not, using standard ones
#if !defined(PHYSAC_MALLOC)
#include <stdlib.h> // Required for: malloc(), free()
#define PHYSAC_MALLOC(size) malloc(size)
#define PHYSAC_FREE(ptr) free(ptr)
#endif
#include <math.h> // Required for: cos(), sin(), abs(), fminf()
#include <stdint.h> // Required for typedef unsigned long long int uint64_t, used by hi-res timer
#ifndef PHYSAC_NO_THREADS
#include <pthread.h> // Required for: pthread_create()
#endif
#if defined(PLATFORM_DESKTOP)
// Functions required to query time on Windows
int __stdcall QueryPerformanceCounter(unsigned long long int *lpPerformanceCount);
int __stdcall QueryPerformanceFrequency(unsigned long long int *lpFrequency);
#elif defined(PLATFORM_ANDROID) || defined(PLATFORM_RPI)
#include <sys/time.h> // Required for: timespec
#include <time.h> // Required for: clock_gettime()
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define MAX_PHYSIC_BODIES 256 // Maximum available physic bodies slots in bodies pool
#define PHYSICS_TIMESTEP 0.016666 // Physics fixed time step (1/fps)
#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
//----------------------------------------------------------------------------------
// Types and Structures Definition
// NOTE: Below types are required for PHYSAC_STANDALONE usage
//----------------------------------------------------------------------------------
// ...
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static bool physicsThreadEnabled = false; // Physics calculations thread exit control
static uint64_t baseTime; // Base time measure for hi-res timer
static double currentTime, previousTime; // Used to track timmings
static PhysicBody physicBodies[MAX_PHYSIC_BODIES]; // Physic bodies pool
static int physicBodiesCount; // Counts current enabled physic bodies
static Vector2 gravityForce; // Gravity force
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static void UpdatePhysics(double deltaTime); // Update physic objects, calculating physic behaviours and collisions detection
static void InitTimer(void); // Initialize hi-resolution timer
static double GetCurrentTime(void); // Time measure returned are microseconds
static float Vector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two Vector2
static float Vector2Length(Vector2 v); // Returns the length of a Vector2
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Initializes pointers array (just pointers, fixed size)
PHYSACDEF void InitPhysics(Vector2 gravity)
{
// Initialize physics variables
physicBodiesCount = 0;
gravityForce = gravity;
#ifndef PHYSAC_NO_THREADS // NOTE: if defined, user will need to create a thread for PhysicsThread function manually
// Create physics thread
pthread_t tid;
pthread_create(&tid, NULL, &PhysicsThread, NULL);
#endif
}
// Unitialize all physic objects and empty the objects pool
PHYSACDEF void ClosePhysics()
{
// Exit physics thread loop
physicsThreadEnabled = false;
// Free all dynamic memory allocations
for (int i = 0; i < physicBodiesCount; i++) PHYSAC_FREE(physicBodies[i]);
// Reset enabled physic objects count
physicBodiesCount = 0;
}
// Create a new physic body dinamically, initialize it and add to pool
PHYSACDEF PhysicBody CreatePhysicBody(Vector2 position, float rotation, Vector2 scale)
{
// Allocate dynamic memory
PhysicBody obj = (PhysicBody)PHYSAC_MALLOC(sizeof(PhysicBodyData));
// Initialize physic body values with generic values
obj->id = physicBodiesCount;
obj->enabled = true;
obj->transform = (Transform){ (Vector2){ position.x - scale.x/2, position.y - scale.y/2 }, rotation, scale };
obj->rigidbody.enabled = false;
obj->rigidbody.mass = 1.0f;
obj->rigidbody.acceleration = (Vector2){ 0.0f, 0.0f };
obj->rigidbody.velocity = (Vector2){ 0.0f, 0.0f };
obj->rigidbody.applyGravity = false;
obj->rigidbody.isGrounded = false;
obj->rigidbody.friction = 0.0f;
obj->rigidbody.bounciness = 0.0f;
obj->collider.enabled = true;
obj->collider.type = COLLIDER_RECTANGLE;
obj->collider.bounds = TransformToRectangle(obj->transform);
obj->collider.radius = 0.0f;
// Add new physic body to the pointers array
physicBodies[physicBodiesCount] = obj;
// Increase enabled physic bodies count
physicBodiesCount++;
return obj;
}
// Destroy a specific physic body and take it out of the list
PHYSACDEF void DestroyPhysicBody(PhysicBody pbody)
{
// Free dynamic memory allocation
PHYSAC_FREE(physicBodies[pbody->id]);
// Remove *obj from the pointers array
for (int i = pbody->id; i < physicBodiesCount; i++)
{
// Resort all the following pointers of the array
if ((i + 1) < physicBodiesCount)
{
physicBodies[i] = physicBodies[i + 1];
physicBodies[i]->id = physicBodies[i + 1]->id;
}
else PHYSAC_FREE(physicBodies[i]);
}
// Decrease enabled physic bodies count
physicBodiesCount--;
}
// Apply directional force to a physic body
PHYSACDEF void ApplyForce(PhysicBody pbody, Vector2 force)
{
if (pbody->rigidbody.enabled)
{
pbody->rigidbody.velocity.x += force.x/pbody->rigidbody.mass;
pbody->rigidbody.velocity.y += force.y/pbody->rigidbody.mass;
}
}
// Apply radial force to all physic objects in range
PHYSACDEF void ApplyForceAtPosition(Vector2 position, float force, float radius)
{
for (int i = 0; i < physicBodiesCount; i++)
{
if (physicBodies[i]->rigidbody.enabled)
{
// Calculate direction and distance between force and physic body position
Vector2 distance = (Vector2){ physicBodies[i]->transform.position.x - position.x, physicBodies[i]->transform.position.y - position.y };
if (physicBodies[i]->collider.type == COLLIDER_RECTANGLE)
{
distance.x += physicBodies[i]->transform.scale.x/2;
distance.y += physicBodies[i]->transform.scale.y/2;
}
float distanceLength = Vector2Length(distance);
// Check if physic body is in force range
if (distanceLength <= radius)
{
// Normalize force direction
distance.x /= distanceLength;
distance.y /= -distanceLength;
// Calculate final force
Vector2 finalForce = { distance.x*force, distance.y*force };
// Apply force to the physic body
ApplyForce(physicBodies[i], finalForce);
}
}
}
}
// Convert Transform data type to Rectangle (position and scale)
PHYSACDEF Rectangle TransformToRectangle(Transform transform)
{
return (Rectangle){transform.position.x, transform.position.y, transform.scale.x, transform.scale.y};
}
// Physics calculations thread function
PHYSACDEF void* PhysicsThread(void *arg)
{
// Initialize thread loop state
physicsThreadEnabled = true;
// Initialize hi-resolution timer
InitTimer();
// Physics update loop
while (physicsThreadEnabled)
{
currentTime = GetCurrentTime();
double deltaTime = (double)(currentTime - previousTime);
previousTime = currentTime;
// Delta time value needs to be inverse multiplied by physics time step value (1/target fps)
UpdatePhysics(deltaTime/PHYSICS_TIMESTEP);
}
return NULL;
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
// Initialize hi-resolution timer
static void InitTimer(void)
{
#if defined(PLATFORM_ANDROID) || defined(PLATFORM_RPI)
struct timespec now;
if (clock_gettime(CLOCK_MONOTONIC, &now) == 0) // Success
{
baseTime = (uint64_t)now.tv_sec*1000000000LLU + (uint64_t)now.tv_nsec;
}
#endif
previousTime = GetCurrentTime(); // Get time as double
}
// Time measure returned are microseconds
static double GetCurrentTime(void)
{
double time;
#if defined(PLATFORM_DESKTOP)
unsigned long long int clockFrequency, currentTime;
QueryPerformanceFrequency(&clockFrequency);
QueryPerformanceCounter(&currentTime);
time = (double)((double)currentTime/(double)clockFrequency);
#endif
#if defined(PLATFORM_ANDROID) || defined(PLATFORM_RPI)
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
uint64_t temp = (uint64_t)ts.tv_sec*1000000000LLU + (uint64_t)ts.tv_nsec;
time = (double)(temp - baseTime)*1e-9;
#endif
return time;
}
// Returns the dot product of two Vector2
static float Vector2DotProduct(Vector2 v1, Vector2 v2)
{
float result;
result = v1.x*v2.x + v1.y*v2.y;
return result;
}
static float Vector2Length(Vector2 v)
{
float result;
result = sqrt(v.x*v.x + v.y*v.y);
return result;
}
// Update physic objects, calculating physic behaviours and collisions detection
static void UpdatePhysics(double deltaTime)
{
for (int i = 0; i < physicBodiesCount; i++)
{
if (physicBodies[i]->enabled)
{
// Update physic behaviour
if (physicBodies[i]->rigidbody.enabled)
{
// Apply friction to acceleration in X axis
if (physicBodies[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x -= physicBodies[i]->rigidbody.friction*deltaTime;
else if (physicBodies[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.x += physicBodies[i]->rigidbody.friction*deltaTime;
else physicBodies[i]->rigidbody.acceleration.x = 0.0f;
// Apply friction to acceleration in Y axis
if (physicBodies[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y -= physicBodies[i]->rigidbody.friction*deltaTime;
else if (physicBodies[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.acceleration.y += physicBodies[i]->rigidbody.friction*deltaTime;
else physicBodies[i]->rigidbody.acceleration.y = 0.0f;
// Apply friction to velocity in X axis
if (physicBodies[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x -= physicBodies[i]->rigidbody.friction*deltaTime;
else if (physicBodies[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.friction*deltaTime;
else physicBodies[i]->rigidbody.velocity.x = 0.0f;
// Apply friction to velocity in Y axis
if (physicBodies[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y -= physicBodies[i]->rigidbody.friction*deltaTime;
else if (physicBodies[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.friction*deltaTime;
else physicBodies[i]->rigidbody.velocity.y = 0.0f;
// Apply gravity to velocity
if (physicBodies[i]->rigidbody.applyGravity)
{
physicBodies[i]->rigidbody.velocity.x += gravityForce.x*deltaTime;
physicBodies[i]->rigidbody.velocity.y += gravityForce.y*deltaTime;
}
// Apply acceleration to velocity
physicBodies[i]->rigidbody.velocity.x += physicBodies[i]->rigidbody.acceleration.x*deltaTime;
physicBodies[i]->rigidbody.velocity.y += physicBodies[i]->rigidbody.acceleration.y*deltaTime;
// Apply velocity to position
physicBodies[i]->transform.position.x += physicBodies[i]->rigidbody.velocity.x*deltaTime;
physicBodies[i]->transform.position.y -= physicBodies[i]->rigidbody.velocity.y*deltaTime;
}
// Update collision detection
if (physicBodies[i]->collider.enabled)
{
// Update collider bounds
physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
// Check collision with other colliders
for (int k = 0; k < physicBodiesCount; k++)
{
if (physicBodies[k]->collider.enabled && i != k)
{
// Resolve physic collision
// NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
// and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
// 1. Calculate collision normal
// -------------------------------------------------------------------------------------------------------------------------------------
// Define collision contact normal, direction and penetration depth
Vector2 contactNormal = { 0.0f, 0.0f };
Vector2 direction = { 0.0f, 0.0f };
float penetrationDepth = 0.0f;
switch (physicBodies[i]->collider.type)
{
case COLLIDER_RECTANGLE:
{
switch (physicBodies[k]->collider.type)
{
case COLLIDER_RECTANGLE:
{
// Check if colliders are overlapped
if (CheckCollisionRecs(physicBodies[i]->collider.bounds, physicBodies[k]->collider.bounds))
{
// Calculate direction vector from i to k
direction.x = (physicBodies[k]->transform.position.x + physicBodies[k]->transform.scale.x/2) - (physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2);
direction.y = (physicBodies[k]->transform.position.y + physicBodies[k]->transform.scale.y/2) - (physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2);
// Define overlapping and penetration attributes
Vector2 overlap;
// Calculate overlap on X axis
overlap.x = (physicBodies[i]->transform.scale.x + physicBodies[k]->transform.scale.x)/2 - abs(direction.x);
// SAT test on X axis
if (overlap.x > 0.0f)
{
// Calculate overlap on Y axis
overlap.y = (physicBodies[i]->transform.scale.y + physicBodies[k]->transform.scale.y)/2 - abs(direction.y);
// SAT test on Y axis
if (overlap.y > 0.0f)
{
// Find out which axis is axis of least penetration
if (overlap.y > overlap.x)
{
// Point towards k knowing that direction points from i to k
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
else contactNormal = (Vector2){ 1.0f, 0.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.x;
}
else
{
// Point towards k knowing that direction points from i to k
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
else contactNormal = (Vector2){ 0.0f, -1.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.y;
}
}
}
}
} break;
case COLLIDER_CIRCLE:
{
if (CheckCollisionCircleRec(physicBodies[k]->transform.position, physicBodies[k]->collider.radius, physicBodies[i]->collider.bounds))
{
// Calculate direction vector between circles
direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x + physicBodies[i]->transform.scale.x/2;
direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y + physicBodies[i]->transform.scale.y/2;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width;
else closestPoint.x = physicBodies[i]->collider.bounds.x;
if (direction.y > 0.0f) closestPoint.y = physicBodies[i]->collider.bounds.y + physicBodies[i]->collider.bounds.height;
else closestPoint.y = physicBodies[i]->collider.bounds.y;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
{
// Recalculate direction based on closest point position
direction.x = physicBodies[k]->transform.position.x - closestPoint.x;
direction.y = physicBodies[k]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Calculate penetration depth
penetrationDepth = physicBodies[k]->collider.radius - distance;
}
else
{
if (abs(direction.y) < abs(direction.x))
{
// Calculate final contact normal
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y - physicBodies[k]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicBodies[i]->collider.bounds.y - physicBodies[k]->transform.position.y + physicBodies[k]->collider.radius);
}
}
else
{
// Calculate final contact normal
if (direction.x > 0.0f)
{
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[k]->transform.position.x + physicBodies[k]->collider.radius - physicBodies[i]->collider.bounds.x);
}
else
{
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[i]->collider.bounds.x + physicBodies[i]->collider.bounds.width - physicBodies[k]->transform.position.x - physicBodies[k]->collider.radius);
}
}
}
}
} break;
}
} break;
case COLLIDER_CIRCLE:
{
switch (physicBodies[k]->collider.type)
{
case COLLIDER_RECTANGLE:
{
if (CheckCollisionCircleRec(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->collider.bounds))
{
// Calculate direction vector between circles
direction.x = physicBodies[k]->transform.position.x + physicBodies[i]->transform.scale.x/2 - physicBodies[i]->transform.position.x;
direction.y = physicBodies[k]->transform.position.y + physicBodies[i]->transform.scale.y/2 - physicBodies[i]->transform.position.y;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width;
else closestPoint.x = physicBodies[k]->collider.bounds.x;
if (direction.y > 0.0f) closestPoint.y = physicBodies[k]->collider.bounds.y + physicBodies[k]->collider.bounds.height;
else closestPoint.y = physicBodies[k]->collider.bounds.y;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicBodies[i]->transform.position, physicBodies[i]->collider.radius))
{
// Recalculate direction based on closest point position
direction.x = physicBodies[i]->transform.position.x - closestPoint.x;
direction.y = physicBodies[i]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Calculate penetration depth
penetrationDepth = physicBodies[k]->collider.radius - distance;
}
else
{
if (abs(direction.y) < abs(direction.x))
{
// Calculate final contact normal
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y - physicBodies[i]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicBodies[k]->collider.bounds.y - physicBodies[i]->transform.position.y + physicBodies[i]->collider.radius);
}
}
else
{
// Calculate final contact normal and penetration depth
if (direction.x > 0.0f)
{
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[i]->transform.position.x + physicBodies[i]->collider.radius - physicBodies[k]->collider.bounds.x);
}
else
{
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicBodies[k]->collider.bounds.x + physicBodies[k]->collider.bounds.width - physicBodies[i]->transform.position.x - physicBodies[i]->collider.radius);
}
}
}
}
} break;
case COLLIDER_CIRCLE:
{
// Check if colliders are overlapped
if (CheckCollisionCircles(physicBodies[i]->transform.position, physicBodies[i]->collider.radius, physicBodies[k]->transform.position, physicBodies[k]->collider.radius))
{
// Calculate direction vector between circles
direction.x = physicBodies[k]->transform.position.x - physicBodies[i]->transform.position.x;
direction.y = physicBodies[k]->transform.position.y - physicBodies[i]->transform.position.y;
// Calculate distance between circles
float distance = Vector2Length(direction);
// Check if circles are not completely overlapped
if (distance != 0.0f)
{
// Calculate contact normal direction (Y axis needs to be flipped)
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
}
else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
}
} break;
default: break;
}
} break;
default: break;
}
// Update rigidbody grounded state
if (physicBodies[i]->rigidbody.enabled) physicBodies[i]->rigidbody.isGrounded = (contactNormal.y < 0.0f);
// 2. Calculate collision impulse
// -------------------------------------------------------------------------------------------------------------------------------------
// Calculate relative velocity
Vector2 relVelocity = { 0.0f, 0.0f };
relVelocity.x = physicBodies[k]->rigidbody.velocity.x - physicBodies[i]->rigidbody.velocity.x;
relVelocity.y = physicBodies[k]->rigidbody.velocity.y - physicBodies[i]->rigidbody.velocity.y;
// Calculate relative velocity in terms of the normal direction
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
// Dot not resolve if velocities are separating
if (velAlongNormal <= 0.0f)
{
// Calculate minimum bounciness value from both objects
float e = fminf(physicBodies[i]->rigidbody.bounciness, physicBodies[k]->rigidbody.bounciness);
// Calculate impulse scalar value
float j = -(1.0f + e)*velAlongNormal;
j /= 1.0f/physicBodies[i]->rigidbody.mass + 1.0f/physicBodies[k]->rigidbody.mass;
// Calculate final impulse vector
Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
// Calculate collision mass ration
float massSum = physicBodies[i]->rigidbody.mass + physicBodies[k]->rigidbody.mass;
float ratio = 0.0f;
// Apply impulse to current rigidbodies velocities if they are enabled
if (physicBodies[i]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicBodies[i]->rigidbody.mass/massSum;
// Apply impulse direction to velocity
physicBodies[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
physicBodies[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
}
if (physicBodies[k]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicBodies[k]->rigidbody.mass/massSum;
// Apply impulse direction to velocity
physicBodies[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
physicBodies[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicBodies[i]->rigidbody.bounciness);
}
// 3. Correct colliders overlaping (transform position)
// ---------------------------------------------------------------------------------------------------------------------------------
// Calculate transform position penetration correction
Vector2 posCorrection;
posCorrection.x = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
posCorrection.y = penetrationDepth/((1.0f/physicBodies[i]->rigidbody.mass) + (1.0f/physicBodies[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
// Fix transform positions
if (physicBodies[i]->rigidbody.enabled)
{
// Fix physic objects transform position
physicBodies[i]->transform.position.x -= 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.x;
physicBodies[i]->transform.position.y += 1.0f/physicBodies[i]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicBodies[i]->collider.bounds = TransformToRectangle(physicBodies[i]->transform);
if (physicBodies[k]->rigidbody.enabled)
{
// Fix physic objects transform position
physicBodies[k]->transform.position.x += 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.x;
physicBodies[k]->transform.position.y -= 1.0f/physicBodies[k]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicBodies[k]->collider.bounds = TransformToRectangle(physicBodies[k]->transform);
}
}
}
}
}
}
}
}
}
#endif // PHYSAC_IMPLEMENTATION