raylib/src/rlgl.c
raysan5 42c92e4f2e Add support for custom shaders
Custom shaders for models
Postprocessig on FBO (in progress)
Some useless spaces removed
2015-02-02 00:57:08 +01:00

2372 lines
85 KiB
C

/**********************************************************************************************
*
* rlgl - raylib OpenGL abstraction layer
*
* raylib now uses OpenGL 1.1 style functions (rlVertex) that are mapped to selected OpenGL version:
* OpenGL 1.1 - Direct map rl* -> gl*
* OpenGL 3.3+ - Vertex data is stored in VAOs, call rlglDraw() to render
* OpenGL ES 2 - Same behaviour as OpenGL 3.3+
*
* Copyright (c) 2014 Ramon Santamaria (Ray San - raysan@raysanweb.com)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#include "rlgl.h"
#include <stdio.h> // Standard input / output lib
#include <stdlib.h> // Declares malloc() and free() for memory management, rand()
#if defined(GRAPHICS_API_OPENGL_11)
#ifdef __APPLE__ // OpenGL include for OSX
#include <OpenGL/gl.h>
#else
#include <GL/gl.h> // Basic OpenGL include
#endif
#endif
#if defined(GRAPHICS_API_OPENGL_33)
#define GLEW_STATIC
#ifdef __APPLE__ // OpenGL include for OSX
#include <OpenGL/gl3.h>
#else
#include <GL/glew.h> // Extensions loading lib
//#include "glad.h" // TODO: Other extensions loading lib? --> REVIEW
#endif
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
#include <EGL/egl.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define MATRIX_STACK_SIZE 16 // Matrix stack max size
#define MAX_DRAWS_BY_TEXTURE 256 // Draws are organized by texture changes
#define TEMP_VERTEX_BUFFER_SIZE 4096 // Temporal Vertex Buffer (required for vertex-transformations)
// NOTE: Every vertex are 3 floats (12 bytes)
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// Vertex buffer (position + color arrays)
// NOTE: Used for lines and triangles VAOs
typedef struct {
int vCounter;
int cCounter;
float *vertices; // 3 components per vertex
unsigned char *colors; // 4 components per vertex
} VertexPositionColorBuffer;
// Vertex buffer (position + texcoords + color arrays)
// NOTE: Not used
typedef struct {
int vCounter;
int tcCounter;
int cCounter;
float *vertices; // 3 components per vertex
float *texcoords; // 2 components per vertex
unsigned char *colors; // 4 components per vertex
} VertexPositionColorTextureBuffer;
// Vertex buffer (position + texcoords + normals arrays)
// NOTE: Not used
typedef struct {
int vCounter;
int tcCounter;
int nCounter;
float *vertices; // 3 components per vertex
float *texcoords; // 2 components per vertex
float *normals; // 3 components per vertex
//short *normals; // NOTE: Less data load... but padding issues and normalizing required!
} VertexPositionTextureNormalBuffer;
// Vertex buffer (position + texcoords + colors + indices arrays)
// NOTE: Used for quads VAO
typedef struct {
int vCounter;
int tcCounter;
int cCounter;
float *vertices; // 3 components per vertex
float *texcoords; // 2 components per vertex
unsigned char *colors; // 4 components per vertex
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
unsigned int *indices; // 6 indices per quad (could be int)
#elif defined(GRAPHICS_API_OPENGL_ES2)
unsigned short *indices; // 6 indices per quad (must be short)
// NOTE: 6*2 byte = 12 byte, not alignment problem!
#endif
} VertexPositionColorTextureIndexBuffer;
// Draw call type
// NOTE: Used to track required draw-calls, organized by texture
typedef struct {
GLuint textureId;
int vertexCount;
} DrawCall;
// pixel type (same as Color type)
// NOTE: Used exclusively in mipmap generation functions
typedef struct {
unsigned char r;
unsigned char g;
unsigned char b;
unsigned char a;
} pixel;
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
static Matrix stack[MATRIX_STACK_SIZE];
static int stackCounter = 0;
static Matrix modelview;
static Matrix projection;
static Matrix *currentMatrix;
static int currentMatrixMode;
static DrawMode currentDrawMode;
// Vertex arrays for lines, triangles and quads
static VertexPositionColorBuffer lines; // No texture support
static VertexPositionColorBuffer triangles; // No texture support
static VertexPositionColorTextureIndexBuffer quads;
// Vetex-Fragment Shader Program ID
static GLuint defaultShaderProgram, simpleShaderProgram;
// Default Shader program attibutes binding locations
static GLuint defaultVertexLoc, defaultTexcoordLoc, defaultColorLoc;
static GLuint defaultProjectionMatrixLoc, defaultModelviewMatrixLoc;
static GLuint defaultTextureLoc;
// Simple Shader program attibutes binding locations
static GLuint simpleVertexLoc, simpleTexcoordLoc, simpleNormalLoc, simpleColorLoc;
static GLuint simpleProjectionMatrixLoc, simpleModelviewMatrixLoc;
static GLuint simpleTextureLoc;
// Custom Shader program attibutes binding locations
static GLuint customVertexLoc, customTexcoordLoc, customNormalLoc, customColorLoc;
static GLuint customProjectionMatrixLoc, customModelviewMatrixLoc;
static GLuint customTextureLoc;
static bool customShader = false;
// Vertex Array Objects (VAO)
static GLuint vaoLines, vaoTriangles, vaoQuads;
// Vertex Buffer Objects (VBO)
static GLuint linesBuffer[2];
static GLuint trianglesBuffer[2];
static GLuint quadsBuffer[4];
static DrawCall *draws;
static int drawsCounter;
// Temp vertex buffer to be used with rlTranslate, rlRotate, rlScale
static Vector3 *tempBuffer;
static int tempBufferCount = 0;
static bool useTempBuffer = false;
// Support for VAOs (OpenGL ES2 could not support VAO extensions)
static bool vaoSupported = false;
// Framebuffer object and texture
static GLuint fbo, fboColorTexture, fboDepthTexture, fboShader = 0;
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: VAO functionality is exposed through extensions (OES)
// emscripten does not support VAOs
static PFNGLGENVERTEXARRAYSOESPROC glGenVertexArrays;
static PFNGLBINDVERTEXARRAYOESPROC glBindVertexArray;
static PFNGLDELETEVERTEXARRAYSOESPROC glDeleteVertexArrays;
static PFNGLISVERTEXARRAYOESPROC glIsVertexArray;
#endif
// White texture useful for plain color polys (required by shader)
// NOTE: It's required in shapes and models modules!
unsigned int whiteTexture;
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
static GLuint LoadDefaultShader(void);
static GLuint LoadSimpleShader(void);
static void InitializeBuffers(void);
static void InitializeBuffersGPU(void);
static void UpdateBuffers(void);
// Custom shader files loading (external)
static char *TextFileRead(char *fn);
#endif
#if defined(GRAPHICS_API_OPENGL_11)
static int GenerateMipmaps(unsigned char *data, int baseWidth, int baseHeight);
static pixel *GenNextMipmap(pixel *srcData, int srcWidth, int srcHeight);
#endif
//----------------------------------------------------------------------------------
// Module Functions Definition - Matrix operations
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_11)
// Fallback to OpenGL 1.1 function calls
//---------------------------------------
void rlMatrixMode(int mode)
{
switch (mode)
{
case RL_PROJECTION: glMatrixMode(GL_PROJECTION); break;
case RL_MODELVIEW: glMatrixMode(GL_MODELVIEW); break;
case RL_TEXTURE: glMatrixMode(GL_TEXTURE); break;
default: break;
}
}
void rlFrustum(double left, double right, double bottom, double top, double near, double far)
{
glFrustum(left, right, bottom, top, near, far);
}
void rlOrtho(double left, double right, double bottom, double top, double near, double far)
{
glOrtho(left, right, bottom, top, near, far);
}
void rlPushMatrix(void) { glPushMatrix(); }
void rlPopMatrix(void) { glPopMatrix(); }
void rlLoadIdentity(void) { glLoadIdentity(); }
void rlTranslatef(float x, float y, float z) { glTranslatef(x, y, z); }
void rlRotatef(float angleDeg, float x, float y, float z) { glRotatef(angleDeg, x, y, z); }
void rlScalef(float x, float y, float z) { glScalef(x, y, z); }
void rlMultMatrixf(float *mat) { glMultMatrixf(mat); }
#elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Choose the current matrix to be transformed
void rlMatrixMode(int mode)
{
if (mode == RL_PROJECTION) currentMatrix = &projection;
else if (mode == RL_MODELVIEW) currentMatrix = &modelview;
//else if (mode == RL_TEXTURE) // Not supported
currentMatrixMode = mode;
}
// Push the current matrix to stack
void rlPushMatrix(void)
{
if (stackCounter == MATRIX_STACK_SIZE - 1)
{
TraceLog(ERROR, "Stack Buffer Overflow (MAX %i Matrix)", MATRIX_STACK_SIZE);
}
stack[stackCounter] = *currentMatrix;
rlLoadIdentity();
stackCounter++;
if (currentMatrixMode == RL_MODELVIEW) useTempBuffer = true;
}
// Pop lattest inserted matrix from stack
void rlPopMatrix(void)
{
if (stackCounter > 0)
{
Matrix mat = stack[stackCounter - 1];
*currentMatrix = mat;
stackCounter--;
}
}
// Reset current matrix to identity matrix
void rlLoadIdentity(void)
{
*currentMatrix = MatrixIdentity();
}
// Multiply the current matrix by a translation matrix
void rlTranslatef(float x, float y, float z)
{
Matrix mat = MatrixTranslate(x, y, z);
MatrixTranspose(&mat);
*currentMatrix = MatrixMultiply(*currentMatrix, mat);
}
// Multiply the current matrix by a rotation matrix
void rlRotatef(float angleDeg, float x, float y, float z)
{
// TODO: Support rotation in multiple axes
Matrix rot = MatrixIdentity();
// OPTION 1: It works...
if (x == 1) rot = MatrixRotateX(angleDeg*DEG2RAD);
else if (y == 1) rot = MatrixRotateY(angleDeg*DEG2RAD);
else if (z == 1) rot = MatrixRotateZ(angleDeg*DEG2RAD);
// OPTION 2: Requires review...
//Vector3 vec = (Vector3){ 0, 1, 0 };
//VectorNormalize(&vec);
//rot = MatrixFromAxisAngle(vec, angleDeg*DEG2RAD); // Working?
// OPTION 3: TODO: Review, it doesn't work!
//Vector3 vec = (Vector3){ x, y, z };
//VectorNormalize(&vec);
//rot = MatrixRotate(angleDeg*vec.x, angleDeg*vec.x, angleDeg*vec.x);
MatrixTranspose(&rot);
*currentMatrix = MatrixMultiply(*currentMatrix, rot);
}
// Multiply the current matrix by a scaling matrix
void rlScalef(float x, float y, float z)
{
Matrix mat = MatrixScale(x, y, z);
MatrixTranspose(&mat);
*currentMatrix = MatrixMultiply(*currentMatrix, mat);
}
// Multiply the current matrix by another matrix
void rlMultMatrixf(float *m)
{
// TODO: review Matrix creation from array
Matrix mat = { m[0], m[1], m[2], m[3],
m[4], m[5], m[6], m[7],
m[8], m[9], m[10], m[11],
m[12], m[13], m[14], m[15] };
*currentMatrix = MatrixMultiply(*currentMatrix, mat);
}
// Multiply the current matrix by a perspective matrix generated by parameters
void rlFrustum(double left, double right, double bottom, double top, double near, double far)
{
Matrix matPerps = MatrixFrustum(left, right, bottom, top, near, far);
MatrixTranspose(&matPerps);
*currentMatrix = MatrixMultiply(*currentMatrix, matPerps);
}
// Multiply the current matrix by an orthographic matrix generated by parameters
void rlOrtho(double left, double right, double bottom, double top, double near, double far)
{
Matrix matOrtho = MatrixOrtho(left, right, bottom, top, near, far);
MatrixTranspose(&matOrtho);
*currentMatrix = MatrixMultiply(*currentMatrix, matOrtho);
}
#endif
//----------------------------------------------------------------------------------
// Module Functions Definition - Vertex level operations
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_11)
// Fallback to OpenGL 1.1 function calls
//---------------------------------------
void rlBegin(int mode)
{
switch (mode)
{
case RL_LINES: glBegin(GL_LINES); break;
case RL_TRIANGLES: glBegin(GL_TRIANGLES); break;
case RL_QUADS: glBegin(GL_QUADS); break;
default: break;
}
}
void rlEnd() { glEnd(); }
void rlVertex2i(int x, int y) { glVertex2i(x, y); }
void rlVertex2f(float x, float y) { glVertex2f(x, y); }
void rlVertex3f(float x, float y, float z) { glVertex3f(x, y, z); }
void rlTexCoord2f(float x, float y) { glTexCoord2f(x, y); }
void rlNormal3f(float x, float y, float z) { glNormal3f(x, y, z); }
void rlColor4ub(byte r, byte g, byte b, byte a) { glColor4ub(r, g, b, a); }
void rlColor3f(float x, float y, float z) { glColor3f(x, y, z); }
void rlColor4f(float x, float y, float z, float w) { glColor4f(x, y, z, w); }
#elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Initialize drawing mode (how to organize vertex)
void rlBegin(int mode)
{
// Draw mode can only be RL_LINES, RL_TRIANGLES and RL_QUADS
currentDrawMode = mode;
}
// Finish vertex providing
void rlEnd(void)
{
if (useTempBuffer)
{
// NOTE: In this case, *currentMatrix is already transposed because transposing has been applied
// independently to translation-scale-rotation matrices -> t(M1 x M2) = t(M2) x t(M1)
// This way, rlTranslatef(), rlRotatef()... behaviour is the same than OpenGL 1.1
// Apply transformation matrix to all temp vertices
for (int i = 0; i < tempBufferCount; i++) VectorTransform(&tempBuffer[i], *currentMatrix);
// Deactivate tempBuffer usage to allow rlVertex3f do its job
useTempBuffer = false;
// Copy all transformed vertices to right VAO
for (int i = 0; i < tempBufferCount; i++) rlVertex3f(tempBuffer[i].x, tempBuffer[i].y, tempBuffer[i].z);
// Reset temp buffer
tempBufferCount = 0;
}
// Make sure vertexCount is the same for vertices-texcoords-normals-colors
// NOTE: In OpenGL 1.1, one glColor call can be made for all the subsequent glVertex calls.
switch (currentDrawMode)
{
case RL_LINES:
{
if (lines.vCounter != lines.cCounter)
{
int addColors = lines.vCounter - lines.cCounter;
for (int i = 0; i < addColors; i++)
{
lines.colors[4*lines.cCounter] = lines.colors[4*lines.cCounter - 4];
lines.colors[4*lines.cCounter + 1] = lines.colors[4*lines.cCounter - 3];
lines.colors[4*lines.cCounter + 2] = lines.colors[4*lines.cCounter - 2];
lines.colors[4*lines.cCounter + 3] = lines.colors[4*lines.cCounter - 1];
lines.cCounter++;
}
}
} break;
case RL_TRIANGLES:
{
if (triangles.vCounter != triangles.cCounter)
{
int addColors = triangles.vCounter - triangles.cCounter;
for (int i = 0; i < addColors; i++)
{
triangles.colors[4*triangles.cCounter] = triangles.colors[4*triangles.cCounter - 4];
triangles.colors[4*triangles.cCounter + 1] = triangles.colors[4*triangles.cCounter - 3];
triangles.colors[4*triangles.cCounter + 2] = triangles.colors[4*triangles.cCounter - 2];
triangles.colors[4*triangles.cCounter + 3] = triangles.colors[4*triangles.cCounter - 1];
triangles.cCounter++;
}
}
} break;
case RL_QUADS:
{
// Make sure colors count match vertex count
if (quads.vCounter != quads.cCounter)
{
int addColors = quads.vCounter - quads.cCounter;
for (int i = 0; i < addColors; i++)
{
quads.colors[4*quads.cCounter] = quads.colors[4*quads.cCounter - 4];
quads.colors[4*quads.cCounter + 1] = quads.colors[4*quads.cCounter - 3];
quads.colors[4*quads.cCounter + 2] = quads.colors[4*quads.cCounter - 2];
quads.colors[4*quads.cCounter + 3] = quads.colors[4*quads.cCounter - 1];
quads.cCounter++;
}
}
// Make sure texcoords count match vertex count
if (quads.vCounter != quads.tcCounter)
{
int addTexCoords = quads.vCounter - quads.tcCounter;
for (int i = 0; i < addTexCoords; i++)
{
quads.texcoords[2*quads.tcCounter] = 0.0f;
quads.texcoords[2*quads.tcCounter + 1] = 0.0f;
quads.tcCounter++;
}
}
// TODO: Make sure normals count match vertex count
} break;
default: break;
}
}
// Define one vertex (position)
void rlVertex3f(float x, float y, float z)
{
if (useTempBuffer)
{
tempBuffer[tempBufferCount].x = x;
tempBuffer[tempBufferCount].y = y;
tempBuffer[tempBufferCount].z = z;
tempBufferCount++;
}
else
{
switch (currentDrawMode)
{
case RL_LINES:
{
// Verify that MAX_LINES_BATCH limit not reached
if (lines.vCounter / 2 < MAX_LINES_BATCH)
{
lines.vertices[3*lines.vCounter] = x;
lines.vertices[3*lines.vCounter + 1] = y;
lines.vertices[3*lines.vCounter + 2] = z;
lines.vCounter++;
}
else TraceLog(ERROR, "MAX_LINES_BATCH overflow");
} break;
case RL_TRIANGLES:
{
// Verify that MAX_TRIANGLES_BATCH limit not reached
if (triangles.vCounter / 3 < MAX_TRIANGLES_BATCH)
{
triangles.vertices[3*triangles.vCounter] = x;
triangles.vertices[3*triangles.vCounter + 1] = y;
triangles.vertices[3*triangles.vCounter + 2] = z;
triangles.vCounter++;
}
else TraceLog(ERROR, "MAX_TRIANGLES_BATCH overflow");
} break;
case RL_QUADS:
{
// Verify that MAX_QUADS_BATCH limit not reached
if (quads.vCounter / 4 < MAX_QUADS_BATCH)
{
quads.vertices[3*quads.vCounter] = x;
quads.vertices[3*quads.vCounter + 1] = y;
quads.vertices[3*quads.vCounter + 2] = z;
quads.vCounter++;
draws[drawsCounter - 1].vertexCount++;
}
else TraceLog(ERROR, "MAX_QUADS_BATCH overflow");
} break;
default: break;
}
}
}
// Define one vertex (position)
void rlVertex2f(float x, float y)
{
rlVertex3f(x, y, 0.0f);
}
// Define one vertex (position)
void rlVertex2i(int x, int y)
{
rlVertex3f((float)x, (float)y, 0.0f);
}
// Define one vertex (texture coordinate)
// NOTE: Texture coordinates are limited to QUADS only
void rlTexCoord2f(float x, float y)
{
if (currentDrawMode == RL_QUADS)
{
quads.texcoords[2*quads.tcCounter] = x;
quads.texcoords[2*quads.tcCounter + 1] = y;
quads.tcCounter++;
}
}
// Define one vertex (normal)
// NOTE: Normals limited to TRIANGLES only ?
void rlNormal3f(float x, float y, float z)
{
// TODO: Normals usage...
}
// Define one vertex (color)
void rlColor4ub(byte x, byte y, byte z, byte w)
{
switch (currentDrawMode)
{
case RL_LINES:
{
lines.colors[4*lines.cCounter] = x;
lines.colors[4*lines.cCounter + 1] = y;
lines.colors[4*lines.cCounter + 2] = z;
lines.colors[4*lines.cCounter + 3] = w;
lines.cCounter++;
} break;
case RL_TRIANGLES:
{
triangles.colors[4*triangles.cCounter] = x;
triangles.colors[4*triangles.cCounter + 1] = y;
triangles.colors[4*triangles.cCounter + 2] = z;
triangles.colors[4*triangles.cCounter + 3] = w;
triangles.cCounter++;
} break;
case RL_QUADS:
{
quads.colors[4*quads.cCounter] = x;
quads.colors[4*quads.cCounter + 1] = y;
quads.colors[4*quads.cCounter + 2] = z;
quads.colors[4*quads.cCounter + 3] = w;
quads.cCounter++;
} break;
default: break;
}
}
// Define one vertex (color)
void rlColor4f(float r, float g, float b, float a)
{
rlColor4ub((byte)(r*255), (byte)(g*255), (byte)(b*255), (byte)(a*255));
}
// Define one vertex (color)
void rlColor3f(float x, float y, float z)
{
rlColor4ub((byte)(x*255), (byte)(y*255), (byte)(z*255), 255);
}
#endif
//----------------------------------------------------------------------------------
// Module Functions Definition - OpenGL equivalent functions (common to 1.1, 3.3+, ES2)
//----------------------------------------------------------------------------------
// Enable texture usage
void rlEnableTexture(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_11)
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, id);
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (draws[drawsCounter - 1].textureId != id)
{
if (draws[drawsCounter - 1].vertexCount > 0) drawsCounter++;
draws[drawsCounter - 1].textureId = id;
draws[drawsCounter - 1].vertexCount = 0;
}
#endif
}
// Disable texture usage
void rlDisableTexture(void)
{
#if defined(GRAPHICS_API_OPENGL_11)
glDisable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
#endif
}
// Unload texture from GPU memory
void rlDeleteTextures(unsigned int id)
{
glDeleteTextures(1, &id);
}
// Unload shader from GPU memory
void rlDeleteShader(unsigned int id)
{
glDeleteProgram(id);
}
void rlEnableFBO(void)
{
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
}
// Unload vertex data (VAO) from GPU memory
void rlDeleteVertexArrays(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (vaoSupported) glDeleteVertexArrays(1, &id);
#endif
}
// Unload vertex data (VBO) from GPU memory
void rlDeleteBuffers(unsigned int id)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
glDeleteBuffers(1, &id);
#endif
}
// Clear color buffer with color
void rlClearColor(byte r, byte g, byte b, byte a)
{
// Color values clamp to 0.0f(0) and 1.0f(255)
float cr = (float)r / 255;
float cg = (float)g / 255;
float cb = (float)b / 255;
float ca = (float)a / 255;
glClearColor(cr, cg, cb, ca);
}
// Clear used screen buffers (color and depth)
void rlClearScreenBuffers(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear used buffers: Color and Depth (Depth is used for 3D)
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); // Stencil buffer not used...
}
// Returns current OpenGL version
int rlGetVersion(void)
{
#if defined(GRAPHICS_API_OPENGL_11)
return OPENGL_11;
#elif defined(GRAPHICS_API_OPENGL_33)
return OPENGL_33;
#elif defined(GRAPHICS_API_OPENGL_ES2)
return OPENGL_ES_20;
#endif
}
//----------------------------------------------------------------------------------
// Module Functions Definition - rlgl Functions
//----------------------------------------------------------------------------------
// Init OpenGL 3.3+ required data
void rlglInit(void)
{
#if defined(GRAPHICS_API_OPENGL_33)
// Loading extensions the hard way (Example)
/*
GLint numExt;
glGetIntegerv(GL_NUM_EXTENSIONS, &numExt);
for (int i = 0; i < numExt; i++)
{
const GLubyte *extensionName = glGetStringi(GL_EXTENSIONS, i);
if (strcmp(extensionName, (const GLubyte *)"GL_ARB_vertex_array_object") == 0)
{
// The extension is supported by our hardware and driver, try to get related functions popinters
glGenVertexArrays = (PFNGLGENVERTEXARRAYSOESPROC)wglGetProcAddress("glGenVertexArrays");
glBindVertexArray = (PFNGLBINDVERTEXARRAYOESPROC)wglGetProcAddress("glBindVertexArray");
glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSOESPROC)wglGetProcAddress("glDeleteVertexArrays");
glIsVertexArray = (PFNGLISVERTEXARRAYOESPROC)wglGetProcAddress("glIsVertexArray");
}
}
*/
// Initialize extensions using GLEW
glewExperimental = 1; // Needed for core profile
GLenum error = glewInit();
if (error != GLEW_OK) TraceLog(ERROR, "Failed to initialize GLEW - Error Code: %s\n", glewGetErrorString(error));
if (glewIsSupported("GL_VERSION_3_3")) TraceLog(INFO, "OpenGL 3.3 extensions supported");
// NOTE: GLEW is a big library that loads ALL extensions, using glad we can only load required ones...
//if (!gladLoadGL()) TraceLog("ERROR: Failed to initialize glad\n");
vaoSupported = true;
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: emscripten does not support VAOs natively, it uses emulation and it reduces overall performance...
#if !defined(PLATFORM_WEB)
glGenVertexArrays = (PFNGLGENVERTEXARRAYSOESPROC)eglGetProcAddress("glGenVertexArraysOES");
glBindVertexArray = (PFNGLBINDVERTEXARRAYOESPROC)eglGetProcAddress("glBindVertexArrayOES");
glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSOESPROC)eglGetProcAddress("glDeleteVertexArraysOES");
glIsVertexArray = (PFNGLISVERTEXARRAYOESPROC)eglGetProcAddress("glIsVertexArrayOES");
#endif
if (glGenVertexArrays == NULL) TraceLog(WARNING, "Could not initialize VAO extensions, VAOs not supported");
else
{
vaoSupported = true;
TraceLog(INFO, "VAO extensions initialized successfully");
}
#endif
// Print current OpenGL and GLSL version
TraceLog(INFO, "GPU: Vendor: %s", glGetString(GL_VENDOR));
TraceLog(INFO, "GPU: Renderer: %s", glGetString(GL_RENDERER));
TraceLog(INFO, "GPU: Version: %s", glGetString(GL_VERSION));
TraceLog(INFO, "GPU: GLSL: %s", glGetString(0x8B8C)); //GL_SHADING_LANGUAGE_VERSION
// NOTE: We can get a bunch of extra information about GPU capabilities (glGet*)
//int maxTexSize;
//glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTexSize);
//TraceLog(INFO, "GL_MAX_TEXTURE_SIZE: %i", maxTexSize);
//int numAuxBuffers;
//glGetIntegerv(GL_AUX_BUFFERS, &numAuxBuffers);
//TraceLog(INFO, "GL_AUX_BUFFERS: %i", numAuxBuffers);
// Show supported extensions
// NOTE: We don't need that much data on screen... right now...
/*
#if defined(GRAPHICS_API_OPENGL_33)
GLint numExt;
glGetIntegerv(GL_NUM_EXTENSIONS, &numExt);
for (int i = 0; i < numExt; i++)
{
TraceLog(INFO, "Supported extension: %s", glGetStringi(GL_EXTENSIONS, i));
}
#elif defined(GRAPHICS_API_OPENGL_ES2)
char *extensions = (char *)glGetString(GL_EXTENSIONS); // One big string
// NOTE: String could be splitted using strtok() function (string.h)
TraceLog(INFO, "Supported extension: %s", extensions);
#endif
*/
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Set default draw mode
currentDrawMode = RL_TRIANGLES;
// Reset projection and modelview matrices
projection = MatrixIdentity();
modelview = MatrixIdentity();
currentMatrix = &modelview;
// Initialize matrix stack
for (int i = 0; i < MATRIX_STACK_SIZE; i++) stack[i] = MatrixIdentity();
// Init default Shader (GLSL 110) -> Common for GL 3.3+ and ES2
defaultShaderProgram = LoadDefaultShader();
simpleShaderProgram = LoadSimpleShader();
//simpleShaderProgram = LoadCustomShader("custom.vs", "custom.fs"); // Works ok
//customShaderProgram = LoadCustomShader("simple150.vert", "simple150.frag");
// Get handles to GLSL input vars locations for defaultShaderProgram
//-------------------------------------------------------------------
defaultVertexLoc = glGetAttribLocation(defaultShaderProgram, "vertexPosition");
defaultTexcoordLoc = glGetAttribLocation(defaultShaderProgram, "vertexTexCoord");
defaultColorLoc = glGetAttribLocation(defaultShaderProgram, "vertexColor");
// Get handles to GLSL uniform vars locations (vertex-shader)
defaultModelviewMatrixLoc = glGetUniformLocation(defaultShaderProgram, "modelviewMatrix");
defaultProjectionMatrixLoc = glGetUniformLocation(defaultShaderProgram, "projectionMatrix");
// Get handles to GLSL uniform vars locations (fragment-shader)
defaultTextureLoc = glGetUniformLocation(defaultShaderProgram, "texture0");
//--------------------------------------------------------------------
// Get handles to GLSL input vars locations for simpleShaderProgram
//-------------------------------------------------------------------
simpleVertexLoc = glGetAttribLocation(simpleShaderProgram, "vertexPosition");
simpleTexcoordLoc = glGetAttribLocation(simpleShaderProgram, "vertexTexCoord");
simpleNormalLoc = glGetAttribLocation(defaultShaderProgram, "vertexNormal");
// Get handles to GLSL uniform vars locations (vertex-shader)
simpleModelviewMatrixLoc = glGetUniformLocation(simpleShaderProgram, "modelviewMatrix");
simpleProjectionMatrixLoc = glGetUniformLocation(simpleShaderProgram, "projectionMatrix");
// Get handles to GLSL uniform vars locations (fragment-shader)
simpleTextureLoc = glGetUniformLocation(simpleShaderProgram, "texture0");
simpleColorLoc = glGetUniformLocation(simpleShaderProgram, "fragColor");
//--------------------------------------------------------------------
InitializeBuffers(); // Init vertex arrays
InitializeBuffersGPU(); // Init VBO and VAO
// Init temp vertex buffer, used when transformation required (translate, rotate, scale)
tempBuffer = (Vector3 *)malloc(sizeof(Vector3)*TEMP_VERTEX_BUFFER_SIZE);
for (int i = 0; i < TEMP_VERTEX_BUFFER_SIZE; i++) tempBuffer[i] = VectorZero();
// Create default white texture for plain colors (required by shader)
unsigned char pixels[4] = { 255, 255, 255, 255 }; // 1 pixel RGBA (4 bytes)
whiteTexture = rlglLoadTexture(pixels, 1, 1, false);
if (whiteTexture != 0) TraceLog(INFO, "[TEX ID %i] Base white texture loaded successfully", whiteTexture);
else TraceLog(WARNING, "Base white texture could not be loaded");
// Init draw calls tracking system
draws = (DrawCall *)malloc(sizeof(DrawCall)*MAX_DRAWS_BY_TEXTURE);
for (int i = 0; i < MAX_DRAWS_BY_TEXTURE; i++)
{
draws[i].textureId = 0;
draws[i].vertexCount = 0;
}
drawsCounter = 1;
draws[drawsCounter - 1].textureId = whiteTexture;
#endif
}
// Init postpro system
void rlglInitPostpro(void)
{
// Create the texture that will serve as the color attachment for the framebuffer
glGenTextures(1, &fboColorTexture);
glBindTexture(GL_TEXTURE_2D, fboColorTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, GetScreenWidth(), GetScreenHeight(), 0, GL_RGB, GL_UNSIGNED_BYTE, NULL);
glBindTexture(GL_TEXTURE_2D, 0);
// Create the texture that will serve as the depth attachment for the framebuffer.
glGenTextures(1, &fboDepthTexture);
glBindTexture(GL_TEXTURE_2D, fboDepthTexture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, GetScreenWidth(), GetScreenHeight(), 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE, NULL);
glBindTexture(GL_TEXTURE_2D, 0);
// Create the framebuffer object
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
// Attach colort texture and depth texture to FBO
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fboColorTexture, 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, fboDepthTexture, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) TraceLog(WARNING, "Framebuffer object could not be created...");
else TraceLog(INFO, "[FBO ID %i] Framebuffer object created successfully", fbo);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
fboShader = 0;
// TODO: Init simple quad VAO and data here?
}
// Vertex Buffer Object deinitialization (memory free)
void rlglClose(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Unbind everything
if (vaoSupported) glBindVertexArray(0);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(2);
glDisableVertexAttribArray(3);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
glUseProgram(0);
// Delete VBOs
glDeleteBuffers(1, &linesBuffer[0]);
glDeleteBuffers(1, &linesBuffer[1]);
glDeleteBuffers(1, &trianglesBuffer[0]);
glDeleteBuffers(1, &trianglesBuffer[1]);
glDeleteBuffers(1, &quadsBuffer[0]);
glDeleteBuffers(1, &quadsBuffer[1]);
glDeleteBuffers(1, &quadsBuffer[2]);
glDeleteBuffers(1, &quadsBuffer[3]);
if (vaoSupported)
{
// Delete VAOs
glDeleteVertexArrays(1, &vaoLines);
glDeleteVertexArrays(1, &vaoTriangles);
glDeleteVertexArrays(1, &vaoQuads);
}
//glDetachShader(defaultShaderProgram, v);
//glDetachShader(defaultShaderProgram, f);
//glDeleteShader(v);
//glDeleteShader(f);
glDeleteProgram(defaultShaderProgram);
glDeleteProgram(simpleShaderProgram);
// Free vertex arrays memory
free(lines.vertices);
free(lines.colors);
free(triangles.vertices);
free(triangles.colors);
free(quads.vertices);
free(quads.texcoords);
free(quads.colors);
free(quads.indices);
// Free GPU texture
glDeleteTextures(1, &whiteTexture);
if (fbo != 0) glDeleteFramebuffers(1, &fbo);
free(draws);
#endif
}
void rlglDraw(void)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
UpdateBuffers();
if ((lines.vCounter > 0) || (triangles.vCounter > 0) || (quads.vCounter > 0))
{
if (fbo == 0) glUseProgram(defaultShaderProgram); // Use our default shader
else glUseProgram(fboShader); // Use our postpro shader
glUseProgram(defaultShaderProgram);
glUniformMatrix4fv(defaultProjectionMatrixLoc, 1, false, GetMatrixVector(projection));
glUniformMatrix4fv(defaultModelviewMatrixLoc, 1, false, GetMatrixVector(modelview));
glUniform1i(defaultTextureLoc, 0);
}
// NOTE: We draw in this order: triangle shapes, textured quads and lines
if (triangles.vCounter > 0)
{
glBindTexture(GL_TEXTURE_2D, whiteTexture);
if (vaoSupported)
{
glBindVertexArray(vaoTriangles);
}
else
{
glBindBuffer(GL_ARRAY_BUFFER, trianglesBuffer[0]);
glVertexAttribPointer(defaultVertexLoc, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(defaultVertexLoc);
glBindBuffer(GL_ARRAY_BUFFER, trianglesBuffer[1]);
glVertexAttribPointer(defaultColorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(defaultColorLoc);
}
glDrawArrays(GL_TRIANGLES, 0, triangles.vCounter);
if (!vaoSupported) glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindTexture(GL_TEXTURE_2D, 0);
}
if (quads.vCounter > 0)
{
int quadsCount = 0;
int numIndicesToProcess = 0;
int indicesOffset = 0;
if (vaoSupported)
{
glBindVertexArray(vaoQuads);
}
else
{
// Enable vertex attributes
glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[0]);
glVertexAttribPointer(defaultVertexLoc, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(defaultVertexLoc);
glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[1]);
glVertexAttribPointer(defaultTexcoordLoc, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(defaultTexcoordLoc);
glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[2]);
glVertexAttribPointer(defaultColorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(defaultColorLoc);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quadsBuffer[3]);
}
//TraceLog(DEBUG, "Draws required per frame: %i", drawsCounter);
for (int i = 0; i < drawsCounter; i++)
{
quadsCount = draws[i].vertexCount/4;
numIndicesToProcess = quadsCount*6; // Get number of Quads * 6 index by Quad
//TraceLog(DEBUG, "Quads to render: %i - Vertex Count: %i", quadsCount, draws[i].vertexCount);
glBindTexture(GL_TEXTURE_2D, draws[i].textureId);
// NOTE: The final parameter tells the GPU the offset in bytes from the start of the index buffer to the location of the first index to process
#if defined(GRAPHICS_API_OPENGL_33)
glDrawElements(GL_TRIANGLES, numIndicesToProcess, GL_UNSIGNED_INT, (GLvoid*) (sizeof(GLuint) * indicesOffset));
#elif defined(GRAPHICS_API_OPENGL_ES2)
glDrawElements(GL_TRIANGLES, numIndicesToProcess, GL_UNSIGNED_SHORT, (GLvoid*) (sizeof(GLushort) * indicesOffset));
#endif
//GLenum err;
//if ((err = glGetError()) != GL_NO_ERROR) TraceLog(INFO, "OpenGL error: %i", (int)err); //GL_INVALID_ENUM!
indicesOffset += draws[i].vertexCount/4*6;
}
if (!vaoSupported)
{
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures
}
if (lines.vCounter > 0)
{
glBindTexture(GL_TEXTURE_2D, whiteTexture);
if (vaoSupported)
{
glBindVertexArray(vaoLines);
}
else
{
glBindBuffer(GL_ARRAY_BUFFER, linesBuffer[0]);
glVertexAttribPointer(defaultVertexLoc, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(defaultVertexLoc);
glBindBuffer(GL_ARRAY_BUFFER, linesBuffer[1]);
glVertexAttribPointer(defaultColorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(defaultColorLoc);
}
glDrawArrays(GL_LINES, 0, lines.vCounter);
if (!vaoSupported) glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindTexture(GL_TEXTURE_2D, 0);
}
if (vaoSupported) glBindVertexArray(0); // Unbind VAO
// Reset draws counter
drawsCounter = 1;
draws[0].textureId = whiteTexture;
draws[0].vertexCount = 0;
// Reset vertex counters for next frame
lines.vCounter = 0;
lines.cCounter = 0;
triangles.vCounter = 0;
triangles.cCounter = 0;
quads.vCounter = 0;
quads.tcCounter = 0;
quads.cCounter = 0;
#endif
}
void rlglDrawPostpro(unsigned int shaderId)
{
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// TODO: Draw screen quad with texture
/*
const float quadPositions[] = { 1.0, 1.0, 0.0, -1.0, 1.0, 0.0, -1.0, -1.0, 0.0,
-1.0, -1.0, 0.0, 1.0, -1.0, 0.0, 1.0, 1.0, 0.0 };
const float quadTexcoords[] = { 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0 };
glBindBuffer(GL_ARRAY_BUFFER, quadVbo);
glVertexAttribPointer(ATTRIB_VERTEX, 3, GL_FLOAT, GL_FALSE, 3*sizeof(float), quadPositions);
glVertexAttribPointer(ATTRIB_TEXCOORD0, 2, GL_FLOAT, GL_FALSE, 2*sizeof(float), quadTexcoords);
glEnableVertexAttribArray(ATTRIB_VERTEX);
glEnableVertexAttribArray(ATTRIB_TEXCOORD0);
glBindTexture(GL_TEXTURE_2D, fboColorTexture);
glDrawArrays(GL_TRIANGLES, 0, 2*3);
// Quad render using triangle strip
glBindBuffer(GL_ARRAY_BUFFER, uiVBO[1]);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindTexture(GL_TEXTURE_2D, 0);
glUseProgram(0);
*/
rlEnableTexture(fboColorTexture);
rlPushMatrix();
rlBegin(RL_QUADS);
rlColor4ub(255, 255, 255, 255);
rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer
// Bottom-left corner for texture and quad
rlTexCoord2f(0.0f, 1.0f);
rlVertex2f(0.0f, 0.0f);
// Bottom-right corner for texture and quad
rlTexCoord2f(0.0f, 0.0f);
rlVertex2f(0.0f, GetScreenHeight());
// Top-right corner for texture and quad
rlTexCoord2f(1.0f, 0.0f);
rlVertex2f(GetScreenWidth(), GetScreenHeight());
// Top-left corner for texture and quad
rlTexCoord2f(1.0f, 1.0f);
rlVertex2f(GetScreenWidth(), 0.0f);
rlEnd();
rlPopMatrix();
fboShader = shaderId;
rlglDraw();
}
// Draw a 3d model
void rlglDrawModel(Model model, Vector3 position, Vector3 rotation, Vector3 scale, Color color, bool wires)
{
#if defined (GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
// NOTE: glPolygonMode() not available on OpenGL ES
if (wires) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
#endif
#if defined(GRAPHICS_API_OPENGL_11)
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, model.textureId);
// NOTE: On OpenGL 1.1 we use Vertex Arrays to draw model
glEnableClientState(GL_VERTEX_ARRAY); // Enable vertex array
glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Enable texture coords array
glEnableClientState(GL_NORMAL_ARRAY); // Enable normals array
glVertexPointer(3, GL_FLOAT, 0, model.mesh.vertices); // Pointer to vertex coords array
glTexCoordPointer(2, GL_FLOAT, 0, model.mesh.texcoords); // Pointer to texture coords array
glNormalPointer(GL_FLOAT, 0, model.mesh.normals); // Pointer to normals array
//glColorPointer(4, GL_UNSIGNED_BYTE, 0, model.mesh.colors); // Pointer to colors array (NOT USED)
rlPushMatrix();
rlTranslatef(position.x, position.y, position.z);
rlScalef(scale.x, scale.y, scale.z);
rlRotatef(rotation.y, 0, 1, 0);
// TODO: If rotate in multiple axis, get rotation matrix and use rlMultMatrix()
rlColor4ub(color.r, color.g, color.b, color.a);
glDrawArrays(GL_TRIANGLES, 0, model.mesh.vertexCount);
rlPopMatrix();
glDisableClientState(GL_VERTEX_ARRAY); // Disable vertex array
glDisableClientState(GL_TEXTURE_COORD_ARRAY); // Disable texture coords array
glDisableClientState(GL_NORMAL_ARRAY); // Disable normals array
glDisable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (customShader) glUseProgram(model.shaderId);
else glUseProgram(simpleShaderProgram); // Use our simple shader
VectorScale(&rotation, DEG2RAD);
// Get transform matrix (rotation -> scale -> translation)
Matrix transform = MatrixTransform(position, rotation, scale);
Matrix modelviewworld = MatrixMultiply(transform, modelview);
// NOTE: Drawing in OpenGL 3.3+, transform is passed to shader
if (customShader)
{
glUniformMatrix4fv(customProjectionMatrixLoc, 1, false, GetMatrixVector(projection));
glUniformMatrix4fv(customModelviewMatrixLoc, 1, false, GetMatrixVector(modelviewworld));
glUniform1i(customTextureLoc, 0);
}
else
{
glUniformMatrix4fv(simpleProjectionMatrixLoc, 1, false, GetMatrixVector(projection));
glUniformMatrix4fv(simpleModelviewMatrixLoc, 1, false, GetMatrixVector(modelviewworld));
glUniform1i(simpleTextureLoc, 0);
}
// Apply color tinting to model
// NOTE: Just update one uniform on fragment shader
float vColor[4] = { (float)color.r/255, (float)color.g/255, (float)color.b/255, (float)color.a/255 };
if (customShader) glUniform4fv(customColorLoc, 1, vColor);
else glUniform4fv(simpleColorLoc, 1, vColor);
if (vaoSupported)
{
glBindVertexArray(model.vaoId);
}
else
{
// Bind model VBOs data
glBindBuffer(GL_ARRAY_BUFFER, model.vboId[0]);
glVertexAttribPointer(simpleVertexLoc, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(simpleVertexLoc);
glBindBuffer(GL_ARRAY_BUFFER, model.vboId[1]);
glVertexAttribPointer(simpleTexcoordLoc, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(simpleTexcoordLoc);
// Add normals support
glBindBuffer(GL_ARRAY_BUFFER, model.vboId[2]);
glVertexAttribPointer(simpleNormalLoc, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(simpleNormalLoc);
}
glBindTexture(GL_TEXTURE_2D, model.textureId);
glDrawArrays(GL_TRIANGLES, 0, model.mesh.vertexCount);
glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures
if (vaoSupported) glBindVertexArray(0); // Unbind VAO
else glBindBuffer(GL_ARRAY_BUFFER, 0); // Unbind VBOs
glUseProgram(0);
#endif
#if defined (GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33)
// NOTE: glPolygonMode() not available on OpenGL ES
if (wires) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
#endif
}
// Initialize Graphics Device (OpenGL stuff)
void rlglInitGraphics(int offsetX, int offsetY, int width, int height)
{
// NOTE: Required! viewport must be recalculated if screen resized!
glViewport(offsetX/2, offsetY/2, width - offsetX, height - offsetY); // Set viewport width and height
// NOTE: Don't confuse glViewport with the transformation matrix
// NOTE: glViewport just defines the area of the context that you will actually draw to.
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear used buffers, depth buffer is used for 3D
glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set background color (black)
//glClearDepth(1.0f); // Clear depth buffer (default)
glEnable(GL_DEPTH_TEST); // Enables depth testing (required for 3D)
glDepthFunc(GL_LEQUAL); // Type of depth testing to apply
glEnable(GL_BLEND); // Enable color blending (required to work with transparencies)
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Color blending function (how colors are mixed)
#if defined(GRAPHICS_API_OPENGL_11)
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Improve quality of color and texture coordinate interpolation (Deprecated in OGL 3.0)
// Other options: GL_FASTEST, GL_DONT_CARE (default)
#endif
rlMatrixMode(RL_PROJECTION); // Switch to PROJECTION matrix
rlLoadIdentity(); // Reset current matrix (PROJECTION)
rlOrtho(0, width - offsetX, height - offsetY, 0, 0, 1); // Config orthographic mode: top-left corner --> (0,0)
rlMatrixMode(RL_MODELVIEW); // Switch back to MODELVIEW matrix
rlLoadIdentity(); // Reset current matrix (MODELVIEW)
// NOTE: All shapes/models triangles are drawn CCW
glEnable(GL_CULL_FACE); // Enable backface culling (Disabled by default)
//glCullFace(GL_BACK); // Cull the Back face (default)
//glFrontFace(GL_CCW); // Front face are defined counter clockwise (default)
#if defined(GRAPHICS_API_OPENGL_11)
glShadeModel(GL_SMOOTH); // Smooth shading between vertex (vertex colors interpolation) (Deprecated on OpenGL 3.3+)
// Possible options: GL_SMOOTH (Color interpolation) or GL_FLAT (no interpolation)
#endif
// TODO: Review this comment when called from window resize callback
TraceLog(INFO, "OpenGL Graphics initialized successfully");
}
// Convert image data to OpenGL texture (returns OpenGL valid Id)
unsigned int rlglLoadTexture(unsigned char *data, int width, int height, bool genMipmaps)
{
glBindTexture(GL_TEXTURE_2D,0); // Free any old binding
GLuint id;
glGenTextures(1, &id); // Generate Pointer to the texture
//glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, id);
// NOTE: glTexParameteri does NOT affect texture uploading, just the way it's used!
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repead on x-axis
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repead on y-axis
bool texIsPOT = false;
// Check if width and height are power-of-two (POT)
if (((width > 0) && ((width & (width - 1)) == 0)) && ((height > 0) && ((height & (height - 1)) == 0))) texIsPOT = true;
if (genMipmaps && !texIsPOT)
{
TraceLog(WARNING, "[TEX ID %i] Texture is not power-of-two, mipmaps can not be generated", id);
genMipmaps = false;
}
// If mipmaps are being used, we configure mag-min filters accordingly
if (genMipmaps)
{
// Trilinear filtering with mipmaps
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // Activate use of mipmaps (must be available)
}
else
{
// Not using mipmappings
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Filter for pixel-perfect drawing, alternative: GL_LINEAR
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // Filter for pixel-perfect drawing, alternative: GL_LINEAR
}
#if defined(GRAPHICS_API_OPENGL_11)
if (genMipmaps)
{
TraceLog(WARNING, "[TEX ID %i] Mipmaps generated manually on CPU side", id);
// Compute required mipmaps
// NOTE: data size is reallocated to fit mipmaps data
int mipmapCount = GenerateMipmaps(data, width, height);
int offset = 0;
int size = 0;
int mipWidth = width;
int mipHeight = height;
// Load the mipmaps
for (int level = 0; level < mipmapCount; level++)
{
glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA8, mipWidth, mipHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, data + offset);
size = mipWidth*mipHeight*4;
offset += size;
mipWidth /= 2;
mipHeight /= 2;
}
}
else glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
#endif
#if defined(GRAPHICS_API_OPENGL_33)
// NOTE: We define internal (GPU) format as GL_RGBA8 (probably BGRA8 in practice, driver takes care)
//glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); // OpenGL
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); // WebGL
#elif defined(GRAPHICS_API_OPENGL_ES2)
// NOTE: On embedded systems, we let the driver choose the best internal format
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
if (genMipmaps)
{
glGenerateMipmap(GL_TEXTURE_2D); // Generate mipmaps automatically
TraceLog(INFO, "[TEX ID %i] Mipmaps generated automatically for new texture", id);
}
#endif
// At this point we have the image converted to texture and uploaded to GPU
// Unbind current texture
glBindTexture(GL_TEXTURE_2D, 0);
TraceLog(INFO, "[TEX ID %i] Texture created successfully (%ix%i)", id, width, height);
return id;
}
// Load vertex data into a VAO (if supported) and VBO
Model rlglLoadModel(VertexData mesh)
{
Model model;
model.mesh = mesh;
#if defined(GRAPHICS_API_OPENGL_11)
model.textureId = 0; // No texture required
model.vaoId = 0; // Vertex Array Object
model.vboId[0] = 0; // Vertex position VBO
model.vboId[1] = 0; // Texcoords VBO
model.vboId[2] = 0; // Normals VBO
#elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
model.textureId = whiteTexture; // Default whiteTexture
GLuint vaoModel = 0; // Vertex Array Objects (VAO)
GLuint vertexBuffer[3]; // Vertex Buffer Objects (VBO)
if (vaoSupported)
{
// Initialize Quads VAO (Buffer A)
glGenVertexArrays(1, &vaoModel);
glBindVertexArray(vaoModel);
}
// Create buffers for our vertex data (positions, texcoords, normals)
glGenBuffers(3, vertexBuffer);
// Enable vertex attributes: position
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh.vertexCount, mesh.vertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(simpleVertexLoc);
glVertexAttribPointer(simpleVertexLoc, 3, GL_FLOAT, 0, 0, 0);
// Enable vertex attributes: texcoords
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*mesh.vertexCount, mesh.texcoords, GL_STATIC_DRAW);
glEnableVertexAttribArray(simpleTexcoordLoc);
glVertexAttribPointer(simpleTexcoordLoc, 2, GL_FLOAT, 0, 0, 0);
// Enable vertex attributes: normals
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer[2]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh.vertexCount, mesh.normals, GL_STATIC_DRAW);
glEnableVertexAttribArray(simpleNormalLoc);
glVertexAttribPointer(simpleNormalLoc, 3, GL_FLOAT, 0, 0, 0);
model.vboId[0] = vertexBuffer[0]; // Vertex position VBO
model.vboId[1] = vertexBuffer[1]; // Texcoords VBO
model.vboId[2] = vertexBuffer[2]; // Normals VBO
if (vaoSupported)
{
if (vaoModel > 0)
{
model.vaoId = vaoModel;
TraceLog(INFO, "[VAO ID %i] Model uploaded successfully to VRAM (GPU)", vaoModel);
}
else TraceLog(WARNING, "Model could not be uploaded to VRAM (GPU)");
}
else
{
TraceLog(INFO, "[VBO ID %i][VBO ID %i][VBO ID %i] Model uploaded successfully to VRAM (GPU)", model.vboId[0], model.vboId[1], model.vboId[2]);
}
#endif
return model;
}
// Convert image data to OpenGL texture (returns OpenGL valid Id)
// NOTE: Expected compressed image data and POT image
unsigned int rlglLoadCompressedTexture(unsigned char *data, int width, int height, int mipmapCount, int compFormat)
{
GLuint id;
#if defined(GRAPHICS_API_OPENGL_11)
id = 0;
TraceLog(WARNING, "GPU compressed textures not supported on OpenGL 1.1");
#elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
TraceLog(DEBUG, "Compressed texture width: %i", width);
TraceLog(DEBUG, "Compressed texture height: %i", height);
TraceLog(DEBUG, "Compressed texture mipmap levels: %i", mipmapCount);
TraceLog(DEBUG, "Compressed texture format: 0x%x", compFormat);
if (compFormat == 0)
{
id = 0;
TraceLog(WARNING, "Texture compressed format not recognized", id);
}
else
{
glGenTextures(1, &id);
// Bind the texture
glBindTexture(GL_TEXTURE_2D, id);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
// Set texture parameters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// If mipmaps are being used, we configure mag-min filters accordingly
if (mipmapCount > 1)
{
// Trilinear filtering with mipmaps
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // Activate use of mipmaps (must be available)
}
else
{
// Not using mipmappings
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Filter for pixel-perfect drawing, alternative: GL_LINEAR
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // Filter for pixel-perfect drawing, alternative: GL_LINEAR
}
int blockSize = 0;
int offset = 0;
if (compFormat == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) blockSize = 8;
else blockSize = 16;
// Load the mipmaps
for (int level = 0; level < mipmapCount && (width || height); level++)
{
unsigned int size = 0;
// NOTE: size specifies the number of bytes of image data (S3TC/DXTC)
if (compFormat == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) size = ((width + 3)/4)*((height + 3)/4)*blockSize; // S3TC/DXTC
#if defined(GRAPHICS_API_OPENGL_ES2)
else if (compFormat == GL_ETC1_RGB8_OES) size = 8*((width + 3) >> 2)*((height + 3) >> 2); // ETC1
#endif
glCompressedTexImage2D(GL_TEXTURE_2D, level, compFormat, width, height, 0, size, data + offset);
offset += size;
width /= 2;
height /= 2;
// Security check for NPOT textures
if (width < 1) width = 1;
if (height < 1) height = 1;
}
}
#endif
return id;
}
// Load a shader (vertex shader + fragment shader) from text data
unsigned int rlglLoadShader(char *vShaderStr, char *fShaderStr)
{
unsigned int program;
GLuint vertexShader;
GLuint fragmentShader;
vertexShader = glCreateShader(GL_VERTEX_SHADER);
fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
const char *pvs = vShaderStr;
const char *pfs = fShaderStr;
glShaderSource(vertexShader, 1, &pvs, NULL);
glShaderSource(fragmentShader, 1, &pfs, NULL);
GLint success = 0;
glCompileShader(vertexShader);
glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
if (success != GL_TRUE)
{
TraceLog(WARNING, "[VSHDR ID %i] Failed to compile vertex shader...", vertexShader);
int maxLength = 0;
int length;
glGetShaderiv(vertexShader, GL_INFO_LOG_LENGTH, &maxLength);
char log[maxLength];
glGetShaderInfoLog(vertexShader, maxLength, &length, log);
TraceLog(INFO, "%s", log);
}
else TraceLog(INFO, "[VSHDR ID %i] Vertex shader compiled successfully", vertexShader);
glCompileShader(fragmentShader);
glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
if (success != GL_TRUE)
{
TraceLog(WARNING, "[FSHDR ID %i] Failed to compile fragment shader...", fragmentShader);
int maxLength = 0;
int length;
glGetShaderiv(fragmentShader, GL_INFO_LOG_LENGTH, &maxLength);
char log[maxLength];
glGetShaderInfoLog(fragmentShader, maxLength, &length, log);
TraceLog(INFO, "%s", log);
}
else TraceLog(INFO, "[FSHDR ID %i] Fragment shader compiled successfully", fragmentShader);
program = glCreateProgram();
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);
glLinkProgram(program);
glGetProgramiv(program, GL_LINK_STATUS, &success);
if (success == GL_FALSE)
{
TraceLog(WARNING, "[SHDR ID %i] Failed to link shader program...", program);
int maxLength = 0;
int length;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength);
char log[maxLength];
glGetProgramInfoLog(program, maxLength, &length, log);
TraceLog(INFO, "%s", log);
glDeleteProgram(program);
program = 0;
}
else TraceLog(INFO, "[SHDR ID %i] Shader program loaded successfully", program);
glDeleteShader(vertexShader);
glDeleteShader(fragmentShader);
return program;
}
// Read screen pixel data (color buffer)
unsigned char *rlglReadScreenPixels(int width, int height)
{
unsigned char *screenData = (unsigned char *)malloc(width * height * sizeof(unsigned char) * 4);
// NOTE: glReadPixels returns image flipped vertically -> (0,0) is the bottom left corner of the framebuffer
glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, screenData);
// Flip image vertically!
unsigned char *imgData = (unsigned char *)malloc(width * height * sizeof(unsigned char) * 4);
for (int y = height-1; y >= 0; y--)
{
for (int x = 0; x < (width*4); x++)
{
imgData[x + (height - y - 1)*width*4] = screenData[x + (y*width*4)];
}
}
free(screenData);
return imgData; // NOTE: image data should be freed
}
unsigned int LoadCustomShader(char *vsFileName, char *fsFileName)
{
// Shaders loading from external text file
char *vShaderStr = TextFileRead(vsFileName);
char *fShaderStr = TextFileRead(fsFileName);
unsigned int shaderId = rlglLoadShader(vShaderStr, fShaderStr);
if (shaderId != 0) TraceLog(INFO, "[SHDR ID %i] Custom shader loaded successfully", shaderId);
else TraceLog(WARNING, "[SHDR ID %i] Custom shader could not be loaded", shaderId);
return shaderId;
// Shader strings must be freed
free(vShaderStr);
free(fShaderStr);
return shaderId;
}
// Link shader to model
void SetModelShader(Model *model, unsigned int shader)
{
// Get handles to GLSL input vars locations for simpleShaderProgram
customVertexLoc = glGetAttribLocation(shader, "vertexPosition");
customTexcoordLoc = glGetAttribLocation(shader, "vertexTexCoord");
customNormalLoc = glGetAttribLocation(shader, "vertexNormal");
// Get handles to GLSL uniform vars locations (vertex-shader)
customModelviewMatrixLoc = glGetUniformLocation(shader, "modelviewMatrix");
customProjectionMatrixLoc = glGetUniformLocation(shader, "projectionMatrix");
// Get handles to GLSL uniform vars locations (fragment-shader)
customTextureLoc = glGetUniformLocation(shader, "texture0");
customColorLoc = glGetUniformLocation(shader, "fragColor");
if (vaoSupported) glBindVertexArray(model->vaoId);
// Enable vertex attributes: position
glBindBuffer(GL_ARRAY_BUFFER, model->vboId[0]);
glEnableVertexAttribArray(customVertexLoc);
glVertexAttribPointer(customVertexLoc, 3, GL_FLOAT, 0, 0, 0);
// Enable vertex attributes: texcoords
glBindBuffer(GL_ARRAY_BUFFER, model->vboId[1]);
glEnableVertexAttribArray(customTexcoordLoc);
glVertexAttribPointer(customTexcoordLoc, 2, GL_FLOAT, 0, 0, 0);
// Enable vertex attributes: normals
glBindBuffer(GL_ARRAY_BUFFER, model->vboId[2]);
glEnableVertexAttribArray(customNormalLoc);
glVertexAttribPointer(customNormalLoc, 3, GL_FLOAT, 0, 0, 0);
if (vaoSupported) glBindVertexArray(0); // Unbind VAO
model->shaderId = shader;
customShader = true;
}
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
void PrintProjectionMatrix()
{
PrintMatrix(projection);
}
void PrintModelviewMatrix()
{
PrintMatrix(modelview);
}
#endif
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Load Shader (Vertex and Fragment)
// NOTE: This shader program is used only for batch buffers (lines, triangles, quads)
static GLuint LoadDefaultShader(void)
{
// NOTE: Shaders are written using GLSL 110 (desktop), that is equivalent to GLSL 100 on ES2
// NOTE: Detected an error on ATI cards if defined #version 110 while OpenGL 3.3+
// Just defined #version 330 despite shader is #version 110
// Vertex shader directly defined, no external file required
#if defined(GRAPHICS_API_OPENGL_33)
char vShaderStr[] = " #version 330 \n" // NOTE: Actually, #version 110 (quivalent to #version 100 on ES2)
#elif defined(GRAPHICS_API_OPENGL_ES2)
char vShaderStr[] = " #version 100 \n" // NOTE: Must be defined this way! 110 doesn't work!
#endif
"uniform mat4 projectionMatrix; \n"
"uniform mat4 modelviewMatrix; \n"
"attribute vec3 vertexPosition; \n"
"attribute vec2 vertexTexCoord; \n"
"attribute vec4 vertexColor; \n"
"varying vec2 fragTexCoord; \n"
"varying vec4 fragColor; \n"
"void main() \n"
"{ \n"
" fragTexCoord = vertexTexCoord; \n"
" fragColor = vertexColor; \n"
" gl_Position = projectionMatrix * modelviewMatrix * vec4(vertexPosition, 1.0); \n"
"} \n";
// Fragment shader directly defined, no external file required
#if defined(GRAPHICS_API_OPENGL_33)
char fShaderStr[] = " #version 330 \n" // NOTE: Actually, #version 110 (quivalent to #version 100 on ES2)
#elif defined(GRAPHICS_API_OPENGL_ES2)
char fShaderStr[] = " #version 100 \n" // NOTE: Must be defined this way! 110 doesn't work!
"precision mediump float; \n" // WebGL, required for emscripten
#endif
"uniform sampler2D texture0; \n"
"varying vec2 fragTexCoord; \n"
"varying vec4 fragColor; \n"
"void main() \n"
"{ \n"
" gl_FragColor = texture2D(texture0, fragTexCoord) * fragColor; \n"
"} \n";
unsigned int shaderId = rlglLoadShader(vShaderStr, fShaderStr);
if (shaderId != 0) TraceLog(INFO, "[SHDR ID %i] Default shader loaded successfully", shaderId);
else TraceLog(WARNING, "[SHDR ID %i] Default shader could not be loaded", shaderId);
return shaderId;
}
// Load Simple Shader (Vertex and Fragment)
// NOTE: This shader program is used to render models
static GLuint LoadSimpleShader(void)
{
// NOTE: Shaders are written using GLSL 110 (desktop), that is equivalent to GLSL 100 on ES2
// NOTE: Detected an error on ATI cards if defined #version 110 while OpenGL 3.3+
// Just defined #version 330 despite shader is #version 110
// Vertex shader directly defined, no external file required
#if defined(GRAPHICS_API_OPENGL_33)
char vShaderStr[] = " #version 330 \n" // NOTE: Actually, #version 110 (quivalent to #version 100 on ES2)
#elif defined(GRAPHICS_API_OPENGL_ES2)
char vShaderStr[] = " #version 100 \n" // NOTE: Must be defined this way! 110 doesn't work!
#endif
"uniform mat4 projectionMatrix; \n"
"uniform mat4 modelviewMatrix; \n"
"attribute vec3 vertexPosition; \n"
"attribute vec2 vertexTexCoord; \n"
"attribute vec3 vertexNormal; \n"
"varying vec2 fragTexCoord; \n"
"void main() \n"
"{ \n"
" fragTexCoord = vertexTexCoord; \n"
" gl_Position = projectionMatrix * modelviewMatrix * vec4(vertexPosition, 1.0); \n"
"} \n";
// Fragment shader directly defined, no external file required
#if defined(GRAPHICS_API_OPENGL_33)
char fShaderStr[] = " #version 330 \n" // NOTE: Actually, #version 110 (quivalent to #version 100 on ES2)
#elif defined(GRAPHICS_API_OPENGL_ES2)
char fShaderStr[] = " #version 100 \n" // NOTE: Must be defined this way! 110 doesn't work!
"precision mediump float; \n" // precision required for OpenGL ES2 (WebGL)
#endif
"uniform sampler2D texture0; \n"
"varying vec2 fragTexCoord; \n"
"uniform vec4 fragColor; \n"
"void main() \n"
"{ \n"
" gl_FragColor = texture2D(texture0, fragTexCoord) * fragColor; \n"
"} \n";
unsigned int shaderId = rlglLoadShader(vShaderStr, fShaderStr);
if (shaderId != 0) TraceLog(INFO, "[SHDR ID %i] Simple shader loaded successfully", shaderId);
else TraceLog(WARNING, "[SHDR ID %i] Simple shader could not be loaded", shaderId);
return shaderId;
}
// Read text file
// NOTE: text chars array should be freed manually
static char *TextFileRead(char *fileName)
{
FILE *textFile;
char *text = NULL;
int count = 0;
if (fileName != NULL)
{
textFile = fopen(fileName,"rt");
if (textFile != NULL)
{
fseek(textFile, 0, SEEK_END);
count = ftell(textFile);
rewind(textFile);
if (count > 0)
{
text = (char *)malloc(sizeof(char) * (count + 1));
count = fread(text, sizeof(char), count, textFile);
text[count] = '\0';
}
fclose(textFile);
}
else TraceLog(WARNING, "[%s] Text file could not be opened", fileName);
}
return text;
}
// Allocate and initialize float array buffers to store vertex data (lines, triangles, quads)
static void InitializeBuffers(void)
{
// Initialize lines arrays (vertex position and color data)
lines.vertices = (float *)malloc(sizeof(float)*3*2*MAX_LINES_BATCH); // 3 float by vertex, 2 vertex by line
lines.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*2*MAX_LINES_BATCH); // 4 float by color, 2 colors by line
for (int i = 0; i < (3*2*MAX_LINES_BATCH); i++) lines.vertices[i] = 0.0f;
for (int i = 0; i < (4*2*MAX_LINES_BATCH); i++) lines.colors[i] = 0;
lines.vCounter = 0;
lines.cCounter = 0;
// Initialize triangles arrays (vertex position and color data)
triangles.vertices = (float *)malloc(sizeof(float)*3*3*MAX_TRIANGLES_BATCH); // 3 float by vertex, 3 vertex by triangle
triangles.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*3*MAX_TRIANGLES_BATCH); // 4 float by color, 3 colors by triangle
for (int i = 0; i < (3*3*MAX_TRIANGLES_BATCH); i++) triangles.vertices[i] = 0.0f;
for (int i = 0; i < (4*3*MAX_TRIANGLES_BATCH); i++) triangles.colors[i] = 0;
triangles.vCounter = 0;
triangles.cCounter = 0;
// Initialize quads arrays (vertex position, texcoord and color data... and indexes)
quads.vertices = (float *)malloc(sizeof(float)*3*4*MAX_QUADS_BATCH); // 3 float by vertex, 4 vertex by quad
quads.texcoords = (float *)malloc(sizeof(float)*2*4*MAX_QUADS_BATCH); // 2 float by texcoord, 4 texcoord by quad
quads.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*4*MAX_QUADS_BATCH); // 4 float by color, 4 colors by quad
#if defined(GRAPHICS_API_OPENGL_33)
quads.indices = (unsigned int *)malloc(sizeof(int)*6*MAX_QUADS_BATCH); // 6 int by quad (indices)
#elif defined(GRAPHICS_API_OPENGL_ES2)
quads.indices = (unsigned short *)malloc(sizeof(short)*6*MAX_QUADS_BATCH); // 6 int by quad (indices)
#endif
for (int i = 0; i < (3*4*MAX_QUADS_BATCH); i++) quads.vertices[i] = 0.0f;
for (int i = 0; i < (2*4*MAX_QUADS_BATCH); i++) quads.texcoords[i] = 0.0f;
for (int i = 0; i < (4*4*MAX_QUADS_BATCH); i++) quads.colors[i] = 0;
int k = 0;
// Indices can be initialized right now
for (int i = 0; i < (6*MAX_QUADS_BATCH); i+=6)
{
quads.indices[i] = 4*k;
quads.indices[i+1] = 4*k+1;
quads.indices[i+2] = 4*k+2;
quads.indices[i+3] = 4*k;
quads.indices[i+4] = 4*k+2;
quads.indices[i+5] = 4*k+3;
k++;
}
quads.vCounter = 0;
quads.tcCounter = 0;
quads.cCounter = 0;
TraceLog(INFO, "CPU buffers (lines, triangles, quads) initialized successfully");
}
// Initialize Vertex Array Objects (Contain VBO)
static void InitializeBuffersGPU(void)
{
if (vaoSupported)
{
// Initialize Lines VAO
glGenVertexArrays(1, &vaoLines);
glBindVertexArray(vaoLines);
}
// Create buffers for our vertex data
glGenBuffers(2, linesBuffer);
// Lines - Vertex positions buffer binding and attributes enable
glBindBuffer(GL_ARRAY_BUFFER, linesBuffer[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*2*MAX_LINES_BATCH, lines.vertices, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(defaultVertexLoc);
glVertexAttribPointer(defaultVertexLoc, 3, GL_FLOAT, 0, 0, 0);
// Lines - colors buffer
glBindBuffer(GL_ARRAY_BUFFER, linesBuffer[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*2*MAX_LINES_BATCH, lines.colors, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(defaultColorLoc);
glVertexAttribPointer(defaultColorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
if (vaoSupported) TraceLog(INFO, "[VAO ID %i] Lines VAO initialized successfully", vaoLines);
else TraceLog(INFO, "[VBO ID %i][VBO ID %i] Lines VBOs initialized successfully", linesBuffer[0], linesBuffer[1]);
//--------------------------------------------------------------
if (vaoSupported)
{
// Initialize Triangles VAO
glGenVertexArrays(1, &vaoTriangles);
glBindVertexArray(vaoTriangles);
}
// Create buffers for our vertex data
glGenBuffers(2, trianglesBuffer);
// Enable vertex attributes
glBindBuffer(GL_ARRAY_BUFFER, trianglesBuffer[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*3*MAX_TRIANGLES_BATCH, triangles.vertices, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(defaultVertexLoc);
glVertexAttribPointer(defaultVertexLoc, 3, GL_FLOAT, 0, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, trianglesBuffer[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*3*MAX_TRIANGLES_BATCH, triangles.colors, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(defaultColorLoc);
glVertexAttribPointer(defaultColorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
if (vaoSupported) TraceLog(INFO, "[VAO ID %i] Triangles VAO initialized successfully", vaoTriangles);
else TraceLog(INFO, "[VBO ID %i][VBO ID %i] Triangles VBOs initialized successfully", trianglesBuffer[0], trianglesBuffer[1]);
//--------------------------------------------------------------
if (vaoSupported)
{
// Initialize Quads VAO
glGenVertexArrays(1, &vaoQuads);
glBindVertexArray(vaoQuads);
}
// Create buffers for our vertex data
glGenBuffers(4, quadsBuffer);
// Enable vertex attributes
glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*MAX_QUADS_BATCH, quads.vertices, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(defaultVertexLoc);
glVertexAttribPointer(defaultVertexLoc, 3, GL_FLOAT, 0, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*MAX_QUADS_BATCH, quads.texcoords, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(defaultTexcoordLoc);
glVertexAttribPointer(defaultTexcoordLoc, 2, GL_FLOAT, 0, 0, 0);
glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[2]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*4*MAX_QUADS_BATCH, quads.colors, GL_DYNAMIC_DRAW);
glEnableVertexAttribArray(defaultColorLoc);
glVertexAttribPointer(defaultColorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
// Fill index buffer
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quadsBuffer[3]);
#if defined(GRAPHICS_API_OPENGL_33)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(int)*6*MAX_QUADS_BATCH, quads.indices, GL_STATIC_DRAW);
#elif defined(GRAPHICS_API_OPENGL_ES2)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(short)*6*MAX_QUADS_BATCH, quads.indices, GL_STATIC_DRAW);
#endif
if (vaoSupported) TraceLog(INFO, "[VAO ID %i] Quads VAO initialized successfully", vaoQuads);
else TraceLog(INFO, "[VBO ID %i][VBO ID %i][VBO ID %i][VBO ID %i] Quads VBOs initialized successfully", quadsBuffer[0], quadsBuffer[1], quadsBuffer[2], quadsBuffer[3]);
// Unbind the current VAO
if (vaoSupported) glBindVertexArray(0);
}
// Update VBOs with vertex array data
// TODO: If there is not vertex data, buffers doesn't need to be updated (vertexCount > 0)
// TODO: If no data changed on the CPU arrays --> No need to update GPU arrays every frame!
static void UpdateBuffers(void)
{
if (lines.vCounter > 0)
{
// Activate Lines VAO
if (vaoSupported) glBindVertexArray(vaoLines);
// Lines - vertex positions buffer
glBindBuffer(GL_ARRAY_BUFFER, linesBuffer[0]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*2*MAX_LINES_BATCH, lines.vertices, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*lines.vCounter, lines.vertices); // target - offset (in bytes) - size (in bytes) - data pointer
// Lines - colors buffer
glBindBuffer(GL_ARRAY_BUFFER, linesBuffer[1]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*2*MAX_LINES_BATCH, lines.colors, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*lines.cCounter, lines.colors);
}
//--------------------------------------------------------------
if (triangles.vCounter > 0)
{
// Activate Triangles VAO
if (vaoSupported) glBindVertexArray(vaoTriangles);
// Triangles - vertex positions buffer
glBindBuffer(GL_ARRAY_BUFFER, trianglesBuffer[0]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*3*MAX_TRIANGLES_BATCH, triangles.vertices, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*triangles.vCounter, triangles.vertices);
// Triangles - colors buffer
glBindBuffer(GL_ARRAY_BUFFER, trianglesBuffer[1]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*3*MAX_TRIANGLES_BATCH, triangles.colors, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*triangles.cCounter, triangles.colors);
}
//--------------------------------------------------------------
if (quads.vCounter > 0)
{
// Activate Quads VAO
if (vaoSupported) glBindVertexArray(vaoQuads);
// Quads - vertex positions buffer
glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[0]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*MAX_QUADS_BATCH, quads.vertices, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*quads.vCounter, quads.vertices);
// Quads - texture coordinates buffer
glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[1]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*MAX_QUADS_BATCH, quads.texcoords, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*quads.vCounter, quads.texcoords);
// Quads - colors buffer
glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[2]);
//glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*4*MAX_QUADS_BATCH, quads.colors, GL_DYNAMIC_DRAW);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*quads.vCounter, quads.colors);
// Another option would be using buffer mapping...
//triangles.vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE);
// Now we can modify vertices
//glUnmapBuffer(GL_ARRAY_BUFFER);
}
//--------------------------------------------------------------
// Unbind the current VAO
if (vaoSupported) glBindVertexArray(0);
}
#endif //defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
#if defined(GRAPHICS_API_OPENGL_11)
// Mipmaps data is generated after image data
static int GenerateMipmaps(unsigned char *data, int baseWidth, int baseHeight)
{
int mipmapCount = 1; // Required mipmap levels count (including base level)
int width = baseWidth;
int height = baseHeight;
int size = baseWidth*baseHeight*4; // Size in bytes (will include mipmaps...)
// Count mipmap levels required
while ((width != 1) && (height != 1))
{
if (width != 1) width /= 2;
if (height != 1) height /= 2;
TraceLog(DEBUG, "Next mipmap size: %i x %i", width, height);
mipmapCount++;
size += (width*height*4); // Add mipmap size (in bytes)
}
TraceLog(DEBUG, "Total mipmaps required: %i", mipmapCount);
TraceLog(DEBUG, "Total size of data required: %i", size);
unsigned char *temp = realloc(data, size);
if (temp != NULL) data = temp;
else TraceLog(WARNING, "Mipmaps required memory could not be allocated");
width = baseWidth;
height = baseHeight;
size = (width*height*4);
// Generate mipmaps
// NOTE: Every mipmap data is stored after data
pixel *image = (pixel *)malloc(width*height*sizeof(pixel));
pixel *mipmap = NULL;
int offset = 0;
int j = 0;
for (int i = 0; i < size; i += 4)
{
image[j].r = data[i];
image[j].g = data[i + 1];
image[j].b = data[i + 2];
image[j].a = data[i + 3];
j++;
}
TraceLog(DEBUG, "Mipmap base (%ix%i)", width, height);
for (int mip = 1; mip < mipmapCount; mip++)
{
mipmap = GenNextMipmap(image, width, height);
offset += (width*height*4); // Size of last mipmap
j = 0;
width /= 2;
height /= 2;
size = (width*height*4); // Mipmap size to store after offset
// Add mipmap to data
for (int i = 0; i < size; i += 4)
{
data[offset + i] = mipmap[j].r;
data[offset + i + 1] = mipmap[j].g;
data[offset + i + 2] = mipmap[j].b;
data[offset + i + 3] = mipmap[j].a;
j++;
}
free(image);
image = mipmap;
mipmap = NULL;
}
free(mipmap); // free mipmap data
return mipmapCount;
}
// Manual mipmap generation (basic scaling algorithm)
static pixel *GenNextMipmap(pixel *srcData, int srcWidth, int srcHeight)
{
int x2, y2;
pixel prow, pcol;
int width = srcWidth / 2;
int height = srcHeight / 2;
pixel *mipmap = (pixel *)malloc(width*height*sizeof(pixel));
// Scaling algorithm works perfectly (box-filter)
for (int y = 0; y < height; y++)
{
y2 = 2 * y;
for (int x = 0; x < width; x++)
{
x2 = 2 * x;
prow.r = (srcData[y2*srcWidth + x2].r + srcData[y2*srcWidth + x2 + 1].r)/2;
prow.g = (srcData[y2*srcWidth + x2].g + srcData[y2*srcWidth + x2 + 1].g)/2;
prow.b = (srcData[y2*srcWidth + x2].b + srcData[y2*srcWidth + x2 + 1].b)/2;
prow.a = (srcData[y2*srcWidth + x2].a + srcData[y2*srcWidth + x2 + 1].a)/2;
pcol.r = (srcData[(y2+1)*srcWidth + x2].r + srcData[(y2+1)*srcWidth + x2 + 1].r)/2;
pcol.g = (srcData[(y2+1)*srcWidth + x2].g + srcData[(y2+1)*srcWidth + x2 + 1].g)/2;
pcol.b = (srcData[(y2+1)*srcWidth + x2].b + srcData[(y2+1)*srcWidth + x2 + 1].b)/2;
pcol.a = (srcData[(y2+1)*srcWidth + x2].a + srcData[(y2+1)*srcWidth + x2 + 1].a)/2;
mipmap[y*width + x].r = (prow.r + pcol.r)/2;
mipmap[y*width + x].g = (prow.g + pcol.g)/2;
mipmap[y*width + x].b = (prow.b + pcol.b)/2;
mipmap[y*width + x].a = (prow.a + pcol.a)/2;
}
}
TraceLog(DEBUG, "Mipmap generated successfully (%ix%i)", width, height);
return mipmap;
}
#endif
#if defined(RLGL_STANDALONE)
typedef enum { INFO = 0, ERROR, WARNING, DEBUG, OTHER } TraceLogType;
// Output a trace log message
// NOTE: Expected msgType: (0)Info, (1)Error, (2)Warning
void TraceLog(int msgType, const char *text, ...)
{
va_list args;
va_start(args, text);
switch(msgType)
{
case INFO: fprintf(stdout, "INFO: "); break;
case ERROR: fprintf(stdout, "ERROR: "); break;
case WARNING: fprintf(stdout, "WARNING: "); break;
case DEBUG: fprintf(stdout, "DEBUG: "); break;
default: break;
}
vfprintf(stdout, text, args);
fprintf(stdout, "\n");
va_end(args);
if (msgType == ERROR) exit(1);
}
#endif