1799 lines
72 KiB
C
1799 lines
72 KiB
C
/**********************************************************************************************
|
|
*
|
|
* rshapes - Basic functions to draw 2d shapes and check collisions
|
|
*
|
|
* ADDITIONAL NOTES:
|
|
* Shapes can be draw using 3 types of primitives: LINES, TRIANGLES and QUADS.
|
|
* Some functions implement two drawing options: TRIANGLES and QUADS, by default TRIANGLES
|
|
* are used but QUADS implementation can be selected with SUPPORT_QUADS_DRAW_MODE define
|
|
*
|
|
* Some functions define texture coordinates (rlTexCoord2f()) for the shapes and use a
|
|
* user-provided texture with SetShapesTexture(), the pourpouse of this implementation
|
|
* is allowing to reduce draw calls when combined with a texture-atlas.
|
|
*
|
|
* By default, raylib sets the default texture and rectangle at InitWindow()[rcore] to one
|
|
* white character of default font [rtext], this way, raylib text and shapes can be draw with
|
|
* a single draw call and it also allows users to configure it the same way with their own fonts.
|
|
*
|
|
* CONFIGURATION:
|
|
* #define SUPPORT_MODULE_RSHAPES
|
|
* rshapes module is included in the build
|
|
*
|
|
* #define SUPPORT_QUADS_DRAW_MODE
|
|
* Use QUADS instead of TRIANGLES for drawing when possible. Lines-based shapes still use LINES
|
|
*
|
|
*
|
|
* LICENSE: zlib/libpng
|
|
*
|
|
* Copyright (c) 2013-2023 Ramon Santamaria (@raysan5)
|
|
*
|
|
* This software is provided "as-is", without any express or implied warranty. In no event
|
|
* will the authors be held liable for any damages arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose, including commercial
|
|
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not claim that you
|
|
* wrote the original software. If you use this software in a product, an acknowledgment
|
|
* in the product documentation would be appreciated but is not required.
|
|
*
|
|
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
|
|
* as being the original software.
|
|
*
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*
|
|
**********************************************************************************************/
|
|
|
|
#include "raylib.h" // Declares module functions
|
|
|
|
// Check if config flags have been externally provided on compilation line
|
|
#if !defined(EXTERNAL_CONFIG_FLAGS)
|
|
#include "config.h" // Defines module configuration flags
|
|
#endif
|
|
|
|
#if defined(SUPPORT_MODULE_RSHAPES)
|
|
|
|
#include "rlgl.h" // OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2
|
|
|
|
#include <math.h> // Required for: sinf(), asinf(), cosf(), acosf(), sqrtf(), fabsf()
|
|
#include <float.h> // Required for: FLT_EPSILON
|
|
#include <stdlib.h> // Required for: RL_FREE
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Defines and Macros
|
|
//----------------------------------------------------------------------------------
|
|
// Error rate to calculate how many segments we need to draw a smooth circle,
|
|
// taken from https://stackoverflow.com/a/2244088
|
|
#ifndef SMOOTH_CIRCLE_ERROR_RATE
|
|
#define SMOOTH_CIRCLE_ERROR_RATE 0.5f // Circle error rate
|
|
#endif
|
|
#ifndef BEZIER_LINE_DIVISIONS
|
|
#define BEZIER_LINE_DIVISIONS 24 // Bezier line divisions
|
|
#endif
|
|
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Types and Structures Definition
|
|
//----------------------------------------------------------------------------------
|
|
// Not here...
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Global Variables Definition
|
|
//----------------------------------------------------------------------------------
|
|
Texture2D texShapes = { 1, 1, 1, 1, 7 }; // Texture used on shapes drawing (usually a white pixel)
|
|
Rectangle texShapesRec = { 0.0f, 0.0f, 1.0f, 1.0f }; // Texture source rectangle used on shapes drawing
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module specific Functions Declaration
|
|
//----------------------------------------------------------------------------------
|
|
static float EaseCubicInOut(float t, float b, float c, float d); // Cubic easing
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Set texture and rectangle to be used on shapes drawing
|
|
// NOTE: It can be useful when using basic shapes and one single font,
|
|
// defining a font char white rectangle would allow drawing everything in a single draw call
|
|
void SetShapesTexture(Texture2D texture, Rectangle source)
|
|
{
|
|
texShapes = texture;
|
|
texShapesRec = source;
|
|
}
|
|
|
|
// Draw a pixel
|
|
void DrawPixel(int posX, int posY, Color color)
|
|
{
|
|
DrawPixelV((Vector2){ (float)posX, (float)posY }, color);
|
|
}
|
|
|
|
// Draw a pixel (Vector version)
|
|
void DrawPixelV(Vector2 position, Color color)
|
|
{
|
|
#if defined(SUPPORT_QUADS_DRAW_MODE)
|
|
rlSetTexture(texShapes.id);
|
|
|
|
rlBegin(RL_QUADS);
|
|
|
|
rlNormal3f(0.0f, 0.0f, 1.0f);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(position.x, position.y);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(position.x, position.y + 1);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(position.x + 1, position.y + 1);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(position.x + 1, position.y);
|
|
|
|
rlEnd();
|
|
|
|
rlSetTexture(0);
|
|
#else
|
|
rlBegin(RL_TRIANGLES);
|
|
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex2f(position.x, position.y);
|
|
rlVertex2f(position.x, position.y + 1);
|
|
rlVertex2f(position.x + 1, position.y);
|
|
|
|
rlVertex2f(position.x + 1, position.y);
|
|
rlVertex2f(position.x, position.y + 1);
|
|
rlVertex2f(position.x + 1, position.y + 1);
|
|
|
|
rlEnd();
|
|
#endif
|
|
}
|
|
|
|
// Draw a line
|
|
void DrawLine(int startPosX, int startPosY, int endPosX, int endPosY, Color color)
|
|
{
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f((float)startPosX, (float)startPosY);
|
|
rlVertex2f((float)endPosX, (float)endPosY);
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a line (Vector version)
|
|
void DrawLineV(Vector2 startPos, Vector2 endPos, Color color)
|
|
{
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(startPos.x, startPos.y);
|
|
rlVertex2f(endPos.x, endPos.y);
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a line defining thickness
|
|
void DrawLineEx(Vector2 startPos, Vector2 endPos, float thick, Color color)
|
|
{
|
|
Vector2 delta = { endPos.x - startPos.x, endPos.y - startPos.y };
|
|
float length = sqrtf(delta.x*delta.x + delta.y*delta.y);
|
|
|
|
if ((length > 0) && (thick > 0))
|
|
{
|
|
float scale = thick/(2*length);
|
|
Vector2 radius = { -scale*delta.y, scale*delta.x };
|
|
Vector2 strip[4] = {
|
|
{ startPos.x - radius.x, startPos.y - radius.y },
|
|
{ startPos.x + radius.x, startPos.y + radius.y },
|
|
{ endPos.x - radius.x, endPos.y - radius.y },
|
|
{ endPos.x + radius.x, endPos.y + radius.y }
|
|
};
|
|
|
|
DrawTriangleStrip(strip, 4, color);
|
|
}
|
|
}
|
|
|
|
// Draw line using cubic-bezier curves in-out
|
|
void DrawLineBezier(Vector2 startPos, Vector2 endPos, float thick, Color color)
|
|
{
|
|
Vector2 previous = startPos;
|
|
Vector2 current = { 0 };
|
|
|
|
Vector2 points[2*BEZIER_LINE_DIVISIONS + 2] = { 0 };
|
|
|
|
for (int i = 1; i <= BEZIER_LINE_DIVISIONS; i++)
|
|
{
|
|
// Cubic easing in-out
|
|
// NOTE: Easing is calculated only for y position value
|
|
current.y = EaseCubicInOut((float)i, startPos.y, endPos.y - startPos.y, (float)BEZIER_LINE_DIVISIONS);
|
|
current.x = previous.x + (endPos.x - startPos.x)/ (float)BEZIER_LINE_DIVISIONS;
|
|
|
|
float dy = current.y-previous.y;
|
|
float dx = current.x-previous.x;
|
|
float size = 0.5f*thick/sqrtf(dx*dx+dy*dy);
|
|
|
|
if (i==1)
|
|
{
|
|
points[0].x = previous.x+dy*size;
|
|
points[0].y = previous.y-dx*size;
|
|
points[1].x = previous.x-dy*size;
|
|
points[1].y = previous.y+dx*size;
|
|
}
|
|
|
|
points[2*i+1].x = current.x-dy*size;
|
|
points[2*i+1].y = current.y+dx*size;
|
|
points[2*i].x = current.x+dy*size;
|
|
points[2*i].y = current.y-dx*size;
|
|
|
|
previous = current;
|
|
}
|
|
|
|
DrawTriangleStrip(points, 2*BEZIER_LINE_DIVISIONS+2, color);
|
|
}
|
|
|
|
// Draw line using quadratic bezier curves with a control point
|
|
void DrawLineBezierQuad(Vector2 startPos, Vector2 endPos, Vector2 controlPos, float thick, Color color)
|
|
{
|
|
const float step = 1.0f/BEZIER_LINE_DIVISIONS;
|
|
|
|
Vector2 previous = startPos;
|
|
Vector2 current = { 0 };
|
|
float t = 0.0f;
|
|
|
|
Vector2 points[2*BEZIER_LINE_DIVISIONS + 2] = { 0 };
|
|
|
|
for (int i = 1; i <= BEZIER_LINE_DIVISIONS; i++)
|
|
{
|
|
t = step*i;
|
|
float a = powf(1 - t, 2);
|
|
float b = 2*(1 - t)*t;
|
|
float c = powf(t, 2);
|
|
|
|
// NOTE: The easing functions aren't suitable here because they don't take a control point
|
|
current.y = a*startPos.y + b*controlPos.y + c*endPos.y;
|
|
current.x = a*startPos.x + b*controlPos.x + c*endPos.x;
|
|
|
|
float dy = current.y-previous.y;
|
|
float dx = current.x-previous.x;
|
|
float size = 0.5f*thick/sqrtf(dx*dx+dy*dy);
|
|
|
|
if (i==1)
|
|
{
|
|
points[0].x = previous.x+dy*size;
|
|
points[0].y = previous.y-dx*size;
|
|
points[1].x = previous.x-dy*size;
|
|
points[1].y = previous.y+dx*size;
|
|
}
|
|
|
|
points[2*i+1].x = current.x-dy*size;
|
|
points[2*i+1].y = current.y+dx*size;
|
|
points[2*i].x = current.x+dy*size;
|
|
points[2*i].y = current.y-dx*size;
|
|
|
|
previous = current;
|
|
}
|
|
|
|
DrawTriangleStrip(points, 2*BEZIER_LINE_DIVISIONS+2, color);
|
|
}
|
|
|
|
// Draw line using cubic bezier curves with 2 control points
|
|
void DrawLineBezierCubic(Vector2 startPos, Vector2 endPos, Vector2 startControlPos, Vector2 endControlPos, float thick, Color color)
|
|
{
|
|
const float step = 1.0f/BEZIER_LINE_DIVISIONS;
|
|
|
|
Vector2 previous = startPos;
|
|
Vector2 current = { 0 };
|
|
float t = 0.0f;
|
|
|
|
Vector2 points[2*BEZIER_LINE_DIVISIONS + 2] = { 0 };
|
|
|
|
for (int i = 1; i <= BEZIER_LINE_DIVISIONS; i++)
|
|
{
|
|
t = step*i;
|
|
float a = powf(1 - t, 3);
|
|
float b = 3*powf(1 - t, 2)*t;
|
|
float c = 3*(1-t)*powf(t, 2);
|
|
float d = powf(t, 3);
|
|
|
|
current.y = a*startPos.y + b*startControlPos.y + c*endControlPos.y + d*endPos.y;
|
|
current.x = a*startPos.x + b*startControlPos.x + c*endControlPos.x + d*endPos.x;
|
|
|
|
float dy = current.y-previous.y;
|
|
float dx = current.x-previous.x;
|
|
float size = 0.5f*thick/sqrtf(dx*dx+dy*dy);
|
|
|
|
if (i==1)
|
|
{
|
|
points[0].x = previous.x+dy*size;
|
|
points[0].y = previous.y-dx*size;
|
|
points[1].x = previous.x-dy*size;
|
|
points[1].y = previous.y+dx*size;
|
|
}
|
|
|
|
points[2*i+1].x = current.x-dy*size;
|
|
points[2*i+1].y = current.y+dx*size;
|
|
points[2*i].x = current.x+dy*size;
|
|
points[2*i].y = current.y-dx*size;
|
|
|
|
previous = current;
|
|
}
|
|
|
|
DrawTriangleStrip(points, 2*BEZIER_LINE_DIVISIONS+2, color);
|
|
}
|
|
|
|
// Draw lines sequence
|
|
void DrawLineStrip(Vector2 *points, int pointCount, Color color)
|
|
{
|
|
if (pointCount >= 2)
|
|
{
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
for (int i = 0; i < pointCount - 1; i++)
|
|
{
|
|
rlVertex2f(points[i].x, points[i].y);
|
|
rlVertex2f(points[i + 1].x, points[i + 1].y);
|
|
}
|
|
rlEnd();
|
|
}
|
|
}
|
|
|
|
// Draw a color-filled circle
|
|
void DrawCircle(int centerX, int centerY, float radius, Color color)
|
|
{
|
|
DrawCircleV((Vector2){ (float)centerX, (float)centerY }, radius, color);
|
|
}
|
|
|
|
// Draw a piece of a circle
|
|
void DrawCircleSector(Vector2 center, float radius, float startAngle, float endAngle, int segments, Color color)
|
|
{
|
|
if (radius <= 0.0f) radius = 0.1f; // Avoid div by zero
|
|
|
|
// Function expects (endAngle > startAngle)
|
|
if (endAngle < startAngle)
|
|
{
|
|
// Swap values
|
|
float tmp = startAngle;
|
|
startAngle = endAngle;
|
|
endAngle = tmp;
|
|
}
|
|
|
|
int minSegments = (int)ceilf((endAngle - startAngle)/90);
|
|
|
|
if (segments < minSegments)
|
|
{
|
|
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
|
|
float th = acosf(2*powf(1 - SMOOTH_CIRCLE_ERROR_RATE/radius, 2) - 1);
|
|
segments = (int)((endAngle - startAngle)*ceilf(2*PI/th)/360);
|
|
|
|
if (segments <= 0) segments = minSegments;
|
|
}
|
|
|
|
float stepLength = (endAngle - startAngle)/(float)segments;
|
|
float angle = startAngle;
|
|
|
|
#if defined(SUPPORT_QUADS_DRAW_MODE)
|
|
rlSetTexture(texShapes.id);
|
|
|
|
rlBegin(RL_QUADS);
|
|
// NOTE: Every QUAD actually represents two segments
|
|
for (int i = 0; i < segments/2; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x, center.y);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*radius, center.y + cosf(DEG2RAD*angle)*radius);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*radius, center.y + cosf(DEG2RAD*(angle + stepLength))*radius);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength*2))*radius, center.y + cosf(DEG2RAD*(angle + stepLength*2))*radius);
|
|
|
|
angle += (stepLength*2);
|
|
}
|
|
|
|
// NOTE: In case number of segments is odd, we add one last piece to the cake
|
|
if (segments%2)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x, center.y);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*radius, center.y + cosf(DEG2RAD*angle)*radius);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*radius, center.y + cosf(DEG2RAD*(angle + stepLength))*radius);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x, center.y);
|
|
}
|
|
rlEnd();
|
|
|
|
rlSetTexture(0);
|
|
#else
|
|
rlBegin(RL_TRIANGLES);
|
|
for (int i = 0; i < segments; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex2f(center.x, center.y);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*radius, center.y + cosf(DEG2RAD*angle)*radius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*radius, center.y + cosf(DEG2RAD*(angle + stepLength))*radius);
|
|
|
|
angle += stepLength;
|
|
}
|
|
rlEnd();
|
|
#endif
|
|
}
|
|
|
|
// Draw a piece of a circle outlines
|
|
void DrawCircleSectorLines(Vector2 center, float radius, float startAngle, float endAngle, int segments, Color color)
|
|
{
|
|
if (radius <= 0.0f) radius = 0.1f; // Avoid div by zero issue
|
|
|
|
// Function expects (endAngle > startAngle)
|
|
if (endAngle < startAngle)
|
|
{
|
|
// Swap values
|
|
float tmp = startAngle;
|
|
startAngle = endAngle;
|
|
endAngle = tmp;
|
|
}
|
|
|
|
int minSegments = (int)ceilf((endAngle - startAngle)/90);
|
|
|
|
if (segments < minSegments)
|
|
{
|
|
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
|
|
float th = acosf(2*powf(1 - SMOOTH_CIRCLE_ERROR_RATE/radius, 2) - 1);
|
|
segments = (int)((endAngle - startAngle)*ceilf(2*PI/th)/360);
|
|
|
|
if (segments <= 0) segments = minSegments;
|
|
}
|
|
|
|
float stepLength = (endAngle - startAngle)/(float)segments;
|
|
float angle = startAngle;
|
|
bool showCapLines = true;
|
|
|
|
rlBegin(RL_LINES);
|
|
if (showCapLines)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(center.x, center.y);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*radius, center.y + cosf(DEG2RAD*angle)*radius);
|
|
}
|
|
|
|
for (int i = 0; i < segments; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*radius, center.y + cosf(DEG2RAD*angle)*radius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*radius, center.y + cosf(DEG2RAD*(angle + stepLength))*radius);
|
|
|
|
angle += stepLength;
|
|
}
|
|
|
|
if (showCapLines)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(center.x, center.y);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*radius, center.y + cosf(DEG2RAD*angle)*radius);
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a gradient-filled circle
|
|
// NOTE: Gradient goes from center (color1) to border (color2)
|
|
void DrawCircleGradient(int centerX, int centerY, float radius, Color color1, Color color2)
|
|
{
|
|
rlBegin(RL_TRIANGLES);
|
|
for (int i = 0; i < 360; i += 10)
|
|
{
|
|
rlColor4ub(color1.r, color1.g, color1.b, color1.a);
|
|
rlVertex2f((float)centerX, (float)centerY);
|
|
rlColor4ub(color2.r, color2.g, color2.b, color2.a);
|
|
rlVertex2f((float)centerX + sinf(DEG2RAD*i)*radius, (float)centerY + cosf(DEG2RAD*i)*radius);
|
|
rlColor4ub(color2.r, color2.g, color2.b, color2.a);
|
|
rlVertex2f((float)centerX + sinf(DEG2RAD*(i + 10))*radius, (float)centerY + cosf(DEG2RAD*(i + 10))*radius);
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a color-filled circle (Vector version)
|
|
// NOTE: On OpenGL 3.3 and ES2 we use QUADS to avoid drawing order issues
|
|
void DrawCircleV(Vector2 center, float radius, Color color)
|
|
{
|
|
DrawCircleSector(center, radius, 0, 360, 36, color);
|
|
}
|
|
|
|
// Draw circle outline
|
|
void DrawCircleLines(int centerX, int centerY, float radius, Color color)
|
|
{
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
// NOTE: Circle outline is drawn pixel by pixel every degree (0 to 360)
|
|
for (int i = 0; i < 360; i += 10)
|
|
{
|
|
rlVertex2f(centerX + sinf(DEG2RAD*i)*radius, centerY + cosf(DEG2RAD*i)*radius);
|
|
rlVertex2f(centerX + sinf(DEG2RAD*(i + 10))*radius, centerY + cosf(DEG2RAD*(i + 10))*radius);
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw ellipse
|
|
void DrawEllipse(int centerX, int centerY, float radiusH, float radiusV, Color color)
|
|
{
|
|
rlBegin(RL_TRIANGLES);
|
|
for (int i = 0; i < 360; i += 10)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f((float)centerX, (float)centerY);
|
|
rlVertex2f((float)centerX + sinf(DEG2RAD*i)*radiusH, (float)centerY + cosf(DEG2RAD*i)*radiusV);
|
|
rlVertex2f((float)centerX + sinf(DEG2RAD*(i + 10))*radiusH, (float)centerY + cosf(DEG2RAD*(i + 10))*radiusV);
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw ellipse outline
|
|
void DrawEllipseLines(int centerX, int centerY, float radiusH, float radiusV, Color color)
|
|
{
|
|
rlBegin(RL_LINES);
|
|
for (int i = 0; i < 360; i += 10)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(centerX + sinf(DEG2RAD*i)*radiusH, centerY + cosf(DEG2RAD*i)*radiusV);
|
|
rlVertex2f(centerX + sinf(DEG2RAD*(i + 10))*radiusH, centerY + cosf(DEG2RAD*(i + 10))*radiusV);
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw ring
|
|
void DrawRing(Vector2 center, float innerRadius, float outerRadius, float startAngle, float endAngle, int segments, Color color)
|
|
{
|
|
if (startAngle == endAngle) return;
|
|
|
|
// Function expects (outerRadius > innerRadius)
|
|
if (outerRadius < innerRadius)
|
|
{
|
|
float tmp = outerRadius;
|
|
outerRadius = innerRadius;
|
|
innerRadius = tmp;
|
|
|
|
if (outerRadius <= 0.0f) outerRadius = 0.1f;
|
|
}
|
|
|
|
// Function expects (endAngle > startAngle)
|
|
if (endAngle < startAngle)
|
|
{
|
|
// Swap values
|
|
float tmp = startAngle;
|
|
startAngle = endAngle;
|
|
endAngle = tmp;
|
|
}
|
|
|
|
int minSegments = (int)ceilf((endAngle - startAngle)/90);
|
|
|
|
if (segments < minSegments)
|
|
{
|
|
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
|
|
float th = acosf(2*powf(1 - SMOOTH_CIRCLE_ERROR_RATE/outerRadius, 2) - 1);
|
|
segments = (int)((endAngle - startAngle)*ceilf(2*PI/th)/360);
|
|
|
|
if (segments <= 0) segments = minSegments;
|
|
}
|
|
|
|
// Not a ring
|
|
if (innerRadius <= 0.0f)
|
|
{
|
|
DrawCircleSector(center, outerRadius, startAngle, endAngle, segments, color);
|
|
return;
|
|
}
|
|
|
|
float stepLength = (endAngle - startAngle)/(float)segments;
|
|
float angle = startAngle;
|
|
|
|
#if defined(SUPPORT_QUADS_DRAW_MODE)
|
|
rlSetTexture(texShapes.id);
|
|
|
|
rlBegin(RL_QUADS);
|
|
for (int i = 0; i < segments; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*innerRadius, center.y + cosf(DEG2RAD*angle)*innerRadius);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*outerRadius, center.y + cosf(DEG2RAD*angle)*outerRadius);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*outerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*outerRadius);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*innerRadius);
|
|
|
|
angle += stepLength;
|
|
}
|
|
rlEnd();
|
|
|
|
rlSetTexture(0);
|
|
#else
|
|
rlBegin(RL_TRIANGLES);
|
|
for (int i = 0; i < segments; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*innerRadius, center.y + cosf(DEG2RAD*angle)*innerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*outerRadius, center.y + cosf(DEG2RAD*angle)*outerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*innerRadius);
|
|
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*innerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*outerRadius, center.y + cosf(DEG2RAD*angle)*outerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*outerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*outerRadius);
|
|
|
|
angle += stepLength;
|
|
}
|
|
rlEnd();
|
|
#endif
|
|
}
|
|
|
|
// Draw ring outline
|
|
void DrawRingLines(Vector2 center, float innerRadius, float outerRadius, float startAngle, float endAngle, int segments, Color color)
|
|
{
|
|
if (startAngle == endAngle) return;
|
|
|
|
// Function expects (outerRadius > innerRadius)
|
|
if (outerRadius < innerRadius)
|
|
{
|
|
float tmp = outerRadius;
|
|
outerRadius = innerRadius;
|
|
innerRadius = tmp;
|
|
|
|
if (outerRadius <= 0.0f) outerRadius = 0.1f;
|
|
}
|
|
|
|
// Function expects (endAngle > startAngle)
|
|
if (endAngle < startAngle)
|
|
{
|
|
// Swap values
|
|
float tmp = startAngle;
|
|
startAngle = endAngle;
|
|
endAngle = tmp;
|
|
}
|
|
|
|
int minSegments = (int)ceilf((endAngle - startAngle)/90);
|
|
|
|
if (segments < minSegments)
|
|
{
|
|
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
|
|
float th = acosf(2*powf(1 - SMOOTH_CIRCLE_ERROR_RATE/outerRadius, 2) - 1);
|
|
segments = (int)((endAngle - startAngle)*ceilf(2*PI/th)/360);
|
|
|
|
if (segments <= 0) segments = minSegments;
|
|
}
|
|
|
|
if (innerRadius <= 0.0f)
|
|
{
|
|
DrawCircleSectorLines(center, outerRadius, startAngle, endAngle, segments, color);
|
|
return;
|
|
}
|
|
|
|
float stepLength = (endAngle - startAngle)/(float)segments;
|
|
float angle = startAngle;
|
|
bool showCapLines = true;
|
|
|
|
rlBegin(RL_LINES);
|
|
if (showCapLines)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*outerRadius, center.y + cosf(DEG2RAD*angle)*outerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*innerRadius, center.y + cosf(DEG2RAD*angle)*innerRadius);
|
|
}
|
|
|
|
for (int i = 0; i < segments; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*outerRadius, center.y + cosf(DEG2RAD*angle)*outerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*outerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*outerRadius);
|
|
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*innerRadius, center.y + cosf(DEG2RAD*angle)*innerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*innerRadius);
|
|
|
|
angle += stepLength;
|
|
}
|
|
|
|
if (showCapLines)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*outerRadius, center.y + cosf(DEG2RAD*angle)*outerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*innerRadius, center.y + cosf(DEG2RAD*angle)*innerRadius);
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a color-filled rectangle
|
|
void DrawRectangle(int posX, int posY, int width, int height, Color color)
|
|
{
|
|
DrawRectangleV((Vector2){ (float)posX, (float)posY }, (Vector2){ (float)width, (float)height }, color);
|
|
}
|
|
|
|
// Draw a color-filled rectangle (Vector version)
|
|
// NOTE: On OpenGL 3.3 and ES2 we use QUADS to avoid drawing order issues
|
|
void DrawRectangleV(Vector2 position, Vector2 size, Color color)
|
|
{
|
|
DrawRectanglePro((Rectangle){ position.x, position.y, size.x, size.y }, (Vector2){ 0.0f, 0.0f }, 0.0f, color);
|
|
}
|
|
|
|
// Draw a color-filled rectangle
|
|
void DrawRectangleRec(Rectangle rec, Color color)
|
|
{
|
|
DrawRectanglePro(rec, (Vector2){ 0.0f, 0.0f }, 0.0f, color);
|
|
}
|
|
|
|
// Draw a color-filled rectangle with pro parameters
|
|
void DrawRectanglePro(Rectangle rec, Vector2 origin, float rotation, Color color)
|
|
{
|
|
Vector2 topLeft = { 0 };
|
|
Vector2 topRight = { 0 };
|
|
Vector2 bottomLeft = { 0 };
|
|
Vector2 bottomRight = { 0 };
|
|
|
|
// Only calculate rotation if needed
|
|
if (rotation == 0.0f)
|
|
{
|
|
float x = rec.x - origin.x;
|
|
float y = rec.y - origin.y;
|
|
topLeft = (Vector2){ x, y };
|
|
topRight = (Vector2){ x + rec.width, y };
|
|
bottomLeft = (Vector2){ x, y + rec.height };
|
|
bottomRight = (Vector2){ x + rec.width, y + rec.height };
|
|
}
|
|
else
|
|
{
|
|
float sinRotation = sinf(rotation*DEG2RAD);
|
|
float cosRotation = cosf(rotation*DEG2RAD);
|
|
float x = rec.x;
|
|
float y = rec.y;
|
|
float dx = -origin.x;
|
|
float dy = -origin.y;
|
|
|
|
topLeft.x = x + dx*cosRotation - dy*sinRotation;
|
|
topLeft.y = y + dx*sinRotation + dy*cosRotation;
|
|
|
|
topRight.x = x + (dx + rec.width)*cosRotation - dy*sinRotation;
|
|
topRight.y = y + (dx + rec.width)*sinRotation + dy*cosRotation;
|
|
|
|
bottomLeft.x = x + dx*cosRotation - (dy + rec.height)*sinRotation;
|
|
bottomLeft.y = y + dx*sinRotation + (dy + rec.height)*cosRotation;
|
|
|
|
bottomRight.x = x + (dx + rec.width)*cosRotation - (dy + rec.height)*sinRotation;
|
|
bottomRight.y = y + (dx + rec.width)*sinRotation + (dy + rec.height)*cosRotation;
|
|
}
|
|
|
|
#if defined(SUPPORT_QUADS_DRAW_MODE)
|
|
rlSetTexture(texShapes.id);
|
|
|
|
rlBegin(RL_QUADS);
|
|
|
|
rlNormal3f(0.0f, 0.0f, 1.0f);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(topLeft.x, topLeft.y);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(bottomLeft.x, bottomLeft.y);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(bottomRight.x, bottomRight.y);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(topRight.x, topRight.y);
|
|
|
|
rlEnd();
|
|
|
|
rlSetTexture(0);
|
|
#else
|
|
rlBegin(RL_TRIANGLES);
|
|
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex2f(topLeft.x, topLeft.y);
|
|
rlVertex2f(bottomLeft.x, bottomLeft.y);
|
|
rlVertex2f(topRight.x, topRight.y);
|
|
|
|
rlVertex2f(topRight.x, topRight.y);
|
|
rlVertex2f(bottomLeft.x, bottomLeft.y);
|
|
rlVertex2f(bottomRight.x, bottomRight.y);
|
|
|
|
rlEnd();
|
|
#endif
|
|
}
|
|
|
|
// Draw a vertical-gradient-filled rectangle
|
|
// NOTE: Gradient goes from bottom (color1) to top (color2)
|
|
void DrawRectangleGradientV(int posX, int posY, int width, int height, Color color1, Color color2)
|
|
{
|
|
DrawRectangleGradientEx((Rectangle){ (float)posX, (float)posY, (float)width, (float)height }, color1, color2, color2, color1);
|
|
}
|
|
|
|
// Draw a horizontal-gradient-filled rectangle
|
|
// NOTE: Gradient goes from bottom (color1) to top (color2)
|
|
void DrawRectangleGradientH(int posX, int posY, int width, int height, Color color1, Color color2)
|
|
{
|
|
DrawRectangleGradientEx((Rectangle){ (float)posX, (float)posY, (float)width, (float)height }, color1, color1, color2, color2);
|
|
}
|
|
|
|
// Draw a gradient-filled rectangle
|
|
// NOTE: Colors refer to corners, starting at top-lef corner and counter-clockwise
|
|
void DrawRectangleGradientEx(Rectangle rec, Color col1, Color col2, Color col3, Color col4)
|
|
{
|
|
rlSetTexture(texShapes.id);
|
|
|
|
rlBegin(RL_QUADS);
|
|
rlNormal3f(0.0f, 0.0f, 1.0f);
|
|
|
|
// NOTE: Default raylib font character 95 is a white square
|
|
rlColor4ub(col1.r, col1.g, col1.b, col1.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(rec.x, rec.y);
|
|
|
|
rlColor4ub(col2.r, col2.g, col2.b, col2.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(rec.x, rec.y + rec.height);
|
|
|
|
rlColor4ub(col3.r, col3.g, col3.b, col3.a);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(rec.x + rec.width, rec.y + rec.height);
|
|
|
|
rlColor4ub(col4.r, col4.g, col4.b, col4.a);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(rec.x + rec.width, rec.y);
|
|
rlEnd();
|
|
|
|
rlSetTexture(0);
|
|
}
|
|
|
|
// Draw rectangle outline
|
|
// NOTE: On OpenGL 3.3 and ES2 we use QUADS to avoid drawing order issues
|
|
void DrawRectangleLines(int posX, int posY, int width, int height, Color color)
|
|
{
|
|
#if defined(SUPPORT_QUADS_DRAW_MODE)
|
|
DrawRectangle(posX, posY, width, 1, color);
|
|
DrawRectangle(posX + width - 1, posY + 1, 1, height - 2, color);
|
|
DrawRectangle(posX, posY + height - 1, width, 1, color);
|
|
DrawRectangle(posX, posY + 1, 1, height - 2, color);
|
|
#else
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(posX + 1, posY + 1);
|
|
rlVertex2f(posX + width, posY + 1);
|
|
|
|
rlVertex2f(posX + width, posY + 1);
|
|
rlVertex2f(posX + width, posY + height);
|
|
|
|
rlVertex2f(posX + width, posY + height);
|
|
rlVertex2f(posX + 1, posY + height);
|
|
|
|
rlVertex2f(posX + 1, posY + height);
|
|
rlVertex2f(posX + 1, posY + 1);
|
|
rlEnd();
|
|
#endif
|
|
}
|
|
|
|
// Draw rectangle outline with extended parameters
|
|
void DrawRectangleLinesEx(Rectangle rec, float lineThick, Color color)
|
|
{
|
|
if ((lineThick > rec.width) || (lineThick > rec.height))
|
|
{
|
|
if (rec.width > rec.height) lineThick = rec.height/2;
|
|
else if (rec.width < rec.height) lineThick = rec.width/2;
|
|
}
|
|
|
|
// When rec = { x, y, 8.0f, 6.0f } and lineThick = 2, the following
|
|
// four rectangles are drawn ([T]op, [B]ottom, [L]eft, [R]ight):
|
|
//
|
|
// TTTTTTTT
|
|
// TTTTTTTT
|
|
// LL RR
|
|
// LL RR
|
|
// BBBBBBBB
|
|
// BBBBBBBB
|
|
//
|
|
|
|
Rectangle top = { rec.x, rec.y, rec.width, lineThick };
|
|
Rectangle bottom = { rec.x, rec.y - lineThick + rec.height, rec.width, lineThick };
|
|
Rectangle left = { rec.x, rec.y + lineThick, lineThick, rec.height - lineThick*2.0f };
|
|
Rectangle right = { rec.x - lineThick + rec.width, rec.y + lineThick, lineThick, rec.height - lineThick*2.0f };
|
|
|
|
DrawRectangleRec(top, color);
|
|
DrawRectangleRec(bottom, color);
|
|
DrawRectangleRec(left, color);
|
|
DrawRectangleRec(right, color);
|
|
}
|
|
|
|
// Draw rectangle with rounded edges
|
|
void DrawRectangleRounded(Rectangle rec, float roundness, int segments, Color color)
|
|
{
|
|
// Not a rounded rectangle
|
|
if ((roundness <= 0.0f) || (rec.width < 1) || (rec.height < 1 ))
|
|
{
|
|
DrawRectangleRec(rec, color);
|
|
return;
|
|
}
|
|
|
|
if (roundness >= 1.0f) roundness = 1.0f;
|
|
|
|
// Calculate corner radius
|
|
float radius = (rec.width > rec.height)? (rec.height*roundness)/2 : (rec.width*roundness)/2;
|
|
if (radius <= 0.0f) return;
|
|
|
|
// Calculate number of segments to use for the corners
|
|
if (segments < 4)
|
|
{
|
|
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
|
|
float th = acosf(2*powf(1 - SMOOTH_CIRCLE_ERROR_RATE/radius, 2) - 1);
|
|
segments = (int)(ceilf(2*PI/th)/4.0f);
|
|
if (segments <= 0) segments = 4;
|
|
}
|
|
|
|
float stepLength = 90.0f/(float)segments;
|
|
|
|
/*
|
|
Quick sketch to make sense of all of this,
|
|
there are 9 parts to draw, also mark the 12 points we'll use
|
|
|
|
P0____________________P1
|
|
/| |\
|
|
/1| 2 |3\
|
|
P7 /__|____________________|__\ P2
|
|
| |P8 P9| |
|
|
| 8 | 9 | 4 |
|
|
| __|____________________|__ |
|
|
P6 \ |P11 P10| / P3
|
|
\7| 6 |5/
|
|
\|____________________|/
|
|
P5 P4
|
|
*/
|
|
// Coordinates of the 12 points that define the rounded rect
|
|
const Vector2 point[12] = {
|
|
{(float)rec.x + radius, rec.y}, {(float)(rec.x + rec.width) - radius, rec.y}, { rec.x + rec.width, (float)rec.y + radius }, // PO, P1, P2
|
|
{rec.x + rec.width, (float)(rec.y + rec.height) - radius}, {(float)(rec.x + rec.width) - radius, rec.y + rec.height}, // P3, P4
|
|
{(float)rec.x + radius, rec.y + rec.height}, { rec.x, (float)(rec.y + rec.height) - radius}, {rec.x, (float)rec.y + radius}, // P5, P6, P7
|
|
{(float)rec.x + radius, (float)rec.y + radius}, {(float)(rec.x + rec.width) - radius, (float)rec.y + radius}, // P8, P9
|
|
{(float)(rec.x + rec.width) - radius, (float)(rec.y + rec.height) - radius}, {(float)rec.x + radius, (float)(rec.y + rec.height) - radius} // P10, P11
|
|
};
|
|
|
|
const Vector2 centers[4] = { point[8], point[9], point[10], point[11] };
|
|
const float angles[4] = { 180.0f, 90.0f, 0.0f, 270.0f };
|
|
|
|
#if defined(SUPPORT_QUADS_DRAW_MODE)
|
|
rlSetTexture(texShapes.id);
|
|
|
|
rlBegin(RL_QUADS);
|
|
// Draw all the 4 corners: [1] Upper Left Corner, [3] Upper Right Corner, [5] Lower Right Corner, [7] Lower Left Corner
|
|
for (int k = 0; k < 4; ++k) // Hope the compiler is smart enough to unroll this loop
|
|
{
|
|
float angle = angles[k];
|
|
const Vector2 center = centers[k];
|
|
|
|
// NOTE: Every QUAD actually represents two segments
|
|
for (int i = 0; i < segments/2; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x, center.y);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*radius, center.y + cosf(DEG2RAD*angle)*radius);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*radius, center.y + cosf(DEG2RAD*(angle + stepLength))*radius);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength*2))*radius, center.y + cosf(DEG2RAD*(angle + stepLength*2))*radius);
|
|
angle += (stepLength*2);
|
|
}
|
|
|
|
// NOTE: In case number of segments is odd, we add one last piece to the cake
|
|
if (segments%2)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x, center.y);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*radius, center.y + cosf(DEG2RAD*angle)*radius);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*radius, center.y + cosf(DEG2RAD*(angle + stepLength))*radius);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x, center.y);
|
|
}
|
|
}
|
|
|
|
// [2] Upper Rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[0].x, point[0].y);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[8].x, point[8].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[9].x, point[9].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[1].x, point[1].y);
|
|
|
|
// [4] Right Rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[2].x, point[2].y);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[9].x, point[9].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[10].x, point[10].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[3].x, point[3].y);
|
|
|
|
// [6] Bottom Rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[11].x, point[11].y);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[5].x, point[5].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[4].x, point[4].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[10].x, point[10].y);
|
|
|
|
// [8] Left Rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[7].x, point[7].y);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[6].x, point[6].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[11].x, point[11].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[8].x, point[8].y);
|
|
|
|
// [9] Middle Rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[8].x, point[8].y);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[11].x, point[11].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[10].x, point[10].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[9].x, point[9].y);
|
|
|
|
rlEnd();
|
|
rlSetTexture(0);
|
|
#else
|
|
rlBegin(RL_TRIANGLES);
|
|
|
|
// Draw all of the 4 corners: [1] Upper Left Corner, [3] Upper Right Corner, [5] Lower Right Corner, [7] Lower Left Corner
|
|
for (int k = 0; k < 4; ++k) // Hope the compiler is smart enough to unroll this loop
|
|
{
|
|
float angle = angles[k];
|
|
const Vector2 center = centers[k];
|
|
for (int i = 0; i < segments; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(center.x, center.y);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*radius, center.y + cosf(DEG2RAD*angle)*radius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*radius, center.y + cosf(DEG2RAD*(angle + stepLength))*radius);
|
|
angle += stepLength;
|
|
}
|
|
}
|
|
|
|
// [2] Upper Rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(point[0].x, point[0].y);
|
|
rlVertex2f(point[8].x, point[8].y);
|
|
rlVertex2f(point[9].x, point[9].y);
|
|
rlVertex2f(point[1].x, point[1].y);
|
|
rlVertex2f(point[0].x, point[0].y);
|
|
rlVertex2f(point[9].x, point[9].y);
|
|
|
|
// [4] Right Rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(point[9].x, point[9].y);
|
|
rlVertex2f(point[10].x, point[10].y);
|
|
rlVertex2f(point[3].x, point[3].y);
|
|
rlVertex2f(point[2].x, point[2].y);
|
|
rlVertex2f(point[9].x, point[9].y);
|
|
rlVertex2f(point[3].x, point[3].y);
|
|
|
|
// [6] Bottom Rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(point[11].x, point[11].y);
|
|
rlVertex2f(point[5].x, point[5].y);
|
|
rlVertex2f(point[4].x, point[4].y);
|
|
rlVertex2f(point[10].x, point[10].y);
|
|
rlVertex2f(point[11].x, point[11].y);
|
|
rlVertex2f(point[4].x, point[4].y);
|
|
|
|
// [8] Left Rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(point[7].x, point[7].y);
|
|
rlVertex2f(point[6].x, point[6].y);
|
|
rlVertex2f(point[11].x, point[11].y);
|
|
rlVertex2f(point[8].x, point[8].y);
|
|
rlVertex2f(point[7].x, point[7].y);
|
|
rlVertex2f(point[11].x, point[11].y);
|
|
|
|
// [9] Middle Rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(point[8].x, point[8].y);
|
|
rlVertex2f(point[11].x, point[11].y);
|
|
rlVertex2f(point[10].x, point[10].y);
|
|
rlVertex2f(point[9].x, point[9].y);
|
|
rlVertex2f(point[8].x, point[8].y);
|
|
rlVertex2f(point[10].x, point[10].y);
|
|
rlEnd();
|
|
#endif
|
|
}
|
|
|
|
// Draw rectangle with rounded edges outline
|
|
void DrawRectangleRoundedLines(Rectangle rec, float roundness, int segments, float lineThick, Color color)
|
|
{
|
|
if (lineThick < 0) lineThick = 0;
|
|
|
|
// Not a rounded rectangle
|
|
if (roundness <= 0.0f)
|
|
{
|
|
DrawRectangleLinesEx((Rectangle){rec.x-lineThick, rec.y-lineThick, rec.width+2*lineThick, rec.height+2*lineThick}, lineThick, color);
|
|
return;
|
|
}
|
|
|
|
if (roundness >= 1.0f) roundness = 1.0f;
|
|
|
|
// Calculate corner radius
|
|
float radius = (rec.width > rec.height)? (rec.height*roundness)/2 : (rec.width*roundness)/2;
|
|
if (radius <= 0.0f) return;
|
|
|
|
// Calculate number of segments to use for the corners
|
|
if (segments < 4)
|
|
{
|
|
// Calculate the maximum angle between segments based on the error rate (usually 0.5f)
|
|
float th = acosf(2*powf(1 - SMOOTH_CIRCLE_ERROR_RATE/radius, 2) - 1);
|
|
segments = (int)(ceilf(2*PI/th)/2.0f);
|
|
if (segments <= 0) segments = 4;
|
|
}
|
|
|
|
float stepLength = 90.0f/(float)segments;
|
|
const float outerRadius = radius + lineThick, innerRadius = radius;
|
|
|
|
/*
|
|
Quick sketch to make sense of all of this,
|
|
marks the 16 + 4(corner centers P16-19) points we'll use
|
|
|
|
P0 ================== P1
|
|
// P8 P9 \\
|
|
// \\
|
|
P7 // P15 P10 \\ P2
|
|
|| *P16 P17* ||
|
|
|| ||
|
|
|| P14 P11 ||
|
|
P6 \\ *P19 P18* // P3
|
|
\\ //
|
|
\\ P13 P12 //
|
|
P5 ================== P4
|
|
*/
|
|
const Vector2 point[16] = {
|
|
{(float)rec.x + innerRadius, rec.y - lineThick}, {(float)(rec.x + rec.width) - innerRadius, rec.y - lineThick}, { rec.x + rec.width + lineThick, (float)rec.y + innerRadius }, // PO, P1, P2
|
|
{rec.x + rec.width + lineThick, (float)(rec.y + rec.height) - innerRadius}, {(float)(rec.x + rec.width) - innerRadius, rec.y + rec.height + lineThick}, // P3, P4
|
|
{(float)rec.x + innerRadius, rec.y + rec.height + lineThick}, { rec.x - lineThick, (float)(rec.y + rec.height) - innerRadius}, {rec.x - lineThick, (float)rec.y + innerRadius}, // P5, P6, P7
|
|
{(float)rec.x + innerRadius, rec.y}, {(float)(rec.x + rec.width) - innerRadius, rec.y}, // P8, P9
|
|
{ rec.x + rec.width, (float)rec.y + innerRadius }, {rec.x + rec.width, (float)(rec.y + rec.height) - innerRadius}, // P10, P11
|
|
{(float)(rec.x + rec.width) - innerRadius, rec.y + rec.height}, {(float)rec.x + innerRadius, rec.y + rec.height}, // P12, P13
|
|
{ rec.x, (float)(rec.y + rec.height) - innerRadius}, {rec.x, (float)rec.y + innerRadius} // P14, P15
|
|
};
|
|
|
|
const Vector2 centers[4] = {
|
|
{(float)rec.x + innerRadius, (float)rec.y + innerRadius}, {(float)(rec.x + rec.width) - innerRadius, (float)rec.y + innerRadius}, // P16, P17
|
|
{(float)(rec.x + rec.width) - innerRadius, (float)(rec.y + rec.height) - innerRadius}, {(float)rec.x + innerRadius, (float)(rec.y + rec.height) - innerRadius} // P18, P19
|
|
};
|
|
|
|
const float angles[4] = { 180.0f, 90.0f, 0.0f, 270.0f };
|
|
|
|
if (lineThick > 1)
|
|
{
|
|
#if defined(SUPPORT_QUADS_DRAW_MODE)
|
|
rlSetTexture(texShapes.id);
|
|
|
|
rlBegin(RL_QUADS);
|
|
|
|
// Draw all the 4 corners first: Upper Left Corner, Upper Right Corner, Lower Right Corner, Lower Left Corner
|
|
for (int k = 0; k < 4; ++k) // Hope the compiler is smart enough to unroll this loop
|
|
{
|
|
float angle = angles[k];
|
|
const Vector2 center = centers[k];
|
|
for (int i = 0; i < segments; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*innerRadius, center.y + cosf(DEG2RAD*angle)*innerRadius);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*outerRadius, center.y + cosf(DEG2RAD*angle)*outerRadius);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*outerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*outerRadius);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*innerRadius);
|
|
|
|
angle += stepLength;
|
|
}
|
|
}
|
|
|
|
// Upper rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[0].x, point[0].y);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[8].x, point[8].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[9].x, point[9].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[1].x, point[1].y);
|
|
|
|
// Right rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[2].x, point[2].y);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[10].x, point[10].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[11].x, point[11].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[3].x, point[3].y);
|
|
|
|
// Lower rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[13].x, point[13].y);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[5].x, point[5].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[4].x, point[4].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[12].x, point[12].y);
|
|
|
|
// Left rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[15].x, point[15].y);
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[7].x, point[7].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(point[6].x, point[6].y);
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(point[14].x, point[14].y);
|
|
|
|
rlEnd();
|
|
rlSetTexture(0);
|
|
#else
|
|
rlBegin(RL_TRIANGLES);
|
|
|
|
// Draw all of the 4 corners first: Upper Left Corner, Upper Right Corner, Lower Right Corner, Lower Left Corner
|
|
for (int k = 0; k < 4; ++k) // Hope the compiler is smart enough to unroll this loop
|
|
{
|
|
float angle = angles[k];
|
|
const Vector2 center = centers[k];
|
|
|
|
for (int i = 0; i < segments; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*innerRadius, center.y + cosf(DEG2RAD*angle)*innerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*outerRadius, center.y + cosf(DEG2RAD*angle)*outerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*innerRadius);
|
|
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*innerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*innerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*outerRadius, center.y + cosf(DEG2RAD*angle)*outerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*outerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*outerRadius);
|
|
|
|
angle += stepLength;
|
|
}
|
|
}
|
|
|
|
// Upper rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(point[0].x, point[0].y);
|
|
rlVertex2f(point[8].x, point[8].y);
|
|
rlVertex2f(point[9].x, point[9].y);
|
|
rlVertex2f(point[1].x, point[1].y);
|
|
rlVertex2f(point[0].x, point[0].y);
|
|
rlVertex2f(point[9].x, point[9].y);
|
|
|
|
// Right rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(point[10].x, point[10].y);
|
|
rlVertex2f(point[11].x, point[11].y);
|
|
rlVertex2f(point[3].x, point[3].y);
|
|
rlVertex2f(point[2].x, point[2].y);
|
|
rlVertex2f(point[10].x, point[10].y);
|
|
rlVertex2f(point[3].x, point[3].y);
|
|
|
|
// Lower rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(point[13].x, point[13].y);
|
|
rlVertex2f(point[5].x, point[5].y);
|
|
rlVertex2f(point[4].x, point[4].y);
|
|
rlVertex2f(point[12].x, point[12].y);
|
|
rlVertex2f(point[13].x, point[13].y);
|
|
rlVertex2f(point[4].x, point[4].y);
|
|
|
|
// Left rectangle
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(point[7].x, point[7].y);
|
|
rlVertex2f(point[6].x, point[6].y);
|
|
rlVertex2f(point[14].x, point[14].y);
|
|
rlVertex2f(point[15].x, point[15].y);
|
|
rlVertex2f(point[7].x, point[7].y);
|
|
rlVertex2f(point[14].x, point[14].y);
|
|
rlEnd();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
// Use LINES to draw the outline
|
|
rlBegin(RL_LINES);
|
|
|
|
// Draw all the 4 corners first: Upper Left Corner, Upper Right Corner, Lower Right Corner, Lower Left Corner
|
|
for (int k = 0; k < 4; ++k) // Hope the compiler is smart enough to unroll this loop
|
|
{
|
|
float angle = angles[k];
|
|
const Vector2 center = centers[k];
|
|
|
|
for (int i = 0; i < segments; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*angle)*outerRadius, center.y + cosf(DEG2RAD*angle)*outerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*(angle + stepLength))*outerRadius, center.y + cosf(DEG2RAD*(angle + stepLength))*outerRadius);
|
|
angle += stepLength;
|
|
}
|
|
}
|
|
|
|
// And now the remaining 4 lines
|
|
for (int i = 0; i < 8; i += 2)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(point[i].x, point[i].y);
|
|
rlVertex2f(point[i + 1].x, point[i + 1].y);
|
|
}
|
|
|
|
rlEnd();
|
|
}
|
|
}
|
|
|
|
// Draw a triangle
|
|
// NOTE: Vertex must be provided in counter-clockwise order
|
|
void DrawTriangle(Vector2 v1, Vector2 v2, Vector2 v3, Color color)
|
|
{
|
|
#if defined(SUPPORT_QUADS_DRAW_MODE)
|
|
rlSetTexture(texShapes.id);
|
|
|
|
rlBegin(RL_QUADS);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(v1.x, v1.y);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(v2.x, v2.y);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(v2.x, v2.y);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(v3.x, v3.y);
|
|
rlEnd();
|
|
|
|
rlSetTexture(0);
|
|
#else
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(v1.x, v1.y);
|
|
rlVertex2f(v2.x, v2.y);
|
|
rlVertex2f(v3.x, v3.y);
|
|
rlEnd();
|
|
#endif
|
|
}
|
|
|
|
// Draw a triangle using lines
|
|
// NOTE: Vertex must be provided in counter-clockwise order
|
|
void DrawTriangleLines(Vector2 v1, Vector2 v2, Vector2 v3, Color color)
|
|
{
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex2f(v1.x, v1.y);
|
|
rlVertex2f(v2.x, v2.y);
|
|
|
|
rlVertex2f(v2.x, v2.y);
|
|
rlVertex2f(v3.x, v3.y);
|
|
|
|
rlVertex2f(v3.x, v3.y);
|
|
rlVertex2f(v1.x, v1.y);
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a triangle fan defined by points
|
|
// NOTE: First vertex provided is the center, shared by all triangles
|
|
// By default, following vertex should be provided in counter-clockwise order
|
|
void DrawTriangleFan(Vector2 *points, int pointCount, Color color)
|
|
{
|
|
if (pointCount >= 3)
|
|
{
|
|
rlSetTexture(texShapes.id);
|
|
rlBegin(RL_QUADS);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
for (int i = 1; i < pointCount - 1; i++)
|
|
{
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(points[0].x, points[0].y);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(points[i].x, points[i].y);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(points[i + 1].x, points[i + 1].y);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(points[i + 1].x, points[i + 1].y);
|
|
}
|
|
rlEnd();
|
|
rlSetTexture(0);
|
|
}
|
|
}
|
|
|
|
// Draw a triangle strip defined by points
|
|
// NOTE: Every new vertex connects with previous two
|
|
void DrawTriangleStrip(Vector2 *points, int pointCount, Color color)
|
|
{
|
|
if (pointCount >= 3)
|
|
{
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
for (int i = 2; i < pointCount; i++)
|
|
{
|
|
if ((i%2) == 0)
|
|
{
|
|
rlVertex2f(points[i].x, points[i].y);
|
|
rlVertex2f(points[i - 2].x, points[i - 2].y);
|
|
rlVertex2f(points[i - 1].x, points[i - 1].y);
|
|
}
|
|
else
|
|
{
|
|
rlVertex2f(points[i].x, points[i].y);
|
|
rlVertex2f(points[i - 1].x, points[i - 1].y);
|
|
rlVertex2f(points[i - 2].x, points[i - 2].y);
|
|
}
|
|
}
|
|
rlEnd();
|
|
}
|
|
}
|
|
|
|
// Draw a regular polygon of n sides (Vector version)
|
|
void DrawPoly(Vector2 center, int sides, float radius, float rotation, Color color)
|
|
{
|
|
if (sides < 3) sides = 3;
|
|
float centralAngle = rotation;
|
|
|
|
#if defined(SUPPORT_QUADS_DRAW_MODE)
|
|
rlSetTexture(texShapes.id);
|
|
|
|
rlBegin(RL_QUADS);
|
|
for (int i = 0; i < sides; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x, center.y);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*radius, center.y + cosf(DEG2RAD*centralAngle)*radius);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*radius, center.y + cosf(DEG2RAD*centralAngle)*radius);
|
|
|
|
centralAngle += 360.0f/(float)sides;
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*radius, center.y + cosf(DEG2RAD*centralAngle)*radius);
|
|
}
|
|
rlEnd();
|
|
rlSetTexture(0);
|
|
#else
|
|
rlBegin(RL_TRIANGLES);
|
|
for (int i = 0; i < sides; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex2f(center.x, center.y);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*radius, center.y + cosf(DEG2RAD*centralAngle)*radius);
|
|
|
|
centralAngle += 360.0f/(float)sides;
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*radius, center.y + cosf(DEG2RAD*centralAngle)*radius);
|
|
}
|
|
rlEnd();
|
|
#endif
|
|
}
|
|
|
|
// Draw a polygon outline of n sides
|
|
void DrawPolyLines(Vector2 center, int sides, float radius, float rotation, Color color)
|
|
{
|
|
if (sides < 3) sides = 3;
|
|
float centralAngle = rotation;
|
|
|
|
rlBegin(RL_LINES);
|
|
for (int i = 0; i < sides; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*radius, center.y + cosf(DEG2RAD*centralAngle)*radius);
|
|
centralAngle += 360.0f/(float)sides;
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*radius, center.y + cosf(DEG2RAD*centralAngle)*radius);
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
void DrawPolyLinesEx(Vector2 center, int sides, float radius, float rotation, float lineThick, Color color)
|
|
{
|
|
if (sides < 3) sides = 3;
|
|
float centralAngle = rotation;
|
|
float exteriorAngle = 360.0f/(float)sides;
|
|
float innerRadius = radius - (lineThick*cosf(DEG2RAD*exteriorAngle/2.0f));
|
|
|
|
#if defined(SUPPORT_QUADS_DRAW_MODE)
|
|
rlSetTexture(texShapes.id);
|
|
|
|
rlBegin(RL_QUADS);
|
|
for (int i = 0; i < sides; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*innerRadius, center.y + cosf(DEG2RAD*centralAngle)*innerRadius);
|
|
|
|
rlTexCoord2f(texShapesRec.x/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*radius, center.y + cosf(DEG2RAD*centralAngle)*radius);
|
|
|
|
centralAngle += exteriorAngle;
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, texShapesRec.y/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*radius, center.y + cosf(DEG2RAD*centralAngle)*radius);
|
|
|
|
rlTexCoord2f((texShapesRec.x + texShapesRec.width)/texShapes.width, (texShapesRec.y + texShapesRec.height)/texShapes.height);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*innerRadius, center.y + cosf(DEG2RAD*centralAngle)*innerRadius);
|
|
}
|
|
rlEnd();
|
|
rlSetTexture(0);
|
|
#else
|
|
rlBegin(RL_TRIANGLES);
|
|
for (int i = 0; i < sides; i++)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
float nextAngle = centralAngle + exteriorAngle;
|
|
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*radius, center.y + cosf(DEG2RAD*centralAngle)*radius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*innerRadius, center.y + cosf(DEG2RAD*centralAngle)*innerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*nextAngle)*radius, center.y + cosf(DEG2RAD*nextAngle)*radius);
|
|
|
|
rlVertex2f(center.x + sinf(DEG2RAD*centralAngle)*innerRadius, center.y + cosf(DEG2RAD*centralAngle)*innerRadius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*nextAngle)*radius, center.y + cosf(DEG2RAD*nextAngle)*radius);
|
|
rlVertex2f(center.x + sinf(DEG2RAD*nextAngle)*innerRadius, center.y + cosf(DEG2RAD*nextAngle)*innerRadius);
|
|
|
|
centralAngle = nextAngle;
|
|
}
|
|
rlEnd();
|
|
#endif
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition - Collision Detection functions
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Check if point is inside rectangle
|
|
bool CheckCollisionPointRec(Vector2 point, Rectangle rec)
|
|
{
|
|
bool collision = false;
|
|
|
|
if ((point.x >= rec.x) && (point.x < (rec.x + rec.width)) && (point.y >= rec.y) && (point.y < (rec.y + rec.height))) collision = true;
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Check if point is inside circle
|
|
bool CheckCollisionPointCircle(Vector2 point, Vector2 center, float radius)
|
|
{
|
|
bool collision = false;
|
|
|
|
collision = CheckCollisionCircles(point, 0, center, radius);
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Check if point is inside a triangle defined by three points (p1, p2, p3)
|
|
bool CheckCollisionPointTriangle(Vector2 point, Vector2 p1, Vector2 p2, Vector2 p3)
|
|
{
|
|
bool collision = false;
|
|
|
|
float alpha = ((p2.y - p3.y)*(point.x - p3.x) + (p3.x - p2.x)*(point.y - p3.y)) /
|
|
((p2.y - p3.y)*(p1.x - p3.x) + (p3.x - p2.x)*(p1.y - p3.y));
|
|
|
|
float beta = ((p3.y - p1.y)*(point.x - p3.x) + (p1.x - p3.x)*(point.y - p3.y)) /
|
|
((p2.y - p3.y)*(p1.x - p3.x) + (p3.x - p2.x)*(p1.y - p3.y));
|
|
|
|
float gamma = 1.0f - alpha - beta;
|
|
|
|
if ((alpha > 0) && (beta > 0) && (gamma > 0)) collision = true;
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Check if point is within a polygon described by array of vertices
|
|
// NOTE: Based on http://jeffreythompson.org/collision-detection/poly-point.php
|
|
bool CheckCollisionPointPoly(Vector2 point, Vector2 *points, int pointCount)
|
|
{
|
|
bool collision = false;
|
|
|
|
if (pointCount > 2)
|
|
{
|
|
for (int i = 0; i < pointCount - 1; i++)
|
|
{
|
|
Vector2 vc = points[i];
|
|
Vector2 vn = points[i + 1];
|
|
|
|
if ((((vc.y >= point.y) && (vn.y < point.y)) || ((vc.y < point.y) && (vn.y >= point.y))) &&
|
|
(point.x < ((vn.x - vc.x)*(point.y - vc.y)/(vn.y - vc.y) + vc.x))) collision = !collision;
|
|
}
|
|
}
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Check collision between two rectangles
|
|
bool CheckCollisionRecs(Rectangle rec1, Rectangle rec2)
|
|
{
|
|
bool collision = false;
|
|
|
|
if ((rec1.x < (rec2.x + rec2.width) && (rec1.x + rec1.width) > rec2.x) &&
|
|
(rec1.y < (rec2.y + rec2.height) && (rec1.y + rec1.height) > rec2.y)) collision = true;
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Check collision between two circles
|
|
bool CheckCollisionCircles(Vector2 center1, float radius1, Vector2 center2, float radius2)
|
|
{
|
|
bool collision = false;
|
|
|
|
float dx = center2.x - center1.x; // X distance between centers
|
|
float dy = center2.y - center1.y; // Y distance between centers
|
|
|
|
float distance = sqrtf(dx*dx + dy*dy); // Distance between centers
|
|
|
|
if (distance <= (radius1 + radius2)) collision = true;
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Check collision between circle and rectangle
|
|
// NOTE: Reviewed version to take into account corner limit case
|
|
bool CheckCollisionCircleRec(Vector2 center, float radius, Rectangle rec)
|
|
{
|
|
bool collision = false;
|
|
|
|
int recCenterX = (int)(rec.x + rec.width/2.0f);
|
|
int recCenterY = (int)(rec.y + rec.height/2.0f);
|
|
|
|
float dx = fabsf(center.x - (float)recCenterX);
|
|
float dy = fabsf(center.y - (float)recCenterY);
|
|
|
|
if (dx > (rec.width/2.0f + radius)) { return false; }
|
|
if (dy > (rec.height/2.0f + radius)) { return false; }
|
|
|
|
if (dx <= (rec.width/2.0f)) { return true; }
|
|
if (dy <= (rec.height/2.0f)) { return true; }
|
|
|
|
float cornerDistanceSq = (dx - rec.width/2.0f)*(dx - rec.width/2.0f) +
|
|
(dy - rec.height/2.0f)*(dy - rec.height/2.0f);
|
|
|
|
collision = (cornerDistanceSq <= (radius*radius));
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Check the collision between two lines defined by two points each, returns collision point by reference
|
|
bool CheckCollisionLines(Vector2 startPos1, Vector2 endPos1, Vector2 startPos2, Vector2 endPos2, Vector2 *collisionPoint)
|
|
{
|
|
bool collision = false;
|
|
|
|
float div = (endPos2.y - startPos2.y)*(endPos1.x - startPos1.x) - (endPos2.x - startPos2.x)*(endPos1.y - startPos1.y);
|
|
|
|
if (fabsf(div) >= FLT_EPSILON)
|
|
{
|
|
collision = true;
|
|
|
|
float xi = ((startPos2.x - endPos2.x)*(startPos1.x*endPos1.y - startPos1.y*endPos1.x) - (startPos1.x - endPos1.x)*(startPos2.x*endPos2.y - startPos2.y*endPos2.x))/div;
|
|
float yi = ((startPos2.y - endPos2.y)*(startPos1.x*endPos1.y - startPos1.y*endPos1.x) - (startPos1.y - endPos1.y)*(startPos2.x*endPos2.y - startPos2.y*endPos2.x))/div;
|
|
|
|
if (((fabsf(startPos1.x - endPos1.x) > FLT_EPSILON) && (xi < fminf(startPos1.x, endPos1.x) || (xi > fmaxf(startPos1.x, endPos1.x)))) ||
|
|
((fabsf(startPos2.x - endPos2.x) > FLT_EPSILON) && (xi < fminf(startPos2.x, endPos2.x) || (xi > fmaxf(startPos2.x, endPos2.x)))) ||
|
|
((fabsf(startPos1.y - endPos1.y) > FLT_EPSILON) && (yi < fminf(startPos1.y, endPos1.y) || (yi > fmaxf(startPos1.y, endPos1.y)))) ||
|
|
((fabsf(startPos2.y - endPos2.y) > FLT_EPSILON) && (yi < fminf(startPos2.y, endPos2.y) || (yi > fmaxf(startPos2.y, endPos2.y))))) collision = false;
|
|
|
|
if (collision && (collisionPoint != 0))
|
|
{
|
|
collisionPoint->x = xi;
|
|
collisionPoint->y = yi;
|
|
}
|
|
}
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Check if point belongs to line created between two points [p1] and [p2] with defined margin in pixels [threshold]
|
|
bool CheckCollisionPointLine(Vector2 point, Vector2 p1, Vector2 p2, int threshold)
|
|
{
|
|
bool collision = false;
|
|
|
|
float dxc = point.x - p1.x;
|
|
float dyc = point.y - p1.y;
|
|
float dxl = p2.x - p1.x;
|
|
float dyl = p2.y - p1.y;
|
|
float cross = dxc*dyl - dyc*dxl;
|
|
|
|
if (fabsf(cross) < (threshold*fmaxf(fabsf(dxl), fabsf(dyl))))
|
|
{
|
|
if (fabsf(dxl) >= fabsf(dyl)) collision = (dxl > 0)? ((p1.x <= point.x) && (point.x <= p2.x)) : ((p2.x <= point.x) && (point.x <= p1.x));
|
|
else collision = (dyl > 0)? ((p1.y <= point.y) && (point.y <= p2.y)) : ((p2.y <= point.y) && (point.y <= p1.y));
|
|
}
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Get collision rectangle for two rectangles collision
|
|
Rectangle GetCollisionRec(Rectangle rec1, Rectangle rec2)
|
|
{
|
|
Rectangle overlap = { 0 };
|
|
|
|
float left = (rec1.x > rec2.x)? rec1.x : rec2.x;
|
|
float right1 = rec1.x + rec1.width;
|
|
float right2 = rec2.x + rec2.width;
|
|
float right = (right1 < right2)? right1 : right2;
|
|
float top = (rec1.y > rec2.y)? rec1.y : rec2.y;
|
|
float bottom1 = rec1.y + rec1.height;
|
|
float bottom2 = rec2.y + rec2.height;
|
|
float bottom = (bottom1 < bottom2)? bottom1 : bottom2;
|
|
|
|
if ((left < right) && (top < bottom))
|
|
{
|
|
overlap.x = left;
|
|
overlap.y = top;
|
|
overlap.width = right - left;
|
|
overlap.height = bottom - top;
|
|
}
|
|
|
|
return overlap;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module specific Functions Definition
|
|
//----------------------------------------------------------------------------------
|
|
|
|
// Cubic easing in-out
|
|
// NOTE: Used by DrawLineBezier() only
|
|
static float EaseCubicInOut(float t, float b, float c, float d)
|
|
{
|
|
if ((t /= 0.5f*d) < 1) return 0.5f*c*t*t*t + b;
|
|
|
|
t -= 2;
|
|
|
|
return 0.5f*c*(t*t*t + 2.0f) + b;
|
|
}
|
|
|
|
#endif // SUPPORT_MODULE_RSHAPES
|