/********************************************************************************************** * * raymath (header only file) * * Some useful functions to work with Vector3, Matrix and Quaternions * * You must: * #define RAYMATH_IMPLEMENTATION * before you include this file in *only one* C or C++ file to create the implementation. * * Example: * #define RAYMATH_IMPLEMENTATION * #include "raymath.h" * * You can also use: * #define RAYMATH_EXTERN_INLINE // Inlines all functions code, so it runs faster. * // This requires lots of memory on system. * #define RAYMATH_STANDALONE // Not dependent on raylib.h structs: Vector3, Matrix. * * * Copyright (c) 2015 Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #ifndef RAYMATH_H #define RAYMATH_H //#define RAYMATH_STANDALONE // NOTE: To use raymath as standalone lib, just uncomment this line //#define RAYMATH_EXTERN_INLINE // NOTE: To compile functions as static inline, uncomment this line #ifndef RAYMATH_STANDALONE #include "raylib.h" // Required for structs: Vector3, Matrix #endif #if defined(RAYMATH_EXTERN_INLINE) #define RMDEF extern inline #else #define RMDEF extern #endif //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- #ifndef PI #define PI 3.14159265358979323846 #endif #ifndef DEG2RAD #define DEG2RAD (PI/180.0f) #endif #ifndef RAD2DEG #define RAD2DEG (180.0f/PI) #endif //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- #if defined(RAYMATH_STANDALONE) // Vector2 type typedef struct Vector2 { float x; float y; } Vector2; // Vector3 type typedef struct Vector3 { float x; float y; float z; } Vector3; // Matrix type (OpenGL style 4x4 - right handed, column major) typedef struct Matrix { float m0, m4, m8, m12; float m1, m5, m9, m13; float m2, m6, m10, m14; float m3, m7, m11, m15; } Matrix; #endif // Quaternion type typedef struct Quaternion { float x; float y; float z; float w; } Quaternion; #ifndef RAYMATH_EXTERN_INLINE #ifdef __cplusplus extern "C" { #endif //------------------------------------------------------------------------------------ // Functions Declaration to work with Vector3 //------------------------------------------------------------------------------------ RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2); // Add two vectors RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2); // Calculate two vectors cross product RMDEF Vector3 VectorPerpendicular(Vector3 v); // Calculate one vector perpendicular vector RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2); // Calculate two vectors dot product RMDEF float VectorLength(const Vector3 v); // Calculate vector lenght RMDEF void VectorScale(Vector3 *v, float scale); // Scale provided vector RMDEF void VectorNegate(Vector3 *v); // Negate provided vector (invert direction) RMDEF void VectorNormalize(Vector3 *v); // Normalize provided vector RMDEF float VectorDistance(Vector3 v1, Vector3 v2); // Calculate distance between two points RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount); // Calculate linear interpolation between two vectors RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal); // Calculate reflected vector to normal RMDEF void VectorTransform(Vector3 *v, Matrix mat); // Transforms a Vector3 by a given Matrix RMDEF Vector3 VectorZero(void); // Return a Vector3 init to zero RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2); // Return min value for each pair of components RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2); // Return max value for each pair of components //------------------------------------------------------------------------------------ // Functions Declaration to work with Matrix //------------------------------------------------------------------------------------ RMDEF float MatrixDeterminant(Matrix mat); // Compute matrix determinant RMDEF float MatrixTrace(Matrix mat); // Returns the trace of the matrix (sum of the values along the diagonal) RMDEF void MatrixTranspose(Matrix *mat); // Transposes provided matrix RMDEF void MatrixInvert(Matrix *mat); // Invert provided matrix RMDEF void MatrixNormalize(Matrix *mat); // Normalize provided matrix RMDEF Matrix MatrixIdentity(void); // Returns identity matrix RMDEF Matrix MatrixAdd(Matrix left, Matrix right); // Add two matrices RMDEF Matrix MatrixSubstract(Matrix left, Matrix right); // Substract two matrices (left - right) RMDEF Matrix MatrixTranslate(float x, float y, float z); // Returns translation matrix RMDEF Matrix MatrixRotate(Vector3 axis, float angle); // Returns rotation matrix for an angle around an specified axis (angle in radians) RMDEF Matrix MatrixRotateX(float angle); // Returns x-rotation matrix (angle in radians) RMDEF Matrix MatrixRotateY(float angle); // Returns y-rotation matrix (angle in radians) RMDEF Matrix MatrixRotateZ(float angle); // Returns z-rotation matrix (angle in radians) RMDEF Matrix MatrixScale(float x, float y, float z); // Returns scaling matrix RMDEF Matrix MatrixMultiply(Matrix left, Matrix right); // Returns two matrix multiplication RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far); // Returns perspective projection matrix RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far); // Returns perspective projection matrix RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far); // Returns orthographic projection matrix RMDEF Matrix MatrixLookAt(Vector3 position, Vector3 target, Vector3 up); // Returns camera look-at matrix (view matrix) //------------------------------------------------------------------------------------ // Functions Declaration to work with Quaternions //------------------------------------------------------------------------------------ RMDEF float QuaternionLength(Quaternion quat); // Compute the length of a quaternion RMDEF void QuaternionNormalize(Quaternion *q); // Normalize provided quaternion RMDEF void QuaternionInvert(Quaternion *quat); // Invert provided quaternion RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2); // Calculate two quaternion multiplication RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float slerp); // Calculates spherical linear interpolation between two quaternions RMDEF Quaternion QuaternionFromMatrix(Matrix matrix); // Returns a quaternion for a given rotation matrix RMDEF Matrix QuaternionToMatrix(Quaternion q); // Returns a matrix for a given quaternion RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle); // Returns rotation quaternion for an angle and axis RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle); // Returns the rotation angle and axis for a given quaternion RMDEF void QuaternionTransform(Quaternion *q, Matrix mat); // Transform a quaternion given a transformation matrix #ifdef __cplusplus } #endif #endif // notdef RAYMATH_EXTERN_INLINE #endif // RAYMATH_H //////////////////////////////////////////////////////////////////// end of header file #if defined(RAYMATH_IMPLEMENTATION) || defined(RAYMATH_EXTERN_INLINE) #include // Required for: sinf(), cosf(), tan(), fabs() //---------------------------------------------------------------------------------- // Module Functions Definition - Vector3 math //---------------------------------------------------------------------------------- // Add two vectors RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2) { Vector3 result; result.x = v1.x + v2.x; result.y = v1.y + v2.y; result.z = v1.z + v2.z; return result; } // Substract two vectors RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2) { Vector3 result; result.x = v1.x - v2.x; result.y = v1.y - v2.y; result.z = v1.z - v2.z; return result; } // Calculate two vectors cross product RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2) { Vector3 result; result.x = v1.y*v2.z - v1.z*v2.y; result.y = v1.z*v2.x - v1.x*v2.z; result.z = v1.x*v2.y - v1.y*v2.x; return result; } // Calculate one vector perpendicular vector RMDEF Vector3 VectorPerpendicular(Vector3 v) { Vector3 result; float min = fabs(v.x); Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f}; if (fabs(v.y) < min) { min = fabs(v.y); cardinalAxis = (Vector3){0.0f, 1.0f, 0.0f}; } if(fabs(v.z) < min) { cardinalAxis = (Vector3){0.0f, 0.0f, 1.0f}; } result = VectorCrossProduct(v, cardinalAxis); return result; } // Calculate two vectors dot product RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2) { float result; result = v1.x*v2.x + v1.y*v2.y + v1.z*v2.z; return result; } // Calculate vector lenght RMDEF float VectorLength(const Vector3 v) { float length; length = sqrt(v.x*v.x + v.y*v.y + v.z*v.z); return length; } // Scale provided vector RMDEF void VectorScale(Vector3 *v, float scale) { v->x *= scale; v->y *= scale; v->z *= scale; } // Negate provided vector (invert direction) RMDEF void VectorNegate(Vector3 *v) { v->x = -v->x; v->y = -v->y; v->z = -v->z; } // Normalize provided vector RMDEF void VectorNormalize(Vector3 *v) { float length, ilength; length = VectorLength(*v); if (length == 0) length = 1.0f; ilength = 1.0f/length; v->x *= ilength; v->y *= ilength; v->z *= ilength; } // Calculate distance between two points RMDEF float VectorDistance(Vector3 v1, Vector3 v2) { float result; float dx = v2.x - v1.x; float dy = v2.y - v1.y; float dz = v2.z - v1.z; result = sqrt(dx*dx + dy*dy + dz*dz); return result; } // Calculate linear interpolation between two vectors RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount) { Vector3 result; result.x = v1.x + amount*(v2.x - v1.x); result.y = v1.y + amount*(v2.y - v1.y); result.z = v1.z + amount*(v2.z - v1.z); return result; } // Calculate reflected vector to normal RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal) { // I is the original vector // N is the normal of the incident plane // R = I - (2*N*( DotProduct[ I,N] )) Vector3 result; float dotProduct = VectorDotProduct(vector, normal); result.x = vector.x - (2.0f*normal.x)*dotProduct; result.y = vector.y - (2.0f*normal.y)*dotProduct; result.z = vector.z - (2.0f*normal.z)*dotProduct; return result; } // Transforms a Vector3 by a given Matrix // TODO: Review math (matrix transpose required?) RMDEF void VectorTransform(Vector3 *v, Matrix mat) { float x = v->x; float y = v->y; float z = v->z; v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14; }; // Return a Vector3 init to zero RMDEF Vector3 VectorZero(void) { Vector3 zero = { 0.0f, 0.0f, 0.0f }; return zero; } // Return min value for each pair of components RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2) { Vector3 result; result.x = fminf(vec1.x, vec2.x); result.y = fminf(vec1.y, vec2.y); result.z = fminf(vec1.z, vec2.z); return result; } // Return max value for each pair of components RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2) { Vector3 result; result.x = fmaxf(vec1.x, vec2.x); result.y = fmaxf(vec1.y, vec2.y); result.z = fmaxf(vec1.z, vec2.z); return result; } //---------------------------------------------------------------------------------- // Module Functions Definition - Matrix math //---------------------------------------------------------------------------------- // Compute matrix determinant RMDEF float MatrixDeterminant(Matrix mat) { float result; // Cache the matrix values (speed optimization) float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15; result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 + a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 + a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 + a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 + a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 + a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33; return result; } // Returns the trace of the matrix (sum of the values along the diagonal) RMDEF float MatrixTrace(Matrix mat) { return (mat.m0 + mat.m5 + mat.m10 + mat.m15); } // Transposes provided matrix RMDEF void MatrixTranspose(Matrix *mat) { Matrix temp; temp.m0 = mat->m0; temp.m1 = mat->m4; temp.m2 = mat->m8; temp.m3 = mat->m12; temp.m4 = mat->m1; temp.m5 = mat->m5; temp.m6 = mat->m9; temp.m7 = mat->m13; temp.m8 = mat->m2; temp.m9 = mat->m6; temp.m10 = mat->m10; temp.m11 = mat->m14; temp.m12 = mat->m3; temp.m13 = mat->m7; temp.m14 = mat->m11; temp.m15 = mat->m15; *mat = temp; } // Invert provided matrix RMDEF void MatrixInvert(Matrix *mat) { Matrix temp; // Cache the matrix values (speed optimization) float a00 = mat->m0, a01 = mat->m1, a02 = mat->m2, a03 = mat->m3; float a10 = mat->m4, a11 = mat->m5, a12 = mat->m6, a13 = mat->m7; float a20 = mat->m8, a21 = mat->m9, a22 = mat->m10, a23 = mat->m11; float a30 = mat->m12, a31 = mat->m13, a32 = mat->m14, a33 = mat->m15; float b00 = a00*a11 - a01*a10; float b01 = a00*a12 - a02*a10; float b02 = a00*a13 - a03*a10; float b03 = a01*a12 - a02*a11; float b04 = a01*a13 - a03*a11; float b05 = a02*a13 - a03*a12; float b06 = a20*a31 - a21*a30; float b07 = a20*a32 - a22*a30; float b08 = a20*a33 - a23*a30; float b09 = a21*a32 - a22*a31; float b10 = a21*a33 - a23*a31; float b11 = a22*a33 - a23*a32; // Calculate the invert determinant (inlined to avoid double-caching) float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); temp.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet; temp.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet; temp.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet; temp.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet; temp.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet; temp.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet; temp.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet; temp.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet; temp.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet; temp.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet; temp.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet; temp.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet; temp.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet; temp.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet; temp.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet; temp.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet; *mat = temp; } // Normalize provided matrix RMDEF void MatrixNormalize(Matrix *mat) { float det = MatrixDeterminant(*mat); mat->m0 /= det; mat->m1 /= det; mat->m2 /= det; mat->m3 /= det; mat->m4 /= det; mat->m5 /= det; mat->m6 /= det; mat->m7 /= det; mat->m8 /= det; mat->m9 /= det; mat->m10 /= det; mat->m11 /= det; mat->m12 /= det; mat->m13 /= det; mat->m14 /= det; mat->m15 /= det; } // Returns identity matrix RMDEF Matrix MatrixIdentity(void) { Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; return result; } // Add two matrices RMDEF Matrix MatrixAdd(Matrix left, Matrix right) { Matrix result = MatrixIdentity(); result.m0 = left.m0 + right.m0; result.m1 = left.m1 + right.m1; result.m2 = left.m2 + right.m2; result.m3 = left.m3 + right.m3; result.m4 = left.m4 + right.m4; result.m5 = left.m5 + right.m5; result.m6 = left.m6 + right.m6; result.m7 = left.m7 + right.m7; result.m8 = left.m8 + right.m8; result.m9 = left.m9 + right.m9; result.m10 = left.m10 + right.m10; result.m11 = left.m11 + right.m11; result.m12 = left.m12 + right.m12; result.m13 = left.m13 + right.m13; result.m14 = left.m14 + right.m14; result.m15 = left.m15 + right.m15; return result; } // Substract two matrices (left - right) RMDEF Matrix MatrixSubstract(Matrix left, Matrix right) { Matrix result = MatrixIdentity(); result.m0 = left.m0 - right.m0; result.m1 = left.m1 - right.m1; result.m2 = left.m2 - right.m2; result.m3 = left.m3 - right.m3; result.m4 = left.m4 - right.m4; result.m5 = left.m5 - right.m5; result.m6 = left.m6 - right.m6; result.m7 = left.m7 - right.m7; result.m8 = left.m8 - right.m8; result.m9 = left.m9 - right.m9; result.m10 = left.m10 - right.m10; result.m11 = left.m11 - right.m11; result.m12 = left.m12 - right.m12; result.m13 = left.m13 - right.m13; result.m14 = left.m14 - right.m14; result.m15 = left.m15 - right.m15; return result; } // Returns translation matrix RMDEF Matrix MatrixTranslate(float x, float y, float z) { Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, x, y, z, 1.0f }; return result; } // Create rotation matrix from axis and angle // NOTE: Angle should be provided in radians RMDEF Matrix MatrixRotate(Vector3 axis, float angle) { Matrix result; Matrix mat = MatrixIdentity(); float x = axis.x, y = axis.y, z = axis.z; float length = sqrt(x*x + y*y + z*z); if ((length != 1.0f) && (length != 0.0f)) { length = 1.0f/length; x *= length; y *= length; z *= length; } float sinres = sinf(angle); float cosres = cosf(angle); float t = 1.0f - cosres; // Cache some matrix values (speed optimization) float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; // Construct the elements of the rotation matrix float b00 = x*x*t + cosres, b01 = y*x*t + z*sinres, b02 = z*x*t - y*sinres; float b10 = x*y*t - z*sinres, b11 = y*y*t + cosres, b12 = z*y*t + x*sinres; float b20 = x*z*t + y*sinres, b21 = y*z*t - x*sinres, b22 = z*z*t + cosres; // Perform rotation-specific matrix multiplication result.m0 = a00*b00 + a10*b01 + a20*b02; result.m1 = a01*b00 + a11*b01 + a21*b02; result.m2 = a02*b00 + a12*b01 + a22*b02; result.m3 = a03*b00 + a13*b01 + a23*b02; result.m4 = a00*b10 + a10*b11 + a20*b12; result.m5 = a01*b10 + a11*b11 + a21*b12; result.m6 = a02*b10 + a12*b11 + a22*b12; result.m7 = a03*b10 + a13*b11 + a23*b12; result.m8 = a00*b20 + a10*b21 + a20*b22; result.m9 = a01*b20 + a11*b21 + a21*b22; result.m10 = a02*b20 + a12*b21 + a22*b22; result.m11 = a03*b20 + a13*b21 + a23*b22; result.m12 = mat.m12; result.m13 = mat.m13; result.m14 = mat.m14; result.m15 = mat.m15; return result; } /* // Another implementation for MatrixRotate... RMDEF Matrix MatrixRotate(float angle, float x, float y, float z) { Matrix result = MatrixIdentity(); float c = cosf(angle); // cosine float s = sinf(angle); // sine float c1 = 1.0f - c; // 1 - c float m0 = result.m0, m4 = result.m4, m8 = result.m8, m12 = result.m12, m1 = result.m1, m5 = result.m5, m9 = result.m9, m13 = result.m13, m2 = result.m2, m6 = result.m6, m10 = result.m10, m14 = result.m14; // build rotation matrix float r0 = x*x*c1 + c; float r1 = x*y*c1 + z*s; float r2 = x*z*c1 - y*s; float r4 = x*y*c1 - z*s; float r5 = y*y*c1 + c; float r6 = y*z*c1 + x*s; float r8 = x*z*c1 + y*s; float r9 = y*z*c1 - x*s; float r10= z*z*c1 + c; // multiply rotation matrix result.m0 = r0*m0 + r4*m1 + r8*m2; result.m1 = r1*m0 + r5*m1 + r9*m2; result.m2 = r2*m0 + r6*m1 + r10*m2; result.m4 = r0*m4 + r4*m5 + r8*m6; result.m5 = r1*m4 + r5*m5 + r9*m6; result.m6 = r2*m4 + r6*m5 + r10*m6; result.m8 = r0*m8 + r4*m9 + r8*m10; result.m9 = r1*m8 + r5*m9 + r9*m10; result.m10 = r2*m8 + r6*m9 + r10*m10; result.m12 = r0*m12+ r4*m13 + r8*m14; result.m13 = r1*m12+ r5*m13 + r9*m14; result.m14 = r2*m12+ r6*m13 + r10*m14; return result; } */ // Returns x-rotation matrix (angle in radians) RMDEF Matrix MatrixRotateX(float angle) { Matrix result = MatrixIdentity(); float cosres = cosf(angle); float sinres = sinf(angle); result.m5 = cosres; result.m6 = -sinres; result.m9 = sinres; result.m10 = cosres; return result; } // Returns y-rotation matrix (angle in radians) RMDEF Matrix MatrixRotateY(float angle) { Matrix result = MatrixIdentity(); float cosres = cosf(angle); float sinres = sinf(angle); result.m0 = cosres; result.m2 = sinres; result.m8 = -sinres; result.m10 = cosres; return result; } // Returns z-rotation matrix (angle in radians) RMDEF Matrix MatrixRotateZ(float angle) { Matrix result = MatrixIdentity(); float cosres = cosf(angle); float sinres = sinf(angle); result.m0 = cosres; result.m1 = -sinres; result.m4 = sinres; result.m5 = cosres; return result; } // Returns scaling matrix RMDEF Matrix MatrixScale(float x, float y, float z) { Matrix result = { x, 0.0f, 0.0f, 0.0f, 0.0f, y, 0.0f, 0.0f, 0.0f, 0.0f, z, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }; return result; } // Returns two matrix multiplication // NOTE: When multiplying matrices... the order matters! RMDEF Matrix MatrixMultiply(Matrix left, Matrix right) { Matrix result; result.m0 = right.m0*left.m0 + right.m1*left.m4 + right.m2*left.m8 + right.m3*left.m12; result.m1 = right.m0*left.m1 + right.m1*left.m5 + right.m2*left.m9 + right.m3*left.m13; result.m2 = right.m0*left.m2 + right.m1*left.m6 + right.m2*left.m10 + right.m3*left.m14; result.m3 = right.m0*left.m3 + right.m1*left.m7 + right.m2*left.m11 + right.m3*left.m15; result.m4 = right.m4*left.m0 + right.m5*left.m4 + right.m6*left.m8 + right.m7*left.m12; result.m5 = right.m4*left.m1 + right.m5*left.m5 + right.m6*left.m9 + right.m7*left.m13; result.m6 = right.m4*left.m2 + right.m5*left.m6 + right.m6*left.m10 + right.m7*left.m14; result.m7 = right.m4*left.m3 + right.m5*left.m7 + right.m6*left.m11 + right.m7*left.m15; result.m8 = right.m8*left.m0 + right.m9*left.m4 + right.m10*left.m8 + right.m11*left.m12; result.m9 = right.m8*left.m1 + right.m9*left.m5 + right.m10*left.m9 + right.m11*left.m13; result.m10 = right.m8*left.m2 + right.m9*left.m6 + right.m10*left.m10 + right.m11*left.m14; result.m11 = right.m8*left.m3 + right.m9*left.m7 + right.m10*left.m11 + right.m11*left.m15; result.m12 = right.m12*left.m0 + right.m13*left.m4 + right.m14*left.m8 + right.m15*left.m12; result.m13 = right.m12*left.m1 + right.m13*left.m5 + right.m14*left.m9 + right.m15*left.m13; result.m14 = right.m12*left.m2 + right.m13*left.m6 + right.m14*left.m10 + right.m15*left.m14; result.m15 = right.m12*left.m3 + right.m13*left.m7 + right.m14*left.m11 + right.m15*left.m15; return result; } // Returns perspective projection matrix RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far) { Matrix result; float rl = (right - left); float tb = (top - bottom); float fn = (far - near); result.m0 = (near*2.0f)/rl; result.m1 = 0.0f; result.m2 = 0.0f; result.m3 = 0.0f; result.m4 = 0.0f; result.m5 = (near*2.0f)/tb; result.m6 = 0.0f; result.m7 = 0.0f; result.m8 = (right + left)/rl; result.m9 = (top + bottom)/tb; result.m10 = -(far + near)/fn; result.m11 = -1.0f; result.m12 = 0.0f; result.m13 = 0.0f; result.m14 = -(far*near*2.0f)/fn; result.m15 = 0.0f; return result; } // Returns perspective projection matrix RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far) { double top = near*tan(fovy*PI/360.0); double right = top*aspect; return MatrixFrustum(-right, right, -top, top, near, far); } // Returns orthographic projection matrix RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far) { Matrix result; float rl = (right - left); float tb = (top - bottom); float fn = (far - near); result.m0 = 2.0f/rl; result.m1 = 0.0f; result.m2 = 0.0f; result.m3 = 0.0f; result.m4 = 0.0f; result.m5 = 2.0f/tb; result.m6 = 0.0f; result.m7 = 0.0f; result.m8 = 0.0f; result.m9 = 0.0f; result.m10 = -2.0f/fn; result.m11 = 0.0f; result.m12 = -(left + right)/rl; result.m13 = -(top + bottom)/tb; result.m14 = -(far + near)/fn; result.m15 = 1.0f; return result; } // Returns camera look-at matrix (view matrix) RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) { Matrix result; Vector3 z = VectorSubtract(eye, target); VectorNormalize(&z); Vector3 x = VectorCrossProduct(up, z); VectorNormalize(&x); Vector3 y = VectorCrossProduct(z, x); VectorNormalize(&y); result.m0 = x.x; result.m1 = x.y; result.m2 = x.z; result.m3 = -((x.x*eye.x) + (x.y*eye.y) + (x.z*eye.z)); result.m4 = y.x; result.m5 = y.y; result.m6 = y.z; result.m7 = -((y.x*eye.x) + (y.y*eye.y) + (y.z*eye.z)); result.m8 = z.x; result.m9 = z.y; result.m10 = z.z; result.m11 = -((z.x*eye.x) + (z.y*eye.y) + (z.z*eye.z)); result.m12 = 0.0f; result.m13 = 0.0f; result.m14 = 0.0f; result.m15 = 1.0f; return result; } //---------------------------------------------------------------------------------- // Module Functions Definition - Quaternion math //---------------------------------------------------------------------------------- // Computes the length of a quaternion RMDEF float QuaternionLength(Quaternion quat) { return sqrt(quat.x*quat.x + quat.y*quat.y + quat.z*quat.z + quat.w*quat.w); } // Normalize provided quaternion RMDEF void QuaternionNormalize(Quaternion *q) { float length, ilength; length = QuaternionLength(*q); if (length == 0.0f) length = 1.0f; ilength = 1.0f/length; q->x *= ilength; q->y *= ilength; q->z *= ilength; q->w *= ilength; } // Invert provided quaternion RMDEF void QuaternionInvert(Quaternion *quat) { float length = QuaternionLength(*quat); float lengthSq = length*length; if (lengthSq != 0.0) { float i = 1.0f/lengthSq; quat->x *= -i; quat->y *= -i; quat->z *= -i; quat->w *= i; } } // Calculate two quaternion multiplication RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) { Quaternion result; float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w; float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w; result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby; result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz; result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx; result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz; return result; } // Calculates spherical linear interpolation between two quaternions RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) { Quaternion result; float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w; if (fabs(cosHalfTheta) >= 1.0f) result = q1; else { float halfTheta = acos(cosHalfTheta); float sinHalfTheta = sqrt(1.0f - cosHalfTheta*cosHalfTheta); if (fabs(sinHalfTheta) < 0.001f) { result.x = (q1.x*0.5f + q2.x*0.5f); result.y = (q1.y*0.5f + q2.y*0.5f); result.z = (q1.z*0.5f + q2.z*0.5f); result.w = (q1.w*0.5f + q2.w*0.5f); } else { float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta; float ratioB = sinf(amount*halfTheta)/sinHalfTheta; result.x = (q1.x*ratioA + q2.x*ratioB); result.y = (q1.y*ratioA + q2.y*ratioB); result.z = (q1.z*ratioA + q2.z*ratioB); result.w = (q1.w*ratioA + q2.w*ratioB); } } return result; } // Returns a quaternion for a given rotation matrix RMDEF Quaternion QuaternionFromMatrix(Matrix matrix) { Quaternion result; float trace = MatrixTrace(matrix); if (trace > 0.0f) { float s = (float)sqrt(trace + 1)*2.0f; float invS = 1.0f/s; result.w = s*0.25f; result.x = (matrix.m6 - matrix.m9)*invS; result.y = (matrix.m8 - matrix.m2)*invS; result.z = (matrix.m1 - matrix.m4)*invS; } else { float m00 = matrix.m0, m11 = matrix.m5, m22 = matrix.m10; if (m00 > m11 && m00 > m22) { float s = (float)sqrt(1.0f + m00 - m11 - m22)*2.0f; float invS = 1.0f/s; result.w = (matrix.m6 - matrix.m9)*invS; result.x = s*0.25f; result.y = (matrix.m4 + matrix.m1)*invS; result.z = (matrix.m8 + matrix.m2)*invS; } else if (m11 > m22) { float s = (float)sqrt(1.0f + m11 - m00 - m22)*2.0f; float invS = 1.0f/s; result.w = (matrix.m8 - matrix.m2)*invS; result.x = (matrix.m4 + matrix.m1)*invS; result.y = s*0.25f; result.z = (matrix.m9 + matrix.m6)*invS; } else { float s = (float)sqrt(1.0f + m22 - m00 - m11)*2.0f; float invS = 1.0f/s; result.w = (matrix.m1 - matrix.m4)*invS; result.x = (matrix.m8 + matrix.m2)*invS; result.y = (matrix.m9 + matrix.m6)*invS; result.z = s*0.25f; } } return result; } // Returns a matrix for a given quaternion RMDEF Matrix QuaternionToMatrix(Quaternion q) { Matrix result; float x = q.x, y = q.y, z = q.z, w = q.w; float x2 = x + x; float y2 = y + y; float z2 = z + z; float xx = x*x2; float xy = x*y2; float xz = x*z2; float yy = y*y2; float yz = y*z2; float zz = z*z2; float wx = w*x2; float wy = w*y2; float wz = w*z2; result.m0 = 1.0f - (yy + zz); result.m1 = xy - wz; result.m2 = xz + wy; result.m3 = 0.0f; result.m4 = xy + wz; result.m5 = 1.0f - (xx + zz); result.m6 = yz - wx; result.m7 = 0.0f; result.m8 = xz - wy; result.m9 = yz + wx; result.m10 = 1.0f - (xx + yy); result.m11 = 0.0f; result.m12 = 0.0f; result.m13 = 0.0f; result.m14 = 0.0f; result.m15 = 1.0f; return result; } // Returns rotation quaternion for an angle and axis // NOTE: angle must be provided in radians RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle) { Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f }; if (VectorLength(axis) != 0.0f) angle *= 0.5f; VectorNormalize(&axis); float sinres = sinf(angle); float cosres = cosf(angle); result.x = axis.x*sinres; result.y = axis.y*sinres; result.z = axis.z*sinres; result.w = cosres; QuaternionNormalize(&result); return result; } // Returns the rotation angle and axis for a given quaternion RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle) { if (fabs(q.w) > 1.0f) QuaternionNormalize(&q); Vector3 resAxis = { 0.0f, 0.0f, 0.0f }; float resAngle = 0.0f; resAngle = 2.0f*(float)acos(q.w); float den = (float)sqrt(1.0f - q.w*q.w); if (den > 0.0001f) { resAxis.x = q.x/den; resAxis.y = q.y/den; resAxis.z = q.z/den; } else { // This occurs when the angle is zero. // Not a problem: just set an arbitrary normalized axis. resAxis.x = 1.0f; } *outAxis = resAxis; *outAngle = resAngle; } // Transform a quaternion given a transformation matrix RMDEF void QuaternionTransform(Quaternion *q, Matrix mat) { float x = q->x; float y = q->y; float z = q->z; float w = q->w; q->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12*w; q->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13*w; q->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14*w; q->w = mat.m3*x + mat.m7*y + mat.m11*z + mat.m15*w; } #endif // RAYMATH_IMPLEMENTATION