/********************************************************************************************** * * raylib.textures - Basic functions to load and draw Textures (2d) * * CONFIGURATION: * * #define SUPPORT_FILEFORMAT_BMP * #define SUPPORT_FILEFORMAT_PNG * #define SUPPORT_FILEFORMAT_TGA * #define SUPPORT_FILEFORMAT_JPG * #define SUPPORT_FILEFORMAT_GIF * #define SUPPORT_FILEFORMAT_PSD * #define SUPPORT_FILEFORMAT_PIC * #define SUPPORT_FILEFORMAT_HDR * #define SUPPORT_FILEFORMAT_DDS * #define SUPPORT_FILEFORMAT_PKM * #define SUPPORT_FILEFORMAT_KTX * #define SUPPORT_FILEFORMAT_PVR * #define SUPPORT_FILEFORMAT_ASTC * Select desired fileformats to be supported for image data loading. Some of those formats are * supported by default, to remove support, just comment unrequired #define in this module * * #define SUPPORT_IMAGE_EXPORT * Support image export in multiple file formats * * #define SUPPORT_IMAGE_MANIPULATION * Support multiple image editing functions to scale, adjust colors, flip, draw on images, crop... * If not defined only three image editing functions supported: ImageFormat(), ImageAlphaMask(), ImageToPOT() * * #define SUPPORT_IMAGE_GENERATION * Support procedural image generation functionality (gradient, spot, perlin-noise, cellular) * * DEPENDENCIES: * stb_image - Multiple image formats loading (JPEG, PNG, BMP, TGA, PSD, GIF, PIC) * NOTE: stb_image has been slightly modified to support Android platform. * stb_image_resize - Multiple image resize algorythms * * * LICENSE: zlib/libpng * * Copyright (c) 2014-2018 Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #include "raylib.h" // Declares module functions // Check if config flags have been externally provided on compilation line #if !defined(EXTERNAL_CONFIG_FLAGS) #include "config.h" // Defines module configuration flags #endif #include // Required for: malloc(), free() #include // Required for: strlen() #include // Required for: FILE, fopen(), fclose(), fread() #include "utils.h" // Required for: fopen() Android mapping #include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 3.3 or ES2 // Required for: rlLoadTexture() rlDeleteTextures(), // rlGenerateMipmaps(), some funcs for DrawTexturePro() // Support only desired texture formats on stb_image #if !defined(SUPPORT_FILEFORMAT_BMP) #define STBI_NO_BMP #endif #if !defined(SUPPORT_FILEFORMAT_PNG) #define STBI_NO_PNG #endif #if !defined(SUPPORT_FILEFORMAT_TGA) #define STBI_NO_TGA #endif #if !defined(SUPPORT_FILEFORMAT_JPG) #define STBI_NO_JPEG // Image format .jpg and .jpeg #endif #if !defined(SUPPORT_FILEFORMAT_PSD) #define STBI_NO_PSD #endif #if !defined(SUPPORT_FILEFORMAT_GIF) #define STBI_NO_GIF #endif #if !defined(SUPPORT_FILEFORMAT_PIC) #define STBI_NO_PIC #endif #if !defined(SUPPORT_FILEFORMAT_HDR) #define STBI_NO_HDR #endif // Image fileformats not supported by default #define STBI_NO_PIC #define STBI_NO_PNM // Image format .ppm and .pgm #if (defined(SUPPORT_FILEFORMAT_BMP) || \ defined(SUPPORT_FILEFORMAT_PNG) || \ defined(SUPPORT_FILEFORMAT_TGA) || \ defined(SUPPORT_FILEFORMAT_JPG) || \ defined(SUPPORT_FILEFORMAT_PSD) || \ defined(SUPPORT_FILEFORMAT_GIF) || \ defined(SUPPORT_FILEFORMAT_PIC) || \ defined(SUPPORT_FILEFORMAT_HDR)) #define STB_IMAGE_IMPLEMENTATION #include "external/stb_image.h" // Required for: stbi_load_from_file() // NOTE: Used to read image data (multiple formats support) #endif #if defined(SUPPORT_IMAGE_EXPORT) #define STB_IMAGE_WRITE_IMPLEMENTATION #include "external/stb_image_write.h" // Required for: stbi_write_*() #endif #if defined(SUPPORT_IMAGE_MANIPULATION) #define STB_IMAGE_RESIZE_IMPLEMENTATION #include "external/stb_image_resize.h" // Required for: stbir_resize_uint8() // NOTE: Used for image scaling on ImageResize() #endif #if defined(SUPPORT_IMAGE_GENERATION) #define STB_PERLIN_IMPLEMENTATION #include "external/stb_perlin.h" // Required for: stb_perlin_fbm_noise3 #endif //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- // Nop... //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- // ... //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- // It's lonely here... //---------------------------------------------------------------------------------- // Other Modules Functions Declaration (required by text) //---------------------------------------------------------------------------------- // ... //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- #if defined(SUPPORT_FILEFORMAT_DDS) static Image LoadDDS(const char *fileName); // Load DDS file #endif #if defined(SUPPORT_FILEFORMAT_PKM) static Image LoadPKM(const char *fileName); // Load PKM file #endif #if defined(SUPPORT_FILEFORMAT_KTX) static Image LoadKTX(const char *fileName); // Load KTX file static int SaveKTX(Image image, const char *fileName); // Save image data as KTX file #endif #if defined(SUPPORT_FILEFORMAT_PVR) static Image LoadPVR(const char *fileName); // Load PVR file #endif #if defined(SUPPORT_FILEFORMAT_ASTC) static Image LoadASTC(const char *fileName); // Load ASTC file #endif //---------------------------------------------------------------------------------- // Module Functions Definition //---------------------------------------------------------------------------------- // Load image from file into CPU memory (RAM) Image LoadImage(const char *fileName) { Image image = { 0 }; if ((IsFileExtension(fileName, ".png")) #if defined(SUPPORT_FILEFORMAT_BMP) || (IsFileExtension(fileName, ".bmp")) #endif #if defined(SUPPORT_FILEFORMAT_TGA) || (IsFileExtension(fileName, ".tga")) #endif #if defined(SUPPORT_FILEFORMAT_JPG) || (IsFileExtension(fileName, ".jpg")) #endif #if defined(SUPPORT_FILEFORMAT_GIF) || (IsFileExtension(fileName, ".gif")) #endif #if defined(SUPPORT_FILEFORMAT_PIC) || (IsFileExtension(fileName, ".pic")) #endif #if defined(SUPPORT_FILEFORMAT_PSD) || (IsFileExtension(fileName, ".psd")) #endif ) { int imgWidth = 0; int imgHeight = 0; int imgBpp = 0; FILE *imFile = fopen(fileName, "rb"); if (imFile != NULL) { // NOTE: Using stb_image to load images (Supports multiple image formats) image.data = stbi_load_from_file(imFile, &imgWidth, &imgHeight, &imgBpp, 0); fclose(imFile); image.width = imgWidth; image.height = imgHeight; image.mipmaps = 1; if (imgBpp == 1) image.format = UNCOMPRESSED_GRAYSCALE; else if (imgBpp == 2) image.format = UNCOMPRESSED_GRAY_ALPHA; else if (imgBpp == 3) image.format = UNCOMPRESSED_R8G8B8; else if (imgBpp == 4) image.format = UNCOMPRESSED_R8G8B8A8; } } #if defined(SUPPORT_FILEFORMAT_HDR) else if (IsFileExtension(fileName, ".hdr")) { int imgBpp = 0; FILE *imFile = fopen(fileName, "rb"); stbi_set_flip_vertically_on_load(true); // Load 32 bit per channel floats data image.data = stbi_loadf_from_file(imFile, &image.width, &image.height, &imgBpp, 0); stbi_set_flip_vertically_on_load(false); fclose(imFile); image.mipmaps = 1; if (imgBpp == 1) image.format = UNCOMPRESSED_R32; else if (imgBpp == 3) image.format = UNCOMPRESSED_R32G32B32; else if (imgBpp == 4) image.format = UNCOMPRESSED_R32G32B32A32; else { TraceLog(LOG_WARNING, "[%s] Image fileformat not supported", fileName); UnloadImage(image); } } #endif #if defined(SUPPORT_FILEFORMAT_DDS) else if (IsFileExtension(fileName, ".dds")) image = LoadDDS(fileName); #endif #if defined(SUPPORT_FILEFORMAT_PKM) else if (IsFileExtension(fileName, ".pkm")) image = LoadPKM(fileName); #endif #if defined(SUPPORT_FILEFORMAT_KTX) else if (IsFileExtension(fileName, ".ktx")) image = LoadKTX(fileName); #endif #if defined(SUPPORT_FILEFORMAT_PVR) else if (IsFileExtension(fileName, ".pvr")) image = LoadPVR(fileName); #endif #if defined(SUPPORT_FILEFORMAT_ASTC) else if (IsFileExtension(fileName, ".astc")) image = LoadASTC(fileName); #endif else TraceLog(LOG_WARNING, "[%s] Image fileformat not supported", fileName); if (image.data != NULL) TraceLog(LOG_INFO, "[%s] Image loaded successfully (%ix%i)", fileName, image.width, image.height); else TraceLog(LOG_WARNING, "[%s] Image could not be loaded", fileName); return image; } // Load image from Color array data (RGBA - 32bit) // NOTE: Creates a copy of pixels data array Image LoadImageEx(Color *pixels, int width, int height) { Image image; image.data = NULL; image.width = width; image.height = height; image.mipmaps = 1; image.format = UNCOMPRESSED_R8G8B8A8; int k = 0; image.data = (unsigned char *)malloc(image.width*image.height*4*sizeof(unsigned char)); for (int i = 0; i < image.width*image.height*4; i += 4) { ((unsigned char *)image.data)[i] = pixels[k].r; ((unsigned char *)image.data)[i + 1] = pixels[k].g; ((unsigned char *)image.data)[i + 2] = pixels[k].b; ((unsigned char *)image.data)[i + 3] = pixels[k].a; k++; } return image; } // Load image from raw data with parameters // NOTE: This functions makes a copy of provided data Image LoadImagePro(void *data, int width, int height, int format) { Image srcImage = { 0 }; srcImage.data = data; srcImage.width = width; srcImage.height = height; srcImage.mipmaps = 1; srcImage.format = format; Image dstImage = ImageCopy(srcImage); return dstImage; } // Load an image from RAW file data Image LoadImageRaw(const char *fileName, int width, int height, int format, int headerSize) { Image image = { 0 }; FILE *rawFile = fopen(fileName, "rb"); if (rawFile == NULL) { TraceLog(LOG_WARNING, "[%s] RAW image file could not be opened", fileName); } else { if (headerSize > 0) fseek(rawFile, headerSize, SEEK_SET); unsigned int size = GetPixelDataSize(width, height, format); image.data = malloc(size); // Allocate required memory in bytes // NOTE: fread() returns num read elements instead of bytes, // to get bytes we need to read (1 byte size, elements) instead of (x byte size, 1 element) int bytes = fread(image.data, 1, size, rawFile); // Check if data has been read successfully if (bytes < size) { TraceLog(LOG_WARNING, "[%s] RAW image data can not be read, wrong requested format or size", fileName); if (image.data != NULL) free(image.data); } else { image.width = width; image.height = height; image.mipmaps = 1; image.format = format; } fclose(rawFile); } return image; } // Load texture from file into GPU memory (VRAM) Texture2D LoadTexture(const char *fileName) { Texture2D texture = { 0 }; Image image = LoadImage(fileName); if (image.data != NULL) { texture = LoadTextureFromImage(image); UnloadImage(image); } else TraceLog(LOG_WARNING, "Texture could not be created"); return texture; } // Load a texture from image data // NOTE: image is not unloaded, it must be done manually Texture2D LoadTextureFromImage(Image image) { Texture2D texture = { 0 }; texture.id = rlLoadTexture(image.data, image.width, image.height, image.format, image.mipmaps); texture.width = image.width; texture.height = image.height; texture.mipmaps = image.mipmaps; texture.format = image.format; return texture; } // Load texture for rendering (framebuffer) RenderTexture2D LoadRenderTexture(int width, int height) { RenderTexture2D target = rlLoadRenderTexture(width, height); return target; } // Unload image from CPU memory (RAM) void UnloadImage(Image image) { if (image.data != NULL) free(image.data); // NOTE: It becomes anoying every time a texture is loaded //TraceLog(LOG_INFO, "Unloaded image data"); } // Unload texture from GPU memory (VRAM) void UnloadTexture(Texture2D texture) { if (texture.id > 0) { rlDeleteTextures(texture.id); TraceLog(LOG_INFO, "[TEX ID %i] Unloaded texture data from VRAM (GPU)", texture.id); } } // Unload render texture from GPU memory (VRAM) void UnloadRenderTexture(RenderTexture2D target) { if (target.id > 0) rlDeleteRenderTextures(target); } // Get pixel data from image in the form of Color struct array Color *GetImageData(Image image) { Color *pixels = (Color *)malloc(image.width*image.height*sizeof(Color)); if (image.format >= COMPRESSED_DXT1_RGB) TraceLog(LOG_WARNING, "Pixel data retrieval not supported for compressed image formats"); else { if ((image.format == UNCOMPRESSED_R32) || (image.format == UNCOMPRESSED_R32G32B32) || (image.format == UNCOMPRESSED_R32G32B32A32)) TraceLog(LOG_WARNING, "32bit pixel format converted to 8bit per channel"); for (int i = 0, k = 0; i < image.width*image.height; i++) { switch (image.format) { case UNCOMPRESSED_GRAYSCALE: { pixels[i].r = ((unsigned char *)image.data)[i]; pixels[i].g = ((unsigned char *)image.data)[i]; pixels[i].b = ((unsigned char *)image.data)[i]; pixels[i].a = 255; } break; case UNCOMPRESSED_GRAY_ALPHA: { pixels[i].r = ((unsigned char *)image.data)[k]; pixels[i].g = ((unsigned char *)image.data)[k]; pixels[i].b = ((unsigned char *)image.data)[k]; pixels[i].a = ((unsigned char *)image.data)[k + 1]; k += 2; } break; case UNCOMPRESSED_R5G5B5A1: { unsigned short pixel = ((unsigned short *)image.data)[i]; pixels[i].r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31)); pixels[i].g = (unsigned char)((float)((pixel & 0b0000011111000000) >> 6)*(255/31)); pixels[i].b = (unsigned char)((float)((pixel & 0b0000000000111110) >> 1)*(255/31)); pixels[i].a = (unsigned char)((pixel & 0b0000000000000001)*255); } break; case UNCOMPRESSED_R5G6B5: { unsigned short pixel = ((unsigned short *)image.data)[i]; pixels[i].r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31)); pixels[i].g = (unsigned char)((float)((pixel & 0b0000011111100000) >> 5)*(255/63)); pixels[i].b = (unsigned char)((float)(pixel & 0b0000000000011111)*(255/31)); pixels[i].a = 255; } break; case UNCOMPRESSED_R4G4B4A4: { unsigned short pixel = ((unsigned short *)image.data)[i]; pixels[i].r = (unsigned char)((float)((pixel & 0b1111000000000000) >> 12)*(255/15)); pixels[i].g = (unsigned char)((float)((pixel & 0b0000111100000000) >> 8)*(255/15)); pixels[i].b = (unsigned char)((float)((pixel & 0b0000000011110000) >> 4)*(255/15)); pixels[i].a = (unsigned char)((float)(pixel & 0b0000000000001111)*(255/15)); } break; case UNCOMPRESSED_R8G8B8A8: { pixels[i].r = ((unsigned char *)image.data)[k]; pixels[i].g = ((unsigned char *)image.data)[k + 1]; pixels[i].b = ((unsigned char *)image.data)[k + 2]; pixels[i].a = ((unsigned char *)image.data)[k + 3]; k += 4; } break; case UNCOMPRESSED_R8G8B8: { pixels[i].r = (unsigned char)((unsigned char *)image.data)[k]; pixels[i].g = (unsigned char)((unsigned char *)image.data)[k + 1]; pixels[i].b = (unsigned char)((unsigned char *)image.data)[k + 2]; pixels[i].a = 255; k += 3; } break; case UNCOMPRESSED_R32: { pixels[i].r = (unsigned char)(((float *)image.data)[k]*255.0f); pixels[i].g = 0; pixels[i].b = 0; pixels[i].a = 255; } break; case UNCOMPRESSED_R32G32B32: { pixels[i].r = (unsigned char)(((float *)image.data)[k]*255.0f); pixels[i].g = (unsigned char)(((float *)image.data)[k + 1]*255.0f); pixels[i].b = (unsigned char)(((float *)image.data)[k + 2]*255.0f); pixels[i].a = 255; k += 3; } case UNCOMPRESSED_R32G32B32A32: { pixels[i].r = (unsigned char)(((float *)image.data)[k]*255.0f); pixels[i].g = (unsigned char)(((float *)image.data)[k]*255.0f); pixels[i].b = (unsigned char)(((float *)image.data)[k]*255.0f); pixels[i].a = (unsigned char)(((float *)image.data)[k]*255.0f); k += 4; } default: break; } } } return pixels; } // Get pixel data from image as Vector4 array (float normalized) Vector4 *GetImageDataNormalized(Image image) { Vector4 *pixels = (Vector4 *)malloc(image.width*image.height*sizeof(Vector4)); if (image.format >= COMPRESSED_DXT1_RGB) TraceLog(LOG_WARNING, "Pixel data retrieval not supported for compressed image formats"); else { for (int i = 0, k = 0; i < image.width*image.height; i++) { switch (image.format) { case UNCOMPRESSED_GRAYSCALE: { pixels[i].x = (float)((unsigned char *)image.data)[i]/255.0f; pixels[i].y = (float)((unsigned char *)image.data)[i]/255.0f; pixels[i].z = (float)((unsigned char *)image.data)[i]/255.0f; pixels[i].w = 1.0f; } break; case UNCOMPRESSED_GRAY_ALPHA: { pixels[i].x = (float)((unsigned char *)image.data)[k]/255.0f; pixels[i].y = (float)((unsigned char *)image.data)[k]/255.0f; pixels[i].z = (float)((unsigned char *)image.data)[k]/255.0f; pixels[i].w = (float)((unsigned char *)image.data)[k + 1]/255.0f; k += 2; } break; case UNCOMPRESSED_R5G5B5A1: { unsigned short pixel = ((unsigned short *)image.data)[i]; pixels[i].x = (float)((pixel & 0b1111100000000000) >> 11)*(1.0f/31); pixels[i].y = (float)((pixel & 0b0000011111000000) >> 6)*(1.0f/31); pixels[i].z = (float)((pixel & 0b0000000000111110) >> 1)*(1.0f/31); pixels[i].w = ((pixel & 0b0000000000000001) == 0) ? 0.0f : 1.0f; } break; case UNCOMPRESSED_R5G6B5: { unsigned short pixel = ((unsigned short *)image.data)[i]; pixels[i].x = (float)((pixel & 0b1111100000000000) >> 11)*(1.0f/31); pixels[i].y = (float)((pixel & 0b0000011111100000) >> 5)*(1.0f/63); pixels[i].z = (float)(pixel & 0b0000000000011111)*(1.0f/31); pixels[i].w = 1.0f; } break; case UNCOMPRESSED_R4G4B4A4: { unsigned short pixel = ((unsigned short *)image.data)[i]; pixels[i].x = (float)((pixel & 0b1111000000000000) >> 12)*(1.0f/15); pixels[i].y = (float)((pixel & 0b0000111100000000) >> 8)*(1.0f/15); pixels[i].z = (float)((pixel & 0b0000000011110000) >> 4)*(1.0f/15); pixels[i].w = (float)(pixel & 0b0000000000001111)*(1.0f/15); } break; case UNCOMPRESSED_R8G8B8A8: { pixels[i].x = (float)((unsigned char *)image.data)[k]/255.0f; pixels[i].y = (float)((unsigned char *)image.data)[k + 1]/255.0f; pixels[i].z = (float)((unsigned char *)image.data)[k + 2]/255.0f; pixels[i].w = (float)((unsigned char *)image.data)[k + 3]/255.0f; k += 4; } break; case UNCOMPRESSED_R8G8B8: { pixels[i].x = (float)((unsigned char *)image.data)[k]/255.0f; pixels[i].y = (float)((unsigned char *)image.data)[k + 1]/255.0f; pixels[i].z = (float)((unsigned char *)image.data)[k + 2]/255.0f; pixels[i].w = 1.0f; k += 3; } break; case UNCOMPRESSED_R32: { pixels[i].x = ((float *)image.data)[k]; pixels[i].y = 0.0f; pixels[i].z = 0.0f; pixels[i].w = 1.0f; } break; case UNCOMPRESSED_R32G32B32: { pixels[i].x = ((float *)image.data)[k]; pixels[i].y = ((float *)image.data)[k + 1]; pixels[i].z = ((float *)image.data)[k + 2]; pixels[i].w = 1.0f; k += 3; } case UNCOMPRESSED_R32G32B32A32: { pixels[i].x = ((float *)image.data)[k]; pixels[i].y = ((float *)image.data)[k + 1]; pixels[i].z = ((float *)image.data)[k + 2]; pixels[i].w = ((float *)image.data)[k + 3]; k += 4; } default: break; } } } return pixels; } // Get pixel data size in bytes (image or texture) // NOTE: Size depends on pixel format int GetPixelDataSize(int width, int height, int format) { int dataSize = 0; // Size in bytes int bpp = 0; // Bits per pixel switch (format) { case UNCOMPRESSED_GRAYSCALE: bpp = 8; break; case UNCOMPRESSED_GRAY_ALPHA: case UNCOMPRESSED_R5G6B5: case UNCOMPRESSED_R5G5B5A1: case UNCOMPRESSED_R4G4B4A4: bpp = 16; break; case UNCOMPRESSED_R8G8B8A8: bpp = 32; break; case UNCOMPRESSED_R8G8B8: bpp = 24; break; case UNCOMPRESSED_R32: bpp = 32; break; case UNCOMPRESSED_R32G32B32: bpp = 32*3; break; case UNCOMPRESSED_R32G32B32A32: bpp = 32*4; break; case COMPRESSED_DXT1_RGB: case COMPRESSED_DXT1_RGBA: case COMPRESSED_ETC1_RGB: case COMPRESSED_ETC2_RGB: case COMPRESSED_PVRT_RGB: case COMPRESSED_PVRT_RGBA: bpp = 4; break; case COMPRESSED_DXT3_RGBA: case COMPRESSED_DXT5_RGBA: case COMPRESSED_ETC2_EAC_RGBA: case COMPRESSED_ASTC_4x4_RGBA: bpp = 8; break; case COMPRESSED_ASTC_8x8_RGBA: bpp = 2; break; default: break; } dataSize = width*height*bpp/8; // Total data size in bytes return dataSize; } // Get pixel data from GPU texture and return an Image // NOTE: Compressed texture formats not supported Image GetTextureData(Texture2D texture) { Image image = { 0 }; if (texture.format < 8) { image.data = rlReadTexturePixels(texture); if (image.data != NULL) { image.width = texture.width; image.height = texture.height; image.format = texture.format; image.mipmaps = 1; // NOTE: Data retrieved on OpenGL ES 2.0 should be RGBA // coming from FBO color buffer, but it seems original // texture format is retrieved on RPI... weird... //image.format = UNCOMPRESSED_R8G8B8A8; TraceLog(LOG_INFO, "Texture pixel data obtained successfully"); } else TraceLog(LOG_WARNING, "Texture pixel data could not be obtained"); } else TraceLog(LOG_WARNING, "Compressed texture data could not be obtained"); return image; } // Update GPU texture with new data // NOTE: pixels data must match texture.format void UpdateTexture(Texture2D texture, const void *pixels) { rlUpdateTexture(texture.id, texture.width, texture.height, texture.format, pixels); } // Export image data to file // NOTE: File format depends on fileName extension void ExportImage(Image image, const char *fileName) { int success = 0; // NOTE: Getting Color array as RGBA unsigned char values unsigned char *imgData = (unsigned char *)GetImageData(image); if (IsFileExtension(fileName, ".png")) success = stbi_write_png(fileName, image.width, image.height, 4, imgData, image.width*4); else if (IsFileExtension(fileName, ".bmp")) success = stbi_write_bmp(fileName, image.width, image.height, 4, imgData); else if (IsFileExtension(fileName, ".tga")) success = stbi_write_tga(fileName, image.width, image.height, 4, imgData); else if (IsFileExtension(fileName, ".jpg")) success = stbi_write_jpg(fileName, image.width, image.height, 4, imgData, 80); // JPG quality: between 1 and 100 else if (IsFileExtension(fileName, ".ktx")) success = SaveKTX(image, fileName); else if (IsFileExtension(fileName, ".raw")) { // Export raw pixel data (without header) // NOTE: It's up to the user to track image parameters FILE *rawFile = fopen(fileName, "wb"); success = fwrite(image.data, GetPixelDataSize(image.width, image.height, image.format), 1, rawFile); fclose(rawFile); } if (success != 0) TraceLog(LOG_INFO, "Image exported successfully: %s", fileName); else TraceLog(LOG_WARNING, "Image could not be exported."); free(imgData); } // Export image as code file (.h) defining an array of bytes void ExportImageAsCode(Image image, const char *fileName) { #define BYTES_TEXT_PER_LINE 20 char varFileName[256] = { 0 }; int dataSize = GetPixelDataSize(image.width, image.height, image.format); FILE *txtFile = fopen(fileName, "wt"); fprintf(txtFile, "\n//////////////////////////////////////////////////////////////////////////////////////\n"); fprintf(txtFile, "// //\n"); fprintf(txtFile, "// ImageAsCode exporter v1.0 - Image pixel data exported as an array of bytes //\n"); fprintf(txtFile, "// //\n"); fprintf(txtFile, "// more info and bugs-report: github.com/raysan5/raylib //\n"); fprintf(txtFile, "// feedback and support: ray[at]raylib.com //\n"); fprintf(txtFile, "// //\n"); fprintf(txtFile, "// Copyright (c) 2018 Ramon Santamaria (@raysan5) //\n"); fprintf(txtFile, "// //\n"); fprintf(txtFile, "////////////////////////////////////////////////////////////////////////////////////////\n\n"); // Get file name from path and convert variable name to uppercase strcpy(varFileName, GetFileNameWithoutExt(fileName)); for (int i = 0; varFileName[i] != '\0'; i++) if (varFileName[i] >= 'a' && varFileName[i] <= 'z') { varFileName[i] = varFileName[i] - 32; } // Add image information fprintf(txtFile, "// Image data information\n"); fprintf(txtFile, "#define %s_WIDTH %i\n", varFileName, image.width); fprintf(txtFile, "#define %s_HEIGHT %i\n", varFileName, image.height); fprintf(txtFile, "#define %s_FORMAT %i // raylib internal pixel format\n\n", varFileName, image.format); fprintf(txtFile, "static unsigned char %s_DATA[%i] = { ", varFileName, dataSize); for (int i = 0; i < dataSize - 1; i++) fprintf(txtFile, ((i%BYTES_TEXT_PER_LINE == 0) ? "0x%x,\n" : "0x%x, "), ((unsigned char *)image.data)[i]); fprintf(txtFile, "0x%x };\n", ((unsigned char *)image.data)[dataSize - 1]); fclose(txtFile); } // Copy an image to a new image Image ImageCopy(Image image) { Image newImage = { 0 }; int width = image.width; int height = image.height; int size = 0; for (int i = 0; i < image.mipmaps; i++) { size += GetPixelDataSize(width, height, image.format); width /= 2; height /= 2; // Security check for NPOT textures if (width < 1) width = 1; if (height < 1) height = 1; } newImage.data = malloc(size); if (newImage.data != NULL) { // NOTE: Size must be provided in bytes memcpy(newImage.data, image.data, size); newImage.width = image.width; newImage.height = image.height; newImage.mipmaps = image.mipmaps; newImage.format = image.format; } return newImage; } // Convert image to POT (power-of-two) // NOTE: It could be useful on OpenGL ES 2.0 (RPI, HTML5) void ImageToPOT(Image *image, Color fillColor) { Color *pixels = GetImageData(*image); // Get pixels data // Calculate next power-of-two values // NOTE: Just add the required amount of pixels at the right and bottom sides of image... int potWidth = (int)powf(2, ceilf(logf((float)image->width)/logf(2))); int potHeight = (int)powf(2, ceilf(logf((float)image->height)/logf(2))); // Check if POT texture generation is required (if texture is not already POT) if ((potWidth != image->width) || (potHeight != image->height)) { Color *pixelsPOT = NULL; // Generate POT array from NPOT data pixelsPOT = (Color *)malloc(potWidth*potHeight*sizeof(Color)); for (int j = 0; j < potHeight; j++) { for (int i = 0; i < potWidth; i++) { if ((j < image->height) && (i < image->width)) pixelsPOT[j*potWidth + i] = pixels[j*image->width + i]; else pixelsPOT[j*potWidth + i] = fillColor; } } TraceLog(LOG_WARNING, "Image converted to POT: (%ix%i) -> (%ix%i)", image->width, image->height, potWidth, potHeight); free(pixels); // Free pixels data free(image->data); // Free old image data int format = image->format; // Store image data format to reconvert later // NOTE: Image size changes, new width and height *image = LoadImageEx(pixelsPOT, potWidth, potHeight); free(pixelsPOT); // Free POT pixels data ImageFormat(image, format); // Reconvert image to previous format } } // Convert image data to desired format void ImageFormat(Image *image, int newFormat) { if ((newFormat != 0) && (image->format != newFormat)) { if ((image->format < COMPRESSED_DXT1_RGB) && (newFormat < COMPRESSED_DXT1_RGB)) { Vector4 *pixels = GetImageDataNormalized(*image); // Supports 8 to 32 bit per channel free(image->data); // WARNING! We loose mipmaps data --> Regenerated at the end... image->data = NULL; image->format = newFormat; int k = 0; switch (image->format) { case UNCOMPRESSED_GRAYSCALE: { image->data = (unsigned char *)malloc(image->width*image->height*sizeof(unsigned char)); for (int i = 0; i < image->width*image->height; i++) { ((unsigned char *)image->data)[i] = (unsigned char)((pixels[i].x*0.299f + pixels[i].y*0.587f + pixels[i].z*0.114f)*255.0f); } } break; case UNCOMPRESSED_GRAY_ALPHA: { image->data = (unsigned char *)malloc(image->width*image->height*2*sizeof(unsigned char)); for (int i = 0; i < image->width*image->height*2; i += 2, k++) { ((unsigned char *)image->data)[i] = (unsigned char)((pixels[k].x*0.299f + (float)pixels[k].y*0.587f + (float)pixels[k].z*0.114f)*255.0f); ((unsigned char *)image->data)[i + 1] = (unsigned char)(pixels[k].w*255.0f); } } break; case UNCOMPRESSED_R5G6B5: { image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short)); unsigned char r = 0; unsigned char g = 0; unsigned char b = 0; for (int i = 0; i < image->width*image->height; i++) { r = (unsigned char)(round(pixels[i].x*31.0f)); g = (unsigned char)(round(pixels[i].y*63.0f)); b = (unsigned char)(round(pixels[i].z*31.0f)); ((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 5 | (unsigned short)b; } } break; case UNCOMPRESSED_R8G8B8: { image->data = (unsigned char *)malloc(image->width*image->height*3*sizeof(unsigned char)); for (int i = 0, k = 0; i < image->width*image->height*3; i += 3, k++) { ((unsigned char *)image->data)[i] = (unsigned char)(pixels[k].x*255.0f); ((unsigned char *)image->data)[i + 1] = (unsigned char)(pixels[k].y*255.0f); ((unsigned char *)image->data)[i + 2] = (unsigned char)(pixels[k].z*255.0f); } } break; case UNCOMPRESSED_R5G5B5A1: { #define ALPHA_THRESHOLD 50 image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short)); unsigned char r = 0; unsigned char g = 0; unsigned char b = 0; unsigned char a = 0; for (int i = 0; i < image->width*image->height; i++) { r = (unsigned char)(round(pixels[i].x*31.0f)); g = (unsigned char)(round(pixels[i].y*31.0f)); b = (unsigned char)(round(pixels[i].z*31.0f)); a = (pixels[i].w > ((float)ALPHA_THRESHOLD/255.0f)) ? 1 : 0; ((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a; } } break; case UNCOMPRESSED_R4G4B4A4: { image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short)); unsigned char r = 0; unsigned char g = 0; unsigned char b = 0; unsigned char a = 0; for (int i = 0; i < image->width*image->height; i++) { r = (unsigned char)(round(pixels[i].x*15.0f)); g = (unsigned char)(round(pixels[i].y*15.0f)); b = (unsigned char)(round(pixels[i].z*15.0f)); a = (unsigned char)(round(pixels[i].w*15.0f)); ((unsigned short *)image->data)[i] = (unsigned short)r << 12 | (unsigned short)g << 8 | (unsigned short)b << 4 | (unsigned short)a; } } break; case UNCOMPRESSED_R8G8B8A8: { image->data = (unsigned char *)malloc(image->width*image->height*4*sizeof(unsigned char)); for (int i = 0, k = 0; i < image->width*image->height*4; i += 4, k++) { ((unsigned char *)image->data)[i] = (unsigned char)(pixels[k].x*255.0f); ((unsigned char *)image->data)[i + 1] = (unsigned char)(pixels[k].y*255.0f); ((unsigned char *)image->data)[i + 2] = (unsigned char)(pixels[k].z*255.0f); ((unsigned char *)image->data)[i + 3] = (unsigned char)(pixels[k].w*255.0f); } } break; case UNCOMPRESSED_R32: { // WARNING: Image is converted to GRAYSCALE eqeuivalent 32bit image->data = (float *)malloc(image->width*image->height*sizeof(float)); for (int i = 0; i < image->width*image->height; i++) { ((float *)image->data)[i] = (float)(pixels[i].x*0.299f + pixels[i].y*0.587f + pixels[i].z*0.114f); } } break; case UNCOMPRESSED_R32G32B32: { image->data = (float *)malloc(image->width*image->height*3*sizeof(float)); for (int i = 0, k = 0; i < image->width*image->height*3; i += 3, k++) { ((float *)image->data)[i] = pixels[k].x; ((float *)image->data)[i + 1] = pixels[k].y; ((float *)image->data)[i + 2] = pixels[k].z; } } break; case UNCOMPRESSED_R32G32B32A32: { image->data = (float *)malloc(image->width*image->height*4*sizeof(float)); for (int i = 0, k = 0; i < image->width*image->height*4; i += 4, k++) { ((float *)image->data)[i] = pixels[k].x; ((float *)image->data)[i + 1] = pixels[k].y; ((float *)image->data)[i + 2] = pixels[k].z; ((float *)image->data)[i + 3] = pixels[k].w; } } break; default: break; } free(pixels); pixels = NULL; // In case original image had mipmaps, generate mipmaps for formated image // NOTE: Original mipmaps are replaced by new ones, if custom mipmaps were used, they are lost if (image->mipmaps > 1) { image->mipmaps = 1; if (image->data != NULL) ImageMipmaps(image); } } else TraceLog(LOG_WARNING, "Image data format is compressed, can not be converted"); } } // Apply alpha mask to image // NOTE 1: Returned image is GRAY_ALPHA (16bit) or RGBA (32bit) // NOTE 2: alphaMask should be same size as image void ImageAlphaMask(Image *image, Image alphaMask) { if ((image->width != alphaMask.width) || (image->height != alphaMask.height)) { TraceLog(LOG_WARNING, "Alpha mask must be same size as image"); } else if (image->format >= COMPRESSED_DXT1_RGB) { TraceLog(LOG_WARNING, "Alpha mask can not be applied to compressed data formats"); } else { // Force mask to be Grayscale Image mask = ImageCopy(alphaMask); if (mask.format != UNCOMPRESSED_GRAYSCALE) ImageFormat(&mask, UNCOMPRESSED_GRAYSCALE); // In case image is only grayscale, we just add alpha channel if (image->format == UNCOMPRESSED_GRAYSCALE) { ImageFormat(image, UNCOMPRESSED_GRAY_ALPHA); // Apply alpha mask to alpha channel for (int i = 0, k = 1; (i < mask.width*mask.height) || (i < image->width*image->height); i++, k += 2) { ((unsigned char *)image->data)[k] = ((unsigned char *)mask.data)[i]; } } else { // Convert image to RGBA if (image->format != UNCOMPRESSED_R8G8B8A8) ImageFormat(image, UNCOMPRESSED_R8G8B8A8); // Apply alpha mask to alpha channel for (int i = 0, k = 3; (i < mask.width*mask.height) || (i < image->width*image->height); i++, k += 4) { ((unsigned char *)image->data)[k] = ((unsigned char *)mask.data)[i]; } } UnloadImage(mask); } } // Clear alpha channel to desired color // NOTE: Threshold defines the alpha limit, 0.0f to 1.0f void ImageAlphaClear(Image *image, Color color, float threshold) { Color *pixels = GetImageData(*image); for (int i = 0; i < image->width*image->height; i++) if (pixels[i].a <= (unsigned char)(threshold*255.0f)) pixels[i] = color; UnloadImage(*image); int prevFormat = image->format; *image = LoadImageEx(pixels, image->width, image->height); ImageFormat(image, prevFormat); } // Crop image depending on alpha value void ImageAlphaCrop(Image *image, float threshold) { Color *pixels = GetImageData(*image); int xMin = 65536; // Define a big enough number int xMax = 0; int yMin = 65536; int yMax = 0; for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { if (pixels[y*image->width + x].a > (unsigned char)(threshold*255.0f)) { if (x < xMin) xMin = x; if (x > xMax) xMax = x; if (y < yMin) yMin = y; if (y > yMax) yMax = y; } } } Rectangle crop = { xMin, yMin, (xMax + 1) - xMin, (yMax + 1) - yMin }; free(pixels); // Check for not empty image brefore cropping if (!((xMax < xMin) || (yMax < yMin))) ImageCrop(image, crop); } // Premultiply alpha channel void ImageAlphaPremultiply(Image *image) { float alpha = 0.0f; Color *pixels = GetImageData(*image); for (int i = 0; i < image->width*image->height; i++) { alpha = (float)pixels[i].a/255.0f; pixels[i].r = (unsigned char)((float)pixels[i].r*alpha); pixels[i].g = (unsigned char)((float)pixels[i].g*alpha); pixels[i].b = (unsigned char)((float)pixels[i].b*alpha); } UnloadImage(*image); int prevFormat = image->format; *image = LoadImageEx(pixels, image->width, image->height); ImageFormat(image, prevFormat); } #if defined(SUPPORT_IMAGE_MANIPULATION) // Crop an image to area defined by a rectangle // NOTE: Security checks are performed in case rectangle goes out of bounds void ImageCrop(Image *image, Rectangle crop) { // Security checks to make sure cropping rectangle is inside margins if ((crop.x + crop.width) > image->width) { crop.width = image->width - crop.x; TraceLog(LOG_WARNING, "Crop rectangle width out of bounds, rescaled crop width: %i", crop.width); } if ((crop.y + crop.height) > image->height) { crop.height = image->height - crop.y; TraceLog(LOG_WARNING, "Crop rectangle height out of bounds, rescaled crop height: %i", crop.height); } if ((crop.x < image->width) && (crop.y < image->height)) { // Start the cropping process Color *pixels = GetImageData(*image); // Get data as Color pixels array Color *cropPixels = (Color *)malloc((int)crop.width*(int)crop.height*sizeof(Color)); for (int j = (int)crop.y; j < (int)(crop.y + crop.height); j++) { for (int i = (int)crop.x; i < (int)(crop.x + crop.width); i++) { cropPixels[(j - (int)crop.y)*(int)crop.width + (i - (int)crop.x)] = pixels[j*image->width + i]; } } free(pixels); int format = image->format; UnloadImage(*image); *image = LoadImageEx(cropPixels, (int)crop.width, (int)crop.height); free(cropPixels); // Reformat 32bit RGBA image to original format ImageFormat(image, format); } else { TraceLog(LOG_WARNING, "Image can not be cropped, crop rectangle out of bounds"); } } // Resize and image to new size // NOTE: Uses stb default scaling filters (both bicubic): // STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_CATMULLROM // STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_MITCHELL (high-quality Catmull-Rom) void ImageResize(Image *image, int newWidth, int newHeight) { // Get data as Color pixels array to work with it Color *pixels = GetImageData(*image); Color *output = (Color *)malloc(newWidth*newHeight*sizeof(Color)); // NOTE: Color data is casted to (unsigned char *), there shouldn't been any problem... stbir_resize_uint8((unsigned char *)pixels, image->width, image->height, 0, (unsigned char *)output, newWidth, newHeight, 0, 4); int format = image->format; UnloadImage(*image); *image = LoadImageEx(output, newWidth, newHeight); ImageFormat(image, format); // Reformat 32bit RGBA image to original format free(output); free(pixels); } // Resize and image to new size using Nearest-Neighbor scaling algorithm void ImageResizeNN(Image *image,int newWidth,int newHeight) { Color *pixels = GetImageData(*image); Color *output = (Color *)malloc(newWidth*newHeight*sizeof(Color)); // EDIT: added +1 to account for an early rounding problem int xRatio = (int)((image->width << 16)/newWidth) + 1; int yRatio = (int)((image->height << 16)/newHeight) + 1; int x2, y2; for (int y = 0; y < newHeight; y++) { for (int x = 0; x < newWidth; x++) { x2 = ((x*xRatio) >> 16); y2 = ((y*yRatio) >> 16); output[(y*newWidth) + x] = pixels[(y2*image->width) + x2] ; } } int format = image->format; UnloadImage(*image); *image = LoadImageEx(output, newWidth, newHeight); ImageFormat(image, format); // Reformat 32bit RGBA image to original format free(output); free(pixels); } // Resize canvas and fill with color // NOTE: Resize offset is relative to the top-left corner of the original image void ImageResizeCanvas(Image *image, int newWidth,int newHeight, int offsetX, int offsetY, Color color) { Image imTemp = GenImageColor(newWidth, newHeight, color); Rectangle srcRec = { 0.0f, 0.0f, (float)image->width, (float)image->height }; Rectangle dstRec = { (float)offsetX, (float)offsetY, (float)srcRec.width, (float)srcRec.height }; // TODO: Review different scaling situations if ((newWidth > image->width) && (newHeight > image->height)) { ImageDraw(&imTemp, *image, srcRec, dstRec); ImageFormat(&imTemp, image->format); UnloadImage(*image); *image = imTemp; } else { // TODO: ImageCrop(), define proper cropping rectangle } } // Generate all mipmap levels for a provided image // NOTE 1: Supports POT and NPOT images // NOTE 2: image.data is scaled to include mipmap levels // NOTE 3: Mipmaps format is the same as base image void ImageMipmaps(Image *image) { int mipCount = 1; // Required mipmap levels count (including base level) int mipWidth = image->width; // Base image width int mipHeight = image->height; // Base image height int mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format); // Image data size (in bytes) // Count mipmap levels required while ((mipWidth != 1) || (mipHeight != 1)) { if (mipWidth != 1) mipWidth /= 2; if (mipHeight != 1) mipHeight /= 2; // Security check for NPOT textures if (mipWidth < 1) mipWidth = 1; if (mipHeight < 1) mipHeight = 1; TraceLog(LOG_DEBUG, "Next mipmap level: %i x %i - current size %i", mipWidth, mipHeight, mipSize); mipCount++; mipSize += GetPixelDataSize(mipWidth, mipHeight, image->format); // Add mipmap size (in bytes) } TraceLog(LOG_DEBUG, "Mipmaps available: %i - Mipmaps required: %i", image->mipmaps, mipCount); TraceLog(LOG_DEBUG, "Mipmaps total size required: %i", mipSize); TraceLog(LOG_DEBUG, "Image data memory start address: 0x%x", image->data); if (image->mipmaps < mipCount) { void *temp = realloc(image->data, mipSize); if (temp != NULL) { image->data = temp; // Assign new pointer (new size) to store mipmaps data TraceLog(LOG_DEBUG, "Image data memory point reallocated: 0x%x", temp); } else TraceLog(LOG_WARNING, "Mipmaps required memory could not be allocated"); // Pointer to allocated memory point where store next mipmap level data unsigned char *nextmip = (unsigned char *)image->data + GetPixelDataSize(image->width, image->height, image->format); mipWidth = image->width/2; mipHeight = image->height/2; mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format); Image imCopy = ImageCopy(*image); for (int i = 1; i < mipCount; i++) { TraceLog(LOG_DEBUG, "Gen mipmap level: %i (%i x %i) - size: %i - offset: 0x%x", i, mipWidth, mipHeight, mipSize, nextmip); ImageResize(&imCopy, mipWidth, mipHeight); // Uses internally Mitchell cubic downscale filter memcpy(nextmip, imCopy.data, mipSize); nextmip += mipSize; image->mipmaps++; mipWidth /= 2; mipHeight /= 2; // Security check for NPOT textures if (mipWidth < 1) mipWidth = 1; if (mipHeight < 1) mipHeight = 1; mipSize = GetPixelDataSize(mipWidth, mipHeight, image->format); } UnloadImage(imCopy); } else TraceLog(LOG_WARNING, "Image mipmaps already available"); } // Dither image data to 16bpp or lower (Floyd-Steinberg dithering) // NOTE: In case selected bpp do not represent an known 16bit format, // dithered data is stored in the LSB part of the unsigned short void ImageDither(Image *image, int rBpp, int gBpp, int bBpp, int aBpp) { if (image->format >= COMPRESSED_DXT1_RGB) { TraceLog(LOG_WARNING, "Compressed data formats can not be dithered"); return; } if ((rBpp + gBpp + bBpp + aBpp) > 16) { TraceLog(LOG_WARNING, "Unsupported dithering bpps (%ibpp), only 16bpp or lower modes supported", (rBpp+gBpp+bBpp+aBpp)); } else { Color *pixels = GetImageData(*image); free(image->data); // free old image data if ((image->format != UNCOMPRESSED_R8G8B8) && (image->format != UNCOMPRESSED_R8G8B8A8)) { TraceLog(LOG_WARNING, "Image format is already 16bpp or lower, dithering could have no effect"); } // Define new image format, check if desired bpp match internal known format if ((rBpp == 5) && (gBpp == 6) && (bBpp == 5) && (aBpp == 0)) image->format = UNCOMPRESSED_R5G6B5; else if ((rBpp == 5) && (gBpp == 5) && (bBpp == 5) && (aBpp == 1)) image->format = UNCOMPRESSED_R5G5B5A1; else if ((rBpp == 4) && (gBpp == 4) && (bBpp == 4) && (aBpp == 4)) image->format = UNCOMPRESSED_R4G4B4A4; else { image->format = 0; TraceLog(LOG_WARNING, "Unsupported dithered OpenGL internal format: %ibpp (R%iG%iB%iA%i)", (rBpp+gBpp+bBpp+aBpp), rBpp, gBpp, bBpp, aBpp); } // NOTE: We will store the dithered data as unsigned short (16bpp) image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short)); Color oldPixel = WHITE; Color newPixel = WHITE; int rError, gError, bError; unsigned short rPixel, gPixel, bPixel, aPixel; // Used for 16bit pixel composition #define MIN(a,b) (((a)<(b))?(a):(b)) for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { oldPixel = pixels[y*image->width + x]; // NOTE: New pixel obtained by bits truncate, it would be better to round values (check ImageFormat()) newPixel.r = oldPixel.r >> (8 - rBpp); // R bits newPixel.g = oldPixel.g >> (8 - gBpp); // G bits newPixel.b = oldPixel.b >> (8 - bBpp); // B bits newPixel.a = oldPixel.a >> (8 - aBpp); // A bits (not used on dithering) // NOTE: Error must be computed between new and old pixel but using same number of bits! // We want to know how much color precision we have lost... rError = (int)oldPixel.r - (int)(newPixel.r << (8 - rBpp)); gError = (int)oldPixel.g - (int)(newPixel.g << (8 - gBpp)); bError = (int)oldPixel.b - (int)(newPixel.b << (8 - bBpp)); pixels[y*image->width + x] = newPixel; // NOTE: Some cases are out of the array and should be ignored if (x < (image->width - 1)) { pixels[y*image->width + x+1].r = MIN((int)pixels[y*image->width + x+1].r + (int)((float)rError*7.0f/16), 0xff); pixels[y*image->width + x+1].g = MIN((int)pixels[y*image->width + x+1].g + (int)((float)gError*7.0f/16), 0xff); pixels[y*image->width + x+1].b = MIN((int)pixels[y*image->width + x+1].b + (int)((float)bError*7.0f/16), 0xff); } if ((x > 0) && (y < (image->height - 1))) { pixels[(y+1)*image->width + x-1].r = MIN((int)pixels[(y+1)*image->width + x-1].r + (int)((float)rError*3.0f/16), 0xff); pixels[(y+1)*image->width + x-1].g = MIN((int)pixels[(y+1)*image->width + x-1].g + (int)((float)gError*3.0f/16), 0xff); pixels[(y+1)*image->width + x-1].b = MIN((int)pixels[(y+1)*image->width + x-1].b + (int)((float)bError*3.0f/16), 0xff); } if (y < (image->height - 1)) { pixels[(y+1)*image->width + x].r = MIN((int)pixels[(y+1)*image->width + x].r + (int)((float)rError*5.0f/16), 0xff); pixels[(y+1)*image->width + x].g = MIN((int)pixels[(y+1)*image->width + x].g + (int)((float)gError*5.0f/16), 0xff); pixels[(y+1)*image->width + x].b = MIN((int)pixels[(y+1)*image->width + x].b + (int)((float)bError*5.0f/16), 0xff); } if ((x < (image->width - 1)) && (y < (image->height - 1))) { pixels[(y+1)*image->width + x+1].r = MIN((int)pixels[(y+1)*image->width + x+1].r + (int)((float)rError*1.0f/16), 0xff); pixels[(y+1)*image->width + x+1].g = MIN((int)pixels[(y+1)*image->width + x+1].g + (int)((float)gError*1.0f/16), 0xff); pixels[(y+1)*image->width + x+1].b = MIN((int)pixels[(y+1)*image->width + x+1].b + (int)((float)bError*1.0f/16), 0xff); } rPixel = (unsigned short)newPixel.r; gPixel = (unsigned short)newPixel.g; bPixel = (unsigned short)newPixel.b; aPixel = (unsigned short)newPixel.a; ((unsigned short *)image->data)[y*image->width + x] = (rPixel << (gBpp + bBpp + aBpp)) | (gPixel << (bBpp + aBpp)) | (bPixel << aBpp) | aPixel; } } free(pixels); } } // Extract color palette from image to maximum size // NOTE: Memory allocated should be freed manually! Color *ImageExtractPalette(Image image, int maxPaletteSize, int *extractCount) { #define COLOR_EQUAL(col1, col2) ((col1.r == col2.r)&&(col1.g == col2.g)&&(col1.b == col2.b)&&(col1.a == col2.a)) Color *pixels = GetImageData(image); Color *palette = (Color *)malloc(maxPaletteSize*sizeof(Color)); int palCount = 0; for (int i = 0; i < maxPaletteSize; i++) palette[i] = BLANK; // Set all colors to BLANK for (int i = 0; i < image.width*image.height; i++) { if (pixels[i].a > 0) { bool colorInPalette = false; // Check if the color is already on palette for (int j = 0; j < maxPaletteSize; j++) { if (COLOR_EQUAL(pixels[i], palette[j])) { colorInPalette = true; break; } } // Store color if not on the palette if (!colorInPalette) { palette[palCount] = pixels[i]; // Add pixels[i] to palette palCount++; // We reached the limit of colors supported by palette if (palCount >= maxPaletteSize) { i = image.width*image.height; // Finish palette get printf("WARNING: Image palette is greater than %i colors!\n", maxPaletteSize); } } } } free(pixels); *extractCount = palCount; return palette; } // Draw an image (source) within an image (destination) // TODO: Feel this function could be simplified... void ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dstRec) { bool cropRequired = false; // Security checks to avoid size and rectangle issues (out of bounds) // Check that srcRec is inside src image if (srcRec.x < 0) srcRec.x = 0; if (srcRec.y < 0) srcRec.y = 0; if ((srcRec.x + srcRec.width) > src.width) { srcRec.width = src.width - srcRec.x; TraceLog(LOG_WARNING, "Source rectangle width out of bounds, rescaled width: %i", srcRec.width); } if ((srcRec.y + srcRec.height) > src.height) { srcRec.height = src.height - srcRec.y; TraceLog(LOG_WARNING, "Source rectangle height out of bounds, rescaled height: %i", srcRec.height); } Image srcCopy = ImageCopy(src); // Make a copy of source image to work with it ImageCrop(&srcCopy, srcRec); // Crop source image to desired source rectangle // Check that dstRec is inside dst image // TODO: Allow negative position within destination with cropping if (dstRec.x < 0) dstRec.x = 0; if (dstRec.y < 0) dstRec.y = 0; // Scale source image in case destination rec size is different than source rec size if ((dstRec.width != srcRec.width) || (dstRec.height != srcRec.height)) ImageResize(&srcCopy, (int)dstRec.width, (int)dstRec.height); if ((dstRec.x + dstRec.width) > dst->width) { dstRec.width = dst->width - dstRec.x; TraceLog(LOG_WARNING, "Destination rectangle width out of bounds, rescaled width: %i", dstRec.width); cropRequired = true; } if ((dstRec.y + dstRec.height) > dst->height) { dstRec.height = dst->height - dstRec.y; TraceLog(LOG_WARNING, "Destination rectangle height out of bounds, rescaled height: %i", dstRec.height); cropRequired = true; } if (cropRequired) { // Crop destination rectangle if out of bounds Rectangle crop = { 0, 0, dstRec.width, dstRec.height }; ImageCrop(&srcCopy, crop); } // Get image data as Color pixels array to work with it Color *dstPixels = GetImageData(*dst); Color *srcPixels = GetImageData(srcCopy); UnloadImage(srcCopy); // Source copy not required any more... Vector4 fsrc, fdst, fout; // float based versions of pixel data // Blit pixels, copy source image into destination // TODO: Probably out-of-bounds blitting could be considered here instead of so much cropping... for (int j = (int)dstRec.y; j < (int)(dstRec.y + dstRec.height); j++) { for (int i = (int)dstRec.x; i < (int)(dstRec.x + dstRec.width); i++) { // Alpha blending (https://en.wikipedia.org/wiki/Alpha_compositing) fdst = ColorNormalize(dstPixels[j*(int)dst->width + i]); fsrc = ColorNormalize(srcPixels[(j - (int)dstRec.y)*(int)dstRec.width + (i - (int)dstRec.x)]); fout.w = fsrc.w + fdst.w*(1.0f - fsrc.w); if (fout.w <= 0.0f) { fout.x = 0.0f; fout.y = 0.0f; fout.z = 0.0f; } else { fout.x = (fsrc.x*fsrc.w + fdst.x*fdst.w*(1 - fsrc.w))/fout.w; fout.y = (fsrc.y*fsrc.w + fdst.y*fdst.w*(1 - fsrc.w))/fout.w; fout.z = (fsrc.z*fsrc.w + fdst.z*fdst.w*(1 - fsrc.w))/fout.w; } dstPixels[j*(int)dst->width + i] = (Color){ (unsigned char)(fout.x*255.0f), (unsigned char)(fout.y*255.0f), (unsigned char)(fout.z*255.0f), (unsigned char)(fout.w*255.0f) }; // TODO: Support other blending options } } UnloadImage(*dst); // NOTE: Only dst->data is unloaded *dst = LoadImageEx(dstPixels, (int)dst->width, (int)dst->height); ImageFormat(dst, dst->format); free(srcPixels); free(dstPixels); } // Create an image from text (default font) Image ImageText(const char *text, int fontSize, Color color) { int defaultFontSize = 10; // Default Font chars height in pixel if (fontSize < defaultFontSize) fontSize = defaultFontSize; int spacing = fontSize / defaultFontSize; Image imText = ImageTextEx(GetFontDefault(), text, (float)fontSize, (float)spacing, color); return imText; } // Create an image from text (custom sprite font) Image ImageTextEx(Font font, const char *text, float fontSize, float spacing, Color tint) { int length = strlen(text); int posX = 0; int index; // Index position in sprite font unsigned char character; // Current character // TODO: ISSUE: Measured text size does not seem to be correct... issue on ImageDraw() Vector2 imSize = MeasureTextEx(font, text, (float)font.baseSize, spacing); TraceLog(LOG_DEBUG, "Text Image size: %f, %f", imSize.x, imSize.y); // NOTE: glGetTexImage() not available in OpenGL ES // TODO: This is horrible, retrieving font texture from GPU!!! // Define ImageFont struct? or include Image spritefont in Font struct? Image imFont = GetTextureData(font.texture); ImageFormat(&imFont, UNCOMPRESSED_R8G8B8A8); // Make sure image format could be properly colored! ImageColorTint(&imFont, tint); // Apply color tint to font // Create image to store text Image imText = GenImageColor((int)imSize.x, (int)imSize.y, BLANK); for (int i = 0; i < length; i++) { if ((unsigned char)text[i] == '\n') { // TODO: Support line break } else { if ((unsigned char)text[i] == 0xc2) // UTF-8 encoding identification HACK! { // Support UTF-8 encoded values from [0xc2 0x80] -> [0xc2 0xbf](¿) character = (unsigned char)text[i + 1]; index = GetGlyphIndex(font, (int)character); i++; } else if ((unsigned char)text[i] == 0xc3) // UTF-8 encoding identification HACK! { // Support UTF-8 encoded values from [0xc3 0x80](À) -> [0xc3 0xbf](ÿ) character = (unsigned char)text[i + 1]; index = GetGlyphIndex(font, (int)character + 64); i++; } else index = GetGlyphIndex(font, (unsigned char)text[i]); CharInfo letter = font.chars[index]; if ((unsigned char)text[i] != ' ') { ImageDraw(&imText, imFont, letter.rec, (Rectangle){ (float)(posX + letter.offsetX), (float)letter.offsetY, (float)letter.rec.width, (float)letter.rec.height }); } if (letter.advanceX == 0) posX += (int)(letter.rec.width + spacing); else posX += letter.advanceX + (int)spacing; } } UnloadImage(imFont); // Scale image depending on text size if (fontSize > imSize.y) { float scaleFactor = fontSize/imSize.y; TraceLog(LOG_INFO, "Image text scaled by factor: %f", scaleFactor); // Using nearest-neighbor scaling algorithm for default font if (font.texture.id == GetFontDefault().texture.id) ImageResizeNN(&imText, (int)(imSize.x*scaleFactor), (int)(imSize.y*scaleFactor)); else ImageResize(&imText, (int)(imSize.x*scaleFactor), (int)(imSize.y*scaleFactor)); } return imText; } // Draw rectangle within an image void ImageDrawRectangle(Image *dst, Rectangle rec, Color color) { Image imRec = GenImageColor((int)rec.width, (int)rec.height, color); ImageDraw(dst, imRec, (Rectangle){ 0, 0, rec.width, rec.height }, rec); UnloadImage(imRec); } // Draw rectangle lines within an image void ImageDrawRectangleLines(Image *dst, Rectangle rec, int thick, Color color) { ImageDrawRectangle(dst, (Rectangle){ rec.x, rec.y, rec.width, thick }, color); ImageDrawRectangle(dst, (Rectangle){ rec.x, rec.y + thick, thick, rec.height - thick*2 }, color); ImageDrawRectangle(dst, (Rectangle){ rec.x + rec.width - thick, rec.y + thick, thick, rec.height - thick*2 }, color); ImageDrawRectangle(dst, (Rectangle){ rec.x, rec.height - thick, rec.width, thick }, color); } // Draw text (default font) within an image (destination) void ImageDrawText(Image *dst, Vector2 position, const char *text, int fontSize, Color color) { // NOTE: For default font, sapcing is set to desired font size / default font size (10) ImageDrawTextEx(dst, position, GetFontDefault(), text, (float)fontSize, (float)fontSize/10, color); } // Draw text (custom sprite font) within an image (destination) void ImageDrawTextEx(Image *dst, Vector2 position, Font font, const char *text, float fontSize, float spacing, Color color) { Image imText = ImageTextEx(font, text, fontSize, spacing, color); Rectangle srcRec = { 0.0f, 0.0f, (float)imText.width, (float)imText.height }; Rectangle dstRec = { position.x, position.y, (float)imText.width, (float)imText.height }; ImageDraw(dst, imText, srcRec, dstRec); UnloadImage(imText); } // Flip image vertically void ImageFlipVertical(Image *image) { Color *srcPixels = GetImageData(*image); Color *dstPixels = (Color *)malloc(image->width*image->height*sizeof(Color)); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { dstPixels[y*image->width + x] = srcPixels[(image->height - 1 - y)*image->width + x]; } } Image processed = LoadImageEx(dstPixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(srcPixels); free(dstPixels); image->data = processed.data; } // Flip image horizontally void ImageFlipHorizontal(Image *image) { Color *srcPixels = GetImageData(*image); Color *dstPixels = (Color *)malloc(image->width*image->height*sizeof(Color)); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { dstPixels[y*image->width + x] = srcPixels[y*image->width + (image->width - 1 - x)]; } } Image processed = LoadImageEx(dstPixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(srcPixels); free(dstPixels); image->data = processed.data; } // Rotate image clockwise 90deg void ImageRotateCW(Image *image) { Color *srcPixels = GetImageData(*image); Color *rotPixels = (Color *)malloc(image->width*image->height*sizeof(Color)); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { rotPixels[x*image->height + (image->height - y - 1)] = srcPixels[y*image->width + x]; } } Image processed = LoadImageEx(rotPixels, image->height, image->width); ImageFormat(&processed, image->format); UnloadImage(*image); free(srcPixels); free(rotPixels); image->data = processed.data; image->width = processed.width; image->height = processed.height; } // Rotate image counter-clockwise 90deg void ImageRotateCCW(Image *image) { Color *srcPixels = GetImageData(*image); Color *rotPixels = (Color *)malloc(image->width*image->height*sizeof(Color)); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { rotPixels[x*image->height + y] = srcPixels[y*image->width + (image->width - x - 1)]; } } Image processed = LoadImageEx(rotPixels, image->height, image->width); ImageFormat(&processed, image->format); UnloadImage(*image); free(srcPixels); free(rotPixels); image->data = processed.data; image->width = processed.width; image->height = processed.height; } // Modify image color: tint void ImageColorTint(Image *image, Color color) { Color *pixels = GetImageData(*image); float cR = (float)color.r/255; float cG = (float)color.g/255; float cB = (float)color.b/255; float cA = (float)color.a/255; for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { int index = y * image->width + x; unsigned char r = 255*((float)pixels[index].r/255*cR); unsigned char g = 255*((float)pixels[index].g/255*cG); unsigned char b = 255*((float)pixels[index].b/255*cB); unsigned char a = 255*((float)pixels[index].a/255*cA); pixels[y*image->width + x].r = r; pixels[y*image->width + x].g = g; pixels[y*image->width + x].b = b; pixels[y*image->width + x].a = a; } } Image processed = LoadImageEx(pixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(pixels); image->data = processed.data; } // Modify image color: invert void ImageColorInvert(Image *image) { Color *pixels = GetImageData(*image); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { pixels[y*image->width + x].r = 255 - pixels[y*image->width + x].r; pixels[y*image->width + x].g = 255 - pixels[y*image->width + x].g; pixels[y*image->width + x].b = 255 - pixels[y*image->width + x].b; } } Image processed = LoadImageEx(pixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(pixels); image->data = processed.data; } // Modify image color: grayscale void ImageColorGrayscale(Image *image) { ImageFormat(image, UNCOMPRESSED_GRAYSCALE); } // Modify image color: contrast // NOTE: Contrast values between -100 and 100 void ImageColorContrast(Image *image, float contrast) { if (contrast < -100) contrast = -100; if (contrast > 100) contrast = 100; contrast = (100.0f + contrast)/100.0f; contrast *= contrast; Color *pixels = GetImageData(*image); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { float pR = (float)pixels[y*image->width + x].r/255.0f; pR -= 0.5; pR *= contrast; pR += 0.5; pR *= 255; if (pR < 0) pR = 0; if (pR > 255) pR = 255; float pG = (float)pixels[y*image->width + x].g/255.0f; pG -= 0.5; pG *= contrast; pG += 0.5; pG *= 255; if (pG < 0) pG = 0; if (pG > 255) pG = 255; float pB = (float)pixels[y*image->width + x].b/255.0f; pB -= 0.5; pB *= contrast; pB += 0.5; pB *= 255; if (pB < 0) pB = 0; if (pB > 255) pB = 255; pixels[y*image->width + x].r = (unsigned char)pR; pixels[y*image->width + x].g = (unsigned char)pG; pixels[y*image->width + x].b = (unsigned char)pB; } } Image processed = LoadImageEx(pixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(pixels); image->data = processed.data; } // Modify image color: brightness // NOTE: Brightness values between -255 and 255 void ImageColorBrightness(Image *image, int brightness) { if (brightness < -255) brightness = -255; if (brightness > 255) brightness = 255; Color *pixels = GetImageData(*image); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { int cR = pixels[y*image->width + x].r + brightness; int cG = pixels[y*image->width + x].g + brightness; int cB = pixels[y*image->width + x].b + brightness; if (cR < 0) cR = 1; if (cR > 255) cR = 255; if (cG < 0) cG = 1; if (cG > 255) cG = 255; if (cB < 0) cB = 1; if (cB > 255) cB = 255; pixels[y*image->width + x].r = (unsigned char)cR; pixels[y*image->width + x].g = (unsigned char)cG; pixels[y*image->width + x].b = (unsigned char)cB; } } Image processed = LoadImageEx(pixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(pixels); image->data = processed.data; } // Modify image color: replace color void ImageColorReplace(Image *image, Color color, Color replace) { Color *pixels = GetImageData(*image); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { if ((pixels[y*image->width + x].r == color.r) && (pixels[y*image->width + x].g == color.g) && (pixels[y*image->width + x].b == color.b) && (pixels[y*image->width + x].a == color.a)) { pixels[y*image->width + x].r = replace.r; pixels[y*image->width + x].g = replace.g; pixels[y*image->width + x].b = replace.b; pixels[y*image->width + x].a = replace.a; } } } Image processed = LoadImageEx(pixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(pixels); image->data = processed.data; } #endif // SUPPORT_IMAGE_MANIPULATION #if defined(SUPPORT_IMAGE_GENERATION) // Generate image: plain color Image GenImageColor(int width, int height, Color color) { Color *pixels = (Color *)calloc(width*height, sizeof(Color)); for (int i = 0; i < width*height; i++) pixels[i] = color; Image image = LoadImageEx(pixels, width, height); free(pixels); return image; } // Generate image: vertical gradient Image GenImageGradientV(int width, int height, Color top, Color bottom) { Color *pixels = (Color *)malloc(width*height*sizeof(Color)); for (int j = 0; j < height; j++) { float factor = (float)j/(float)height; for (int i = 0; i < width; i++) { pixels[j*width + i].r = (int)((float)bottom.r*factor + (float)top.r*(1.f - factor)); pixels[j*width + i].g = (int)((float)bottom.g*factor + (float)top.g*(1.f - factor)); pixels[j*width + i].b = (int)((float)bottom.b*factor + (float)top.b*(1.f - factor)); pixels[j*width + i].a = (int)((float)bottom.a*factor + (float)top.a*(1.f - factor)); } } Image image = LoadImageEx(pixels, width, height); free(pixels); return image; } // Generate image: horizontal gradient Image GenImageGradientH(int width, int height, Color left, Color right) { Color *pixels = (Color *)malloc(width*height*sizeof(Color)); for (int i = 0; i < width; i++) { float factor = (float)i/(float)width; for (int j = 0; j < height; j++) { pixels[j*width + i].r = (int)((float)right.r*factor + (float)left.r*(1.f - factor)); pixels[j*width + i].g = (int)((float)right.g*factor + (float)left.g*(1.f - factor)); pixels[j*width + i].b = (int)((float)right.b*factor + (float)left.b*(1.f - factor)); pixels[j*width + i].a = (int)((float)right.a*factor + (float)left.a*(1.f - factor)); } } Image image = LoadImageEx(pixels, width, height); free(pixels); return image; } // Generate image: radial gradient Image GenImageGradientRadial(int width, int height, float density, Color inner, Color outer) { Color *pixels = (Color *)malloc(width*height*sizeof(Color)); float radius = (width < height) ? (float)width/2.0f : (float)height/2.0f; float centerX = (float)width/2.0f; float centerY = (float)height/2.0f; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { float dist = hypotf((float)x - centerX, (float)y - centerY); float factor = (dist - radius*density)/(radius*(1.0f - density)); factor = (float)fmax(factor, 0.f); factor = (float)fmin(factor, 1.f); // dist can be bigger than radius so we have to check pixels[y*width + x].r = (int)((float)outer.r*factor + (float)inner.r*(1.0f - factor)); pixels[y*width + x].g = (int)((float)outer.g*factor + (float)inner.g*(1.0f - factor)); pixels[y*width + x].b = (int)((float)outer.b*factor + (float)inner.b*(1.0f - factor)); pixels[y*width + x].a = (int)((float)outer.a*factor + (float)inner.a*(1.0f - factor)); } } Image image = LoadImageEx(pixels, width, height); free(pixels); return image; } // Generate image: checked Image GenImageChecked(int width, int height, int checksX, int checksY, Color col1, Color col2) { Color *pixels = (Color *)malloc(width*height*sizeof(Color)); for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { if ((x/checksX + y/checksY)%2 == 0) pixels[y*width + x] = col1; else pixels[y*width + x] = col2; } } Image image = LoadImageEx(pixels, width, height); free(pixels); return image; } // Generate image: white noise Image GenImageWhiteNoise(int width, int height, float factor) { Color *pixels = (Color *)malloc(width*height*sizeof(Color)); for (int i = 0; i < width*height; i++) { if (GetRandomValue(0, 99) < (int)(factor*100.0f)) pixels[i] = WHITE; else pixels[i] = BLACK; } Image image = LoadImageEx(pixels, width, height); free(pixels); return image; } // Generate image: perlin noise Image GenImagePerlinNoise(int width, int height, int offsetX, int offsetY, float scale) { Color *pixels = (Color *)malloc(width*height*sizeof(Color)); for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { float nx = (float)(x + offsetX)*scale/(float)width; float ny = (float)(y + offsetY)*scale/(float)height; // Typical values to start playing with: // lacunarity = ~2.0 -- spacing between successive octaves (use exactly 2.0 for wrapping output) // gain = 0.5 -- relative weighting applied to each successive octave // octaves = 6 -- number of "octaves" of noise3() to sum // NOTE: We need to translate the data from [-1..1] to [0..1] float p = (stb_perlin_fbm_noise3(nx, ny, 1.0f, 2.0f, 0.5f, 6, 0, 0, 0) + 1.0f)/2.0f; int intensity = (int)(p*255.0f); pixels[y*width + x] = (Color){intensity, intensity, intensity, 255}; } } Image image = LoadImageEx(pixels, width, height); free(pixels); return image; } // Generate image: cellular algorithm. Bigger tileSize means bigger cells Image GenImageCellular(int width, int height, int tileSize) { Color *pixels = (Color *)malloc(width*height*sizeof(Color)); int seedsPerRow = width/tileSize; int seedsPerCol = height/tileSize; int seedsCount = seedsPerRow * seedsPerCol; Vector2 *seeds = (Vector2 *)malloc(seedsCount*sizeof(Vector2)); for (int i = 0; i < seedsCount; i++) { int y = (i/seedsPerRow)*tileSize + GetRandomValue(0, tileSize - 1); int x = (i%seedsPerRow)*tileSize + GetRandomValue(0, tileSize - 1); seeds[i] = (Vector2){ (float)x, (float)y}; } for (int y = 0; y < height; y++) { int tileY = y/tileSize; for (int x = 0; x < width; x++) { int tileX = x/tileSize; float minDistance = (float)strtod("Inf", NULL); // Check all adjacent tiles for (int i = -1; i < 2; i++) { if ((tileX + i < 0) || (tileX + i >= seedsPerRow)) continue; for (int j = -1; j < 2; j++) { if ((tileY + j < 0) || (tileY + j >= seedsPerCol)) continue; Vector2 neighborSeed = seeds[(tileY + j)*seedsPerRow + tileX + i]; float dist = (float)hypot(x - (int)neighborSeed.x, y - (int)neighborSeed.y); minDistance = (float)fmin(minDistance, dist); } } // I made this up but it seems to give good results at all tile sizes int intensity = (int)(minDistance*256.0f/tileSize); if (intensity > 255) intensity = 255; pixels[y*width + x] = (Color){ intensity, intensity, intensity, 255 }; } } free(seeds); Image image = LoadImageEx(pixels, width, height); free(pixels); return image; } #endif // SUPPORT_IMAGE_GENERATION // Generate GPU mipmaps for a texture void GenTextureMipmaps(Texture2D *texture) { // NOTE: NPOT textures support check inside function // On WebGL (OpenGL ES 2.0) NPOT textures support is limited rlGenerateMipmaps(texture); } // Set texture scaling filter mode void SetTextureFilter(Texture2D texture, int filterMode) { switch (filterMode) { case FILTER_POINT: { if (texture.mipmaps > 1) { // RL_FILTER_MIP_NEAREST - tex filter: POINT, mipmaps filter: POINT (sharp switching between mipmaps) rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_MIP_NEAREST); // RL_FILTER_NEAREST - tex filter: POINT (no filter), no mipmaps rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_NEAREST); } else { // RL_FILTER_NEAREST - tex filter: POINT (no filter), no mipmaps rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_NEAREST); rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_NEAREST); } } break; case FILTER_BILINEAR: { if (texture.mipmaps > 1) { // RL_FILTER_LINEAR_MIP_NEAREST - tex filter: BILINEAR, mipmaps filter: POINT (sharp switching between mipmaps) // Alternative: RL_FILTER_NEAREST_MIP_LINEAR - tex filter: POINT, mipmaps filter: BILINEAR (smooth transition between mipmaps) rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_LINEAR_MIP_NEAREST); // RL_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_LINEAR); } else { // RL_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_LINEAR); rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_LINEAR); } } break; case FILTER_TRILINEAR: { if (texture.mipmaps > 1) { // RL_FILTER_MIP_LINEAR - tex filter: BILINEAR, mipmaps filter: BILINEAR (smooth transition between mipmaps) rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_MIP_LINEAR); // RL_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_LINEAR); } else { TraceLog(LOG_WARNING, "[TEX ID %i] No mipmaps available for TRILINEAR texture filtering", texture.id); // RL_FILTER_LINEAR - tex filter: BILINEAR, no mipmaps rlTextureParameters(texture.id, RL_TEXTURE_MIN_FILTER, RL_FILTER_LINEAR); rlTextureParameters(texture.id, RL_TEXTURE_MAG_FILTER, RL_FILTER_LINEAR); } } break; case FILTER_ANISOTROPIC_4X: rlTextureParameters(texture.id, RL_TEXTURE_ANISOTROPIC_FILTER, 4); break; case FILTER_ANISOTROPIC_8X: rlTextureParameters(texture.id, RL_TEXTURE_ANISOTROPIC_FILTER, 8); break; case FILTER_ANISOTROPIC_16X: rlTextureParameters(texture.id, RL_TEXTURE_ANISOTROPIC_FILTER, 16); break; default: break; } } // Set texture wrapping mode void SetTextureWrap(Texture2D texture, int wrapMode) { switch (wrapMode) { case WRAP_REPEAT: { rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_WRAP_REPEAT); rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_WRAP_REPEAT); } break; case WRAP_CLAMP: { rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_WRAP_CLAMP); rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_WRAP_CLAMP); } break; case WRAP_MIRROR_REPEAT: { rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_WRAP_MIRROR_REPEAT); rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_WRAP_MIRROR_REPEAT); } break; case WRAP_MIRROR_CLAMP: { rlTextureParameters(texture.id, RL_TEXTURE_WRAP_S, RL_WRAP_MIRROR_CLAMP); rlTextureParameters(texture.id, RL_TEXTURE_WRAP_T, RL_WRAP_MIRROR_CLAMP); } break; default: break; } } // Draw a Texture2D void DrawTexture(Texture2D texture, int posX, int posY, Color tint) { DrawTextureEx(texture, (Vector2){ (float)posX, (float)posY }, 0.0f, 1.0f, tint); } // Draw a Texture2D with position defined as Vector2 void DrawTextureV(Texture2D texture, Vector2 position, Color tint) { DrawTextureEx(texture, position, 0, 1.0f, tint); } // Draw a Texture2D with extended parameters void DrawTextureEx(Texture2D texture, Vector2 position, float rotation, float scale, Color tint) { Rectangle sourceRec = { 0.0f, 0.0f, (float)texture.width, (float)texture.height }; Rectangle destRec = { position.x, position.y, (float)texture.width*scale, (float)texture.height*scale }; Vector2 origin = { 0.0f, 0.0f }; DrawTexturePro(texture, sourceRec, destRec, origin, rotation, tint); } // Draw a part of a texture (defined by a rectangle) void DrawTextureRec(Texture2D texture, Rectangle sourceRec, Vector2 position, Color tint) { Rectangle destRec = { position.x, position.y, sourceRec.width, (float)fabs(sourceRec.height) }; Vector2 origin = { 0.0f, 0.0f }; DrawTexturePro(texture, sourceRec, destRec, origin, 0.0f, tint); } // Draw a part of a texture (defined by a rectangle) with 'pro' parameters // NOTE: origin is relative to destination rectangle size void DrawTexturePro(Texture2D texture, Rectangle sourceRec, Rectangle destRec, Vector2 origin, float rotation, Color tint) { // Check if texture is valid if (texture.id > 0) { float width = (float)texture.width; float height = (float)texture.height; if (sourceRec.width < 0) sourceRec.x -= sourceRec.width; if (sourceRec.height < 0) sourceRec.y -= sourceRec.height; rlEnableTexture(texture.id); rlPushMatrix(); rlTranslatef(destRec.x, destRec.y, 0); rlRotatef(rotation, 0, 0, 1); rlTranslatef(-origin.x, -origin.y, 0); rlBegin(RL_QUADS); rlColor4ub(tint.r, tint.g, tint.b, tint.a); rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer // Bottom-left corner for texture and quad rlTexCoord2f(sourceRec.x/width, sourceRec.y/height); rlVertex2f(0.0f, 0.0f); // Bottom-right corner for texture and quad rlTexCoord2f(sourceRec.x/width, (sourceRec.y + sourceRec.height)/height); rlVertex2f(0.0f, destRec.height); // Top-right corner for texture and quad rlTexCoord2f((sourceRec.x + sourceRec.width)/width, (sourceRec.y + sourceRec.height)/height); rlVertex2f(destRec.width, destRec.height); // Top-left corner for texture and quad rlTexCoord2f((sourceRec.x + sourceRec.width)/width, sourceRec.y/height); rlVertex2f(destRec.width, 0.0f); rlEnd(); rlPopMatrix(); rlDisableTexture(); } } void DrawTextureNPatch(Texture2D texture, NPatchInfo nPatchInfo, Rectangle destRec, Vector2 origin, float rotation, Color tint) { if (texture.id > 0) { float width = (float)texture.width; float height = (float)texture.height; float patchWidth = (destRec.width <= 0.0f)? 0.0f : destRec.width; float patchHeight = (destRec.height <= 0.0f)? 0.0f : destRec.height; if (nPatchInfo.sourceRec.width < 0) nPatchInfo.sourceRec.x -= nPatchInfo.sourceRec.width; if (nPatchInfo.sourceRec.height < 0) nPatchInfo.sourceRec.y -= nPatchInfo.sourceRec.height; if (nPatchInfo.type == NPT_3PATCH_HORIZONTAL) patchHeight = nPatchInfo.sourceRec.height; if (nPatchInfo.type == NPT_3PATCH_VERTICAL) patchWidth = nPatchInfo.sourceRec.width; bool drawCenter = true; bool drawMiddle = true; float leftBorder = (float)nPatchInfo.left; float topBorder = (float)nPatchInfo.top; float rightBorder = (float)nPatchInfo.right; float bottomBorder = (float)nPatchInfo.bottom; // adjust the lateral (left and right) border widths in case patchWidth < texture.width if (patchWidth <= (leftBorder + rightBorder) && nPatchInfo.type != NPT_3PATCH_VERTICAL) { drawCenter = false; leftBorder = (leftBorder / (leftBorder + rightBorder)) * patchWidth; rightBorder = patchWidth - leftBorder; } // adjust the lateral (top and bottom) border heights in case patchHeight < texture.height if (patchHeight <= (topBorder + bottomBorder) && nPatchInfo.type != NPT_3PATCH_HORIZONTAL) { drawMiddle = false; topBorder = (topBorder / (topBorder + bottomBorder)) * patchHeight; bottomBorder = patchHeight - topBorder; } Vector2 vertA, vertB, vertC, vertD; vertA.x = 0.0f; // outer left vertA.y = 0.0f; // outer top vertB.x = leftBorder; // inner left vertB.y = topBorder; // inner top vertC.x = patchWidth - rightBorder; // inner right vertC.y = patchHeight - bottomBorder; // inner bottom vertD.x = patchWidth; // outer right vertD.y = patchHeight; // outer bottom Vector2 coordA, coordB, coordC, coordD; coordA.x = nPatchInfo.sourceRec.x / width; coordA.y = nPatchInfo.sourceRec.y / height; coordB.x = (nPatchInfo.sourceRec.x + leftBorder) / width; coordB.y = (nPatchInfo.sourceRec.y + topBorder) / height; coordC.x = (nPatchInfo.sourceRec.x + nPatchInfo.sourceRec.width - rightBorder) / width; coordC.y = (nPatchInfo.sourceRec.y + nPatchInfo.sourceRec.height - bottomBorder) / height; coordD.x = (nPatchInfo.sourceRec.x + nPatchInfo.sourceRec.width) / width; coordD.y = (nPatchInfo.sourceRec.y + nPatchInfo.sourceRec.height) / height; rlEnableTexture(texture.id); rlPushMatrix(); rlTranslatef(destRec.x, destRec.y, 0); rlRotatef(rotation, 0, 0, 1); rlTranslatef(-origin.x, -origin.y, 0); rlBegin(RL_QUADS); rlColor4ub(tint.r, tint.g, tint.b, tint.a); rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer if (nPatchInfo.type == NPT_9PATCH) { // ------------------------------------------------------------ // TOP-LEFT QUAD rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-right corner for texture and quad rlTexCoord2f(coordA.x, coordA.y); rlVertex2f(vertA.x, vertA.y); // Top-left corner for texture and quad if (drawCenter) { // TOP-CENTER QUAD rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-right corner for texture and quad rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-left corner for texture and quad } // TOP-RIGHT QUAD rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordD.x, coordA.y); rlVertex2f(vertD.x, vertA.y); // Top-right corner for texture and quad rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-left corner for texture and quad if (drawMiddle) { // ------------------------------------------------------------ // MIDDLE-LEFT QUAD rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Top-right corner for texture and quad rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Top-left corner for texture and quad if (drawCenter) { // MIDDLE-CENTER QUAD rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Top-right corner for texture and quad rlTexCoord2f(coordB.x, coordB.y); rlVertex2f(vertB.x, vertB.y); // Top-left corner for texture and quad } // MIDDLE-RIGHT QUAD rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Top-right corner for texture and quad rlTexCoord2f(coordC.x, coordB.y); rlVertex2f(vertC.x, vertB.y); // Top-left corner for texture and quad } // ------------------------------------------------------------ // BOTTOM-LEFT QUAD rlTexCoord2f(coordA.x, coordD.y); rlVertex2f(vertA.x, vertD.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Top-right corner for texture and quad rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Top-left corner for texture and quad if (drawCenter) { // BOTTOM-CENTER QUAD rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Top-right corner for texture and quad rlTexCoord2f(coordB.x, coordC.y); rlVertex2f(vertB.x, vertC.y); // Top-left corner for texture and quad } // BOTTOM-RIGHT QUAD rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordD.x, coordD.y); rlVertex2f(vertD.x, vertD.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Top-right corner for texture and quad rlTexCoord2f(coordC.x, coordC.y); rlVertex2f(vertC.x, vertC.y); // Top-left corner for texture and quad } else if (nPatchInfo.type == NPT_3PATCH_VERTICAL) { // TOP QUAD // ----------------------------------------------------------- // Texture coords Vertices rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordD.x, coordA.y); rlVertex2f(vertD.x, vertA.y); // Top-right corner for texture and quad rlTexCoord2f(coordA.x, coordA.y); rlVertex2f(vertA.x, vertA.y); // Top-left corner for texture and quad if (drawCenter) { // MIDDLE QUAD // ----------------------------------------------------------- // Texture coords Vertices rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordD.x, coordB.y); rlVertex2f(vertD.x, vertB.y); // Top-right corner for texture and quad rlTexCoord2f(coordA.x, coordB.y); rlVertex2f(vertA.x, vertB.y); // Top-left corner for texture and quad } // BOTTOM QUAD // ----------------------------------------------------------- // Texture coords Vertices rlTexCoord2f(coordA.x, coordD.y); rlVertex2f(vertA.x, vertD.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordD.x, coordD.y); rlVertex2f(vertD.x, vertD.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordD.x, coordC.y); rlVertex2f(vertD.x, vertC.y); // Top-right corner for texture and quad rlTexCoord2f(coordA.x, coordC.y); rlVertex2f(vertA.x, vertC.y); // Top-left corner for texture and quad } else if (nPatchInfo.type == NPT_3PATCH_HORIZONTAL) { // LEFT QUAD // ----------------------------------------------------------- // Texture coords Vertices rlTexCoord2f(coordA.x, coordD.y); rlVertex2f(vertA.x, vertD.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-right corner for texture and quad rlTexCoord2f(coordA.x, coordA.y); rlVertex2f(vertA.x, vertA.y); // Top-left corner for texture and quad if (drawCenter) { // CENTER QUAD // ----------------------------------------------------------- // Texture coords Vertices rlTexCoord2f(coordB.x, coordD.y); rlVertex2f(vertB.x, vertD.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-right corner for texture and quad rlTexCoord2f(coordB.x, coordA.y); rlVertex2f(vertB.x, vertA.y); // Top-left corner for texture and quad } // RIGHT QUAD // ----------------------------------------------------------- // Texture coords Vertices rlTexCoord2f(coordC.x, coordD.y); rlVertex2f(vertC.x, vertD.y); // Bottom-left corner for texture and quad rlTexCoord2f(coordD.x, coordD.y); rlVertex2f(vertD.x, vertD.y); // Bottom-right corner for texture and quad rlTexCoord2f(coordD.x, coordA.y); rlVertex2f(vertD.x, vertA.y); // Top-right corner for texture and quad rlTexCoord2f(coordC.x, coordA.y); rlVertex2f(vertC.x, vertA.y); // Top-left corner for texture and quad } rlEnd(); rlPopMatrix(); rlDisableTexture(); } } //---------------------------------------------------------------------------------- // Module specific Functions Definition //---------------------------------------------------------------------------------- #if defined(SUPPORT_FILEFORMAT_DDS) // Loading DDS image data (compressed or uncompressed) static Image LoadDDS(const char *fileName) { // Required extension: // GL_EXT_texture_compression_s3tc // Supported tokens (defined by extensions) // GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0 // GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 // GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 // GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #define FOURCC_DXT1 0x31545844 // Equivalent to "DXT1" in ASCII #define FOURCC_DXT3 0x33545844 // Equivalent to "DXT3" in ASCII #define FOURCC_DXT5 0x35545844 // Equivalent to "DXT5" in ASCII // DDS Pixel Format typedef struct { unsigned int size; unsigned int flags; unsigned int fourCC; unsigned int rgbBitCount; unsigned int rBitMask; unsigned int gBitMask; unsigned int bBitMask; unsigned int aBitMask; } DDSPixelFormat; // DDS Header (124 bytes) typedef struct { unsigned int size; unsigned int flags; unsigned int height; unsigned int width; unsigned int pitchOrLinearSize; unsigned int depth; unsigned int mipmapCount; unsigned int reserved1[11]; DDSPixelFormat ddspf; unsigned int caps; unsigned int caps2; unsigned int caps3; unsigned int caps4; unsigned int reserved2; } DDSHeader; Image image = { 0 }; FILE *ddsFile = fopen(fileName, "rb"); if (ddsFile == NULL) { TraceLog(LOG_WARNING, "[%s] DDS file could not be opened", fileName); } else { // Verify the type of file char ddsHeaderId[4]; fread(ddsHeaderId, 4, 1, ddsFile); if ((ddsHeaderId[0] != 'D') || (ddsHeaderId[1] != 'D') || (ddsHeaderId[2] != 'S') || (ddsHeaderId[3] != ' ')) { TraceLog(LOG_WARNING, "[%s] DDS file does not seem to be a valid image", fileName); } else { DDSHeader ddsHeader; // Get the image header fread(&ddsHeader, sizeof(DDSHeader), 1, ddsFile); TraceLog(LOG_DEBUG, "[%s] DDS file header size: %i", fileName, sizeof(DDSHeader)); TraceLog(LOG_DEBUG, "[%s] DDS file pixel format size: %i", fileName, ddsHeader.ddspf.size); TraceLog(LOG_DEBUG, "[%s] DDS file pixel format flags: 0x%x", fileName, ddsHeader.ddspf.flags); TraceLog(LOG_DEBUG, "[%s] DDS file format: 0x%x", fileName, ddsHeader.ddspf.fourCC); TraceLog(LOG_DEBUG, "[%s] DDS file bit count: 0x%x", fileName, ddsHeader.ddspf.rgbBitCount); image.width = ddsHeader.width; image.height = ddsHeader.height; if (ddsHeader.mipmapCount == 0) image.mipmaps = 1; // Parameter not used else image.mipmaps = ddsHeader.mipmapCount; if (ddsHeader.ddspf.rgbBitCount == 16) // 16bit mode, no compressed { if (ddsHeader.ddspf.flags == 0x40) // no alpha channel { image.data = (unsigned short *)malloc(image.width*image.height*sizeof(unsigned short)); fread(image.data, image.width*image.height*sizeof(unsigned short), 1, ddsFile); image.format = UNCOMPRESSED_R5G6B5; } else if (ddsHeader.ddspf.flags == 0x41) // with alpha channel { if (ddsHeader.ddspf.aBitMask == 0x8000) // 1bit alpha { image.data = (unsigned short *)malloc(image.width*image.height*sizeof(unsigned short)); fread(image.data, image.width*image.height*sizeof(unsigned short), 1, ddsFile); unsigned char alpha = 0; // NOTE: Data comes as A1R5G5B5, it must be reordered to R5G5B5A1 for (int i = 0; i < image.width*image.height; i++) { alpha = ((unsigned short *)image.data)[i] >> 15; ((unsigned short *)image.data)[i] = ((unsigned short *)image.data)[i] << 1; ((unsigned short *)image.data)[i] += alpha; } image.format = UNCOMPRESSED_R5G5B5A1; } else if (ddsHeader.ddspf.aBitMask == 0xf000) // 4bit alpha { image.data = (unsigned short *)malloc(image.width*image.height*sizeof(unsigned short)); fread(image.data, image.width*image.height*sizeof(unsigned short), 1, ddsFile); unsigned char alpha = 0; // NOTE: Data comes as A4R4G4B4, it must be reordered R4G4B4A4 for (int i = 0; i < image.width*image.height; i++) { alpha = ((unsigned short *)image.data)[i] >> 12; ((unsigned short *)image.data)[i] = ((unsigned short *)image.data)[i] << 4; ((unsigned short *)image.data)[i] += alpha; } image.format = UNCOMPRESSED_R4G4B4A4; } } } if (ddsHeader.ddspf.flags == 0x40 && ddsHeader.ddspf.rgbBitCount == 24) // DDS_RGB, no compressed { // NOTE: not sure if this case exists... image.data = (unsigned char *)malloc(image.width*image.height*3*sizeof(unsigned char)); fread(image.data, image.width*image.height*3, 1, ddsFile); image.format = UNCOMPRESSED_R8G8B8; } else if (ddsHeader.ddspf.flags == 0x41 && ddsHeader.ddspf.rgbBitCount == 32) // DDS_RGBA, no compressed { image.data = (unsigned char *)malloc(image.width*image.height*4*sizeof(unsigned char)); fread(image.data, image.width*image.height*4, 1, ddsFile); unsigned char blue = 0; // NOTE: Data comes as A8R8G8B8, it must be reordered R8G8B8A8 (view next comment) // DirecX understand ARGB as a 32bit DWORD but the actual memory byte alignment is BGRA // So, we must realign B8G8R8A8 to R8G8B8A8 for (int i = 0; i < image.width*image.height*4; i += 4) { blue = ((unsigned char *)image.data)[i]; ((unsigned char *)image.data)[i] = ((unsigned char *)image.data)[i + 2]; ((unsigned char *)image.data)[i + 2] = blue; } image.format = UNCOMPRESSED_R8G8B8A8; } else if (((ddsHeader.ddspf.flags == 0x04) || (ddsHeader.ddspf.flags == 0x05)) && (ddsHeader.ddspf.fourCC > 0)) // Compressed { int size; // DDS image data size // Calculate data size, including all mipmaps if (ddsHeader.mipmapCount > 1) size = ddsHeader.pitchOrLinearSize*2; else size = ddsHeader.pitchOrLinearSize; TraceLog(LOG_DEBUG, "Pitch or linear size: %i", ddsHeader.pitchOrLinearSize); image.data = (unsigned char *)malloc(size*sizeof(unsigned char)); fread(image.data, size, 1, ddsFile); switch (ddsHeader.ddspf.fourCC) { case FOURCC_DXT1: { if (ddsHeader.ddspf.flags == 0x04) image.format = COMPRESSED_DXT1_RGB; else image.format = COMPRESSED_DXT1_RGBA; } break; case FOURCC_DXT3: image.format = COMPRESSED_DXT3_RGBA; break; case FOURCC_DXT5: image.format = COMPRESSED_DXT5_RGBA; break; default: break; } } } fclose(ddsFile); // Close file pointer } return image; } #endif #if defined(SUPPORT_FILEFORMAT_PKM) // Loading PKM image data (ETC1/ETC2 compression) // NOTE: KTX is the standard Khronos Group compression format (ETC1/ETC2, mipmaps) // PKM is a much simpler file format used mainly to contain a single ETC1/ETC2 compressed image (no mipmaps) static Image LoadPKM(const char *fileName) { // Required extensions: // GL_OES_compressed_ETC1_RGB8_texture (ETC1) (OpenGL ES 2.0) // GL_ARB_ES3_compatibility (ETC2/EAC) (OpenGL ES 3.0) // Supported tokens (defined by extensions) // GL_ETC1_RGB8_OES 0x8D64 // GL_COMPRESSED_RGB8_ETC2 0x9274 // GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278 // PKM file (ETC1) Header (16 bytes) typedef struct { char id[4]; // "PKM " char version[2]; // "10" or "20" unsigned short format; // Data format (big-endian) (Check list below) unsigned short width; // Texture width (big-endian) (origWidth rounded to multiple of 4) unsigned short height; // Texture height (big-endian) (origHeight rounded to multiple of 4) unsigned short origWidth; // Original width (big-endian) unsigned short origHeight; // Original height (big-endian) } PKMHeader; // Formats list // version 10: format: 0=ETC1_RGB, [1=ETC1_RGBA, 2=ETC1_RGB_MIP, 3=ETC1_RGBA_MIP] (not used) // version 20: format: 0=ETC1_RGB, 1=ETC2_RGB, 2=ETC2_RGBA_OLD, 3=ETC2_RGBA, 4=ETC2_RGBA1, 5=ETC2_R, 6=ETC2_RG, 7=ETC2_SIGNED_R, 8=ETC2_SIGNED_R // NOTE: The extended width and height are the widths rounded up to a multiple of 4. // NOTE: ETC is always 4bit per pixel (64 bit for each 4x4 block of pixels) Image image = { 0 }; FILE *pkmFile = fopen(fileName, "rb"); if (pkmFile == NULL) { TraceLog(LOG_WARNING, "[%s] PKM file could not be opened", fileName); } else { PKMHeader pkmHeader; // Get the image header fread(&pkmHeader, sizeof(PKMHeader), 1, pkmFile); if ((pkmHeader.id[0] != 'P') || (pkmHeader.id[1] != 'K') || (pkmHeader.id[2] != 'M') || (pkmHeader.id[3] != ' ')) { TraceLog(LOG_WARNING, "[%s] PKM file does not seem to be a valid image", fileName); } else { // NOTE: format, width and height come as big-endian, data must be swapped to little-endian pkmHeader.format = ((pkmHeader.format & 0x00FF) << 8) | ((pkmHeader.format & 0xFF00) >> 8); pkmHeader.width = ((pkmHeader.width & 0x00FF) << 8) | ((pkmHeader.width & 0xFF00) >> 8); pkmHeader.height = ((pkmHeader.height & 0x00FF) << 8) | ((pkmHeader.height & 0xFF00) >> 8); TraceLog(LOG_DEBUG, "PKM (ETC) image width: %i", pkmHeader.width); TraceLog(LOG_DEBUG, "PKM (ETC) image height: %i", pkmHeader.height); TraceLog(LOG_DEBUG, "PKM (ETC) image format: %i", pkmHeader.format); image.width = pkmHeader.width; image.height = pkmHeader.height; image.mipmaps = 1; int bpp = 4; if (pkmHeader.format == 3) bpp = 8; int size = image.width*image.height*bpp/8; // Total data size in bytes image.data = (unsigned char *)malloc(size*sizeof(unsigned char)); fread(image.data, size, 1, pkmFile); if (pkmHeader.format == 0) image.format = COMPRESSED_ETC1_RGB; else if (pkmHeader.format == 1) image.format = COMPRESSED_ETC2_RGB; else if (pkmHeader.format == 3) image.format = COMPRESSED_ETC2_EAC_RGBA; } fclose(pkmFile); // Close file pointer } return image; } #endif #if defined(SUPPORT_FILEFORMAT_KTX) // Load KTX compressed image data (ETC1/ETC2 compression) static Image LoadKTX(const char *fileName) { // Required extensions: // GL_OES_compressed_ETC1_RGB8_texture (ETC1) // GL_ARB_ES3_compatibility (ETC2/EAC) // Supported tokens (defined by extensions) // GL_ETC1_RGB8_OES 0x8D64 // GL_COMPRESSED_RGB8_ETC2 0x9274 // GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278 // KTX file Header (64 bytes) // v1.1 - https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/ // v2.0 - http://github.khronos.org/KTX-Specification/ // TODO: Support KTX 2.2 specs! typedef struct { char id[12]; // Identifier: "«KTX 11»\r\n\x1A\n" unsigned int endianness; // Little endian: 0x01 0x02 0x03 0x04 unsigned int glType; // For compressed textures, glType must equal 0 unsigned int glTypeSize; // For compressed texture data, usually 1 unsigned int glFormat; // For compressed textures is 0 unsigned int glInternalFormat; // Compressed internal format unsigned int glBaseInternalFormat; // Same as glFormat (RGB, RGBA, ALPHA...) unsigned int width; // Texture image width in pixels unsigned int height; // Texture image height in pixels unsigned int depth; // For 2D textures is 0 unsigned int elements; // Number of array elements, usually 0 unsigned int faces; // Cubemap faces, for no-cubemap = 1 unsigned int mipmapLevels; // Non-mipmapped textures = 1 unsigned int keyValueDataSize; // Used to encode any arbitrary data... } KTXHeader; // NOTE: Before start of every mipmap data block, we have: unsigned int dataSize Image image = { 0 }; FILE *ktxFile = fopen(fileName, "rb"); if (ktxFile == NULL) { TraceLog(LOG_WARNING, "[%s] KTX image file could not be opened", fileName); } else { KTXHeader ktxHeader; // Get the image header fread(&ktxHeader, sizeof(KTXHeader), 1, ktxFile); if ((ktxHeader.id[1] != 'K') || (ktxHeader.id[2] != 'T') || (ktxHeader.id[3] != 'X') || (ktxHeader.id[4] != ' ') || (ktxHeader.id[5] != '1') || (ktxHeader.id[6] != '1')) { TraceLog(LOG_WARNING, "[%s] KTX file does not seem to be a valid file", fileName); } else { image.width = ktxHeader.width; image.height = ktxHeader.height; image.mipmaps = ktxHeader.mipmapLevels; TraceLog(LOG_DEBUG, "KTX (ETC) image width: %i", ktxHeader.width); TraceLog(LOG_DEBUG, "KTX (ETC) image height: %i", ktxHeader.height); TraceLog(LOG_DEBUG, "KTX (ETC) image format: 0x%x", ktxHeader.glInternalFormat); unsigned char unused; if (ktxHeader.keyValueDataSize > 0) { for (unsigned int i = 0; i < ktxHeader.keyValueDataSize; i++) fread(&unused, sizeof(unsigned char), 1U, ktxFile); } int dataSize; fread(&dataSize, sizeof(unsigned int), 1, ktxFile); image.data = (unsigned char *)malloc(dataSize*sizeof(unsigned char)); fread(image.data, dataSize, 1, ktxFile); if (ktxHeader.glInternalFormat == 0x8D64) image.format = COMPRESSED_ETC1_RGB; else if (ktxHeader.glInternalFormat == 0x9274) image.format = COMPRESSED_ETC2_RGB; else if (ktxHeader.glInternalFormat == 0x9278) image.format = COMPRESSED_ETC2_EAC_RGBA; } fclose(ktxFile); // Close file pointer } return image; } // Save image data as KTX file // NOTE: By default KTX 1.1 spec is used, 2.0 is still on draft (01Oct2018) static int SaveKTX(Image image, const char *fileName) { int success = 0; // KTX file Header (64 bytes) // v1.1 - https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/ // v2.0 - http://github.khronos.org/KTX-Specification/ - still on draft, not ready for implementation typedef struct { char id[12]; // Identifier: "«KTX 11»\r\n\x1A\n" // KTX 2.0: "«KTX 22»\r\n\x1A\n" unsigned int endianness; // Little endian: 0x01 0x02 0x03 0x04 unsigned int glType; // For compressed textures, glType must equal 0 unsigned int glTypeSize; // For compressed texture data, usually 1 unsigned int glFormat; // For compressed textures is 0 unsigned int glInternalFormat; // Compressed internal format unsigned int glBaseInternalFormat; // Same as glFormat (RGB, RGBA, ALPHA...) // KTX 2.0: UInt32 vkFormat unsigned int width; // Texture image width in pixels unsigned int height; // Texture image height in pixels unsigned int depth; // For 2D textures is 0 unsigned int elements; // Number of array elements, usually 0 unsigned int faces; // Cubemap faces, for no-cubemap = 1 unsigned int mipmapLevels; // Non-mipmapped textures = 1 unsigned int keyValueDataSize; // Used to encode any arbitrary data... // KTX 2.0: UInt32 levelOrder - ordering of the mipmap levels, usually 0 // KTX 2.0: UInt32 supercompressionScheme - 0 (None), 1 (Crunch CRN), 2 (Zlib DEFLATE)... // KTX 2.0 defines additional header elements... } KTXHeader; // NOTE: Before start of every mipmap data block, we have: unsigned int dataSize FILE *ktxFile = fopen(fileName, "wb"); if (ktxFile == NULL) TraceLog(LOG_WARNING, "[%s] KTX image file could not be created", fileName); else { KTXHeader ktxHeader; // KTX identifier (v2.2) //unsigned char id[12] = { '«', 'K', 'T', 'X', ' ', '1', '1', '»', '\r', '\n', '\x1A', '\n' }; //unsigned char id[12] = { 0xAB, 0x4B, 0x54, 0x58, 0x20, 0x31, 0x31, 0xBB, 0x0D, 0x0A, 0x1A, 0x0A }; // Get the image header strcpy(ktxHeader.id, "«KTX 11»\r\n\x1A\n"); // KTX 1.1 signature ktxHeader.endianness = 0; ktxHeader.glType = 0; // Obtained from image.format ktxHeader.glTypeSize = 1; ktxHeader.glFormat = 0; // Obtained from image.format ktxHeader.glInternalFormat = 0; // Obtained from image.format ktxHeader.glBaseInternalFormat = 0; ktxHeader.width = image.width; ktxHeader.height = image.height; ktxHeader.depth = 0; ktxHeader.elements = 0; ktxHeader.faces = 1; ktxHeader.mipmapLevels = image.mipmaps; // If it was 0, it means mipmaps should be generated on loading (not for compressed formats) ktxHeader.keyValueDataSize = 0; // No extra data after the header rlGetGlTextureFormats(image.format, &ktxHeader.glInternalFormat, &ktxHeader.glFormat, &ktxHeader.glType); // rlgl module function ktxHeader.glBaseInternalFormat = ktxHeader.glFormat; // KTX 1.1 only // NOTE: We can save into a .ktx all PixelFormats supported by raylib, including compressed formats like DXT, ETC or ASTC if (ktxHeader.glFormat == -1) TraceLog(LOG_WARNING, "Image format not supported for KTX export."); else { success = fwrite(&ktxHeader, sizeof(KTXHeader), 1, ktxFile); int width = image.width; int height = image.height; int dataOffset = 0; // Save all mipmaps data for (int i = 0; i < image.mipmaps; i++) { unsigned int dataSize = GetPixelDataSize(width, height, image.format); success = fwrite(&dataSize, sizeof(unsigned int), 1, ktxFile); success = fwrite((unsigned char *)image.data + dataOffset, dataSize, 1, ktxFile); width /= 2; height /= 2; dataOffset += dataSize; } } fclose(ktxFile); // Close file pointer } // If all data has been written correctly to file, success = 1 return success; } #endif #if defined(SUPPORT_FILEFORMAT_PVR) // Loading PVR image data (uncompressed or PVRT compression) // NOTE: PVR v2 not supported, use PVR v3 instead static Image LoadPVR(const char *fileName) { // Required extension: // GL_IMG_texture_compression_pvrtc // Supported tokens (defined by extensions) // GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 // GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #if 0 // Not used... // PVR file v2 Header (52 bytes) typedef struct { unsigned int headerLength; unsigned int height; unsigned int width; unsigned int numMipmaps; unsigned int flags; unsigned int dataLength; unsigned int bpp; unsigned int bitmaskRed; unsigned int bitmaskGreen; unsigned int bitmaskBlue; unsigned int bitmaskAlpha; unsigned int pvrTag; unsigned int numSurfs; } PVRHeaderV2; #endif // PVR file v3 Header (52 bytes) // NOTE: After it could be metadata (15 bytes?) typedef struct { char id[4]; unsigned int flags; unsigned char channels[4]; // pixelFormat high part unsigned char channelDepth[4]; // pixelFormat low part unsigned int colourSpace; unsigned int channelType; unsigned int height; unsigned int width; unsigned int depth; unsigned int numSurfaces; unsigned int numFaces; unsigned int numMipmaps; unsigned int metaDataSize; } PVRHeaderV3; #if 0 // Not used... // Metadata (usually 15 bytes) typedef struct { unsigned int devFOURCC; unsigned int key; unsigned int dataSize; // Not used? unsigned char *data; // Not used? } PVRMetadata; #endif Image image = { 0 }; FILE *pvrFile = fopen(fileName, "rb"); if (pvrFile == NULL) { TraceLog(LOG_WARNING, "[%s] PVR file could not be opened", fileName); } else { // Check PVR image version unsigned char pvrVersion = 0; fread(&pvrVersion, sizeof(unsigned char), 1, pvrFile); fseek(pvrFile, 0, SEEK_SET); // Load different PVR data formats if (pvrVersion == 0x50) { PVRHeaderV3 pvrHeader; // Get PVR image header fread(&pvrHeader, sizeof(PVRHeaderV3), 1, pvrFile); if ((pvrHeader.id[0] != 'P') || (pvrHeader.id[1] != 'V') || (pvrHeader.id[2] != 'R') || (pvrHeader.id[3] != 3)) { TraceLog(LOG_WARNING, "[%s] PVR file does not seem to be a valid image", fileName); } else { image.width = pvrHeader.width; image.height = pvrHeader.height; image.mipmaps = pvrHeader.numMipmaps; // Check data format if (((pvrHeader.channels[0] == 'l') && (pvrHeader.channels[1] == 0)) && (pvrHeader.channelDepth[0] == 8)) image.format = UNCOMPRESSED_GRAYSCALE; else if (((pvrHeader.channels[0] == 'l') && (pvrHeader.channels[1] == 'a')) && ((pvrHeader.channelDepth[0] == 8) && (pvrHeader.channelDepth[1] == 8))) image.format = UNCOMPRESSED_GRAY_ALPHA; else if ((pvrHeader.channels[0] == 'r') && (pvrHeader.channels[1] == 'g') && (pvrHeader.channels[2] == 'b')) { if (pvrHeader.channels[3] == 'a') { if ((pvrHeader.channelDepth[0] == 5) && (pvrHeader.channelDepth[1] == 5) && (pvrHeader.channelDepth[2] == 5) && (pvrHeader.channelDepth[3] == 1)) image.format = UNCOMPRESSED_R5G5B5A1; else if ((pvrHeader.channelDepth[0] == 4) && (pvrHeader.channelDepth[1] == 4) && (pvrHeader.channelDepth[2] == 4) && (pvrHeader.channelDepth[3] == 4)) image.format = UNCOMPRESSED_R4G4B4A4; else if ((pvrHeader.channelDepth[0] == 8) && (pvrHeader.channelDepth[1] == 8) && (pvrHeader.channelDepth[2] == 8) && (pvrHeader.channelDepth[3] == 8)) image.format = UNCOMPRESSED_R8G8B8A8; } else if (pvrHeader.channels[3] == 0) { if ((pvrHeader.channelDepth[0] == 5) && (pvrHeader.channelDepth[1] == 6) && (pvrHeader.channelDepth[2] == 5)) image.format = UNCOMPRESSED_R5G6B5; else if ((pvrHeader.channelDepth[0] == 8) && (pvrHeader.channelDepth[1] == 8) && (pvrHeader.channelDepth[2] == 8)) image.format = UNCOMPRESSED_R8G8B8; } } else if (pvrHeader.channels[0] == 2) image.format = COMPRESSED_PVRT_RGB; else if (pvrHeader.channels[0] == 3) image.format = COMPRESSED_PVRT_RGBA; // Skip meta data header unsigned char unused = 0; for (int i = 0; i < pvrHeader.metaDataSize; i++) fread(&unused, sizeof(unsigned char), 1, pvrFile); // Calculate data size (depends on format) int bpp = 0; switch (image.format) { case UNCOMPRESSED_GRAYSCALE: bpp = 8; break; case UNCOMPRESSED_GRAY_ALPHA: case UNCOMPRESSED_R5G5B5A1: case UNCOMPRESSED_R5G6B5: case UNCOMPRESSED_R4G4B4A4: bpp = 16; break; case UNCOMPRESSED_R8G8B8A8: bpp = 32; break; case UNCOMPRESSED_R8G8B8: bpp = 24; break; case COMPRESSED_PVRT_RGB: case COMPRESSED_PVRT_RGBA: bpp = 4; break; default: break; } int dataSize = image.width*image.height*bpp/8; // Total data size in bytes image.data = (unsigned char *)malloc(dataSize*sizeof(unsigned char)); // Read data from file fread(image.data, dataSize, 1, pvrFile); } } else if (pvrVersion == 52) TraceLog(LOG_INFO, "PVR v2 not supported, update your files to PVR v3"); fclose(pvrFile); // Close file pointer } return image; } #endif #if defined(SUPPORT_FILEFORMAT_ASTC) // Load ASTC compressed image data (ASTC compression) static Image LoadASTC(const char *fileName) { // Required extensions: // GL_KHR_texture_compression_astc_hdr // GL_KHR_texture_compression_astc_ldr // Supported tokens (defined by extensions) // GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93b0 // GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93b7 // ASTC file Header (16 bytes) typedef struct { unsigned char id[4]; // Signature: 0x13 0xAB 0xA1 0x5C unsigned char blockX; // Block X dimensions unsigned char blockY; // Block Y dimensions unsigned char blockZ; // Block Z dimensions (1 for 2D images) unsigned char width[3]; // Image width in pixels (24bit value) unsigned char height[3]; // Image height in pixels (24bit value) unsigned char length[3]; // Image Z-size (1 for 2D images) } ASTCHeader; Image image = { 0 }; FILE *astcFile = fopen(fileName, "rb"); if (astcFile == NULL) { TraceLog(LOG_WARNING, "[%s] ASTC file could not be opened", fileName); } else { ASTCHeader astcHeader; // Get ASTC image header fread(&astcHeader, sizeof(ASTCHeader), 1, astcFile); if ((astcHeader.id[3] != 0x5c) || (astcHeader.id[2] != 0xa1) || (astcHeader.id[1] != 0xab) || (astcHeader.id[0] != 0x13)) { TraceLog(LOG_WARNING, "[%s] ASTC file does not seem to be a valid image", fileName); } else { // NOTE: Assuming Little Endian (could it be wrong?) image.width = 0x00000000 | ((int)astcHeader.width[2] << 16) | ((int)astcHeader.width[1] << 8) | ((int)astcHeader.width[0]); image.height = 0x00000000 | ((int)astcHeader.height[2] << 16) | ((int)astcHeader.height[1] << 8) | ((int)astcHeader.height[0]); TraceLog(LOG_DEBUG, "ASTC image width: %i", image.width); TraceLog(LOG_DEBUG, "ASTC image height: %i", image.height); TraceLog(LOG_DEBUG, "ASTC image blocks: %ix%i", astcHeader.blockX, astcHeader.blockY); image.mipmaps = 1; // NOTE: ASTC format only contains one mipmap level // NOTE: Each block is always stored in 128bit so we can calculate the bpp int bpp = 128/(astcHeader.blockX*astcHeader.blockY); // NOTE: Currently we only support 2 blocks configurations: 4x4 and 8x8 if ((bpp == 8) || (bpp == 2)) { int dataSize = image.width*image.height*bpp/8; // Data size in bytes image.data = (unsigned char *)malloc(dataSize*sizeof(unsigned char)); fread(image.data, dataSize, 1, astcFile); if (bpp == 8) image.format = COMPRESSED_ASTC_4x4_RGBA; else if (bpp == 2) image.format = COMPRESSED_ASTC_8x8_RGBA; } else TraceLog(LOG_WARNING, "[%s] ASTC block size configuration not supported", fileName); } fclose(astcFile); } return image; } #endif