/********************************************************************************************** * * rlgl - raylib OpenGL abstraction layer * * raylib now uses OpenGL 1.1 style functions (rlVertex) that are mapped to selected OpenGL version: * OpenGL 1.1 - Direct map rl* -> gl* * OpenGL 3.3+ - Vertex data is stored in VAOs, call rlglDraw() to render * OpenGL ES 2 - Same behaviour as OpenGL 3.3+ * * Copyright (c) 2014 Ramon Santamaria (Ray San - raysan@raysanweb.com) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #include "rlgl.h" #include // Standard input / output lib #include // Declares malloc() and free() for memory management, rand() #if defined(GRAPHICS_API_OPENGL_11) #ifdef __APPLE__ // OpenGL include for OSX #include #else #include // Basic OpenGL include #endif #endif #if defined(GRAPHICS_API_OPENGL_33) #define GLEW_STATIC #ifdef __APPLE__ // OpenGL include for OSX #include #else #include // Extensions loading lib //#include "glad.h" // TODO: Other extensions loading lib? --> REVIEW #endif #endif #if defined(GRAPHICS_API_OPENGL_ES2) #include #include #include #endif //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- #define MATRIX_STACK_SIZE 16 // Matrix stack max size #define MAX_DRAWS_BY_TEXTURE 256 // Draws are organized by texture changes #define TEMP_VERTEX_BUFFER_SIZE 4096 // Temporal Vertex Buffer (required for vertex-transformations) // NOTE: Every vertex are 3 floats (12 bytes) #ifndef GL_COMPRESSED_RGB_S3TC_DXT1_EXT #define GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT1_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT3_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT5_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #endif #ifndef GL_ETC1_RGB8_OES #define GL_ETC1_RGB8_OES 0x8D64 #endif #ifndef GL_COMPRESSED_RGB8_ETC2 #define GL_COMPRESSED_RGB8_ETC2 0x9274 #endif #ifndef GL_COMPRESSED_RGBA8_ETC2_EAC #define GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278 #endif //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- // Vertex buffer (position + color arrays) // NOTE: Used for lines and triangles VAOs typedef struct { int vCounter; int cCounter; float *vertices; // 3 components per vertex unsigned char *colors; // 4 components per vertex } VertexPositionColorBuffer; // Vertex buffer (position + texcoords + color arrays) // NOTE: Not used typedef struct { int vCounter; int tcCounter; int cCounter; float *vertices; // 3 components per vertex float *texcoords; // 2 components per vertex unsigned char *colors; // 4 components per vertex } VertexPositionColorTextureBuffer; // Vertex buffer (position + texcoords + normals arrays) // NOTE: Not used typedef struct { int vCounter; int tcCounter; int nCounter; float *vertices; // 3 components per vertex float *texcoords; // 2 components per vertex float *normals; // 3 components per vertex //short *normals; // NOTE: Less data load... but padding issues and normalizing required! } VertexPositionTextureNormalBuffer; // Vertex buffer (position + texcoords + colors + indices arrays) // NOTE: Used for quads VAO typedef struct { int vCounter; int tcCounter; int cCounter; float *vertices; // 3 components per vertex float *texcoords; // 2 components per vertex unsigned char *colors; // 4 components per vertex #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) unsigned int *indices; // 6 indices per quad (could be int) #elif defined(GRAPHICS_API_OPENGL_ES2) unsigned short *indices; // 6 indices per quad (must be short) // NOTE: 6*2 byte = 12 byte, not alignment problem! #endif } VertexPositionColorTextureIndexBuffer; // Draw call type // NOTE: Used to track required draw-calls, organized by texture typedef struct { GLuint textureId; int vertexCount; } DrawCall; // pixel type (same as Color type) // NOTE: Used exclusively in mipmap generation functions typedef struct { unsigned char r; unsigned char g; unsigned char b; unsigned char a; } pixel; //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) static Matrix stack[MATRIX_STACK_SIZE]; static int stackCounter = 0; static Matrix modelview; static Matrix projection; static Matrix *currentMatrix; static int currentMatrixMode; static DrawMode currentDrawMode; // Vertex arrays for lines, triangles and quads static VertexPositionColorBuffer lines; // No texture support static VertexPositionColorBuffer triangles; // No texture support static VertexPositionColorTextureIndexBuffer quads; // Shader Programs static Shader defaultShader, simpleShader; // Vertex Array Objects (VAO) static GLuint vaoLines, vaoTriangles, vaoQuads; // Vertex Buffer Objects (VBO) static GLuint linesBuffer[2]; static GLuint trianglesBuffer[2]; static GLuint quadsBuffer[4]; static DrawCall *draws; static int drawsCounter; // Temp vertex buffer to be used with rlTranslate, rlRotate, rlScale static Vector3 *tempBuffer; static int tempBufferCount = 0; static bool useTempBuffer = false; // Support for VAOs (OpenGL ES2 could not support VAO extensions) static bool vaoSupported = false; // Framebuffer object and texture static GLuint fbo, fboColorTexture, fboDepthTexture; static Model postproQuad; #endif #if defined(GRAPHICS_API_OPENGL_ES2) // NOTE: VAO functionality is exposed through extensions (OES) // emscripten does not support VAOs static PFNGLGENVERTEXARRAYSOESPROC glGenVertexArrays; static PFNGLBINDVERTEXARRAYOESPROC glBindVertexArray; static PFNGLDELETEVERTEXARRAYSOESPROC glDeleteVertexArrays; static PFNGLISVERTEXARRAYOESPROC glIsVertexArray; #endif // White texture useful for plain color polys (required by shader) // NOTE: It's required in shapes and models modules! unsigned int whiteTexture; //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) static Shader LoadDefaultShader(void); static Shader LoadSimpleShader(void); static void InitializeBuffers(void); static void InitializeBuffersGPU(void); static void UpdateBuffers(void); static void LoadCompressedTexture(unsigned char *data, int width, int height, int mipmapCount, int compressedFormat); // Custom shader files loading (external) static char *TextFileRead(char *fn); #endif #if defined(GRAPHICS_API_OPENGL_11) static int GenerateMipmaps(unsigned char *data, int baseWidth, int baseHeight); static pixel *GenNextMipmap(pixel *srcData, int srcWidth, int srcHeight); #endif //---------------------------------------------------------------------------------- // Module Functions Definition - Matrix operations //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_11) // Fallback to OpenGL 1.1 function calls //--------------------------------------- void rlMatrixMode(int mode) { switch (mode) { case RL_PROJECTION: glMatrixMode(GL_PROJECTION); break; case RL_MODELVIEW: glMatrixMode(GL_MODELVIEW); break; case RL_TEXTURE: glMatrixMode(GL_TEXTURE); break; default: break; } } void rlFrustum(double left, double right, double bottom, double top, double near, double far) { glFrustum(left, right, bottom, top, near, far); } void rlOrtho(double left, double right, double bottom, double top, double near, double far) { glOrtho(left, right, bottom, top, near, far); } void rlPushMatrix(void) { glPushMatrix(); } void rlPopMatrix(void) { glPopMatrix(); } void rlLoadIdentity(void) { glLoadIdentity(); } void rlTranslatef(float x, float y, float z) { glTranslatef(x, y, z); } void rlRotatef(float angleDeg, float x, float y, float z) { glRotatef(angleDeg, x, y, z); } void rlScalef(float x, float y, float z) { glScalef(x, y, z); } void rlMultMatrixf(float *mat) { glMultMatrixf(mat); } #elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Choose the current matrix to be transformed void rlMatrixMode(int mode) { if (mode == RL_PROJECTION) currentMatrix = &projection; else if (mode == RL_MODELVIEW) currentMatrix = &modelview; //else if (mode == RL_TEXTURE) // Not supported currentMatrixMode = mode; } // Push the current matrix to stack void rlPushMatrix(void) { if (stackCounter == MATRIX_STACK_SIZE - 1) { TraceLog(ERROR, "Stack Buffer Overflow (MAX %i Matrix)", MATRIX_STACK_SIZE); } stack[stackCounter] = *currentMatrix; rlLoadIdentity(); stackCounter++; if (currentMatrixMode == RL_MODELVIEW) useTempBuffer = true; } // Pop lattest inserted matrix from stack void rlPopMatrix(void) { if (stackCounter > 0) { Matrix mat = stack[stackCounter - 1]; *currentMatrix = mat; stackCounter--; } } // Reset current matrix to identity matrix void rlLoadIdentity(void) { *currentMatrix = MatrixIdentity(); } // Multiply the current matrix by a translation matrix void rlTranslatef(float x, float y, float z) { Matrix mat = MatrixTranslate(x, y, z); MatrixTranspose(&mat); *currentMatrix = MatrixMultiply(*currentMatrix, mat); } // Multiply the current matrix by a rotation matrix void rlRotatef(float angleDeg, float x, float y, float z) { // TODO: Support rotation in multiple axes Matrix rotation = MatrixIdentity(); // OPTION 1: It works... //if (x == 1) rot = MatrixRotateX(angleDeg*DEG2RAD); //else if (y == 1) rot = MatrixRotateY(angleDeg*DEG2RAD); //else if (z == 1) rot = MatrixRotateZ(angleDeg*DEG2RAD); // OPTION 2: Requires review... Vector3 axis = (Vector3){ x, y, z }; VectorNormalize(&axis); rotation = MatrixRotateY(angleDeg*DEG2RAD); //MatrixFromAxisAngle(axis, angleDeg*DEG2RAD); // OPTION 3: TODO: Review, it doesn't work! //Vector3 vec = (Vector3){ x, y, z }; //VectorNormalize(&vec); //rot = MatrixRotate(angleDeg*vec.x, angleDeg*vec.x, angleDeg*vec.x); MatrixTranspose(&rotation); *currentMatrix = MatrixMultiply(*currentMatrix, rotation); } // Multiply the current matrix by a scaling matrix void rlScalef(float x, float y, float z) { Matrix mat = MatrixScale(x, y, z); MatrixTranspose(&mat); *currentMatrix = MatrixMultiply(*currentMatrix, mat); } // Multiply the current matrix by another matrix void rlMultMatrixf(float *m) { // Matrix creation from array Matrix mat = { m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[10], m[11], m[12], m[13], m[14], m[15] }; *currentMatrix = MatrixMultiply(*currentMatrix, mat); } // Multiply the current matrix by a perspective matrix generated by parameters void rlFrustum(double left, double right, double bottom, double top, double near, double far) { Matrix matPerps = MatrixFrustum(left, right, bottom, top, near, far); MatrixTranspose(&matPerps); *currentMatrix = MatrixMultiply(*currentMatrix, matPerps); } // Multiply the current matrix by an orthographic matrix generated by parameters void rlOrtho(double left, double right, double bottom, double top, double near, double far) { Matrix matOrtho = MatrixOrtho(left, right, bottom, top, near, far); MatrixTranspose(&matOrtho); *currentMatrix = MatrixMultiply(*currentMatrix, matOrtho); } #endif //---------------------------------------------------------------------------------- // Module Functions Definition - Vertex level operations //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_11) // Fallback to OpenGL 1.1 function calls //--------------------------------------- void rlBegin(int mode) { switch (mode) { case RL_LINES: glBegin(GL_LINES); break; case RL_TRIANGLES: glBegin(GL_TRIANGLES); break; case RL_QUADS: glBegin(GL_QUADS); break; default: break; } } void rlEnd() { glEnd(); } void rlVertex2i(int x, int y) { glVertex2i(x, y); } void rlVertex2f(float x, float y) { glVertex2f(x, y); } void rlVertex3f(float x, float y, float z) { glVertex3f(x, y, z); } void rlTexCoord2f(float x, float y) { glTexCoord2f(x, y); } void rlNormal3f(float x, float y, float z) { glNormal3f(x, y, z); } void rlColor4ub(byte r, byte g, byte b, byte a) { glColor4ub(r, g, b, a); } void rlColor3f(float x, float y, float z) { glColor3f(x, y, z); } void rlColor4f(float x, float y, float z, float w) { glColor4f(x, y, z, w); } #elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Initialize drawing mode (how to organize vertex) void rlBegin(int mode) { // Draw mode can only be RL_LINES, RL_TRIANGLES and RL_QUADS currentDrawMode = mode; } // Finish vertex providing void rlEnd(void) { if (useTempBuffer) { // NOTE: In this case, *currentMatrix is already transposed because transposing has been applied // independently to translation-scale-rotation matrices -> t(M1 x M2) = t(M2) x t(M1) // This way, rlTranslatef(), rlRotatef()... behaviour is the same than OpenGL 1.1 // Apply transformation matrix to all temp vertices for (int i = 0; i < tempBufferCount; i++) VectorTransform(&tempBuffer[i], *currentMatrix); // Deactivate tempBuffer usage to allow rlVertex3f do its job useTempBuffer = false; // Copy all transformed vertices to right VAO for (int i = 0; i < tempBufferCount; i++) rlVertex3f(tempBuffer[i].x, tempBuffer[i].y, tempBuffer[i].z); // Reset temp buffer tempBufferCount = 0; } // Make sure vertexCount is the same for vertices-texcoords-normals-colors // NOTE: In OpenGL 1.1, one glColor call can be made for all the subsequent glVertex calls. switch (currentDrawMode) { case RL_LINES: { if (lines.vCounter != lines.cCounter) { int addColors = lines.vCounter - lines.cCounter; for (int i = 0; i < addColors; i++) { lines.colors[4*lines.cCounter] = lines.colors[4*lines.cCounter - 4]; lines.colors[4*lines.cCounter + 1] = lines.colors[4*lines.cCounter - 3]; lines.colors[4*lines.cCounter + 2] = lines.colors[4*lines.cCounter - 2]; lines.colors[4*lines.cCounter + 3] = lines.colors[4*lines.cCounter - 1]; lines.cCounter++; } } } break; case RL_TRIANGLES: { if (triangles.vCounter != triangles.cCounter) { int addColors = triangles.vCounter - triangles.cCounter; for (int i = 0; i < addColors; i++) { triangles.colors[4*triangles.cCounter] = triangles.colors[4*triangles.cCounter - 4]; triangles.colors[4*triangles.cCounter + 1] = triangles.colors[4*triangles.cCounter - 3]; triangles.colors[4*triangles.cCounter + 2] = triangles.colors[4*triangles.cCounter - 2]; triangles.colors[4*triangles.cCounter + 3] = triangles.colors[4*triangles.cCounter - 1]; triangles.cCounter++; } } } break; case RL_QUADS: { // Make sure colors count match vertex count if (quads.vCounter != quads.cCounter) { int addColors = quads.vCounter - quads.cCounter; for (int i = 0; i < addColors; i++) { quads.colors[4*quads.cCounter] = quads.colors[4*quads.cCounter - 4]; quads.colors[4*quads.cCounter + 1] = quads.colors[4*quads.cCounter - 3]; quads.colors[4*quads.cCounter + 2] = quads.colors[4*quads.cCounter - 2]; quads.colors[4*quads.cCounter + 3] = quads.colors[4*quads.cCounter - 1]; quads.cCounter++; } } // Make sure texcoords count match vertex count if (quads.vCounter != quads.tcCounter) { int addTexCoords = quads.vCounter - quads.tcCounter; for (int i = 0; i < addTexCoords; i++) { quads.texcoords[2*quads.tcCounter] = 0.0f; quads.texcoords[2*quads.tcCounter + 1] = 0.0f; quads.tcCounter++; } } // TODO: Make sure normals count match vertex count... if normals support is added in a future... :P } break; default: break; } } // Define one vertex (position) void rlVertex3f(float x, float y, float z) { if (useTempBuffer) { tempBuffer[tempBufferCount].x = x; tempBuffer[tempBufferCount].y = y; tempBuffer[tempBufferCount].z = z; tempBufferCount++; } else { switch (currentDrawMode) { case RL_LINES: { // Verify that MAX_LINES_BATCH limit not reached if (lines.vCounter / 2 < MAX_LINES_BATCH) { lines.vertices[3*lines.vCounter] = x; lines.vertices[3*lines.vCounter + 1] = y; lines.vertices[3*lines.vCounter + 2] = z; lines.vCounter++; } else TraceLog(ERROR, "MAX_LINES_BATCH overflow"); } break; case RL_TRIANGLES: { // Verify that MAX_TRIANGLES_BATCH limit not reached if (triangles.vCounter / 3 < MAX_TRIANGLES_BATCH) { triangles.vertices[3*triangles.vCounter] = x; triangles.vertices[3*triangles.vCounter + 1] = y; triangles.vertices[3*triangles.vCounter + 2] = z; triangles.vCounter++; } else TraceLog(ERROR, "MAX_TRIANGLES_BATCH overflow"); } break; case RL_QUADS: { // Verify that MAX_QUADS_BATCH limit not reached if (quads.vCounter / 4 < MAX_QUADS_BATCH) { quads.vertices[3*quads.vCounter] = x; quads.vertices[3*quads.vCounter + 1] = y; quads.vertices[3*quads.vCounter + 2] = z; quads.vCounter++; draws[drawsCounter - 1].vertexCount++; } else TraceLog(ERROR, "MAX_QUADS_BATCH overflow"); } break; default: break; } } } // Define one vertex (position) void rlVertex2f(float x, float y) { rlVertex3f(x, y, 0.0f); } // Define one vertex (position) void rlVertex2i(int x, int y) { rlVertex3f((float)x, (float)y, 0.0f); } // Define one vertex (texture coordinate) // NOTE: Texture coordinates are limited to QUADS only void rlTexCoord2f(float x, float y) { if (currentDrawMode == RL_QUADS) { quads.texcoords[2*quads.tcCounter] = x; quads.texcoords[2*quads.tcCounter + 1] = y; quads.tcCounter++; } } // Define one vertex (normal) // NOTE: Normals limited to TRIANGLES only ? void rlNormal3f(float x, float y, float z) { // TODO: Normals usage... } // Define one vertex (color) void rlColor4ub(byte x, byte y, byte z, byte w) { switch (currentDrawMode) { case RL_LINES: { lines.colors[4*lines.cCounter] = x; lines.colors[4*lines.cCounter + 1] = y; lines.colors[4*lines.cCounter + 2] = z; lines.colors[4*lines.cCounter + 3] = w; lines.cCounter++; } break; case RL_TRIANGLES: { triangles.colors[4*triangles.cCounter] = x; triangles.colors[4*triangles.cCounter + 1] = y; triangles.colors[4*triangles.cCounter + 2] = z; triangles.colors[4*triangles.cCounter + 3] = w; triangles.cCounter++; } break; case RL_QUADS: { quads.colors[4*quads.cCounter] = x; quads.colors[4*quads.cCounter + 1] = y; quads.colors[4*quads.cCounter + 2] = z; quads.colors[4*quads.cCounter + 3] = w; quads.cCounter++; } break; default: break; } } // Define one vertex (color) void rlColor4f(float r, float g, float b, float a) { rlColor4ub((byte)(r*255), (byte)(g*255), (byte)(b*255), (byte)(a*255)); } // Define one vertex (color) void rlColor3f(float x, float y, float z) { rlColor4ub((byte)(x*255), (byte)(y*255), (byte)(z*255), 255); } #endif //---------------------------------------------------------------------------------- // Module Functions Definition - OpenGL equivalent functions (common to 1.1, 3.3+, ES2) //---------------------------------------------------------------------------------- // Enable texture usage void rlEnableTexture(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_11) glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, id); #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (draws[drawsCounter - 1].textureId != id) { if (draws[drawsCounter - 1].vertexCount > 0) drawsCounter++; draws[drawsCounter - 1].textureId = id; draws[drawsCounter - 1].vertexCount = 0; } #endif } // Disable texture usage void rlDisableTexture(void) { #if defined(GRAPHICS_API_OPENGL_11) glDisable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); #endif } // Unload texture from GPU memory void rlDeleteTextures(unsigned int id) { glDeleteTextures(1, &id); } // Enable rendering to postprocessing FBO void rlEnableFBO(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindFramebuffer(GL_FRAMEBUFFER, fbo); #endif } // Unload shader from GPU memory void rlDeleteShader(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glDeleteProgram(id); #endif } // Unload vertex data (VAO) from GPU memory void rlDeleteVertexArrays(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (vaoSupported) glDeleteVertexArrays(1, &id); #endif } // Unload vertex data (VBO) from GPU memory void rlDeleteBuffers(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glDeleteBuffers(1, &id); #endif } // Clear color buffer with color void rlClearColor(byte r, byte g, byte b, byte a) { // Color values clamp to 0.0f(0) and 1.0f(255) float cr = (float)r / 255; float cg = (float)g / 255; float cb = (float)b / 255; float ca = (float)a / 255; glClearColor(cr, cg, cb, ca); } // Clear used screen buffers (color and depth) void rlClearScreenBuffers(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear used buffers: Color and Depth (Depth is used for 3D) //glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); // Stencil buffer not used... } // Returns current OpenGL version int rlGetVersion(void) { #if defined(GRAPHICS_API_OPENGL_11) return OPENGL_11; #elif defined(GRAPHICS_API_OPENGL_33) return OPENGL_33; #elif defined(GRAPHICS_API_OPENGL_ES2) return OPENGL_ES_20; #endif } //---------------------------------------------------------------------------------- // Module Functions Definition - rlgl Functions //---------------------------------------------------------------------------------- // Init OpenGL 3.3+ required data void rlglInit(void) { #if defined(GRAPHICS_API_OPENGL_33) // Loading extensions the hard way (Example) /* GLint numExt; glGetIntegerv(GL_NUM_EXTENSIONS, &numExt); for (int i = 0; i < numExt; i++) { const GLubyte *extensionName = glGetStringi(GL_EXTENSIONS, i); if (strcmp(extensionName, (const GLubyte *)"GL_ARB_vertex_array_object") == 0) { // The extension is supported by our hardware and driver, try to get related functions popinters glGenVertexArrays = (PFNGLGENVERTEXARRAYSOESPROC)wglGetProcAddress("glGenVertexArrays"); glBindVertexArray = (PFNGLBINDVERTEXARRAYOESPROC)wglGetProcAddress("glBindVertexArray"); glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSOESPROC)wglGetProcAddress("glDeleteVertexArrays"); glIsVertexArray = (PFNGLISVERTEXARRAYOESPROC)wglGetProcAddress("glIsVertexArray"); } } */ // Initialize extensions using GLEW glewExperimental = 1; // Needed for core profile GLenum error = glewInit(); if (error != GLEW_OK) TraceLog(ERROR, "Failed to initialize GLEW - Error Code: %s\n", glewGetErrorString(error)); if (glewIsSupported("GL_VERSION_3_3")) TraceLog(INFO, "OpenGL 3.3 extensions supported"); // NOTE: GLEW is a big library that loads ALL extensions, using glad we can only load required ones... //if (!gladLoadGL()) TraceLog("ERROR: Failed to initialize glad\n"); vaoSupported = true; #endif #if defined(GRAPHICS_API_OPENGL_ES2) // NOTE: emscripten does not support VAOs natively, it uses emulation and it reduces overall performance... #if !defined(PLATFORM_WEB) glGenVertexArrays = (PFNGLGENVERTEXARRAYSOESPROC)eglGetProcAddress("glGenVertexArraysOES"); glBindVertexArray = (PFNGLBINDVERTEXARRAYOESPROC)eglGetProcAddress("glBindVertexArrayOES"); glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSOESPROC)eglGetProcAddress("glDeleteVertexArraysOES"); glIsVertexArray = (PFNGLISVERTEXARRAYOESPROC)eglGetProcAddress("glIsVertexArrayOES"); #endif if (glGenVertexArrays == NULL) TraceLog(WARNING, "Could not initialize VAO extensions, VAOs not supported"); else { vaoSupported = true; TraceLog(INFO, "VAO extensions initialized successfully"); } #endif // Print current OpenGL and GLSL version TraceLog(INFO, "GPU: Vendor: %s", glGetString(GL_VENDOR)); TraceLog(INFO, "GPU: Renderer: %s", glGetString(GL_RENDERER)); TraceLog(INFO, "GPU: Version: %s", glGetString(GL_VERSION)); TraceLog(INFO, "GPU: GLSL: %s", glGetString(0x8B8C)); //GL_SHADING_LANGUAGE_VERSION // NOTE: We can get a bunch of extra information about GPU capabilities (glGet*) //int maxTexSize; //glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTexSize); //TraceLog(INFO, "GL_MAX_TEXTURE_SIZE: %i", maxTexSize); //int numAuxBuffers; //glGetIntegerv(GL_AUX_BUFFERS, &numAuxBuffers); //TraceLog(INFO, "GL_AUX_BUFFERS: %i", numAuxBuffers); // Show supported extensions // NOTE: We don't need that much data on screen... right now... /* #if defined(GRAPHICS_API_OPENGL_33) GLint numExt; glGetIntegerv(GL_NUM_EXTENSIONS, &numExt); for (int i = 0; i < numExt; i++) { TraceLog(INFO, "Supported extension: %s", glGetStringi(GL_EXTENSIONS, i)); } #elif defined(GRAPHICS_API_OPENGL_ES2) char *extensions = (char *)glGetString(GL_EXTENSIONS); // One big string // NOTE: String could be splitted using strtok() function (string.h) TraceLog(INFO, "Supported extension: %s", extensions); #endif */ /* GLint numComp = 0; glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numComp); GLint format[32] = { 0 }; glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, format); for (int i = 0; i < numComp; i++) { TraceLog(INFO, "Supported compressed format: 0x%x", format[i]); } */ #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Set default draw mode currentDrawMode = RL_TRIANGLES; // Reset projection and modelview matrices projection = MatrixIdentity(); modelview = MatrixIdentity(); currentMatrix = &modelview; // Initialize matrix stack for (int i = 0; i < MATRIX_STACK_SIZE; i++) stack[i] = MatrixIdentity(); // Init default Shader (GLSL 110) -> Common for GL 3.3+ and ES2 defaultShader = LoadDefaultShader(); simpleShader = LoadSimpleShader(); //customShader = LoadShader("custom.vs", "custom.fs"); // Works ok InitializeBuffers(); // Init vertex arrays InitializeBuffersGPU(); // Init VBO and VAO // Init temp vertex buffer, used when transformation required (translate, rotate, scale) tempBuffer = (Vector3 *)malloc(sizeof(Vector3)*TEMP_VERTEX_BUFFER_SIZE); for (int i = 0; i < TEMP_VERTEX_BUFFER_SIZE; i++) tempBuffer[i] = VectorZero(); // Create default white texture for plain colors (required by shader) unsigned char pixels[4] = { 255, 255, 255, 255 }; // 1 pixel RGBA (4 bytes) whiteTexture = rlglLoadTexture(pixels, 1, 1, UNCOMPRESSED_R8G8B8A8, 1, false); if (whiteTexture != 0) TraceLog(INFO, "[TEX ID %i] Base white texture loaded successfully", whiteTexture); else TraceLog(WARNING, "Base white texture could not be loaded"); // Init draw calls tracking system draws = (DrawCall *)malloc(sizeof(DrawCall)*MAX_DRAWS_BY_TEXTURE); for (int i = 0; i < MAX_DRAWS_BY_TEXTURE; i++) { draws[i].textureId = 0; draws[i].vertexCount = 0; } drawsCounter = 1; draws[drawsCounter - 1].textureId = whiteTexture; #endif } // Init postpro system void rlglInitPostpro(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Create the texture that will serve as the color attachment for the framebuffer glGenTextures(1, &fboColorTexture); glBindTexture(GL_TEXTURE_2D, fboColorTexture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, GetScreenWidth(), GetScreenHeight(), 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_2D, 0); // Create the texture that will serve as the depth attachment for the framebuffer. glGenTextures(1, &fboDepthTexture); glBindTexture(GL_TEXTURE_2D, fboDepthTexture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, GetScreenWidth(), GetScreenHeight(), 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_2D, 0); // Create the framebuffer object glGenFramebuffers(1, &fbo); glBindFramebuffer(GL_FRAMEBUFFER, fbo); // Attach color texture and depth texture to FBO glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fboColorTexture, 0); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, fboDepthTexture, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) TraceLog(WARNING, "Framebuffer object could not be created..."); else TraceLog(INFO, "[FBO ID %i] Framebuffer object created successfully", fbo); glBindFramebuffer(GL_FRAMEBUFFER, 0); // Create a simple quad model to render fbo texture VertexData quadData; quadData.vertexCount = 6; float w = GetScreenWidth(); float h = GetScreenHeight(); float quadPositions[6*3] = { w, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, h, 0.0, 0, h, 0.0, w, h, 0.0, w, 0.0, 0.0 }; float quadTexcoords[6*2] = { 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0 }; float quadNormals[6*3] = { 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0 }; unsigned char quadColors[6*4] = { 255 }; quadData.vertices = quadPositions; quadData.texcoords = quadTexcoords; quadData.normals = quadNormals; quadData.colors = quadColors; postproQuad = rlglLoadModel(quadData); Texture2D texture; texture.id = fboColorTexture; texture.width = w; texture.height = h; SetModelTexture(&postproQuad, texture); #endif } // Set postprocessing shader void rlglSetPostproShader(Shader shader) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) SetModelShader(&postproQuad, shader); #endif } // Vertex Buffer Object deinitialization (memory free) void rlglClose(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Unbind everything if (vaoSupported) glBindVertexArray(0); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); glDisableVertexAttribArray(2); glDisableVertexAttribArray(3); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glUseProgram(0); // Delete VBOs glDeleteBuffers(1, &linesBuffer[0]); glDeleteBuffers(1, &linesBuffer[1]); glDeleteBuffers(1, &trianglesBuffer[0]); glDeleteBuffers(1, &trianglesBuffer[1]); glDeleteBuffers(1, &quadsBuffer[0]); glDeleteBuffers(1, &quadsBuffer[1]); glDeleteBuffers(1, &quadsBuffer[2]); glDeleteBuffers(1, &quadsBuffer[3]); if (vaoSupported) { // Delete VAOs glDeleteVertexArrays(1, &vaoLines); glDeleteVertexArrays(1, &vaoTriangles); glDeleteVertexArrays(1, &vaoQuads); } //glDetachShader(defaultShaderProgram, v); //glDetachShader(defaultShaderProgram, f); //glDeleteShader(v); //glDeleteShader(f); glDeleteProgram(defaultShader.id); glDeleteProgram(simpleShader.id); // Free vertex arrays memory free(lines.vertices); free(lines.colors); free(triangles.vertices); free(triangles.colors); free(quads.vertices); free(quads.texcoords); free(quads.colors); free(quads.indices); // Free GPU texture glDeleteTextures(1, &whiteTexture); if (fbo != 0) { glDeleteFramebuffers(1, &fbo); UnloadModel(postproQuad); } free(draws); #endif } void rlglDraw(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) UpdateBuffers(); if ((lines.vCounter > 0) || (triangles.vCounter > 0) || (quads.vCounter > 0)) { glUseProgram(defaultShader.id); glUniformMatrix4fv(defaultShader.projectionLoc, 1, false, GetMatrixVector(projection)); glUniformMatrix4fv(defaultShader.modelviewLoc, 1, false, GetMatrixVector(modelview)); glUniform1i(defaultShader.textureLoc, 0); } // NOTE: We draw in this order: triangle shapes, textured quads and lines if (triangles.vCounter > 0) { glBindTexture(GL_TEXTURE_2D, whiteTexture); if (vaoSupported) { glBindVertexArray(vaoTriangles); } else { glBindBuffer(GL_ARRAY_BUFFER, trianglesBuffer[0]); glVertexAttribPointer(defaultShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(defaultShader.vertexLoc); glBindBuffer(GL_ARRAY_BUFFER, trianglesBuffer[1]); glVertexAttribPointer(defaultShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(defaultShader.colorLoc); } glDrawArrays(GL_TRIANGLES, 0, triangles.vCounter); if (!vaoSupported) glBindBuffer(GL_ARRAY_BUFFER, 0); glBindTexture(GL_TEXTURE_2D, 0); } if (quads.vCounter > 0) { int quadsCount = 0; int numIndicesToProcess = 0; int indicesOffset = 0; if (vaoSupported) { glBindVertexArray(vaoQuads); } else { // Enable vertex attributes glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[0]); glVertexAttribPointer(defaultShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(defaultShader.vertexLoc); glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[1]); glVertexAttribPointer(defaultShader.texcoordLoc, 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(defaultShader.texcoordLoc); glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[2]); glVertexAttribPointer(defaultShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(defaultShader.colorLoc); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quadsBuffer[3]); } //TraceLog(DEBUG, "Draws required per frame: %i", drawsCounter); for (int i = 0; i < drawsCounter; i++) { quadsCount = draws[i].vertexCount/4; numIndicesToProcess = quadsCount*6; // Get number of Quads * 6 index by Quad //TraceLog(DEBUG, "Quads to render: %i - Vertex Count: %i", quadsCount, draws[i].vertexCount); glBindTexture(GL_TEXTURE_2D, draws[i].textureId); // NOTE: The final parameter tells the GPU the offset in bytes from the start of the index buffer to the location of the first index to process #if defined(GRAPHICS_API_OPENGL_33) glDrawElements(GL_TRIANGLES, numIndicesToProcess, GL_UNSIGNED_INT, (GLvoid*) (sizeof(GLuint) * indicesOffset)); #elif defined(GRAPHICS_API_OPENGL_ES2) glDrawElements(GL_TRIANGLES, numIndicesToProcess, GL_UNSIGNED_SHORT, (GLvoid*) (sizeof(GLushort) * indicesOffset)); #endif //GLenum err; //if ((err = glGetError()) != GL_NO_ERROR) TraceLog(INFO, "OpenGL error: %i", (int)err); //GL_INVALID_ENUM! indicesOffset += draws[i].vertexCount/4*6; } if (!vaoSupported) { glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures } if (lines.vCounter > 0) { glBindTexture(GL_TEXTURE_2D, whiteTexture); if (vaoSupported) { glBindVertexArray(vaoLines); } else { glBindBuffer(GL_ARRAY_BUFFER, linesBuffer[0]); glVertexAttribPointer(defaultShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(defaultShader.vertexLoc); glBindBuffer(GL_ARRAY_BUFFER, linesBuffer[1]); glVertexAttribPointer(defaultShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(defaultShader.colorLoc); } glDrawArrays(GL_LINES, 0, lines.vCounter); if (!vaoSupported) glBindBuffer(GL_ARRAY_BUFFER, 0); glBindTexture(GL_TEXTURE_2D, 0); } if (vaoSupported) glBindVertexArray(0); // Unbind VAO glUseProgram(0); // Unbind shader program // Reset draws counter drawsCounter = 1; draws[0].textureId = whiteTexture; draws[0].vertexCount = 0; // Reset vertex counters for next frame lines.vCounter = 0; lines.cCounter = 0; triangles.vCounter = 0; triangles.cCounter = 0; quads.vCounter = 0; quads.tcCounter = 0; quads.cCounter = 0; #endif } // Draw with postprocessing shader void rlglDrawPostpro(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindFramebuffer(GL_FRAMEBUFFER, 0); rlglDrawModel(postproQuad, (Vector3){0,0,0}, 0.0f, (Vector3){0,0,0}, (Vector3){1.0f, 1.0f, 1.0f}, WHITE, false); #endif } // Draw a 3d model void rlglDrawModel(Model model, Vector3 position, float rotationAngle, Vector3 rotationAxis, Vector3 scale, Color color, bool wires) { #if defined (GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // NOTE: glPolygonMode() not available on OpenGL ES if (wires) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); #endif #if defined(GRAPHICS_API_OPENGL_11) glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, model.texture.id); // NOTE: On OpenGL 1.1 we use Vertex Arrays to draw model glEnableClientState(GL_VERTEX_ARRAY); // Enable vertex array glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Enable texture coords array glEnableClientState(GL_NORMAL_ARRAY); // Enable normals array glVertexPointer(3, GL_FLOAT, 0, model.mesh.vertices); // Pointer to vertex coords array glTexCoordPointer(2, GL_FLOAT, 0, model.mesh.texcoords); // Pointer to texture coords array glNormalPointer(GL_FLOAT, 0, model.mesh.normals); // Pointer to normals array //glColorPointer(4, GL_UNSIGNED_BYTE, 0, model.mesh.colors); // Pointer to colors array (NOT USED) rlPushMatrix(); rlTranslatef(position.x, position.y, position.z); rlScalef(scale.x, scale.y, scale.z); rlRotatef(rotationAngle, rotationAxis.x, rotationAxis.y, rotationAxis.z); // TODO: If rotate in multiple axis, get rotation matrix and use rlMultMatrix() rlColor4ub(color.r, color.g, color.b, color.a); glDrawArrays(GL_TRIANGLES, 0, model.mesh.vertexCount); rlPopMatrix(); glDisableClientState(GL_VERTEX_ARRAY); // Disable vertex array glDisableClientState(GL_TEXTURE_COORD_ARRAY); // Disable texture coords array glDisableClientState(GL_NORMAL_ARRAY); // Disable normals array glDisable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glUseProgram(model.shader.id); // TODO: Use model.transform matrix Vector3 rotation = { 0.0f, 0.0f, 0.0f }; // Get transform matrix (rotation -> scale -> translation) Matrix transform = MatrixTransform(position, rotation, scale); // Object-space transformation Matrix modelviewworld = MatrixMultiply(transform, modelview); // World-space transformation // Projection: Screen-space transformation // NOTE: Drawing in OpenGL 3.3+, transform is passed to shader glUniformMatrix4fv(model.shader.projectionLoc, 1, false, GetMatrixVector(projection)); glUniformMatrix4fv(model.shader.modelviewLoc, 1, false, GetMatrixVector(modelviewworld)); glUniform1i(model.shader.textureLoc, 0); // Apply color tinting to model // NOTE: Just update one uniform on fragment shader float vColor[4] = { (float)color.r/255, (float)color.g/255, (float)color.b/255, (float)color.a/255 }; glUniform4fv(model.shader.tintColorLoc, 1, vColor); if (vaoSupported) { glBindVertexArray(model.mesh.vaoId); } else { // Bind model VBOs data glBindBuffer(GL_ARRAY_BUFFER, model.mesh.vboId[0]); glVertexAttribPointer(model.shader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(model.shader.vertexLoc); glBindBuffer(GL_ARRAY_BUFFER, model.mesh.vboId[1]); glVertexAttribPointer(model.shader.texcoordLoc, 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(model.shader.texcoordLoc); // Add normals support glBindBuffer(GL_ARRAY_BUFFER, model.mesh.vboId[2]); glVertexAttribPointer(model.shader.normalLoc, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(model.shader.normalLoc); } glBindTexture(GL_TEXTURE_2D, model.texture.id); glDrawArrays(GL_TRIANGLES, 0, model.mesh.vertexCount); glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures if (vaoSupported) glBindVertexArray(0); // Unbind VAO else glBindBuffer(GL_ARRAY_BUFFER, 0); // Unbind VBOs glUseProgram(0); #endif #if defined (GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // NOTE: glPolygonMode() not available on OpenGL ES if (wires) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); #endif } // Initialize Graphics Device (OpenGL stuff) void rlglInitGraphics(int offsetX, int offsetY, int width, int height) { // NOTE: Required! viewport must be recalculated if screen resized! glViewport(offsetX/2, offsetY/2, width - offsetX, height - offsetY); // Set viewport width and height // NOTE: Don't confuse glViewport with the transformation matrix // NOTE: glViewport just defines the area of the context that you will actually draw to. glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear used buffers, depth buffer is used for 3D glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set background color (black) //glClearDepth(1.0f); // Clear depth buffer (default) glEnable(GL_DEPTH_TEST); // Enables depth testing (required for 3D) glDepthFunc(GL_LEQUAL); // Type of depth testing to apply glEnable(GL_BLEND); // Enable color blending (required to work with transparencies) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Color blending function (how colors are mixed) #if defined(GRAPHICS_API_OPENGL_11) glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Improve quality of color and texture coordinate interpolation (Deprecated in OGL 3.0) // Other options: GL_FASTEST, GL_DONT_CARE (default) #endif rlMatrixMode(RL_PROJECTION); // Switch to PROJECTION matrix rlLoadIdentity(); // Reset current matrix (PROJECTION) rlOrtho(0, width - offsetX, height - offsetY, 0, 0, 1); // Config orthographic mode: top-left corner --> (0,0) rlMatrixMode(RL_MODELVIEW); // Switch back to MODELVIEW matrix rlLoadIdentity(); // Reset current matrix (MODELVIEW) // NOTE: All shapes/models triangles are drawn CCW glEnable(GL_CULL_FACE); // Enable backface culling (Disabled by default) //glCullFace(GL_BACK); // Cull the Back face (default) //glFrontFace(GL_CCW); // Front face are defined counter clockwise (default) #if defined(GRAPHICS_API_OPENGL_11) glShadeModel(GL_SMOOTH); // Smooth shading between vertex (vertex colors interpolation) (Deprecated on OpenGL 3.3+) // Possible options: GL_SMOOTH (Color interpolation) or GL_FLAT (no interpolation) #endif // TODO: Review this comment when called from window resize callback TraceLog(INFO, "OpenGL Graphics initialized successfully"); } // Get world coordinates from screen coordinates Vector3 rlglUnproject(Vector3 source, Matrix proj, Matrix view) { //GLint viewport[4]; //glGetIntegerv(GL_VIEWPORT, viewport); // Viewport data int x = 0; int y = 0; int width = GetScreenWidth(); int height = GetScreenHeight(); float minDepth = 0.0f; float maxDepth = 1.0f; /* Matrix modelviewprojection = MatrixMultiply(modelview, projection); MatrixInvert(&modelviewprojection); Vector3 vector; vector.x = (((source.x - x) / ((float)width)) * 2.0f) - 1.0f; vector.y = -((((source.y - y) / ((float)height)) * 2.0f) - 1.0f); vector.z = (source.z - minDepth) / (maxDepth - minDepth); //float a = (((vector.x * matrix.M14) + (vector.y * matrix.M24)) + (vector.z * matrix.M34)) + matrix.M44; //float a = (((vector.x * modelviewprojection.m3) + (vector.y * modelviewprojection.m7)) + (vector.z * modelviewprojection.m11)) + modelviewprojection.m15; VectorTransform(&vector, modelviewprojection); //if (!MathUtil.IsOne(a)) vector = (vector / a); //VectorScale(&vector, 1/a); return vector; */ /* Vector3 worldPoint; // Transformation matrices Matrix modelviewprojection = MatrixIdentity(); Quaternion quat; // Calculation for inverting a matrix, compute projection x modelview modelviewprojection = MatrixMultiply(proj, view); MatrixInvert(&modelviewprojection); // Transformation of normalized coordinates between -1 and 1 quat.x = ((source.x - (float)x)/(float)width*2.0) - 1.0f; quat.y = ((source.y - (float)y)/(float)height*2.0) - 1.0f; quat.z = 2.0*source.z - 1.0; quat.w = 1.0; // Objects coordinates QuaternionTransform(&quat, modelviewprojection); //if (quat.w == 0.0) return 0; worldPoint.x = quat.x/quat.w; worldPoint.y = quat.y/quat.w; worldPoint.z = quat.z/quat.w; return worldPoint; */ /* Quaternion quat; Vector3 vec; quat.x = 2.0f * GetMousePosition().x / (float)width - 1; quat.y = -(2.0f * GetMousePosition().y / (float)height - 1); quat.z = 0; quat.w = 1; Matrix invView; MatrixInvert(&view); Matrix invProj; MatrixInvert(&proj); quat.x = invProj.m0 * quat.x + invProj.m4 * quat.y + invProj.m8 * quat.z + invProj.m12 * quat.w; quat.y = invProj.m1 * quat.x + invProj.m5 * quat.y + invProj.m9 * quat.z + invProj.m13 * quat.w; quat.z = invProj.m2 * quat.x + invProj.m6 * quat.y + invProj.m10 * quat.z + invProj.m14 * quat.w; quat.w = invProj.m3 * quat.x + invProj.m7 * quat.y + invProj.m11 * quat.z + invProj.m15 * quat.w; quat.x = invView.m0 * quat.x + invView.m4 * quat.y + invView.m8 * quat.z + invView.m12 * quat.w; quat.y = invView.m1 * quat.x + invView.m5 * quat.y + invView.m9 * quat.z + invView.m13 * quat.w; quat.z = invView.m2 * quat.x + invView.m6 * quat.y + invView.m10 * quat.z + invView.m14 * quat.w; quat.w = invView.m3 * quat.x + invView.m7 * quat.y + invView.m11 * quat.z + invView.m15 * quat.w; vec.x /= quat.w; vec.y /= quat.w; vec.z /= quat.w; return vec; */ /* Vector3 worldPoint; // Transformation matrices Matrix modelviewprojection; Quaternion quat; // Calculation for inverting a matrix, compute projection x modelview modelviewprojection = MatrixMultiply(view, proj); // Now compute the inverse of matrix A MatrixInvert(&modelviewprojection); // Transformation of normalized coordinates between -1 and 1 quat.x = ((source.x - (float)x)/(float)width*2.0) - 1.0f; quat.y = ((source.y - (float)y)/(float)height*2.0) - 1.0f; quat.z = 2.0*source.z - 1.0; quat.w = 1.0; // Traspose quaternion and multiply Quaternion result; result.x = modelviewprojection.m0 * quad.x + modelviewprojection.m4 * quad.y + modelviewprojection.m8 * quad.z + modelviewprojection.m12 * quad.w; result.y = modelviewprojection.m1 * quad.x + modelviewprojection.m5 * quad.y + modelviewprojection.m9 * quad.z + modelviewprojection.m13 * quad.w; result.z = modelviewprojection.m2 * quad.x + modelviewprojection.m6 * quad.y + modelviewprojection.m10 * quad.z + modelviewprojection.m14 * quad.w; result.w = modelviewprojection.m3 * quad.x + modelviewprojection.m7 * quad.y + modelviewprojection.m11 * quad.z + modelviewprojection.m15 * quad.w; // Invert result.w = 1.0f / result.w; //if (quat.w == 0.0) return 0; worldPoint.x = quat.x * quat.w; worldPoint.y = quat.y * quat.w; worldPoint.z = quat.z * quat.w; return worldPoint; */ /* // Needed Vectors Vector3 normalDeviceCoordinates; Quaternion rayClip; Quaternion rayEye; Vector3 rayWorld; // Getting normal device coordinates float x = (2.0 * mousePosition.x) / GetScreenWidth() - 1.0; float y = 1.0 - (2.0 * mousePosition.y) / GetScreenHeight(); float z = 1.0; normalDeviceCoordinates = (Vector3){ x, y, z }; // Getting clip vector rayClip = (Quaternion){ normalDeviceCoordinates.x, normalDeviceCoordinates.y, -1, 1 }; Matrix invProjection = projection; MatrixInvert(&invProjection); rayEye = MatrixQuaternionMultiply(invProjection, rayClip); rayEye = (Quaternion){ rayEye.x, rayEye.y, -1, 0 }; Matrix invModelview = modelview; MatrixInvert(&invModelview); rayWorld = MatrixVector3Multiply(invModelview, (Vector3){rayEye.x, rayEye.y, rayEye.z} ); VectorNormalize(&rayWorld); return rayWorld; */ return (Vector3){ 0, 0, 0 }; } // Convert image data to OpenGL texture (returns OpenGL valid Id) unsigned int rlglLoadTexture(void *data, int width, int height, int textureFormat, int mipmapCount, bool genMipmaps) { glBindTexture(GL_TEXTURE_2D, 0); // Free any old binding GLuint id; // TODO: Review compressed textures support by OpenGL version /* (rlGetVersion() == OPENGL_11) if ((textureFormat == COMPRESSED_DXT1_RGB) || (textureFormat == COMPRESSED_DXT3_RGBA) || (textureFormat == COMPRESSED_DXT5_RGBA) || (textureFormat == COMPRESSED_ETC1_RGB8) || (textureFormat == COMPRESSED_ETC2_RGB8) || (textureFormat == COMPRESSED_ETC2_EAC_RGBA8)) { id = 0; TraceLog(WARNING, "GPU compressed textures not supported on OpenGL 1.1"); return id; } */ glGenTextures(1, &id); // Generate Pointer to the texture //glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, id); // NOTE: glTexParameteri does NOT affect texture uploading, just the way it's used! #if defined(GRAPHICS_API_OPENGL_ES2) // NOTE: OpenGL ES 2.0 with no GL_OES_texture_npot support (i.e. WebGL) has limited NPOT support, so CLAMP_TO_EDGE must be used glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // Set texture to clamp on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // Set texture to clamp on y-axis #else glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis #endif bool texIsPOT = false; // Check if width and height are power-of-two (POT) if (((width > 0) && ((width & (width - 1)) == 0)) && ((height > 0) && ((height & (height - 1)) == 0))) texIsPOT = true; if (genMipmaps && !texIsPOT) { TraceLog(WARNING, "[TEX ID %i] Texture is not power-of-two, mipmaps can not be generated", id); genMipmaps = false; } // TODO: Support mipmaps --> if (mipmapCount > 1) // If mipmaps are being used, we configure mag-min filters accordingly // NOTE: OpenGL ES 2.0 with no GL_OES_texture_npot support (i.e. WebGL) has limited NPOT support, so only GL_LINEAR or GL_NEAREST can be used if (genMipmaps) { // Trilinear filtering with mipmaps glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // Activate use of mipmaps (must be available) } else { // Not using mipmappings glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Filter for pixel-perfect drawing, alternative: GL_LINEAR glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // Filter for pixel-perfect drawing, alternative: GL_LINEAR } #if defined(GRAPHICS_API_OPENGL_11) if (genMipmaps) { TraceLog(WARNING, "[TEX ID %i] Mipmaps generated manually on CPU side", id); // Compute required mipmaps // NOTE: data size is reallocated to fit mipmaps data int mipmapCount = GenerateMipmaps(data, width, height); int offset = 0; int size = 0; int mipWidth = width; int mipHeight = height; // Load the mipmaps for (int level = 0; level < mipmapCount; level++) { glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA8, mipWidth, mipHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, data + offset); size = mipWidth*mipHeight*4; offset += size; mipWidth /= 2; mipHeight /= 2; } } else glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data); #endif #if defined(GRAPHICS_API_OPENGL_33) // NOTE: We define internal (GPU) format as GL_RGBA8 (probably BGRA8 in practice, driver takes care) // NOTE: On embedded systems, we let the driver choose the best internal format // Support for multiple color modes (16bit color modes and grayscale) // (sized)internalFormat format type // GL_R GL_RED GL_UNSIGNED_BYTE // GL_RGB565 GL_RGB GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_5_6_5 // GL_RGB5_A1 GL_RGBA GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_5_5_5_1 // GL_RGBA4 GL_RGBA GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_4_4_4_4 // GL_RGBA8 GL_RGBA GL_UNSIGNED_BYTE // GL_RGB8 GL_RGB GL_UNSIGNED_BYTE switch (textureFormat) { case UNCOMPRESSED_GRAYSCALE: { glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, width, height, 0, GL_RED, GL_UNSIGNED_BYTE, (unsigned char *)data); // With swizzleMask we define how a one channel texture will be mapped to RGBA // Required GL >= 3.3 or EXT_texture_swizzle/ARB_texture_swizzle GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, 1.0f }; glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); TraceLog(INFO, "Grayscale texture loaded and swizzled!"); } break; case UNCOMPRESSED_R5G6B5: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB565, width, height, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, (unsigned short *)data); break; case UNCOMPRESSED_R8G8B8: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_R5G5B5A1: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB5_A1, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, (unsigned short *)data); break; case UNCOMPRESSED_R4G4B4A4: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA4, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, (unsigned short *)data); break; case UNCOMPRESSED_R8G8B8A8: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case COMPRESSED_DXT1_RGB: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB_S3TC_DXT1_EXT); break; case COMPRESSED_DXT1_RGBA: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT); break; case COMPRESSED_DXT3_RGBA: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT); break; case COMPRESSED_DXT5_RGBA: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT); break; case COMPRESSED_ETC1_RGB: TraceLog(WARNING, "ETC compression not supported"); break; // NOTE: Requires OpenGL ES 2.0 or OpenGL 4.3 case COMPRESSED_ETC2_RGB: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB8_ETC2); break;//TraceLog(WARNING, "ETC compression not supported"); break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 case COMPRESSED_ETC2_EAC_RGBA: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA8_ETC2_EAC); break;//TraceLog(WARNING, "ETC compression not supported"); break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 //case COMPRESSED_ASTC_RGBA_4x4: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_ASTC_4x4_KHR); break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3 default: TraceLog(WARNING, "Texture format not recognized"); break; } if ((mipmapCount == 1) && (genMipmaps)) { glGenerateMipmap(GL_TEXTURE_2D); // Generate mipmaps automatically TraceLog(INFO, "[TEX ID %i] Mipmaps generated automatically for new texture", id); } #elif defined(GRAPHICS_API_OPENGL_ES2) // NOTE: on OpenGL ES 2.0 (WebGL), internalFormat must match format and options allowed are: GL_LUMINANCE, GL_RGB, GL_RGBA switch (textureFormat) { case UNCOMPRESSED_GRAYSCALE: glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, width, height, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_R5G6B5: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, (unsigned short *)data); break; case UNCOMPRESSED_R8G8B8: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_R5G5B5A1: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, (unsigned short *)data); break; case UNCOMPRESSED_R4G4B4A4: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, (unsigned short *)data); break; case UNCOMPRESSED_R8G8B8A8: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case COMPRESSED_DXT1_RGB: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB_S3TC_DXT1_EXT); break; case COMPRESSED_DXT1_RGBA: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB_S3TC_DXT1_EXT); break; case COMPRESSED_DXT3_RGBA: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT); break; // NOTE: Not supported by WebGL case COMPRESSED_DXT5_RGBA: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT); break; // NOTE: Not supported by WebGL case COMPRESSED_ETC1_RGB: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_ETC1_RGB8_OES); break; case COMPRESSED_ETC2_RGB: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB8_ETC2); break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 case COMPRESSED_ETC2_EAC_RGBA: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA8_ETC2_EAC); break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 //case COMPRESSED_ASTC_RGBA_4x4: LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_ASTC_4x4_KHR); break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3 default: TraceLog(WARNING, "Texture format not recognized"); break; } if ((mipmapCount == 1) && (genMipmaps)) { glGenerateMipmap(GL_TEXTURE_2D); // Generate mipmaps automatically TraceLog(INFO, "[TEX ID %i] Mipmaps generated automatically for new texture", id); } #endif // At this point we have the image converted to texture and uploaded to GPU // Unbind current texture glBindTexture(GL_TEXTURE_2D, 0); TraceLog(INFO, "[TEX ID %i] Texture created successfully (%ix%i)", id, width, height); return id; } // Load vertex data into a VAO (if supported) and VBO Model rlglLoadModel(VertexData mesh) { Model model; model.mesh = mesh; model.transform = MatrixIdentity(); #if defined(GRAPHICS_API_OPENGL_11) model.mesh.vaoId = 0; // Vertex Array Object model.mesh.vboId[0] = 0; // Vertex position VBO model.mesh.vboId[1] = 0; // Texcoords VBO model.mesh.vboId[2] = 0; // Normals VBO model.texture.id = 0; // No texture required model.shader.id = 0; // No shader used #elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) model.texture.id = whiteTexture; // Default whiteTexture model.texture.width = 1; // Default whiteTexture width model.texture.height = 1; // Default whiteTexture height GLuint vaoModel = 0; // Vertex Array Objects (VAO) GLuint vertexBuffer[3]; // Vertex Buffer Objects (VBO) if (vaoSupported) { // Initialize Quads VAO (Buffer A) glGenVertexArrays(1, &vaoModel); glBindVertexArray(vaoModel); } // Create buffers for our vertex data (positions, texcoords, normals) glGenBuffers(3, vertexBuffer); // Enable vertex attributes: position glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh.vertexCount, mesh.vertices, GL_STATIC_DRAW); glEnableVertexAttribArray(simpleShader.vertexLoc); glVertexAttribPointer(simpleShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); // Enable vertex attributes: texcoords glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer[1]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*mesh.vertexCount, mesh.texcoords, GL_STATIC_DRAW); glEnableVertexAttribArray(simpleShader.texcoordLoc); glVertexAttribPointer(simpleShader.texcoordLoc, 2, GL_FLOAT, 0, 0, 0); // Enable vertex attributes: normals glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer[2]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh.vertexCount, mesh.normals, GL_STATIC_DRAW); glEnableVertexAttribArray(simpleShader.normalLoc); glVertexAttribPointer(simpleShader.normalLoc, 3, GL_FLOAT, 0, 0, 0); model.shader = simpleShader; // By default, simple shader will be used model.mesh.vboId[0] = vertexBuffer[0]; // Vertex position VBO model.mesh.vboId[1] = vertexBuffer[1]; // Texcoords VBO model.mesh.vboId[2] = vertexBuffer[2]; // Normals VBO if (vaoSupported) { if (vaoModel > 0) { model.mesh.vaoId = vaoModel; TraceLog(INFO, "[VAO ID %i] Model uploaded successfully to VRAM (GPU)", vaoModel); } else TraceLog(WARNING, "Model could not be uploaded to VRAM (GPU)"); } else { TraceLog(INFO, "[VBO ID %i][VBO ID %i][VBO ID %i] Model uploaded successfully to VRAM (GPU)", model.mesh.vboId[0], model.mesh.vboId[1], model.mesh.vboId[2]); } #endif return model; } #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Load a shader (vertex shader + fragment shader) from text data unsigned int rlglLoadShader(char *vShaderStr, char *fShaderStr) { unsigned int program; GLuint vertexShader; GLuint fragmentShader; vertexShader = glCreateShader(GL_VERTEX_SHADER); fragmentShader = glCreateShader(GL_FRAGMENT_SHADER); const char *pvs = vShaderStr; const char *pfs = fShaderStr; glShaderSource(vertexShader, 1, &pvs, NULL); glShaderSource(fragmentShader, 1, &pfs, NULL); GLint success = 0; glCompileShader(vertexShader); glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success); if (success != GL_TRUE) { TraceLog(WARNING, "[VSHDR ID %i] Failed to compile vertex shader...", vertexShader); int maxLength = 0; int length; glGetShaderiv(vertexShader, GL_INFO_LOG_LENGTH, &maxLength); char log[maxLength]; glGetShaderInfoLog(vertexShader, maxLength, &length, log); TraceLog(INFO, "%s", log); } else TraceLog(INFO, "[VSHDR ID %i] Vertex shader compiled successfully", vertexShader); glCompileShader(fragmentShader); glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success); if (success != GL_TRUE) { TraceLog(WARNING, "[FSHDR ID %i] Failed to compile fragment shader...", fragmentShader); int maxLength = 0; int length; glGetShaderiv(fragmentShader, GL_INFO_LOG_LENGTH, &maxLength); char log[maxLength]; glGetShaderInfoLog(fragmentShader, maxLength, &length, log); TraceLog(INFO, "%s", log); } else TraceLog(INFO, "[FSHDR ID %i] Fragment shader compiled successfully", fragmentShader); program = glCreateProgram(); glAttachShader(program, vertexShader); glAttachShader(program, fragmentShader); glLinkProgram(program); glGetProgramiv(program, GL_LINK_STATUS, &success); if (success == GL_FALSE) { TraceLog(WARNING, "[SHDR ID %i] Failed to link shader program...", program); int maxLength = 0; int length; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength); char log[maxLength]; glGetProgramInfoLog(program, maxLength, &length, log); TraceLog(INFO, "%s", log); glDeleteProgram(program); program = 0; } else TraceLog(INFO, "[SHDR ID %i] Shader program loaded successfully", program); glDeleteShader(vertexShader); glDeleteShader(fragmentShader); return program; } #endif // Read screen pixel data (color buffer) unsigned char *rlglReadScreenPixels(int width, int height) { unsigned char *screenData = (unsigned char *)malloc(width * height * sizeof(unsigned char) * 4); // NOTE: glReadPixels returns image flipped vertically -> (0,0) is the bottom left corner of the framebuffer glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, screenData); // Flip image vertically! unsigned char *imgData = (unsigned char *)malloc(width * height * sizeof(unsigned char) * 4); for (int y = height-1; y >= 0; y--) { for (int x = 0; x < (width*4); x++) { imgData[x + (height - y - 1)*width*4] = screenData[x + (y*width*4)]; } } free(screenData); return imgData; // NOTE: image data should be freed } // Load a shader (vertex shader + fragment shader) from text data Shader LoadShader(char *vsFileName, char *fsFileName) { Shader shader; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Shaders loading from external text file char *vShaderStr = TextFileRead(vsFileName); char *fShaderStr = TextFileRead(fsFileName); shader.id = rlglLoadShader(vShaderStr, fShaderStr); if (shader.id != 0) TraceLog(INFO, "[SHDR ID %i] Custom shader loaded successfully", shader.id); else TraceLog(WARNING, "[SHDR ID %i] Custom shader could not be loaded", shader.id); // Shader strings must be freed free(vShaderStr); free(fShaderStr); // Get handles to GLSL input attibute locations //------------------------------------------------------------------- shader.vertexLoc = glGetAttribLocation(shader.id, "vertexPosition"); shader.texcoordLoc = glGetAttribLocation(shader.id, "vertexTexCoord"); shader.normalLoc = glGetAttribLocation(shader.id, "vertexNormal"); // NOTE: custom shader does not use colorLoc // Get handles to GLSL uniform locations (vertex shader) shader.modelviewLoc = glGetUniformLocation(shader.id, "modelviewMatrix"); shader.projectionLoc = glGetUniformLocation(shader.id, "projectionMatrix"); // Get handles to GLSL uniform locations (fragment shader) shader.textureLoc = glGetUniformLocation(shader.id, "texture0"); shader.tintColorLoc = glGetUniformLocation(shader.id, "tintColor"); //-------------------------------------------------------------------- #endif return shader; } // Link shader to model void SetModelShader(Model *model, Shader shader) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) model->shader = shader; if (vaoSupported) glBindVertexArray(model->mesh.vaoId); // Enable vertex attributes: position glBindBuffer(GL_ARRAY_BUFFER, model->mesh.vboId[0]); glEnableVertexAttribArray(shader.vertexLoc); glVertexAttribPointer(shader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); // Enable vertex attributes: texcoords glBindBuffer(GL_ARRAY_BUFFER, model->mesh.vboId[1]); glEnableVertexAttribArray(shader.texcoordLoc); glVertexAttribPointer(shader.texcoordLoc, 2, GL_FLOAT, 0, 0, 0); // Enable vertex attributes: normals glBindBuffer(GL_ARRAY_BUFFER, model->mesh.vboId[2]); glEnableVertexAttribArray(shader.normalLoc); glVertexAttribPointer(shader.normalLoc, 3, GL_FLOAT, 0, 0, 0); if (vaoSupported) glBindVertexArray(0); // Unbind VAO #endif } #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) void PrintProjectionMatrix() { PrintMatrix(projection); } void PrintModelviewMatrix() { PrintMatrix(modelview); } #endif //---------------------------------------------------------------------------------- // Module specific Functions Definition //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Convert image data to OpenGL texture (returns OpenGL valid Id) // NOTE: Expected compressed image data and POT image static void LoadCompressedTexture(unsigned char *data, int width, int height, int mipmapCount, int compressedFormat) { glPixelStorei(GL_UNPACK_ALIGNMENT, 1); int blockSize = 0; // Bytes every block int offset = 0; if ((compressedFormat == GL_COMPRESSED_RGB_S3TC_DXT1_EXT) || (compressedFormat == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) || #if defined(GRAPHICS_API_OPENGL_ES2) (compressedFormat == GL_ETC1_RGB8_OES) || #endif (compressedFormat == GL_COMPRESSED_RGB8_ETC2)) blockSize = 8; else blockSize = 16; // Load the mipmap levels for (int level = 0; level < mipmapCount && (width || height); level++) { unsigned int size = 0; size = ((width + 3)/4)*((height + 3)/4)*blockSize; glCompressedTexImage2D(GL_TEXTURE_2D, level, compressedFormat, width, height, 0, size, data + offset); offset += size; width /= 2; height /= 2; // Security check for NPOT textures if (width < 1) width = 1; if (height < 1) height = 1; } } // Load Shader (Vertex and Fragment) // NOTE: This shader program is used only for batch buffers (lines, triangles, quads) static Shader LoadDefaultShader(void) { Shader shader; // NOTE: Shaders are written using GLSL 110 (desktop), that is equivalent to GLSL 100 on ES2 // NOTE: Detected an error on ATI cards if defined #version 110 while OpenGL 3.3+ // Just defined #version 330 despite shader is #version 110 // Vertex shader directly defined, no external file required #if defined(GRAPHICS_API_OPENGL_33) char vShaderStr[] = " #version 110 \n" // NOTE: Actually, #version 110 (quivalent to #version 100 on ES2) #elif defined(GRAPHICS_API_OPENGL_ES2) char vShaderStr[] = " #version 100 \n" // NOTE: Must be defined this way! 110 doesn't work! #endif "uniform mat4 projectionMatrix; \n" "uniform mat4 modelviewMatrix; \n" "attribute vec3 vertexPosition; \n" "attribute vec2 vertexTexCoord; \n" "attribute vec4 vertexColor; \n" "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" "void main() \n" "{ \n" " fragTexCoord = vertexTexCoord; \n" " fragColor = vertexColor; \n" " gl_Position = projectionMatrix * modelviewMatrix * vec4(vertexPosition, 1.0); \n" "} \n"; // Fragment shader directly defined, no external file required #if defined(GRAPHICS_API_OPENGL_33) char fShaderStr[] = " #version 110 \n" // NOTE: Actually, #version 110 (quivalent to #version 100 on ES2) #elif defined(GRAPHICS_API_OPENGL_ES2) char fShaderStr[] = " #version 100 \n" // NOTE: Must be defined this way! 110 doesn't work! "precision mediump float; \n" // WebGL, required for emscripten #endif "uniform sampler2D texture0; \n" "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" "void main() \n" "{ \n" " gl_FragColor = texture2D(texture0, fragTexCoord) * fragColor; \n" "} \n"; shader.id = rlglLoadShader(vShaderStr, fShaderStr); if (shader.id != 0) TraceLog(INFO, "[SHDR ID %i] Default shader loaded successfully", shader.id); else TraceLog(WARNING, "[SHDR ID %i] Default shader could not be loaded", shader.id); // Get handles to GLSL input attibute locations //------------------------------------------------------------------- shader.vertexLoc = glGetAttribLocation(shader.id, "vertexPosition"); shader.texcoordLoc = glGetAttribLocation(shader.id, "vertexTexCoord"); shader.colorLoc = glGetAttribLocation(shader.id, "vertexColor"); // NOTE: default shader does not use normalLoc // Get handles to GLSL uniform locations (vertex shader) shader.modelviewLoc = glGetUniformLocation(shader.id, "modelviewMatrix"); shader.projectionLoc = glGetUniformLocation(shader.id, "projectionMatrix"); // Get handles to GLSL uniform locations (fragment shader) shader.textureLoc = glGetUniformLocation(shader.id, "texture0"); //-------------------------------------------------------------------- return shader; } // Load Simple Shader (Vertex and Fragment) // NOTE: This shader program is used to render models static Shader LoadSimpleShader(void) { Shader shader; // NOTE: Shaders are written using GLSL 110 (desktop), that is equivalent to GLSL 100 on ES2 // NOTE: Detected an error on ATI cards if defined #version 110 while OpenGL 3.3+ // Just defined #version 330 despite shader is #version 110 // Vertex shader directly defined, no external file required #if defined(GRAPHICS_API_OPENGL_33) char vShaderStr[] = " #version 330 \n" // NOTE: Actually, #version 110 (quivalent to #version 100 on ES2) #elif defined(GRAPHICS_API_OPENGL_ES2) char vShaderStr[] = " #version 100 \n" // NOTE: Must be defined this way! 110 doesn't work! #endif "uniform mat4 projectionMatrix; \n" "uniform mat4 modelviewMatrix; \n" "attribute vec3 vertexPosition; \n" "attribute vec2 vertexTexCoord; \n" "attribute vec3 vertexNormal; \n" "varying vec2 fragTexCoord; \n" "void main() \n" "{ \n" " fragTexCoord = vertexTexCoord; \n" " gl_Position = projectionMatrix * modelviewMatrix * vec4(vertexPosition, 1.0); \n" "} \n"; // Fragment shader directly defined, no external file required #if defined(GRAPHICS_API_OPENGL_33) char fShaderStr[] = " #version 330 \n" // NOTE: Actually, #version 110 (quivalent to #version 100 on ES2) #elif defined(GRAPHICS_API_OPENGL_ES2) char fShaderStr[] = " #version 100 \n" // NOTE: Must be defined this way! 110 doesn't work! "precision mediump float; \n" // precision required for OpenGL ES2 (WebGL) #endif "uniform sampler2D texture0; \n" "varying vec2 fragTexCoord; \n" "uniform vec4 tintColor; \n" "void main() \n" "{ \n" " gl_FragColor = texture2D(texture0, fragTexCoord) * tintColor; \n" "} \n"; shader.id = rlglLoadShader(vShaderStr, fShaderStr); if (shader.id != 0) TraceLog(INFO, "[SHDR ID %i] Simple shader loaded successfully", shader.id); else TraceLog(WARNING, "[SHDR ID %i] Simple shader could not be loaded", shader.id); // Get handles to GLSL input attibute locations //------------------------------------------------------------------- shader.vertexLoc = glGetAttribLocation(shader.id, "vertexPosition"); shader.texcoordLoc = glGetAttribLocation(shader.id, "vertexTexCoord"); shader.normalLoc = glGetAttribLocation(shader.id, "vertexNormal"); // NOTE: simple shader does not use colorLoc // Get handles to GLSL uniform locations (vertex shader) shader.modelviewLoc = glGetUniformLocation(shader.id, "modelviewMatrix"); shader.projectionLoc = glGetUniformLocation(shader.id, "projectionMatrix"); // Get handles to GLSL uniform locations (fragment shader) shader.textureLoc = glGetUniformLocation(shader.id, "texture0"); shader.tintColorLoc = glGetUniformLocation(shader.id, "tintColor"); //-------------------------------------------------------------------- return shader; } // Read text file // NOTE: text chars array should be freed manually static char *TextFileRead(char *fileName) { FILE *textFile; char *text = NULL; int count = 0; if (fileName != NULL) { textFile = fopen(fileName,"rt"); if (textFile != NULL) { fseek(textFile, 0, SEEK_END); count = ftell(textFile); rewind(textFile); if (count > 0) { text = (char *)malloc(sizeof(char) * (count + 1)); count = fread(text, sizeof(char), count, textFile); text[count] = '\0'; } fclose(textFile); } else TraceLog(WARNING, "[%s] Text file could not be opened", fileName); } return text; } // Allocate and initialize float array buffers to store vertex data (lines, triangles, quads) static void InitializeBuffers(void) { // Initialize lines arrays (vertex position and color data) lines.vertices = (float *)malloc(sizeof(float)*3*2*MAX_LINES_BATCH); // 3 float by vertex, 2 vertex by line lines.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*2*MAX_LINES_BATCH); // 4 float by color, 2 colors by line for (int i = 0; i < (3*2*MAX_LINES_BATCH); i++) lines.vertices[i] = 0.0f; for (int i = 0; i < (4*2*MAX_LINES_BATCH); i++) lines.colors[i] = 0; lines.vCounter = 0; lines.cCounter = 0; // Initialize triangles arrays (vertex position and color data) triangles.vertices = (float *)malloc(sizeof(float)*3*3*MAX_TRIANGLES_BATCH); // 3 float by vertex, 3 vertex by triangle triangles.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*3*MAX_TRIANGLES_BATCH); // 4 float by color, 3 colors by triangle for (int i = 0; i < (3*3*MAX_TRIANGLES_BATCH); i++) triangles.vertices[i] = 0.0f; for (int i = 0; i < (4*3*MAX_TRIANGLES_BATCH); i++) triangles.colors[i] = 0; triangles.vCounter = 0; triangles.cCounter = 0; // Initialize quads arrays (vertex position, texcoord and color data... and indexes) quads.vertices = (float *)malloc(sizeof(float)*3*4*MAX_QUADS_BATCH); // 3 float by vertex, 4 vertex by quad quads.texcoords = (float *)malloc(sizeof(float)*2*4*MAX_QUADS_BATCH); // 2 float by texcoord, 4 texcoord by quad quads.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*4*MAX_QUADS_BATCH); // 4 float by color, 4 colors by quad #if defined(GRAPHICS_API_OPENGL_33) quads.indices = (unsigned int *)malloc(sizeof(int)*6*MAX_QUADS_BATCH); // 6 int by quad (indices) #elif defined(GRAPHICS_API_OPENGL_ES2) quads.indices = (unsigned short *)malloc(sizeof(short)*6*MAX_QUADS_BATCH); // 6 int by quad (indices) #endif for (int i = 0; i < (3*4*MAX_QUADS_BATCH); i++) quads.vertices[i] = 0.0f; for (int i = 0; i < (2*4*MAX_QUADS_BATCH); i++) quads.texcoords[i] = 0.0f; for (int i = 0; i < (4*4*MAX_QUADS_BATCH); i++) quads.colors[i] = 0; int k = 0; // Indices can be initialized right now for (int i = 0; i < (6*MAX_QUADS_BATCH); i+=6) { quads.indices[i] = 4*k; quads.indices[i+1] = 4*k+1; quads.indices[i+2] = 4*k+2; quads.indices[i+3] = 4*k; quads.indices[i+4] = 4*k+2; quads.indices[i+5] = 4*k+3; k++; } quads.vCounter = 0; quads.tcCounter = 0; quads.cCounter = 0; TraceLog(INFO, "CPU buffers (lines, triangles, quads) initialized successfully"); } // Initialize Vertex Array Objects (Contain VBO) // NOTE: lines, triangles and quads buffers use defaultShader static void InitializeBuffersGPU(void) { if (vaoSupported) { // Initialize Lines VAO glGenVertexArrays(1, &vaoLines); glBindVertexArray(vaoLines); } // Create buffers for our vertex data glGenBuffers(2, linesBuffer); // Lines - Vertex positions buffer binding and attributes enable glBindBuffer(GL_ARRAY_BUFFER, linesBuffer[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*2*MAX_LINES_BATCH, lines.vertices, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(defaultShader.vertexLoc); glVertexAttribPointer(defaultShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); // Lines - colors buffer glBindBuffer(GL_ARRAY_BUFFER, linesBuffer[1]); glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*2*MAX_LINES_BATCH, lines.colors, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(defaultShader.colorLoc); glVertexAttribPointer(defaultShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); if (vaoSupported) TraceLog(INFO, "[VAO ID %i] Lines VAO initialized successfully", vaoLines); else TraceLog(INFO, "[VBO ID %i][VBO ID %i] Lines VBOs initialized successfully", linesBuffer[0], linesBuffer[1]); //-------------------------------------------------------------- if (vaoSupported) { // Initialize Triangles VAO glGenVertexArrays(1, &vaoTriangles); glBindVertexArray(vaoTriangles); } // Create buffers for our vertex data glGenBuffers(2, trianglesBuffer); // Enable vertex attributes glBindBuffer(GL_ARRAY_BUFFER, trianglesBuffer[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*3*MAX_TRIANGLES_BATCH, triangles.vertices, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(defaultShader.vertexLoc); glVertexAttribPointer(defaultShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, trianglesBuffer[1]); glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*3*MAX_TRIANGLES_BATCH, triangles.colors, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(defaultShader.colorLoc); glVertexAttribPointer(defaultShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); if (vaoSupported) TraceLog(INFO, "[VAO ID %i] Triangles VAO initialized successfully", vaoTriangles); else TraceLog(INFO, "[VBO ID %i][VBO ID %i] Triangles VBOs initialized successfully", trianglesBuffer[0], trianglesBuffer[1]); //-------------------------------------------------------------- if (vaoSupported) { // Initialize Quads VAO glGenVertexArrays(1, &vaoQuads); glBindVertexArray(vaoQuads); } // Create buffers for our vertex data glGenBuffers(4, quadsBuffer); // Enable vertex attributes glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*MAX_QUADS_BATCH, quads.vertices, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(defaultShader.vertexLoc); glVertexAttribPointer(defaultShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[1]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*MAX_QUADS_BATCH, quads.texcoords, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(defaultShader.texcoordLoc); glVertexAttribPointer(defaultShader.texcoordLoc, 2, GL_FLOAT, 0, 0, 0); glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[2]); glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*4*MAX_QUADS_BATCH, quads.colors, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(defaultShader.colorLoc); glVertexAttribPointer(defaultShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); // Fill index buffer glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quadsBuffer[3]); #if defined(GRAPHICS_API_OPENGL_33) glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(int)*6*MAX_QUADS_BATCH, quads.indices, GL_STATIC_DRAW); #elif defined(GRAPHICS_API_OPENGL_ES2) glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(short)*6*MAX_QUADS_BATCH, quads.indices, GL_STATIC_DRAW); #endif if (vaoSupported) TraceLog(INFO, "[VAO ID %i] Quads VAO initialized successfully", vaoQuads); else TraceLog(INFO, "[VBO ID %i][VBO ID %i][VBO ID %i][VBO ID %i] Quads VBOs initialized successfully", quadsBuffer[0], quadsBuffer[1], quadsBuffer[2], quadsBuffer[3]); // Unbind the current VAO if (vaoSupported) glBindVertexArray(0); } // Update VBOs with vertex array data // NOTE: If there is not vertex data, buffers doesn't need to be updated (vertexCount > 0) // TODO: If no data changed on the CPU arrays --> No need to update GPU arrays every frame! static void UpdateBuffers(void) { if (lines.vCounter > 0) { // Activate Lines VAO if (vaoSupported) glBindVertexArray(vaoLines); // Lines - vertex positions buffer glBindBuffer(GL_ARRAY_BUFFER, linesBuffer[0]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*2*MAX_LINES_BATCH, lines.vertices, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*lines.vCounter, lines.vertices); // target - offset (in bytes) - size (in bytes) - data pointer // Lines - colors buffer glBindBuffer(GL_ARRAY_BUFFER, linesBuffer[1]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*2*MAX_LINES_BATCH, lines.colors, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*lines.cCounter, lines.colors); } //-------------------------------------------------------------- if (triangles.vCounter > 0) { // Activate Triangles VAO if (vaoSupported) glBindVertexArray(vaoTriangles); // Triangles - vertex positions buffer glBindBuffer(GL_ARRAY_BUFFER, trianglesBuffer[0]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*3*MAX_TRIANGLES_BATCH, triangles.vertices, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*triangles.vCounter, triangles.vertices); // Triangles - colors buffer glBindBuffer(GL_ARRAY_BUFFER, trianglesBuffer[1]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*3*MAX_TRIANGLES_BATCH, triangles.colors, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*triangles.cCounter, triangles.colors); } //-------------------------------------------------------------- if (quads.vCounter > 0) { // Activate Quads VAO if (vaoSupported) glBindVertexArray(vaoQuads); // Quads - vertex positions buffer glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[0]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*MAX_QUADS_BATCH, quads.vertices, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*quads.vCounter, quads.vertices); // Quads - texture coordinates buffer glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[1]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*MAX_QUADS_BATCH, quads.texcoords, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*quads.vCounter, quads.texcoords); // Quads - colors buffer glBindBuffer(GL_ARRAY_BUFFER, quadsBuffer[2]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*4*MAX_QUADS_BATCH, quads.colors, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*quads.vCounter, quads.colors); // Another option would be using buffer mapping... //triangles.vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE); // Now we can modify vertices //glUnmapBuffer(GL_ARRAY_BUFFER); } //-------------------------------------------------------------- // Unbind the current VAO if (vaoSupported) glBindVertexArray(0); } #endif //defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) #if defined(GRAPHICS_API_OPENGL_11) // Mipmaps data is generated after image data static int GenerateMipmaps(unsigned char *data, int baseWidth, int baseHeight) { int mipmapCount = 1; // Required mipmap levels count (including base level) int width = baseWidth; int height = baseHeight; int size = baseWidth*baseHeight*4; // Size in bytes (will include mipmaps...) // Count mipmap levels required while ((width != 1) && (height != 1)) { if (width != 1) width /= 2; if (height != 1) height /= 2; TraceLog(DEBUG, "Next mipmap size: %i x %i", width, height); mipmapCount++; size += (width*height*4); // Add mipmap size (in bytes) } TraceLog(DEBUG, "Total mipmaps required: %i", mipmapCount); TraceLog(DEBUG, "Total size of data required: %i", size); unsigned char *temp = realloc(data, size); if (temp != NULL) data = temp; else TraceLog(WARNING, "Mipmaps required memory could not be allocated"); width = baseWidth; height = baseHeight; size = (width*height*4); // Generate mipmaps // NOTE: Every mipmap data is stored after data pixel *image = (pixel *)malloc(width*height*sizeof(pixel)); pixel *mipmap = NULL; int offset = 0; int j = 0; for (int i = 0; i < size; i += 4) { image[j].r = data[i]; image[j].g = data[i + 1]; image[j].b = data[i + 2]; image[j].a = data[i + 3]; j++; } TraceLog(DEBUG, "Mipmap base (%ix%i)", width, height); for (int mip = 1; mip < mipmapCount; mip++) { mipmap = GenNextMipmap(image, width, height); offset += (width*height*4); // Size of last mipmap j = 0; width /= 2; height /= 2; size = (width*height*4); // Mipmap size to store after offset // Add mipmap to data for (int i = 0; i < size; i += 4) { data[offset + i] = mipmap[j].r; data[offset + i + 1] = mipmap[j].g; data[offset + i + 2] = mipmap[j].b; data[offset + i + 3] = mipmap[j].a; j++; } free(image); image = mipmap; mipmap = NULL; } free(mipmap); // free mipmap data return mipmapCount; } // Manual mipmap generation (basic scaling algorithm) static pixel *GenNextMipmap(pixel *srcData, int srcWidth, int srcHeight) { int x2, y2; pixel prow, pcol; int width = srcWidth / 2; int height = srcHeight / 2; pixel *mipmap = (pixel *)malloc(width*height*sizeof(pixel)); // Scaling algorithm works perfectly (box-filter) for (int y = 0; y < height; y++) { y2 = 2 * y; for (int x = 0; x < width; x++) { x2 = 2 * x; prow.r = (srcData[y2*srcWidth + x2].r + srcData[y2*srcWidth + x2 + 1].r)/2; prow.g = (srcData[y2*srcWidth + x2].g + srcData[y2*srcWidth + x2 + 1].g)/2; prow.b = (srcData[y2*srcWidth + x2].b + srcData[y2*srcWidth + x2 + 1].b)/2; prow.a = (srcData[y2*srcWidth + x2].a + srcData[y2*srcWidth + x2 + 1].a)/2; pcol.r = (srcData[(y2+1)*srcWidth + x2].r + srcData[(y2+1)*srcWidth + x2 + 1].r)/2; pcol.g = (srcData[(y2+1)*srcWidth + x2].g + srcData[(y2+1)*srcWidth + x2 + 1].g)/2; pcol.b = (srcData[(y2+1)*srcWidth + x2].b + srcData[(y2+1)*srcWidth + x2 + 1].b)/2; pcol.a = (srcData[(y2+1)*srcWidth + x2].a + srcData[(y2+1)*srcWidth + x2 + 1].a)/2; mipmap[y*width + x].r = (prow.r + pcol.r)/2; mipmap[y*width + x].g = (prow.g + pcol.g)/2; mipmap[y*width + x].b = (prow.b + pcol.b)/2; mipmap[y*width + x].a = (prow.a + pcol.a)/2; } } TraceLog(DEBUG, "Mipmap generated successfully (%ix%i)", width, height); return mipmap; } #endif #if defined(RLGL_STANDALONE) typedef enum { INFO = 0, ERROR, WARNING, DEBUG, OTHER } TraceLogType; // Output a trace log message // NOTE: Expected msgType: (0)Info, (1)Error, (2)Warning void TraceLog(int msgType, const char *text, ...) { va_list args; va_start(args, text); switch(msgType) { case INFO: fprintf(stdout, "INFO: "); break; case ERROR: fprintf(stdout, "ERROR: "); break; case WARNING: fprintf(stdout, "WARNING: "); break; case DEBUG: fprintf(stdout, "DEBUG: "); break; default: break; } vfprintf(stdout, text, args); fprintf(stdout, "\n"); va_end(args); if (msgType == ERROR) exit(1); } #endif