/********************************************************************************************** * * raylib.textures * * Basic functions to load and draw Textures (2d) * * Uses external lib: * stb_image - Multiple formats image loading (JPEG, PNG, BMP, TGA, PSD, GIF, PIC) * NOTE: stb_image has been slightly modified, original library: https://github.com/nothings/stb * * Copyright (c) 2014 Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #include "raylib.h" #include // Declares malloc() and free() for memory management #include // Required for strcmp(), strrchr(), strncmp() #include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 3.3 or ES2 // Required: rlglLoadTexture() rlDeleteTextures(), // rlglGenerateMipmaps(), some funcs for DrawTexturePro() #include "utils.h" // rRES data decompression utility function // NOTE: Includes Android fopen function map #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" // Used to read image data (multiple formats support) #define STB_IMAGE_RESIZE_IMPLEMENTATION #include "stb_image_resize.h" //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- // Nop... //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- // ... //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- // It's lonely here... //---------------------------------------------------------------------------------- // Other Modules Functions Declaration (required by text) //---------------------------------------------------------------------------------- // ... //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- static Image LoadDDS(const char *fileName); // Load DDS file static Image LoadPKM(const char *fileName); // Load PKM file static Image LoadKTX(const char *fileName); // Load KTX file static Image LoadPVR(const char *fileName); // Load PVR file static Image LoadASTC(const char *fileName); // Load ASTC file //---------------------------------------------------------------------------------- // Module Functions Definition //---------------------------------------------------------------------------------- // Load an image into CPU memory (RAM) Image LoadImage(const char *fileName) { Image image; // Initialize image default values image.data = NULL; image.width = 0; image.height = 0; image.mipmaps = 0; image.format = 0; if ((strcmp(GetExtension(fileName),"png") == 0) || (strcmp(GetExtension(fileName),"bmp") == 0) || (strcmp(GetExtension(fileName),"tga") == 0) || (strcmp(GetExtension(fileName),"jpg") == 0) || (strcmp(GetExtension(fileName),"gif") == 0) || (strcmp(GetExtension(fileName),"psd") == 0) || (strcmp(GetExtension(fileName),"pic") == 0)) { int imgWidth = 0; int imgHeight = 0; int imgBpp = 0; // NOTE: Using stb_image to load images (Supports: BMP, TGA, PNG, JPG, ...) image.data = stbi_load(fileName, &imgWidth, &imgHeight, &imgBpp, 0); image.width = imgWidth; image.height = imgHeight; image.mipmaps = 1; if (imgBpp == 1) image.format = UNCOMPRESSED_GRAYSCALE; else if (imgBpp == 2) image.format = UNCOMPRESSED_GRAY_ALPHA; else if (imgBpp == 3) image.format = UNCOMPRESSED_R8G8B8; else if (imgBpp == 4) image.format = UNCOMPRESSED_R8G8B8A8; } else if (strcmp(GetExtension(fileName),"dds") == 0) image = LoadDDS(fileName); else if (strcmp(GetExtension(fileName),"pkm") == 0) image = LoadPKM(fileName); else if (strcmp(GetExtension(fileName),"ktx") == 0) image = LoadKTX(fileName); else if (strcmp(GetExtension(fileName),"pvr") == 0) image = LoadPVR(fileName); else if (strcmp(GetExtension(fileName),"astc") == 0) image = LoadASTC(fileName); if (image.data != NULL) { TraceLog(INFO, "[%s] Image loaded successfully (%ix%i)", fileName, image.width, image.height); } else TraceLog(WARNING, "[%s] Image could not be loaded, file not recognized", fileName); return image; } // Load image data from Color array data (RGBA - 32bit) Image LoadImageEx(Color *pixels, int width, int height) { Image image; image.data = NULL; image.width = width; image.height = height; image.mipmaps = 1; image.format = UNCOMPRESSED_R8G8B8A8; int k = 0; image.data = (unsigned char *)malloc(image.width*image.height*4*sizeof(unsigned char)); for (int i = 0; i < image.width*image.height*4; i += 4) { ((unsigned char *)image.data)[i] = pixels[k].r; ((unsigned char *)image.data)[i + 1] = pixels[k].g; ((unsigned char *)image.data)[i + 2] = pixels[k].b; ((unsigned char *)image.data)[i + 3] = pixels[k].a; k++; } return image; } // Load an image from RAW file Image LoadImageRaw(const char *fileName, int width, int height, int format, int headerSize) { Image image; image.data = NULL; image.width = 0; image.height = 0; image.mipmaps = 0; image.format = 0; FILE *rawFile = fopen(fileName, "rb"); if (rawFile == NULL) { TraceLog(WARNING, "[%s] RAW image file could not be opened", fileName); } else { if (headerSize > 0) fseek(rawFile, headerSize, SEEK_SET); unsigned int size = width*height; switch (format) { case UNCOMPRESSED_GRAYSCALE: image.data = (unsigned char *)malloc(size); break; // 8 bit per pixel (no alpha) case UNCOMPRESSED_GRAY_ALPHA: image.data = (unsigned char *)malloc(size*2); size *= 2; break; // 16 bpp (2 channels) case UNCOMPRESSED_R5G6B5: image.data = (unsigned short *)malloc(size); break; // 16 bpp case UNCOMPRESSED_R8G8B8: image.data = (unsigned char *)malloc(size*3); size *= 3; break; // 24 bpp case UNCOMPRESSED_R5G5B5A1: image.data = (unsigned short *)malloc(size); break; // 16 bpp (1 bit alpha) case UNCOMPRESSED_R4G4B4A4: image.data = (unsigned short *)malloc(size); break; // 16 bpp (4 bit alpha) case UNCOMPRESSED_R8G8B8A8: image.data = (unsigned char *)malloc(size*4); size *= 4; break; // 32 bpp default: TraceLog(WARNING, "Image format not suported"); break; } fread(image.data, size, 1, rawFile); // TODO: Check if data have been read image.width = width; image.height = height; image.mipmaps = 0; image.format = format; fclose(rawFile); } return image; } // Load an image from rRES file (raylib Resource) // TODO: Review function to support multiple color modes Image LoadImageFromRES(const char *rresName, int resId) { Image image; bool found = false; char id[4]; // rRES file identifier unsigned char version; // rRES file version and subversion char useless; // rRES header reserved data short numRes; ResInfoHeader infoHeader; FILE *rresFile = fopen(rresName, "rb"); if (rresFile == NULL) { TraceLog(WARNING, "[%s] rRES raylib resource file could not be opened", rresName); } else { // Read rres file (basic file check - id) fread(&id[0], sizeof(char), 1, rresFile); fread(&id[1], sizeof(char), 1, rresFile); fread(&id[2], sizeof(char), 1, rresFile); fread(&id[3], sizeof(char), 1, rresFile); fread(&version, sizeof(char), 1, rresFile); fread(&useless, sizeof(char), 1, rresFile); if ((id[0] != 'r') && (id[1] != 'R') && (id[2] != 'E') &&(id[3] != 'S')) { TraceLog(WARNING, "[%s] This is not a valid raylib resource file", rresName); } else { // Read number of resources embedded fread(&numRes, sizeof(short), 1, rresFile); for (int i = 0; i < numRes; i++) { fread(&infoHeader, sizeof(ResInfoHeader), 1, rresFile); if (infoHeader.id == resId) { found = true; // Check data is of valid IMAGE type if (infoHeader.type == 0) // IMAGE data type { // TODO: Check data compression type // NOTE: We suppose compression type 2 (DEFLATE - default) short imgWidth, imgHeight; char colorFormat, mipmaps; fread(&imgWidth, sizeof(short), 1, rresFile); // Image width fread(&imgHeight, sizeof(short), 1, rresFile); // Image height fread(&colorFormat, 1, 1, rresFile); // Image data color format (default: RGBA 32 bit) fread(&mipmaps, 1, 1, rresFile); // Mipmap images included (default: 0) image.width = (int)imgWidth; image.height = (int)imgHeight; unsigned char *compData = malloc(infoHeader.size); fread(compData, infoHeader.size, 1, rresFile); unsigned char *imgData = DecompressData(compData, infoHeader.size, infoHeader.srcSize); // TODO: Review color mode //image.data = (unsigned char *)malloc(sizeof(unsigned char)*imgWidth*imgHeight*4); image.data = imgData; //free(imgData); free(compData); TraceLog(INFO, "[%s] Image loaded successfully from resource, size: %ix%i", rresName, image.width, image.height); } else { TraceLog(WARNING, "[%s] Required resource do not seem to be a valid IMAGE resource", rresName); } } else { // Depending on type, skip the right amount of parameters switch (infoHeader.type) { case 0: fseek(rresFile, 6, SEEK_CUR); break; // IMAGE: Jump 6 bytes of parameters case 1: fseek(rresFile, 6, SEEK_CUR); break; // SOUND: Jump 6 bytes of parameters case 2: fseek(rresFile, 5, SEEK_CUR); break; // MODEL: Jump 5 bytes of parameters (TODO: Review) case 3: break; // TEXT: No parameters case 4: break; // RAW: No parameters default: break; } // Jump DATA to read next infoHeader fseek(rresFile, infoHeader.size, SEEK_CUR); } } } fclose(rresFile); } if (!found) TraceLog(WARNING, "[%s] Required resource id [%i] could not be found in the raylib resource file", rresName, resId); return image; } // Load an image as texture into GPU memory Texture2D LoadTexture(const char *fileName) { Texture2D texture; Image image = LoadImage(fileName); if (image.data != NULL) { texture = LoadTextureFromImage(image); UnloadImage(image); } else { TraceLog(WARNING, "Texture could not be created"); texture.id = 0; } return texture; } // Load a texture from raw data into GPU memory Texture2D LoadTextureEx(void *data, int width, int height, int textureFormat) { Texture2D texture; texture.width = width; texture.height = height; texture.mipmaps = 1; texture.format = textureFormat; texture.id = rlglLoadTexture(data, width, height, textureFormat, 1); return texture; } // Load an image as texture from rRES file (raylib Resource) Texture2D LoadTextureFromRES(const char *rresName, int resId) { Texture2D texture; Image image = LoadImageFromRES(rresName, resId); texture = LoadTextureFromImage(image); UnloadImage(image); return texture; } // Load a texture from image data // NOTE: image is not unloaded, it must be done manually Texture2D LoadTextureFromImage(Image image) { Texture2D texture; // Init texture to default values texture.id = 0; texture.width = 0; texture.height = 0; texture.mipmaps = 0; texture.format = 0; texture.id = rlglLoadTexture(image.data, image.width, image.height, image.format, image.mipmaps); texture.width = image.width; texture.height = image.height; texture.mipmaps = image.mipmaps; texture.format = image.format; return texture; } // Unload image from CPU memory (RAM) void UnloadImage(Image image) { free(image.data); // NOTE: It becomes anoying every time a texture is loaded //TraceLog(INFO, "Unloaded image data"); } // Unload texture from GPU memory void UnloadTexture(Texture2D texture) { if (texture.id != 0) { rlDeleteTextures(texture.id); TraceLog(INFO, "[TEX ID %i] Unloaded texture data from VRAM (GPU)", texture.id); } } // Get pixel data from image in the form of Color struct array Color *GetImageData(Image image) { Color *pixels = (Color *)malloc(image.width*image.height*sizeof(Color)); int k = 0; for (int i = 0; i < image.width*image.height; i++) { switch (image.format) { case UNCOMPRESSED_GRAYSCALE: { pixels[i].r = ((unsigned char *)image.data)[k]; pixels[i].g = ((unsigned char *)image.data)[k]; pixels[i].b = ((unsigned char *)image.data)[k]; pixels[i].a = 255; k++; } break; case UNCOMPRESSED_GRAY_ALPHA: { pixels[i].r = ((unsigned char *)image.data)[k]; pixels[i].g = ((unsigned char *)image.data)[k]; pixels[i].b = ((unsigned char *)image.data)[k]; pixels[i].a = ((unsigned char *)image.data)[k + 1]; k += 2; } break; case UNCOMPRESSED_R5G5B5A1: { unsigned short pixel = ((unsigned short *)image.data)[k]; pixels[i].r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31)); pixels[i].g = (unsigned char)((float)((pixel & 0b0000011111000000) >> 6)*(255/31)); pixels[i].b = (unsigned char)((float)((pixel & 0b0000000000111110) >> 1)*(255/31)); pixels[i].a = (unsigned char)((pixel & 0b0000000000000001)*255); k++; } break; case UNCOMPRESSED_R5G6B5: { unsigned short pixel = ((unsigned short *)image.data)[k]; pixels[i].r = (unsigned char)((float)((pixel & 0b1111100000000000) >> 11)*(255/31)); pixels[i].g = (unsigned char)((float)((pixel & 0b0000011111100000) >> 5)*(255/63)); pixels[i].b = (unsigned char)((float)(pixel & 0b0000000000011111)*(255/31)); pixels[i].a = 255; k++; } break; case UNCOMPRESSED_R4G4B4A4: { unsigned short pixel = ((unsigned short *)image.data)[k]; pixels[i].r = (unsigned char)((float)((pixel & 0b1111000000000000) >> 12)*(255/15)); pixels[i].g = (unsigned char)((float)((pixel & 0b0000111100000000) >> 8)*(255/15)); pixels[i].b = (unsigned char)((float)((pixel & 0b0000000011110000) >> 4)*(255/15)); pixels[i].a = (unsigned char)((float)(pixel & 0b0000000000001111)*(255/15)); k++; } break; case UNCOMPRESSED_R8G8B8A8: { pixels[i].r = ((unsigned char *)image.data)[k]; pixels[i].g = ((unsigned char *)image.data)[k + 1]; pixels[i].b = ((unsigned char *)image.data)[k + 2]; pixels[i].a = ((unsigned char *)image.data)[k + 3]; k += 4; } break; case UNCOMPRESSED_R8G8B8: { pixels[i].r = (unsigned char)((unsigned char *)image.data)[k]; pixels[i].g = (unsigned char)((unsigned char *)image.data)[k + 1]; pixels[i].b = (unsigned char)((unsigned char *)image.data)[k + 2]; pixels[i].a = 255; k += 3; } break; default: TraceLog(WARNING, "Format not supported for pixel data retrieval"); break; } } return pixels; } // Get pixel data from GPU texture and return an Image // NOTE: Compressed texture formats not supported Image GetTextureData(Texture2D texture) { Image image; image.data = NULL; if (texture.format < 8) { image.data = rlglReadTexturePixels(texture); if (image.data != NULL) { image.width = texture.width; image.height = texture.height; image.mipmaps = 1; #if defined(GRAPHICS_API_OPENGL_ES2) // NOTE: Data retrieved on OpenGL ES 2.0 comes as RGB (from framebuffer) image.format = UNCOMPRESSED_R8G8B8A8; #else image.format = texture.format; #endif TraceLog(INFO, "Texture pixel data obtained successfully"); } else TraceLog(WARNING, "Texture pixel data could not be obtained"); } else TraceLog(WARNING, "Compressed texture data could not be obtained"); return image; } // Convert image data to desired format void ImageFormat(Image *image, int newFormat) { if (image->format != newFormat) { if ((image->format < 8) && (newFormat < 8)) { Color *pixels = GetImageData(*image); free(image->data); image->format = newFormat; int k = 0; switch (image->format) { case UNCOMPRESSED_GRAYSCALE: { image->data = (unsigned char *)malloc(image->width*image->height*sizeof(unsigned char)); for (int i = 0; i < image->width*image->height; i++) { ((unsigned char *)image->data)[i] = (unsigned char)((float)pixels[i].r*0.299f + (float)pixels[i].g*0.587f + (float)pixels[i].b*0.114f); } } break; case UNCOMPRESSED_GRAY_ALPHA: { image->data = (unsigned char *)malloc(image->width*image->height*2*sizeof(unsigned char)); for (int i = 0; i < image->width*image->height*2; i += 2) { ((unsigned char *)image->data)[i] = (unsigned char)((float)pixels[k].r*0.299f + (float)pixels[k].g*0.587f + (float)pixels[k].b*0.114f); ((unsigned char *)image->data)[i + 1] = pixels[k].a; k++; } } break; case UNCOMPRESSED_R5G6B5: { image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short)); unsigned char r = 0; unsigned char g = 0; unsigned char b = 0; for (int i = 0; i < image->width*image->height; i++) { r = (unsigned char)(round((float)pixels[k].r*31/255)); g = (unsigned char)(round((float)pixels[k].g*63/255)); b = (unsigned char)(round((float)pixels[k].b*31/255)); ((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 5 | (unsigned short)b; } } break; case UNCOMPRESSED_R8G8B8: { image->data = (unsigned char *)malloc(image->width*image->height*3*sizeof(unsigned char)); for (int i = 0; i < image->width*image->height*3; i += 3) { ((unsigned char *)image->data)[i] = pixels[k].r; ((unsigned char *)image->data)[i + 1] = pixels[k].g; ((unsigned char *)image->data)[i + 2] = pixels[k].b; k++; } } break; case UNCOMPRESSED_R5G5B5A1: { #define ALPHA_THRESHOLD 50 image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short)); unsigned char r = 0; unsigned char g = 0; unsigned char b = 0; unsigned char a = 0; for (int i = 0; i < image->width*image->height; i++) { r = (unsigned char)(round((float)pixels[i].r*31/255)); g = (unsigned char)(round((float)pixels[i].g*31/255)); b = (unsigned char)(round((float)pixels[i].b*31/255)); a = (pixels[i].a > ALPHA_THRESHOLD) ? 1 : 0; ((unsigned short *)image->data)[i] = (unsigned short)r << 11 | (unsigned short)g << 6 | (unsigned short)b << 1 | (unsigned short)a; } } break; case UNCOMPRESSED_R4G4B4A4: { image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short)); unsigned char r = 0; unsigned char g = 0; unsigned char b = 0; unsigned char a = 0; for (int i = 0; i < image->width*image->height; i++) { r = (unsigned char)(round((float)pixels[i].r*15/255)); g = (unsigned char)(round((float)pixels[i].g*15/255)); b = (unsigned char)(round((float)pixels[i].b*15/255)); a = (unsigned char)(round((float)pixels[i].a*15/255)); ((unsigned short *)image->data)[i] = (unsigned short)r << 12 | (unsigned short)g << 8| (unsigned short)b << 4| (unsigned short)a; } } break; case UNCOMPRESSED_R8G8B8A8: { image->data = (unsigned char *)malloc(image->width*image->height*4*sizeof(unsigned char)); for (int i = 0; i < image->width*image->height*4; i += 4) { ((unsigned char *)image->data)[i] = pixels[k].r; ((unsigned char *)image->data)[i + 1] = pixels[k].g; ((unsigned char *)image->data)[i + 2] = pixels[k].b; ((unsigned char *)image->data)[i + 3] = pixels[k].a; k++; } } break; default: break; } free(pixels); } else TraceLog(WARNING, "Image data format is compressed, can not be converted"); } } // Dither image data to 16bpp or lower (Floyd-Steinberg dithering) // NOTE: In case selected bpp do not represent an known 16bit format, // dithered data is stored in the LSB part of the unsigned short void ImageDither(Image *image, int rBpp, int gBpp, int bBpp, int aBpp) { if (image->format >= 8) { TraceLog(WARNING, "Compressed data formats can not be dithered"); return; } if ((rBpp+gBpp+bBpp+aBpp) > 16) { TraceLog(WARNING, "Unsupported dithering bpps (%ibpp), only 16bpp or lower modes supported", (rBpp+gBpp+bBpp+aBpp)); } else { Color *pixels = GetImageData(*image); free(image->data); // free old image data if ((image->format != UNCOMPRESSED_R8G8B8) && (image->format != UNCOMPRESSED_R8G8B8A8)) { TraceLog(WARNING, "Image format is already 16bpp or lower, dithering could have no effect"); } // Define new image format, check if desired bpp match internal known format if ((rBpp == 5) && (gBpp == 6) && (bBpp == 5) && (aBpp == 0)) image->format = UNCOMPRESSED_R5G6B5; else if ((rBpp == 5) && (gBpp == 5) && (bBpp == 5) && (aBpp == 1)) image->format = UNCOMPRESSED_R5G5B5A1; else if ((rBpp == 4) && (gBpp == 4) && (bBpp == 4) && (aBpp == 4)) image->format = UNCOMPRESSED_R4G4B4A4; else { image->format = 0; TraceLog(WARNING, "Unsupported dithered OpenGL internal format: %ibpp (R%iG%iB%iA%i)", (rBpp+gBpp+bBpp+aBpp), rBpp, gBpp, bBpp, aBpp); } // NOTE: We will store the dithered data as unsigned short (16bpp) image->data = (unsigned short *)malloc(image->width*image->height*sizeof(unsigned short)); Color oldpixel = WHITE; Color newpixel = WHITE; int error_r, error_g, error_b; unsigned short pixel_r, pixel_g, pixel_b, pixel_a; // Used for 16bit pixel composition #define MIN(a,b) (((a)<(b))?(a):(b)) for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { oldpixel = pixels[y*image->width + x]; // NOTE: New pixel obtained by bits truncate, it would be better to round values (check ImageFormat()) newpixel.r = oldpixel.r>>(8 - rBpp); // R bits newpixel.g = oldpixel.g>>(8 - gBpp); // G bits newpixel.b = oldpixel.b>>(8 - bBpp); // B bits newpixel.a = oldpixel.a>>(8 - aBpp); // A bits (not used on dithering) // NOTE: Error must be computed between new and old pixel but using same number of bits! // We want to know how much color precision we have lost... error_r = (int)oldpixel.r - (int)(newpixel.r<<(8 - rBpp)); error_g = (int)oldpixel.g - (int)(newpixel.g<<(8 - gBpp)); error_b = (int)oldpixel.b - (int)(newpixel.b<<(8 - bBpp)); pixels[y*image->width + x] = newpixel; // NOTE: Some cases are out of the array and should be ignored if (x < (image->width - 1)) { pixels[y*image->width + x+1].r = MIN((int)pixels[y*image->width + x+1].r + (int)((float)error_r*7.0f/16), 0xff); pixels[y*image->width + x+1].g = MIN((int)pixels[y*image->width + x+1].g + (int)((float)error_g*7.0f/16), 0xff); pixels[y*image->width + x+1].b = MIN((int)pixels[y*image->width + x+1].b + (int)((float)error_b*7.0f/16), 0xff); } if ((x > 0) && (y < (image->height - 1))) { pixels[(y+1)*image->width + x-1].r = MIN((int)pixels[(y+1)*image->width + x-1].r + (int)((float)error_r*3.0f/16), 0xff); pixels[(y+1)*image->width + x-1].g = MIN((int)pixels[(y+1)*image->width + x-1].g + (int)((float)error_g*3.0f/16), 0xff); pixels[(y+1)*image->width + x-1].b = MIN((int)pixels[(y+1)*image->width + x-1].b + (int)((float)error_b*3.0f/16), 0xff); } if (y < (image->height - 1)) { pixels[(y+1)*image->width + x].r = MIN((int)pixels[(y+1)*image->width + x].r + (int)((float)error_r*5.0f/16), 0xff); pixels[(y+1)*image->width + x].g = MIN((int)pixels[(y+1)*image->width + x].g + (int)((float)error_g*5.0f/16), 0xff); pixels[(y+1)*image->width + x].b = MIN((int)pixels[(y+1)*image->width + x].b + (int)((float)error_b*5.0f/16), 0xff); } if ((x < (image->width - 1)) && (y < (image->height - 1))) { pixels[(y+1)*image->width + x+1].r = MIN((int)pixels[(y+1)*image->width + x+1].r + (int)((float)error_r*1.0f/16), 0xff); pixels[(y+1)*image->width + x+1].g = MIN((int)pixels[(y+1)*image->width + x+1].g + (int)((float)error_g*1.0f/16), 0xff); pixels[(y+1)*image->width + x+1].b = MIN((int)pixels[(y+1)*image->width + x+1].b + (int)((float)error_b*1.0f/16), 0xff); } pixel_r = (unsigned short)newpixel.r; pixel_g = (unsigned short)newpixel.g; pixel_b = (unsigned short)newpixel.b; pixel_a = (unsigned short)newpixel.a; ((unsigned short *)image->data)[y*image->width + x] = (pixel_r<<(gBpp + bBpp + aBpp)) | (pixel_g<<(bBpp + aBpp)) | (pixel_b<width); int potHeight = GetNextPOT(image->height); // Check if POT texture generation is required (if texture is not already POT) if ((potWidth != image->width) || (potHeight != image->height)) { Color *pixelsPOT = NULL; // Generate POT array from NPOT data pixelsPOT = (Color *)malloc(potWidth*potHeight*sizeof(Color)); for (int j = 0; j < potHeight; j++) { for (int i = 0; i < potWidth; i++) { if ((j < image->height) && (i < image->width)) pixelsPOT[j*potWidth + i] = pixels[j*image->width + i]; else pixelsPOT[j*potWidth + i] = fillColor; } } TraceLog(WARNING, "Image converted to POT: (%ix%i) -> (%ix%i)", image->width, image->height, potWidth, potHeight); free(pixels); // Free pixels data free(image->data); // Free old image data int format = image->format; // Store image data format to reconvert later // TODO: Image width and height changes... do we want to store new values or keep the old ones? // NOTE: Issues when using image.width and image.height for sprite animations... *image = LoadImageEx(pixelsPOT, potWidth, potHeight); free(pixelsPOT); // Free POT pixels data ImageFormat(image, format); // Reconvert image to previous format } } // Copy an image to a new image Image ImageCopy(Image image) { Image newImage; int size = image.width*image.height; switch (image.format) { case UNCOMPRESSED_GRAYSCALE: newImage.data = (unsigned char *)malloc(size); break; // 8 bit per pixel (no alpha) case UNCOMPRESSED_GRAY_ALPHA: newImage.data = (unsigned char *)malloc(size*2); size *= 2; break; // 16 bpp (2 channels) case UNCOMPRESSED_R5G6B5: newImage.data = (unsigned short *)malloc(size); size *= 2; break; // 16 bpp case UNCOMPRESSED_R8G8B8: newImage.data = (unsigned char *)malloc(size*3); size *= 3; break; // 24 bpp case UNCOMPRESSED_R5G5B5A1: newImage.data = (unsigned short *)malloc(size); size *= 2; break; // 16 bpp (1 bit alpha) case UNCOMPRESSED_R4G4B4A4: newImage.data = (unsigned short *)malloc(size); size *= 2; break; // 16 bpp (4 bit alpha) case UNCOMPRESSED_R8G8B8A8: newImage.data = (unsigned char *)malloc(size*4); size *= 4; break; // 32 bpp default: TraceLog(WARNING, "Image format not suported for copy"); break; } if (newImage.data != NULL) { // NOTE: Size must be provided in bytes memcpy(newImage.data, image.data, size); newImage.width = image.width; newImage.height = image.height; newImage.mipmaps = image.mipmaps; newImage.format = image.format; } return newImage; } // Crop an image to area defined by a rectangle // NOTE: Security checks are performed in case rectangle goes out of bounds void ImageCrop(Image *image, Rectangle crop) { // Security checks to make sure cropping rectangle is inside margins if ((crop.x + crop.width) > image->width) { crop.width = image->width - crop.x; TraceLog(WARNING, "Crop rectangle width out of bounds, rescaled crop width: %i", crop.width); } if ((crop.y + crop.height) > image->height) { crop.height = image->height - crop.y; TraceLog(WARNING, "Crop rectangle height out of bounds, rescaled crop height: %i", crop.height); } if ((crop.x < image->width) && (crop.y < image->height)) { // Start the cropping process Color *pixels = GetImageData(*image); // Get data as Color pixels array Color *cropPixels = (Color *)malloc(crop.width*crop.height*sizeof(Color)); for (int j = crop.y; j < (crop.y + crop.height); j++) { for (int i = crop.x; i < (crop.x + crop.width); i++) { cropPixels[(j - crop.y)*crop.width + (i - crop.x)] = pixels[j*image->width + i]; } } free(pixels); int format = image->format; UnloadImage(*image); *image = LoadImageEx(cropPixels, crop.width, crop.height); free(cropPixels); // Reformat 32bit RGBA image to original format ImageFormat(image, format); } else { TraceLog(WARNING, "Image can not be cropped, crop rectangle out of bounds"); } } // Resize and image to new size // NOTE: Uses stb default scaling filters (both bicubic): // STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_CATMULLROM // STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_MITCHELL (high-quality Catmull-Rom) void ImageResize(Image *image, int newWidth, int newHeight) { // Get data as Color pixels array to work with it Color *pixels = GetImageData(*image); Color *output = (Color *)malloc(newWidth*newHeight*sizeof(Color)); // NOTE: Color data is casted to (unsigned char *), there shouldn't been any problem... stbir_resize_uint8((unsigned char *)pixels, image->width, image->height, 0, (unsigned char *)output, newWidth, newHeight, 0, 4); int format = image->format; UnloadImage(*image); *image = LoadImageEx(output, newWidth, newHeight); ImageFormat(image, format); // Reformat 32bit RGBA image to original format free(output); free(pixels); } // Draw an image (source) within an image (destination) void ImageDraw(Image *dst, Image src, Rectangle srcRec, Rectangle dstRec) { // Security checks to avoid size and rectangle issues (out of bounds) // Check that srcRec is inside src image if (srcRec.x < 0) srcRec.x = 0; if (srcRec.y < 0) srcRec.y = 0; if ((srcRec.x + srcRec.width) > src.width) { srcRec.width = src.width - srcRec.x; TraceLog(WARNING, "Source rectangle width out of bounds, rescaled width: %i", srcRec.width); } if ((srcRec.y + srcRec.height) > src.height) { srcRec.height = src.height - srcRec.y; TraceLog(WARNING, "Source rectangle height out of bounds, rescaled height: %i", srcRec.height); } // Check that dstRec is inside dst image if (dstRec.x < 0) dstRec.x = 0; if (dstRec.y < 0) dstRec.y = 0; if ((dstRec.x + dstRec.width) > dst->width) { dstRec.width = dst->width - dstRec.x; TraceLog(WARNING, "Destination rectangle width out of bounds, rescaled width: %i", dstRec.width); } if ((dstRec.y + dstRec.height) > dst->height) { dstRec.height = dst->height - dstRec.y; TraceLog(WARNING, "Destination rectangle height out of bounds, rescaled height: %i", dstRec.height); } // Get dstination image data as Color pixels array to work with it Color *dstPixels = GetImageData(*dst); Image srcCopy = ImageCopy(src); // Make a copy of source image to work with it ImageCrop(&srcCopy, srcRec); // Crop source image to desired source rectangle // Scale source image in case destination rec size is different than source rec size if ((dstRec.width != srcRec.width) || (dstRec.height != srcRec.height)) { ImageResize(&srcCopy, dstRec.width, dstRec.height); } // Get source image data as Color array Color *srcPixels = GetImageData(srcCopy); UnloadImage(srcCopy); // Blit pixels, copy source image into destination for (int j = dstRec.y; j < (dstRec.y + dstRec.height); j++) { for (int i = dstRec.x; i < (dstRec.x + dstRec.width); i++) { dstPixels[j*dst->width + i] = srcPixels[(j - dstRec.y)*dstRec.width + (i - dstRec.x)]; } } UnloadImage(*dst); // NOTE: Only dst->data is unloaded *dst = LoadImageEx(dstPixels, dst->width, dst->height); ImageFormat(dst, dst->format); free(srcPixels); free(dstPixels); } // Create an image from text (default font) Image ImageText(const char *text, int fontSize, Color color) { int defaultFontSize = 10; // Default Font chars height in pixel if (fontSize < defaultFontSize) fontSize = defaultFontSize; int spacing = fontSize / defaultFontSize; Image imText = ImageTextEx(GetDefaultFont(), text, fontSize, spacing, color); return imText; } // Create an image from text (custom sprite font) Image ImageTextEx(SpriteFont font, const char *text, int fontSize, int spacing, Color tint) { int length = strlen(text); int posX = 0; Vector2 imSize = MeasureTextEx(font, text, font.size, spacing); // NOTE: GetTextureData() not available in OpenGL ES Image imFont = GetTextureData(font.texture); ImageFormat(&imFont, UNCOMPRESSED_R8G8B8A8); // Required for color tint ImageColorTint(&imFont, tint); // Apply color tint to font Color *fontPixels = GetImageData(imFont); // Create image to store text Color *pixels = (Color *)malloc(sizeof(Color)*(int)imSize.x*(int)imSize.y); for (int i = 0; i < length; i++) { Rectangle letterRec = font.charRecs[(int)text[i] - 32]; for (int y = letterRec.y; y < (letterRec.y + letterRec.height); y++) { for (int x = posX; x < (posX + letterRec.width); x++) { pixels[(y - letterRec.y)*(int)imSize.x + x] = fontPixels[y*font.texture.width + (x - posX + letterRec.x)]; } } posX += letterRec.width + spacing; } UnloadImage(imFont); Image imText = LoadImageEx(pixels, (int)imSize.x, (int)imSize.y); // Scale image depending on text size if (fontSize > (int)imSize.y) { float scaleFactor = (float)fontSize/imSize.y; TraceLog(INFO, "Scalefactor: %f", scaleFactor); // TODO: Allow nearest-neighbor scaling algorithm ImageResize(&imText, (int)(imSize.x*scaleFactor), (int)(imSize.y*scaleFactor)); } free(pixels); free(fontPixels); return imText; } // Flip image vertically void ImageFlipVertical(Image *image) { Color *srcPixels = GetImageData(*image); Color *dstPixels = (Color *)malloc(sizeof(Color)*image->width*image->height); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { dstPixels[y*image->width + x] = srcPixels[(image->height - 1 - y)*image->width + x]; } } Image processed = LoadImageEx(dstPixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(srcPixels); free(dstPixels); image->data = processed.data; } // Flip image horizontally void ImageFlipHorizontal(Image *image) { Color *srcPixels = GetImageData(*image); Color *dstPixels = (Color *)malloc(sizeof(Color)*image->width*image->height); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { dstPixels[y*image->width + x] = srcPixels[y*image->width + (image->width - 1 - x)]; } } Image processed = LoadImageEx(dstPixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(srcPixels); free(dstPixels); image->data = processed.data; } // Modify image color: tint void ImageColorTint(Image *image, Color color) { Color *pixels = GetImageData(*image); float cR = (float)color.r/255; float cG = (float)color.g/255; float cB = (float)color.b/255; float cA = (float)color.a/255; for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { unsigned char r = 255*((float)pixels[y*image->width + x].r/255*cR); unsigned char g = 255*((float)pixels[y*image->width + x].g/255*cG); unsigned char b = 255*((float)pixels[y*image->width + x].b/255*cB); unsigned char a = 255*((float)pixels[y*image->width + x].a/255*cA); pixels[y*image->width + x].r = r; pixels[y*image->width + x].g = g; pixels[y*image->width + x].b = b; pixels[y*image->width + x].a = a; } } Image processed = LoadImageEx(pixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(pixels); image->data = processed.data; } // Modify image color: invert void ImageColorInvert(Image *image) { Color *pixels = GetImageData(*image); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { pixels[y*image->width + x].r = 255 - pixels[y*image->width + x].r; pixels[y*image->width + x].g = 255 - pixels[y*image->width + x].g; pixels[y*image->width + x].b = 255 - pixels[y*image->width + x].b; } } Image processed = LoadImageEx(pixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(pixels); image->data = processed.data; } // Modify image color: grayscale void ImageColorGrayscale(Image *image) { ImageFormat(image, UNCOMPRESSED_GRAYSCALE); } // Modify image color: contrast // NOTE: Contrast values between -100 and 100 void ImageColorContrast(Image *image, float contrast) { if (contrast < -100) contrast = -100; if (contrast > 100) contrast = 100; contrast = (100.0 + contrast)/100.0; contrast *= contrast; Color *pixels = GetImageData(*image); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { float pR = (float)pixels[y*image->width + x].r/255.0; pR -= 0.5; pR *= contrast; pR += 0.5; pR *= 255; if (pR < 0) pR = 0; if (pR > 255) pR = 255; float pG = (float)pixels[y*image->width + x].g/255.0; pG -= 0.5; pG *= contrast; pG += 0.5; pG *= 255; if (pG < 0) pG = 0; if (pG > 255) pG = 255; float pB = (float)pixels[y*image->width + x].b/255.0; pB -= 0.5; pB *= contrast; pB += 0.5; pB *= 255; if (pB < 0) pB = 0; if (pB > 255) pB = 255; pixels[y*image->width + x].r = (unsigned char)pR; pixels[y*image->width + x].g = (unsigned char)pG; pixels[y*image->width + x].b = (unsigned char)pB; } } Image processed = LoadImageEx(pixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(pixels); image->data = processed.data; } // Modify image color: brightness // NOTE: Brightness values between -255 and 255 void ImageColorBrightness(Image *image, int brightness) { if (brightness < -255) brightness = -255; if (brightness > 255) brightness = 255; Color *pixels = GetImageData(*image); for (int y = 0; y < image->height; y++) { for (int x = 0; x < image->width; x++) { int cR = pixels[y*image->width + x].r + brightness; int cG = pixels[y*image->width + x].g + brightness; int cB = pixels[y*image->width + x].b + brightness; if (cR < 0) cR = 1; if (cR > 255) cR = 255; if (cG < 0) cG = 1; if (cG > 255) cG = 255; if (cB < 0) cB = 1; if (cB > 255) cB = 255; pixels[y*image->width + x].r = (unsigned char)cR; pixels[y*image->width + x].g = (unsigned char)cG; pixels[y*image->width + x].b = (unsigned char)cB; } } Image processed = LoadImageEx(pixels, image->width, image->height); ImageFormat(&processed, image->format); UnloadImage(*image); free(pixels); image->data = processed.data; } // Generate GPU mipmaps for a texture void GenTextureMipmaps(Texture2D texture) { #if PLATFORM_WEB int potWidth = GetNextPOT(texture.width); int potHeight = GetNextPOT(texture.height); // Check if texture is POT if ((potWidth != texture.width) || (potHeight != texture.height)) { TraceLog(WARNING, "Limited NPOT support, no mipmaps available for NPOT textures"); } else rlglGenerateMipmaps(texture); #else rlglGenerateMipmaps(texture); #endif } // Update GPU texture with new data // NOTE: pixels data must match texture.format void UpdateTexture(Texture2D texture, void *pixels) { rlglUpdateTexture(texture.id, texture.width, texture.height, texture.format, pixels); } // Draw a Texture2D void DrawTexture(Texture2D texture, int posX, int posY, Color tint) { DrawTextureEx(texture, (Vector2){ (float)posX, (float)posY }, 0, 1.0f, tint); } // Draw a Texture2D with position defined as Vector2 void DrawTextureV(Texture2D texture, Vector2 position, Color tint) { DrawTextureEx(texture, position, 0, 1.0f, tint); } // Draw a Texture2D with extended parameters void DrawTextureEx(Texture2D texture, Vector2 position, float rotation, float scale, Color tint) { Rectangle sourceRec = { 0, 0, texture.width, texture.height }; Rectangle destRec = { (int)position.x, (int)position.y, texture.width*scale, texture.height*scale }; Vector2 origin = { 0, 0 }; DrawTexturePro(texture, sourceRec, destRec, origin, rotation, tint); } // Draw a part of a texture (defined by a rectangle) void DrawTextureRec(Texture2D texture, Rectangle sourceRec, Vector2 position, Color tint) { Rectangle destRec = { (int)position.x, (int)position.y, abs(sourceRec.width), abs(sourceRec.height) }; Vector2 origin = { 0, 0 }; DrawTexturePro(texture, sourceRec, destRec, origin, 0.0f, tint); } // Draw a part of a texture (defined by a rectangle) with 'pro' parameters // NOTE: origin is relative to destination rectangle size void DrawTexturePro(Texture2D texture, Rectangle sourceRec, Rectangle destRec, Vector2 origin, float rotation, Color tint) { rlEnableTexture(texture.id); rlPushMatrix(); rlTranslatef(destRec.x, destRec.y, 0); rlRotatef(rotation, 0, 0, 1); rlTranslatef(-origin.x, -origin.y, 0); rlBegin(RL_QUADS); rlColor4ub(tint.r, tint.g, tint.b, tint.a); rlNormal3f(0.0f, 0.0f, 1.0f); // Normal vector pointing towards viewer // Bottom-left corner for texture and quad rlTexCoord2f((float)sourceRec.x / texture.width, (float)sourceRec.y / texture.height); rlVertex2f(0.0f, 0.0f); // Bottom-right corner for texture and quad rlTexCoord2f((float)sourceRec.x / texture.width, (float)(sourceRec.y + sourceRec.height) / texture.height); rlVertex2f(0.0f, destRec.height); // Top-right corner for texture and quad rlTexCoord2f((float)(sourceRec.x + sourceRec.width) / texture.width, (float)(sourceRec.y + sourceRec.height) / texture.height); rlVertex2f(destRec.width, destRec.height); // Top-left corner for texture and quad rlTexCoord2f((float)(sourceRec.x + sourceRec.width) / texture.width, (float)sourceRec.y / texture.height); rlVertex2f(destRec.width, 0.0f); rlEnd(); rlPopMatrix(); rlDisableTexture(); } //---------------------------------------------------------------------------------- // Module specific Functions Definition //---------------------------------------------------------------------------------- // Loading DDS image data (compressed or uncompressed) static Image LoadDDS(const char *fileName) { // Required extension: // GL_EXT_texture_compression_s3tc // Supported tokens (defined by extensions) // GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0 // GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 // GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 // GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #define FOURCC_DXT1 0x31545844 // Equivalent to "DXT1" in ASCII #define FOURCC_DXT3 0x33545844 // Equivalent to "DXT3" in ASCII #define FOURCC_DXT5 0x35545844 // Equivalent to "DXT5" in ASCII // DDS Pixel Format typedef struct { unsigned int size; unsigned int flags; unsigned int fourCC; unsigned int rgbBitCount; unsigned int rBitMask; unsigned int gBitMask; unsigned int bBitMask; unsigned int aBitMask; } ddsPixelFormat; // DDS Header (124 bytes) typedef struct { unsigned int size; unsigned int flags; unsigned int height; unsigned int width; unsigned int pitchOrLinearSize; unsigned int depth; unsigned int mipmapCount; unsigned int reserved1[11]; ddsPixelFormat ddspf; unsigned int caps; unsigned int caps2; unsigned int caps3; unsigned int caps4; unsigned int reserved2; } ddsHeader; Image image; image.data = NULL; image.width = 0; image.height = 0; image.mipmaps = 0; image.format = 0; FILE *ddsFile = fopen(fileName, "rb"); if (ddsFile == NULL) { TraceLog(WARNING, "[%s] DDS file could not be opened", fileName); } else { // Verify the type of file char filecode[4]; fread(filecode, 1, 4, ddsFile); if (strncmp(filecode, "DDS ", 4) != 0) { TraceLog(WARNING, "[%s] DDS file does not seem to be a valid image", fileName); } else { ddsHeader header; // Get the image header fread(&header, sizeof(ddsHeader), 1, ddsFile); TraceLog(DEBUG, "[%s] DDS file header size: %i", fileName, sizeof(ddsHeader)); TraceLog(DEBUG, "[%s] DDS file pixel format size: %i", fileName, header.ddspf.size); TraceLog(DEBUG, "[%s] DDS file pixel format flags: 0x%x", fileName, header.ddspf.flags); TraceLog(DEBUG, "[%s] DDS file format: 0x%x", fileName, header.ddspf.fourCC); TraceLog(DEBUG, "[%s] DDS file bit count: 0x%x", fileName, header.ddspf.rgbBitCount); image.width = header.width; image.height = header.height; image.mipmaps = 1; // Default value, could be changed (header.mipmapCount) if (header.ddspf.rgbBitCount == 16) // 16bit mode, no compressed { if (header.ddspf.flags == 0x40) // no alpha channel { image.data = (unsigned short *)malloc(image.width*image.height*sizeof(unsigned short)); fread(image.data, image.width*image.height*sizeof(unsigned short), 1, ddsFile); image.format = UNCOMPRESSED_R5G6B5; } else if (header.ddspf.flags == 0x41) // with alpha channel { if (header.ddspf.aBitMask == 0x8000) // 1bit alpha { image.data = (unsigned short *)malloc(image.width*image.height*sizeof(unsigned short)); fread(image.data, image.width*image.height*sizeof(unsigned short), 1, ddsFile); unsigned char alpha = 0; // NOTE: Data comes as A1R5G5B5, it must be reordered to R5G5B5A1 for (int i = 0; i < image.width*image.height; i++) { alpha = ((unsigned short *)image.data)[i] >> 15; ((unsigned short *)image.data)[i] = ((unsigned short *)image.data)[i] << 1; ((unsigned short *)image.data)[i] += alpha; } image.format = UNCOMPRESSED_R5G5B5A1; } else if (header.ddspf.aBitMask == 0xf000) // 4bit alpha { image.data = (unsigned short *)malloc(image.width*image.height*sizeof(unsigned short)); fread(image.data, image.width*image.height*sizeof(unsigned short), 1, ddsFile); unsigned char alpha = 0; // NOTE: Data comes as A4R4G4B4, it must be reordered R4G4B4A4 for (int i = 0; i < image.width*image.height; i++) { alpha = ((unsigned short *)image.data)[i] >> 12; ((unsigned short *)image.data)[i] = ((unsigned short *)image.data)[i] << 4; ((unsigned short *)image.data)[i] += alpha; } image.format = UNCOMPRESSED_R4G4B4A4; } } } if (header.ddspf.flags == 0x40 && header.ddspf.rgbBitCount == 24) // DDS_RGB, no compressed { // NOTE: not sure if this case exists... image.data = (unsigned char *)malloc(image.width*image.height*3*sizeof(unsigned char)); fread(image.data, image.width*image.height*3, 1, ddsFile); image.format = UNCOMPRESSED_R8G8B8; } else if (header.ddspf.flags == 0x41 && header.ddspf.rgbBitCount == 32) // DDS_RGBA, no compressed { image.data = (unsigned char *)malloc(image.width*image.height*4*sizeof(unsigned char)); fread(image.data, image.width*image.height*4, 1, ddsFile); unsigned char blue = 0; // NOTE: Data comes as A8R8G8B8, it must be reordered R8G8B8A8 (view next comment) // DirecX understand ARGB as a 32bit DWORD but the actual memory byte alignment is BGRA // So, we must realign B8G8R8A8 to R8G8B8A8 for (int i = 0; i < image.width*image.height*4; i += 4) { blue = ((unsigned char *)image.data)[i]; ((unsigned char *)image.data)[i] = ((unsigned char *)image.data)[i + 2]; ((unsigned char *)image.data)[i + 2] = blue; } image.format = UNCOMPRESSED_R8G8B8A8; } else if (((header.ddspf.flags == 0x04) || (header.ddspf.flags == 0x05)) && (header.ddspf.fourCC > 0)) // Compressed { int bufsize; // Calculate data size, including all mipmaps if (header.mipmapCount > 1) bufsize = header.pitchOrLinearSize*2; else bufsize = header.pitchOrLinearSize; TraceLog(DEBUG, "Pitch or linear size: %i", header.pitchOrLinearSize); image.data = (unsigned char*)malloc(bufsize*sizeof(unsigned char)); fread(image.data, 1, bufsize, ddsFile); image.mipmaps = header.mipmapCount; switch(header.ddspf.fourCC) { case FOURCC_DXT1: { if (header.ddspf.flags == 0x04) image.format = COMPRESSED_DXT1_RGB; else image.format = COMPRESSED_DXT1_RGBA; } break; case FOURCC_DXT3: image.format = COMPRESSED_DXT3_RGBA; break; case FOURCC_DXT5: image.format = COMPRESSED_DXT5_RGBA; break; default: break; } } } fclose(ddsFile); // Close file pointer } return image; } // Loading PKM image data (ETC1/ETC2 compression) // NOTE: KTX is the standard Khronos Group compression format (ETC1/ETC2, mipmaps) // PKM is a much simpler file format used mainly to contain a single ETC1/ETC2 compressed image (no mipmaps) static Image LoadPKM(const char *fileName) { // Required extensions: // GL_OES_compressed_ETC1_RGB8_texture (ETC1) (OpenGL ES 2.0) // GL_ARB_ES3_compatibility (ETC2/EAC) (OpenGL ES 3.0) // Supported tokens (defined by extensions) // GL_ETC1_RGB8_OES 0x8D64 // GL_COMPRESSED_RGB8_ETC2 0x9274 // GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278 // PKM file (ETC1) Header (16 bytes) typedef struct { char id[4]; // "PKM " char version[2]; // "10" or "20" unsigned short format; // Data format (big-endian) (Check list below) unsigned short width; // Texture width (big-endian) (origWidth rounded to multiple of 4) unsigned short height; // Texture height (big-endian) (origHeight rounded to multiple of 4) unsigned short origWidth; // Original width (big-endian) unsigned short origHeight; // Original height (big-endian) } pkmHeader; // Formats list // version 10: format: 0=ETC1_RGB, [1=ETC1_RGBA, 2=ETC1_RGB_MIP, 3=ETC1_RGBA_MIP] (not used) // version 20: format: 0=ETC1_RGB, 1=ETC2_RGB, 2=ETC2_RGBA_OLD, 3=ETC2_RGBA, 4=ETC2_RGBA1, 5=ETC2_R, 6=ETC2_RG, 7=ETC2_SIGNED_R, 8=ETC2_SIGNED_R // NOTE: The extended width and height are the widths rounded up to a multiple of 4. // NOTE: ETC is always 4bit per pixel (64 bit for each 4x4 block of pixels) Image image; image.data = NULL; image.width = 0; image.height = 0; image.mipmaps = 0; image.format = 0; FILE *pkmFile = fopen(fileName, "rb"); if (pkmFile == NULL) { TraceLog(WARNING, "[%s] PKM file could not be opened", fileName); } else { pkmHeader header; // Get the image header fread(&header, sizeof(pkmHeader), 1, pkmFile); if (strncmp(header.id, "PKM ", 4) != 0) { TraceLog(WARNING, "[%s] PKM file does not seem to be a valid image", fileName); } else { // NOTE: format, width and height come as big-endian, data must be swapped to little-endian header.format = ((header.format & 0x00FF) << 8) | ((header.format & 0xFF00) >> 8); header.width = ((header.width & 0x00FF) << 8) | ((header.width & 0xFF00) >> 8); header.height = ((header.height & 0x00FF) << 8) | ((header.height & 0xFF00) >> 8); TraceLog(DEBUG, "PKM (ETC) image width: %i", header.width); TraceLog(DEBUG, "PKM (ETC) image height: %i", header.height); TraceLog(DEBUG, "PKM (ETC) image format: %i", header.format); image.width = header.width; image.height = header.height; image.mipmaps = 1; int bpp = 4; if (header.format == 3) bpp = 8; int size = image.width*image.height*bpp/8; // Total data size in bytes image.data = (unsigned char*)malloc(size * sizeof(unsigned char)); fread(image.data, 1, size, pkmFile); if (header.format == 0) image.format = COMPRESSED_ETC1_RGB; else if (header.format == 1) image.format = COMPRESSED_ETC2_RGB; else if (header.format == 3) image.format = COMPRESSED_ETC2_EAC_RGBA; } fclose(pkmFile); // Close file pointer } return image; } // Load KTX compressed image data (ETC1/ETC2 compression) static Image LoadKTX(const char *fileName) { // Required extensions: // GL_OES_compressed_ETC1_RGB8_texture (ETC1) // GL_ARB_ES3_compatibility (ETC2/EAC) // Supported tokens (defined by extensions) // GL_ETC1_RGB8_OES 0x8D64 // GL_COMPRESSED_RGB8_ETC2 0x9274 // GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278 // KTX file Header (64 bytes) // https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/ typedef struct { char id[12]; // Identifier: "«KTX 11»\r\n\x1A\n" unsigned int endianness; // Little endian: 0x01 0x02 0x03 0x04 unsigned int glType; // For compressed textures, glType must equal 0 unsigned int glTypeSize; // For compressed texture data, usually 1 unsigned int glFormat; // For compressed textures is 0 unsigned int glInternalFormat; // Compressed internal format unsigned int glBaseInternalFormat; // Same as glFormat (RGB, RGBA, ALPHA...) unsigned int width; // Texture image width in pixels unsigned int height; // Texture image height in pixels unsigned int depth; // For 2D textures is 0 unsigned int elements; // Number of array elements, usually 0 unsigned int faces; // Cubemap faces, for no-cubemap = 1 unsigned int mipmapLevels; // Non-mipmapped textures = 1 unsigned int keyValueDataSize; // Used to encode any arbitrary data... } ktxHeader; // NOTE: Before start of every mipmap data block, we have: unsigned int dataSize Image image; image.width = 0; image.height = 0; image.mipmaps = 0; image.format = 0; FILE *ktxFile = fopen(fileName, "rb"); if (ktxFile == NULL) { TraceLog(WARNING, "[%s] KTX image file could not be opened", fileName); } else { ktxHeader header; // Get the image header fread(&header, sizeof(ktxHeader), 1, ktxFile); if ((header.id[1] != 'K') || (header.id[2] != 'T') || (header.id[3] != 'X') || (header.id[4] != ' ') || (header.id[5] != '1') || (header.id[6] != '1')) { TraceLog(WARNING, "[%s] KTX file does not seem to be a valid file", fileName); } else { image.width = header.width; image.height = header.height; image.mipmaps = header.mipmapLevels; TraceLog(DEBUG, "KTX (ETC) image width: %i", header.width); TraceLog(DEBUG, "KTX (ETC) image height: %i", header.height); TraceLog(DEBUG, "KTX (ETC) image format: 0x%x", header.glInternalFormat); unsigned char unused; if (header.keyValueDataSize > 0) { for (int i = 0; i < header.keyValueDataSize; i++) fread(&unused, 1, 1, ktxFile); } int dataSize; fread(&dataSize, sizeof(unsigned int), 1, ktxFile); image.data = (unsigned char*)malloc(dataSize * sizeof(unsigned char)); fread(image.data, 1, dataSize, ktxFile); if (header.glInternalFormat == 0x8D64) image.format = COMPRESSED_ETC1_RGB; else if (header.glInternalFormat == 0x9274) image.format = COMPRESSED_ETC2_RGB; else if (header.glInternalFormat == 0x9278) image.format = COMPRESSED_ETC2_EAC_RGBA; } fclose(ktxFile); // Close file pointer } return image; } // Loading PVR image data (uncompressed or PVRT compression) // NOTE: PVR v2 not supported, use PVR v3 instead static Image LoadPVR(const char *fileName) { // Required extension: // GL_IMG_texture_compression_pvrtc // Supported tokens (defined by extensions) // GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 // GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #if 0 // Not used... // PVR file v2 Header (52 bytes) typedef struct { unsigned int headerLength; unsigned int height; unsigned int width; unsigned int numMipmaps; unsigned int flags; unsigned int dataLength; unsigned int bpp; unsigned int bitmaskRed; unsigned int bitmaskGreen; unsigned int bitmaskBlue; unsigned int bitmaskAlpha; unsigned int pvrTag; unsigned int numSurfs; } pvrHeaderV2; #endif // PVR file v3 Header (52 bytes) // NOTE: After it could be metadata (15 bytes?) typedef struct { char id[4]; unsigned int flags; unsigned char channels[4]; // pixelFormat high part unsigned char channelDepth[4]; // pixelFormat low part unsigned int colourSpace; unsigned int channelType; unsigned int height; unsigned int width; unsigned int depth; unsigned int numSurfaces; unsigned int numFaces; unsigned int numMipmaps; unsigned int metaDataSize; } pvrHeaderV3; #if 0 // Not used... // Metadata (usually 15 bytes) typedef struct { unsigned int devFOURCC; unsigned int key; unsigned int dataSize; // Not used? unsigned char *data; // Not used? } pvrMetadata; #endif Image image; image.data = NULL; image.width = 0; image.height = 0; image.mipmaps = 0; image.format = 0; FILE *pvrFile = fopen(fileName, "rb"); if (pvrFile == NULL) { TraceLog(WARNING, "[%s] PVR file could not be opened", fileName); } else { // Check PVR image version unsigned char pvrVersion = 0; fread(&pvrVersion, sizeof(unsigned char), 1, pvrFile); fseek(pvrFile, 0, SEEK_SET); // Load different PVR data formats if (pvrVersion == 0x50) { pvrHeaderV3 header; // Get PVR image header fread(&header, sizeof(pvrHeaderV3), 1, pvrFile); if ((header.id[0] != 'P') || (header.id[1] != 'V') || (header.id[2] != 'R') || (header.id[3] != 3)) { TraceLog(WARNING, "[%s] PVR file does not seem to be a valid image", fileName); } else { image.width = header.width; image.height = header.height; image.mipmaps = header.numMipmaps; // Check data format if (((header.channels[0] == 'l') && (header.channels[1] == 0)) && (header.channelDepth[0] == 8)) image.format = UNCOMPRESSED_GRAYSCALE; else if (((header.channels[0] == 'l') && (header.channels[1] == 'a')) && ((header.channelDepth[0] == 8) && (header.channelDepth[1] == 8))) image.format = UNCOMPRESSED_GRAY_ALPHA; else if ((header.channels[0] == 'r') && (header.channels[1] == 'g') && (header.channels[2] == 'b')) { if (header.channels[3] == 'a') { if ((header.channelDepth[0] == 5) && (header.channelDepth[1] == 5) && (header.channelDepth[2] == 5) && (header.channelDepth[3] == 1)) image.format = UNCOMPRESSED_R5G5B5A1; else if ((header.channelDepth[0] == 4) && (header.channelDepth[1] == 4) && (header.channelDepth[2] == 4) && (header.channelDepth[3] == 4)) image.format = UNCOMPRESSED_R4G4B4A4; else if ((header.channelDepth[0] == 8) && (header.channelDepth[1] == 8) && (header.channelDepth[2] == 8) && (header.channelDepth[3] == 8)) image.format = UNCOMPRESSED_R8G8B8A8; } else if (header.channels[3] == 0) { if ((header.channelDepth[0] == 5) && (header.channelDepth[1] == 6) && (header.channelDepth[2] == 5)) image.format = UNCOMPRESSED_R5G6B5; else if ((header.channelDepth[0] == 8) && (header.channelDepth[1] == 8) && (header.channelDepth[2] == 8)) image.format = UNCOMPRESSED_R8G8B8; } } else if (header.channels[0] == 2) image.format = COMPRESSED_PVRT_RGB; else if (header.channels[0] == 3) image.format = COMPRESSED_PVRT_RGBA; // Skip meta data header unsigned char unused = 0; for (int i = 0; i < header.metaDataSize; i++) fread(&unused, sizeof(unsigned char), 1, pvrFile); // Calculate data size (depends on format) int bpp = 0; switch (image.format) { case UNCOMPRESSED_GRAYSCALE: bpp = 8; break; case UNCOMPRESSED_GRAY_ALPHA: case UNCOMPRESSED_R5G5B5A1: case UNCOMPRESSED_R5G6B5: case UNCOMPRESSED_R4G4B4A4: bpp = 16; break; case UNCOMPRESSED_R8G8B8A8: bpp = 32; break; case UNCOMPRESSED_R8G8B8: bpp = 24; break; case COMPRESSED_PVRT_RGB: case COMPRESSED_PVRT_RGBA: bpp = 4; break; default: break; } int dataSize = image.width*image.height*bpp/8; // Total data size in bytes image.data = (unsigned char*)malloc(dataSize*sizeof(unsigned char)); // Read data from file fread(image.data, dataSize, 1, pvrFile); } } else if (pvrVersion == 52) TraceLog(INFO, "PVR v2 not supported, update your files to PVR v3"); fclose(pvrFile); // Close file pointer } return image; } // Load ASTC compressed image data (ASTC compression) static Image LoadASTC(const char *fileName) { // Required extensions: // GL_KHR_texture_compression_astc_hdr // GL_KHR_texture_compression_astc_ldr // Supported tokens (defined by extensions) // GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93b0 // GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93b7 // ASTC file Header (16 bytes) typedef struct { unsigned char id[4]; // Signature: 0x13 0xAB 0xA1 0x5C unsigned char blockX; // Block X dimensions unsigned char blockY; // Block Y dimensions unsigned char blockZ; // Block Z dimensions (1 for 2D images) unsigned char width[3]; // Image width in pixels (24bit value) unsigned char height[3]; // Image height in pixels (24bit value) unsigned char lenght[3]; // Image Z-size (1 for 2D images) } astcHeader; Image image; image.data = NULL; image.width = 0; image.height = 0; image.mipmaps = 0; image.format = 0; FILE *astcFile = fopen(fileName, "rb"); if (astcFile == NULL) { TraceLog(WARNING, "[%s] ASTC file could not be opened", fileName); } else { astcHeader header; // Get ASTC image header fread(&header, sizeof(astcHeader), 1, astcFile); if ((header.id[3] != 0x5c) || (header.id[2] != 0xa1) || (header.id[1] != 0xab) || (header.id[0] != 0x13)) { TraceLog(WARNING, "[%s] ASTC file does not seem to be a valid image", fileName); } else { // NOTE: Assuming Little Endian (could it be wrong?) image.width = 0x00000000 | ((int)header.width[2] << 16) | ((int)header.width[1] << 8) | ((int)header.width[0]); image.height = 0x00000000 | ((int)header.height[2] << 16) | ((int)header.height[1] << 8) | ((int)header.height[0]); // NOTE: ASTC format only contains one mipmap level image.mipmaps = 1; TraceLog(DEBUG, "ASTC image width: %i", image.width); TraceLog(DEBUG, "ASTC image height: %i", image.height); TraceLog(DEBUG, "ASTC image blocks: %ix%i", header.blockX, header.blockY); // NOTE: Each block is always stored in 128bit so we can calculate the bpp int bpp = 128/(header.blockX*header.blockY); // NOTE: Currently we only support 2 blocks configurations: 4x4 and 8x8 if ((bpp == 8) || (bpp == 2)) { int dataSize = image.width*image.height*bpp/8; // Data size in bytes image.data = (unsigned char *)malloc(dataSize*sizeof(unsigned char)); fread(image.data, dataSize, 1, astcFile); if (bpp == 8) image.format = COMPRESSED_ASTC_4x4_RGBA; else if (bpp == 2) image.format = COMPRESSED_ASTC_4x4_RGBA; } else TraceLog(WARNING, "[%s] ASTC block size configuration not supported", fileName); } fclose(astcFile); } return image; }