/******************************************************************************************* * * raylib [shaders] example - Standard lighting (materials and lights) * * NOTE: This example requires raylib OpenGL 3.3 or ES2 versions for shaders support, * OpenGL 1.1 does not support shaders, recompile raylib to OpenGL 3.3 version. * * NOTE: Shaders used in this example are #version 330 (OpenGL 3.3), to test this example * on OpenGL ES 2.0 platforms (Android, Raspberry Pi, HTML5), use #version 100 shaders * raylib comes with shaders ready for both versions, check raylib/shaders install folder * * This example has been created using raylib 1.7 (www.raylib.com) * raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details) * * Copyright (c) 2016-2017 Ramon Santamaria (@raysan5) * ********************************************************************************************/ #include "raylib.h" #include // Required for: NULL #include // Required for: strcpy() #include // Required for: vector math //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- #define MAX_LIGHTS 8 // Max lights supported by standard shader //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- // Light type typedef struct LightData { unsigned int id; // Light unique id bool enabled; // Light enabled int type; // Light type: LIGHT_POINT, LIGHT_DIRECTIONAL, LIGHT_SPOT Vector3 position; // Light position Vector3 target; // Light direction: LIGHT_DIRECTIONAL and LIGHT_SPOT (cone direction target) float radius; // Light attenuation radius light intensity reduced with distance (world distance) Color diffuse; // Light diffuse color float intensity; // Light intensity level float coneAngle; // Light cone max angle: LIGHT_SPOT } LightData, *Light; // Light types typedef enum { LIGHT_POINT, LIGHT_DIRECTIONAL, LIGHT_SPOT } LightType; //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- static Light lights[MAX_LIGHTS]; // Lights pool static int lightsCount = 0; // Enabled lights counter static int lightsLocs[MAX_LIGHTS][8]; // Lights location points in shader: 8 possible points per light: // enabled, type, position, target, radius, diffuse, intensity, coneAngle //---------------------------------------------------------------------------------- // Module Functions Declaration //---------------------------------------------------------------------------------- static Light CreateLight(int type, Vector3 position, Color diffuse); // Create a new light, initialize it and add to pool static void DestroyLight(Light light); // Destroy a light and take it out of the list static void DrawLight(Light light); // Draw light in 3D world static void GetShaderLightsLocations(Shader shader); // Get shader locations for lights (up to MAX_LIGHTS) static void SetShaderLightsValues(Shader shader); // Set shader uniform values for lights // Vector3 math functions static float VectorLength(const Vector3 v); // Calculate vector length static void VectorNormalize(Vector3 *v); // Normalize provided vector static Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors //https://www.gamedev.net/topic/655969-speed-gluniform-vs-uniform-buffer-objects/ //https://www.reddit.com/r/opengl/comments/4ri20g/is_gluniform_more_expensive_than_glprogramuniform/ //http://cg.alexandra.dk/?p=3778 - AZDO //https://developer.apple.com/library/content/documentation/3DDrawing/Conceptual/OpenGLES_ProgrammingGuide/BestPracticesforShaders/BestPracticesforShaders.html //------------------------------------------------------------------------------------ // Program main entry point //------------------------------------------------------------------------------------ int main() { // Initialization //-------------------------------------------------------------------------------------- int screenWidth = 800; int screenHeight = 450; SetConfigFlags(FLAG_MSAA_4X_HINT); // Enable Multi Sampling Anti Aliasing 4x (if available) InitWindow(screenWidth, screenHeight, "raylib [shaders] example - model shader"); // Define the camera to look into our 3d world Camera camera = {{ 4.0f, 4.0f, 4.0f }, { 0.0f, 1.5f, 0.0f }, { 0.0f, 1.0f, 0.0f }, 45.0f }; Vector3 position = { 0.0f, 0.0f, 0.0f }; // Set model position Model dwarf = LoadModel("resources/model/dwarf.obj"); // Load OBJ model Material material;// = LoadStandardMaterial(); material.shader = LoadShader("resources/shaders/glsl330/standard.vs", "resources/shaders/glsl330/standard.fs"); // Try to get lights location points (if available) GetShaderLightsLocations(material.shader); material.texDiffuse = LoadTexture("resources/model/dwarf_diffuse.png"); // Load model diffuse texture material.texNormal = LoadTexture("resources/model/dwarf_normal.png"); // Load model normal texture material.texSpecular = LoadTexture("resources/model/dwarf_specular.png"); // Load model specular texture material.colDiffuse = WHITE; material.colAmbient = (Color){0, 0, 10, 255}; material.colSpecular = WHITE; material.glossiness = 50.0f; dwarf.material = material; // Apply material to model Light spotLight = CreateLight(LIGHT_SPOT, (Vector3){3.0f, 5.0f, 2.0f}, (Color){255, 255, 255, 255}); spotLight->target = (Vector3){0.0f, 0.0f, 0.0f}; spotLight->intensity = 2.0f; spotLight->diffuse = (Color){255, 100, 100, 255}; spotLight->coneAngle = 60.0f; Light dirLight = CreateLight(LIGHT_DIRECTIONAL, (Vector3){0.0f, -3.0f, -3.0f}, (Color){255, 255, 255, 255}); dirLight->target = (Vector3){1.0f, -2.0f, -2.0f}; dirLight->intensity = 2.0f; dirLight->diffuse = (Color){100, 255, 100, 255}; Light pointLight = CreateLight(LIGHT_POINT, (Vector3){0.0f, 4.0f, 5.0f}, (Color){255, 255, 255, 255}); pointLight->intensity = 2.0f; pointLight->diffuse = (Color){100, 100, 255, 255}; pointLight->radius = 3.0f; // Set shader lights values for enabled lights // NOTE: If values are not changed in real time, they can be set at initialization!!! SetShaderLightsValues(material.shader); //SetShaderActive(0); // Setup orbital camera SetCameraMode(camera, CAMERA_ORBITAL); // Set an orbital camera mode SetTargetFPS(60); // Set our game to run at 60 frames-per-second //-------------------------------------------------------------------------------------- // Main game loop while (!WindowShouldClose()) // Detect window close button or ESC key { // Update //---------------------------------------------------------------------------------- UpdateCamera(&camera); // Update camera //---------------------------------------------------------------------------------- // Draw //---------------------------------------------------------------------------------- BeginDrawing(); ClearBackground(RAYWHITE); BeginMode3D(camera); DrawModel(dwarf, position, 2.0f, WHITE); // Draw 3d model with texture DrawLight(spotLight); // Draw spot light DrawLight(dirLight); // Draw directional light DrawLight(pointLight); // Draw point light DrawGrid(10, 1.0f); // Draw a grid EndMode3D(); DrawText("(c) Dwarf 3D model by David Moreno", screenWidth - 200, screenHeight - 20, 10, GRAY); DrawFPS(10, 10); EndDrawing(); //---------------------------------------------------------------------------------- } // De-Initialization //-------------------------------------------------------------------------------------- UnloadMaterial(material); // Unload material and assigned textures UnloadModel(dwarf); // Unload model // Destroy all created lights DestroyLight(pointLight); DestroyLight(dirLight); DestroyLight(spotLight); // Unload lights if (lightsCount > 0) { for (int i = 0; i < lightsCount; i++) free(lights[i]); lightsCount = 0; } CloseWindow(); // Close window and OpenGL context //-------------------------------------------------------------------------------------- return 0; } //-------------------------------------------------------------------------------------------- // Module Functions Definitions //-------------------------------------------------------------------------------------------- // Create a new light, initialize it and add to pool Light CreateLight(int type, Vector3 position, Color diffuse) { Light light = NULL; if (lightsCount < MAX_LIGHTS) { // Allocate dynamic memory light = (Light)malloc(sizeof(LightData)); // Initialize light values with generic values light->id = lightsCount; light->type = type; light->enabled = true; light->position = position; light->target = (Vector3){ 0.0f, 0.0f, 0.0f }; light->intensity = 1.0f; light->diffuse = diffuse; // Add new light to the array lights[lightsCount] = light; // Increase enabled lights count lightsCount++; } else { // NOTE: Returning latest created light to avoid crashes light = lights[lightsCount]; } return light; } // Destroy a light and take it out of the list void DestroyLight(Light light) { if (light != NULL) { int lightId = light->id; // Free dynamic memory allocation free(lights[lightId]); // Remove *obj from the pointers array for (int i = lightId; i < lightsCount; i++) { // Resort all the following pointers of the array if ((i + 1) < lightsCount) { lights[i] = lights[i + 1]; lights[i]->id = lights[i + 1]->id; } } // Decrease enabled physic objects count lightsCount--; } } // Draw light in 3D world void DrawLight(Light light) { switch (light->type) { case LIGHT_POINT: { DrawSphereWires(light->position, 0.3f*light->intensity, 8, 8, (light->enabled ? light->diffuse : GRAY)); DrawCircle3D(light->position, light->radius, (Vector3){ 0, 0, 0 }, 0.0f, (light->enabled ? light->diffuse : GRAY)); DrawCircle3D(light->position, light->radius, (Vector3){ 1, 0, 0 }, 90.0f, (light->enabled ? light->diffuse : GRAY)); DrawCircle3D(light->position, light->radius, (Vector3){ 0, 1, 0 },90.0f, (light->enabled ? light->diffuse : GRAY)); } break; case LIGHT_DIRECTIONAL: { DrawLine3D(light->position, light->target, (light->enabled ? light->diffuse : GRAY)); DrawSphereWires(light->position, 0.3f*light->intensity, 8, 8, (light->enabled ? light->diffuse : GRAY)); DrawCubeWires(light->target, 0.3f, 0.3f, 0.3f, (light->enabled ? light->diffuse : GRAY)); } break; case LIGHT_SPOT: { DrawLine3D(light->position, light->target, (light->enabled ? light->diffuse : GRAY)); Vector3 dir = VectorSubtract(light->target, light->position); VectorNormalize(&dir); DrawCircle3D(light->position, 0.5f, dir, 0.0f, (light->enabled ? light->diffuse : GRAY)); //DrawCylinderWires(light->position, 0.0f, 0.3f*light->coneAngle/50, 0.6f, 5, (light->enabled ? light->diffuse : GRAY)); DrawCubeWires(light->target, 0.3f, 0.3f, 0.3f, (light->enabled ? light->diffuse : GRAY)); } break; default: break; } } // Get shader locations for lights (up to MAX_LIGHTS) static void GetShaderLightsLocations(Shader shader) { char locName[32] = "lights[x].\0"; char locNameUpdated[64]; for (int i = 0; i < MAX_LIGHTS; i++) { locName[7] = '0' + i; strcpy(locNameUpdated, locName); strcat(locNameUpdated, "enabled\0"); lightsLocs[i][0] = GetShaderLocation(shader, locNameUpdated); locNameUpdated[0] = '\0'; strcpy(locNameUpdated, locName); strcat(locNameUpdated, "type\0"); lightsLocs[i][1] = GetShaderLocation(shader, locNameUpdated); locNameUpdated[0] = '\0'; strcpy(locNameUpdated, locName); strcat(locNameUpdated, "position\0"); lightsLocs[i][2] = GetShaderLocation(shader, locNameUpdated); locNameUpdated[0] = '\0'; strcpy(locNameUpdated, locName); strcat(locNameUpdated, "direction\0"); lightsLocs[i][3] = GetShaderLocation(shader, locNameUpdated); locNameUpdated[0] = '\0'; strcpy(locNameUpdated, locName); strcat(locNameUpdated, "radius\0"); lightsLocs[i][4] = GetShaderLocation(shader, locNameUpdated); locNameUpdated[0] = '\0'; strcpy(locNameUpdated, locName); strcat(locNameUpdated, "diffuse\0"); lightsLocs[i][5] = GetShaderLocation(shader, locNameUpdated); locNameUpdated[0] = '\0'; strcpy(locNameUpdated, locName); strcat(locNameUpdated, "intensity\0"); lightsLocs[i][6] = GetShaderLocation(shader, locNameUpdated); locNameUpdated[0] = '\0'; strcpy(locNameUpdated, locName); strcat(locNameUpdated, "coneAngle\0"); lightsLocs[i][7] = GetShaderLocation(shader, locNameUpdated); } } // Set shader uniform values for lights // NOTE: It would be far easier with shader UBOs but are not supported on OpenGL ES 2.0 // TODO: Replace glUniform1i(), glUniform1f(), glUniform3f(), glUniform4f(): //SetShaderValue(Shader shader, int uniformLoc, float *value, int size) //SetShaderValuei(Shader shader, int uniformLoc, int *value, int size) static void SetShaderLightsValues(Shader shader) { int tempInt[8] = { 0 }; float tempFloat[8] = { 0.0f }; for (int i = 0; i < MAX_LIGHTS; i++) { if (i < lightsCount) { tempInt[0] = lights[i]->enabled; SetShaderValuei(shader, lightsLocs[i][0], tempInt, 1); //glUniform1i(lightsLocs[i][0], lights[i]->enabled); tempInt[0] = lights[i]->type; SetShaderValuei(shader, lightsLocs[i][1], tempInt, 1); //glUniform1i(lightsLocs[i][1], lights[i]->type); tempFloat[0] = (float)lights[i]->diffuse.r/255.0f; tempFloat[1] = (float)lights[i]->diffuse.g/255.0f; tempFloat[2] = (float)lights[i]->diffuse.b/255.0f; tempFloat[3] = (float)lights[i]->diffuse.a/255.0f; SetShaderValue(shader, lightsLocs[i][5], tempFloat, 4); //glUniform4f(lightsLocs[i][5], (float)lights[i]->diffuse.r/255, (float)lights[i]->diffuse.g/255, (float)lights[i]->diffuse.b/255, (float)lights[i]->diffuse.a/255); tempFloat[0] = lights[i]->intensity; SetShaderValue(shader, lightsLocs[i][6], tempFloat, 1); switch (lights[i]->type) { case LIGHT_POINT: { tempFloat[0] = lights[i]->position.x; tempFloat[1] = lights[i]->position.y; tempFloat[2] = lights[i]->position.z; SetShaderValue(shader, lightsLocs[i][2], tempFloat, 3); tempFloat[0] = lights[i]->radius; SetShaderValue(shader, lightsLocs[i][4], tempFloat, 1); //glUniform3f(lightsLocs[i][2], lights[i]->position.x, lights[i]->position.y, lights[i]->position.z); //glUniform1f(lightsLocs[i][4], lights[i]->radius); } break; case LIGHT_DIRECTIONAL: { Vector3 direction = VectorSubtract(lights[i]->target, lights[i]->position); VectorNormalize(&direction); tempFloat[0] = direction.x; tempFloat[1] = direction.y; tempFloat[2] = direction.z; SetShaderValue(shader, lightsLocs[i][3], tempFloat, 3); //glUniform3f(lightsLocs[i][3], direction.x, direction.y, direction.z); } break; case LIGHT_SPOT: { tempFloat[0] = lights[i]->position.x; tempFloat[1] = lights[i]->position.y; tempFloat[2] = lights[i]->position.z; SetShaderValue(shader, lightsLocs[i][2], tempFloat, 3); //glUniform3f(lightsLocs[i][2], lights[i]->position.x, lights[i]->position.y, lights[i]->position.z); Vector3 direction = VectorSubtract(lights[i]->target, lights[i]->position); VectorNormalize(&direction); tempFloat[0] = direction.x; tempFloat[1] = direction.y; tempFloat[2] = direction.z; SetShaderValue(shader, lightsLocs[i][3], tempFloat, 3); //glUniform3f(lightsLocs[i][3], direction.x, direction.y, direction.z); tempFloat[0] = lights[i]->coneAngle; SetShaderValue(shader, lightsLocs[i][7], tempFloat, 1); //glUniform1f(lightsLocs[i][7], lights[i]->coneAngle); } break; default: break; } } else { tempInt[0] = 0; SetShaderValuei(shader, lightsLocs[i][0], tempInt, 1); //glUniform1i(lightsLocs[i][0], 0); // Light disabled } } } // Calculate vector length float VectorLength(const Vector3 v) { float length; length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); return length; } // Normalize provided vector void VectorNormalize(Vector3 *v) { float length, ilength; length = VectorLength(*v); if (length == 0.0f) length = 1.0f; ilength = 1.0f/length; v->x *= ilength; v->y *= ilength; v->z *= ilength; } // Substract two vectors Vector3 VectorSubtract(Vector3 v1, Vector3 v2) { Vector3 result; result.x = v1.x - v2.x; result.y = v1.y - v2.y; result.z = v1.z - v2.z; return result; }