#version 330 in vec3 fragPosition; in vec2 fragTexCoord; in vec4 fragColor; in vec3 fragNormal; out vec4 finalColor; uniform sampler2D texture0; uniform sampler2D texture1; uniform sampler2D texture2; uniform vec4 colAmbient; uniform vec4 colDiffuse; uniform vec4 colSpecular; uniform float glossiness; uniform int useNormal; uniform int useSpecular; uniform mat4 modelMatrix; uniform vec3 viewDir; struct Light { int enabled; int type; vec3 position; vec3 direction; vec4 diffuse; float intensity; float radius; float coneAngle; }; const int maxLights = 8; uniform int lightsCount; uniform Light lights[maxLights]; vec3 CalcPointLight(Light l, vec3 n, vec3 v, float s) { vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1)); vec3 surfaceToLight = l.position - surfacePos; // Diffuse shading float brightness = clamp(dot(n, surfaceToLight)/(length(surfaceToLight)*length(n)), 0, 1); float diff = 1.0/dot(surfaceToLight/l.radius, surfaceToLight/l.radius)*brightness*l.intensity; // Specular shading float spec = 0.0; if (diff > 0.0) { vec3 h = normalize(-l.direction + v); spec = pow(dot(n, h), 3 + glossiness)*s; } return (diff*l.diffuse.rgb + spec*colSpecular.rgb); } vec3 CalcDirectionalLight(Light l, vec3 n, vec3 v, float s) { vec3 lightDir = normalize(-l.direction); // Diffuse shading float diff = clamp(dot(n, lightDir), 0.0, 1.0)*l.intensity; // Specular shading float spec = 0.0; if (diff > 0.0) { vec3 h = normalize(lightDir + v); spec = pow(dot(n, h), 3 + glossiness)*s; } // Combine results return (diff*l.intensity*l.diffuse.rgb + spec*colSpecular.rgb); } vec3 CalcSpotLight(Light l, vec3 n, vec3 v, float s) { vec3 surfacePos = vec3(modelMatrix*vec4(fragPosition, 1)); vec3 lightToSurface = normalize(surfacePos - l.position); vec3 lightDir = normalize(-l.direction); // Diffuse shading float diff = clamp(dot(n, lightDir), 0.0, 1.0)*l.intensity; // Spot attenuation float attenuation = clamp(dot(n, lightToSurface), 0.0, 1.0); attenuation = dot(lightToSurface, -lightDir); float lightToSurfaceAngle = degrees(acos(attenuation)); if (lightToSurfaceAngle > l.coneAngle) attenuation = 0.0; float falloff = (l.coneAngle - lightToSurfaceAngle)/l.coneAngle; // Combine diffuse and attenuation float diffAttenuation = diff*attenuation; // Specular shading float spec = 0.0; if (diffAttenuation > 0.0) { vec3 h = normalize(lightDir + v); spec = pow(dot(n, h), 3 + glossiness)*s; } return (falloff*(diffAttenuation*l.diffuse.rgb + spec*colSpecular.rgb)); } void main() { // Calculate fragment normal in screen space // NOTE: important to multiply model matrix by fragment normal to apply model transformation (rotation and scale) mat3 normalMatrix = transpose(inverse(mat3(modelMatrix))); vec3 normal = normalize(normalMatrix*fragNormal); // Normalize normal and view direction vectors vec3 n = normalize(normal); vec3 v = normalize(viewDir); // Calculate diffuse texture color fetching vec4 texelColor = texture(texture0, fragTexCoord); vec3 lighting = colAmbient.rgb; // Calculate normal texture color fetching or set to maximum normal value by default if (useNormal == 1) { n *= texture(texture1, fragTexCoord).rgb; n = normalize(n); } // Calculate specular texture color fetching or set to maximum specular value by default float spec = 1.0; if (useSpecular == 1) spec *= normalize(texture(texture2, fragTexCoord).r); for (int i = 0; i < lightsCount; i++) { // Check if light is enabled if (lights[i].enabled == 1) { // Calculate lighting based on light type switch (lights[i].type) { case 0: lighting += CalcPointLight(lights[i], n, v, spec); break; case 1: lighting += CalcDirectionalLight(lights[i], n, v, spec); break; case 2: lighting += CalcSpotLight(lights[i], n, v, spec); break; default: break; } } } // Calculate final fragment color finalColor = vec4(texelColor.rgb*lighting*colDiffuse.rgb, texelColor.a*colDiffuse.a); }