/********************************************************************************************** * * rlgl - raylib OpenGL abstraction layer * * raylib now uses OpenGL 1.1 style functions (rlVertex) that are mapped to selected OpenGL version: * OpenGL 1.1 - Direct map rl* -> gl* * OpenGL 3.3 - Vertex data is stored in VAOs, call rlglDraw() to render * OpenGL ES 2 - Vertex data is stored in VBOs or VAOs (when available), call rlglDraw() to render * * Copyright (c) 2014 Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #include "rlgl.h" #include // Required for: fopen(), fclose(), fread()... [Used only on ReadTextFile()] #include // Required for: malloc(), free(), rand() #include // Required for: strcmp(), strlen(), strtok() #include // Required for: atan2() #ifndef RLGL_STANDALONE #include "raymath.h" // Required for Vector3 and Matrix functions #endif #if defined(GRAPHICS_API_OPENGL_11) #ifdef __APPLE__ #include // OpenGL 1.1 library for OSX #else #include // OpenGL 1.1 library #endif #endif #if defined(GRAPHICS_API_OPENGL_21) #define GRAPHICS_API_OPENGL_33 #endif #if defined(GRAPHICS_API_OPENGL_33) #ifdef __APPLE__ #include // OpenGL 3 library for OSX #else #define GLAD_IMPLEMENTATION #if defined(RLGL_STANDALONE) #include "glad.h" // GLAD extensions loading library, includes OpenGL headers #else #include "external/glad.h" // GLAD extensions loading library, includes OpenGL headers #endif #endif #endif #if defined(GRAPHICS_API_OPENGL_ES2) #include // EGL library #include // OpenGL ES 2.0 library #include // OpenGL ES 2.0 extensions library #endif #if defined(RLGL_STANDALONE) #include // Required for: va_list, va_start(), vfprintf(), va_end() [Used only on TraceLog()] #endif #if !defined(GRAPHICS_API_OPENGL_11) && !defined(RLGL_NO_STANDARD_SHADER) #include "shader_standard.h" // Standard shader to be embedded #endif #if !defined(GRAPHICS_API_OPENGL_11) && !defined(RLGL_NO_DISTORTION_SHADER) #include "shader_distortion.h" // Distortion shader to be embedded #endif //#define RLGL_OCULUS_SUPPORT // Enable Oculus Rift code #if defined(RLGL_OCULUS_SUPPORT) #include "external/OculusSDK/LibOVR/Include/OVR_CAPI_GL.h" // Oculus SDK for OpenGL #endif //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- #define MATRIX_STACK_SIZE 16 // Matrix stack max size #define MAX_DRAWS_BY_TEXTURE 256 // Draws are organized by texture changes #define TEMP_VERTEX_BUFFER_SIZE 4096 // Temporal Vertex Buffer (required for vertex-transformations) // NOTE: Every vertex are 3 floats (12 bytes) #define MAX_LIGHTS 8 // Max lights supported by standard shader #ifndef GL_SHADING_LANGUAGE_VERSION #define GL_SHADING_LANGUAGE_VERSION 0x8B8C #endif #ifndef GL_COMPRESSED_RGB_S3TC_DXT1_EXT #define GL_COMPRESSED_RGB_S3TC_DXT1_EXT 0x83F0 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT1_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT1_EXT 0x83F1 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT3_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT3_EXT 0x83F2 #endif #ifndef GL_COMPRESSED_RGBA_S3TC_DXT5_EXT #define GL_COMPRESSED_RGBA_S3TC_DXT5_EXT 0x83F3 #endif #ifndef GL_ETC1_RGB8_OES #define GL_ETC1_RGB8_OES 0x8D64 #endif #ifndef GL_COMPRESSED_RGB8_ETC2 #define GL_COMPRESSED_RGB8_ETC2 0x9274 #endif #ifndef GL_COMPRESSED_RGBA8_ETC2_EAC #define GL_COMPRESSED_RGBA8_ETC2_EAC 0x9278 #endif #ifndef GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG #define GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG 0x8C00 #endif #ifndef GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG #define GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG 0x8C02 #endif #ifndef GL_COMPRESSED_RGBA_ASTC_4x4_KHR #define GL_COMPRESSED_RGBA_ASTC_4x4_KHR 0x93b0 #endif #ifndef GL_COMPRESSED_RGBA_ASTC_8x8_KHR #define GL_COMPRESSED_RGBA_ASTC_8x8_KHR 0x93b7 #endif #if defined(GRAPHICS_API_OPENGL_11) #define GL_UNSIGNED_SHORT_5_6_5 0x8363 #define GL_UNSIGNED_SHORT_5_5_5_1 0x8034 #define GL_UNSIGNED_SHORT_4_4_4_4 0x8033 #endif #if defined(GRAPHICS_API_OPENGL_ES2) #define glClearDepth glClearDepthf #define GL_READ_FRAMEBUFFER GL_FRAMEBUFFER #define GL_DRAW_FRAMEBUFFER GL_FRAMEBUFFER #endif // Default vertex attribute names on shader to set location points #define DEFAULT_ATTRIB_POSITION_NAME "vertexPosition" // shader-location = 0 #define DEFAULT_ATTRIB_TEXCOORD_NAME "vertexTexCoord" // shader-location = 1 #define DEFAULT_ATTRIB_NORMAL_NAME "vertexNormal" // shader-location = 2 #define DEFAULT_ATTRIB_COLOR_NAME "vertexColor" // shader-location = 3 #define DEFAULT_ATTRIB_TANGENT_NAME "vertexTangent" // shader-location = 4 #define DEFAULT_ATTRIB_TEXCOORD2_NAME "vertexTexCoord2" // shader-location = 5 //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- // Dynamic vertex buffers (position + texcoords + colors + indices arrays) typedef struct { int vCounter; // vertex position counter to process (and draw) from full buffer int tcCounter; // vertex texcoord counter to process (and draw) from full buffer int cCounter; // vertex color counter to process (and draw) from full buffer float *vertices; // vertex position (XYZ - 3 components per vertex) (shader-location = 0) float *texcoords; // vertex texture coordinates (UV - 2 components per vertex) (shader-location = 1) unsigned char *colors; // vertex colors (RGBA - 4 components per vertex) (shader-location = 3) #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) unsigned int *indices; // vertex indices (in case vertex data comes indexed) (6 indices per quad) #elif defined(GRAPHICS_API_OPENGL_ES2) unsigned short *indices; // vertex indices (in case vertex data comes indexed) (6 indices per quad) // NOTE: 6*2 byte = 12 byte, not alignment problem! #endif unsigned int vaoId; // OpenGL Vertex Array Object id unsigned int vboId[4]; // OpenGL Vertex Buffer Objects id (4 types of vertex data) } DynamicBuffer; // Draw call type // NOTE: Used to track required draw-calls, organized by texture typedef struct { int vertexCount; GLuint vaoId; GLuint textureId; GLuint shaderId; Matrix projection; Matrix modelview; // TODO: Store additional draw state data //int blendMode; //Guint fboId; } DrawCall; // Head-Mounted-Display device parameters typedef struct { int hResolution; // HMD horizontal resolution in pixels int vResolution; // HMD vertical resolution in pixels float hScreenSize; // HMD horizontal size in meters float vScreenSize; // HMD vertical size in meters float vScreenCenter; // HMD screen center in meters float eyeToScreenDistance; // HMD distance between eye and display in meters float lensSeparationDistance; // HMD lens separation distance in meters float interpupillaryDistance; // HMD IPD (distance between pupils) in meters float distortionK[4]; // HMD lens distortion constant parameters float chromaAbCorrection[4]; // HMD chromatic aberration correction parameters } VrDeviceInfo; // VR Stereo rendering configuration for simulator typedef struct { RenderTexture2D stereoFbo; // VR stereo rendering framebuffer Shader distortionShader; // VR stereo rendering distortion shader //Rectangle eyesViewport[2]; // VR stereo rendering eyes viewports Matrix eyesProjection[2]; // VR stereo rendering eyes projection matrices Matrix eyesViewOffset[2]; // VR stereo rendering eyes view offset matrices } VrStereoConfig; #if defined(RLGL_OCULUS_SUPPORT) typedef struct OculusBuffer { ovrTextureSwapChain textureChain; GLuint depthId; GLuint fboId; int width; int height; } OculusBuffer; typedef struct OculusMirror { ovrMirrorTexture texture; GLuint fboId; int width; int height; } OculusMirror; typedef struct OculusLayer { ovrViewScaleDesc viewScaleDesc; ovrLayerEyeFov eyeLayer; // layer 0 //ovrLayerQuad quadLayer; // TODO: layer 1: '2D' quad for GUI Matrix eyeProjections[2]; int width; int height; } OculusLayer; #endif //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) static Matrix stack[MATRIX_STACK_SIZE]; static int stackCounter = 0; static Matrix modelview; static Matrix projection; static Matrix *currentMatrix; static int currentMatrixMode; static DrawMode currentDrawMode; static float currentDepth = -1.0f; static DynamicBuffer lines; static DynamicBuffer triangles; static DynamicBuffer quads; // Default buffers draw calls static DrawCall *draws; static int drawsCounter; // Temp vertex buffer to be used with rlTranslate, rlRotate, rlScale static Vector3 *tempBuffer; static int tempBufferCount = 0; static bool useTempBuffer = false; // Shader Programs static Shader defaultShader; static Shader standardShader; // Lazy initialization when GetStandardShader() static Shader currentShader; // By default, defaultShader static bool standardShaderLoaded = false; // Flag to track if standard shader has been loaded // Flags for supported extensions static bool vaoSupported = false; // VAO support (OpenGL ES2 could not support VAO extension) // Compressed textures support flags static bool texCompETC1Supported = false; // ETC1 texture compression support static bool texCompETC2Supported = false; // ETC2/EAC texture compression support static bool texCompPVRTSupported = false; // PVR texture compression support static bool texCompASTCSupported = false; // ASTC texture compression support #endif #if defined(RLGL_OCULUS_SUPPORT) // OVR device variables static ovrSession session; // Oculus session (pointer to ovrHmdStruct) static ovrHmdDesc hmdDesc; // Oculus device descriptor parameters static ovrGraphicsLuid luid; // Oculus locally unique identifier for the program (64 bit) static OculusLayer layer; // Oculus drawing layer (similar to photoshop) static OculusBuffer buffer; // Oculus internal buffers (texture chain and fbo) static OculusMirror mirror; // Oculus mirror texture and fbo static unsigned int frameIndex = 0; // Oculus frames counter, used to discard frames from chain #endif // VR global variables static VrDeviceInfo hmd; // Current VR device info static VrStereoConfig vrConfig; // VR stereo configuration for simulator static bool vrDeviceReady = false; // VR device ready flag static bool vrSimulator = false; // VR simulator enabled flag static bool vrEnabled = false; // VR experience enabled (device or simulator) static bool vrRendering = true; // VR stereo rendering enabled/disabled flag // NOTE: This flag is useful to render data over stereo image (i.e. FPS) #if defined(GRAPHICS_API_OPENGL_ES2) // NOTE: VAO functionality is exposed through extensions (OES) static PFNGLGENVERTEXARRAYSOESPROC glGenVertexArrays; static PFNGLBINDVERTEXARRAYOESPROC glBindVertexArray; static PFNGLDELETEVERTEXARRAYSOESPROC glDeleteVertexArrays; //static PFNGLISVERTEXARRAYOESPROC glIsVertexArray; // NOTE: Fails in WebGL, omitted #endif // Compressed textures support flags static bool texCompDXTSupported = false; // DDS texture compression support static bool npotSupported = false; // NPOT textures full support static int blendMode = 0; // Track current blending mode // White texture useful for plain color polys (required by shader) static unsigned int whiteTexture; // Default framebuffer size (required by Oculus device) static int screenWidth; // Default framebuffer width static int screenHeight; // Default framebuffer height // Lighting data static Light lights[MAX_LIGHTS]; // Lights pool static int lightsCount = 0; // Enabled lights counter //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) static void LoadCompressedTexture(unsigned char *data, int width, int height, int mipmapCount, int compressedFormat); static unsigned int LoadShaderProgram(const char *vShaderStr, const char *fShaderStr); // Load custom shader strings and return program id static Shader LoadDefaultShader(void); // Load default shader (just vertex positioning and texture coloring) static Shader LoadStandardShader(void); // Load standard shader (support materials and lighting) static void LoadDefaultShaderLocations(Shader *shader); // Bind default shader locations (attributes and uniforms) static void UnloadDefaultShader(void); // Unload default shader static void UnloadStandardShader(void); // Unload standard shader static void LoadDefaultBuffers(void); // Load default internal buffers (lines, triangles, quads) static void UpdateDefaultBuffers(void); // Update default internal buffers (VAOs/VBOs) with vertex data static void DrawDefaultBuffers(int eyesCount); // Draw default internal buffers vertex data static void UnloadDefaultBuffers(void); // Unload default internal buffers vertex data from CPU and GPU // Configure stereo rendering (including distortion shader) with HMD device parameters static void SetStereoConfig(VrDeviceInfo info); // Set internal projection and modelview matrix depending on eyes tracking data static void SetStereoView(int eye, Matrix matProjection, Matrix matModelView); static void SetShaderLights(Shader shader); // Sets shader uniform values for lights array static char *ReadTextFile(const char *fileName); #endif #if defined(RLGL_OCULUS_SUPPORT) static OculusBuffer LoadOculusBuffer(ovrSession session, int width, int height); // Load Oculus required buffers static void UnloadOculusBuffer(ovrSession session, OculusBuffer buffer); // Unload texture required buffers static OculusMirror LoadOculusMirror(ovrSession session, int width, int height); // Load Oculus mirror buffers static void UnloadOculusMirror(ovrSession session, OculusMirror mirror); // Unload Oculus mirror buffers static void BlitOculusMirror(ovrSession session, OculusMirror mirror); // Copy Oculus screen buffer to mirror texture static OculusLayer InitOculusLayer(ovrSession session); // Init Oculus layer (similar to photoshop) static Matrix FromOvrMatrix(ovrMatrix4f ovrM); // Convert from Oculus ovrMatrix4f struct to raymath Matrix struct #endif #if defined(GRAPHICS_API_OPENGL_11) static int GenerateMipmaps(unsigned char *data, int baseWidth, int baseHeight); static Color *GenNextMipmap(Color *srcData, int srcWidth, int srcHeight); #endif #if defined(RLGL_STANDALONE) float *MatrixToFloat(Matrix mat); // Converts Matrix to float array #endif //---------------------------------------------------------------------------------- // Module Functions Definition - Matrix operations //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_11) // Fallback to OpenGL 1.1 function calls //--------------------------------------- void rlMatrixMode(int mode) { switch (mode) { case RL_PROJECTION: glMatrixMode(GL_PROJECTION); break; case RL_MODELVIEW: glMatrixMode(GL_MODELVIEW); break; case RL_TEXTURE: glMatrixMode(GL_TEXTURE); break; default: break; } } void rlFrustum(double left, double right, double bottom, double top, double near, double far) { glFrustum(left, right, bottom, top, near, far); } void rlOrtho(double left, double right, double bottom, double top, double near, double far) { glOrtho(left, right, bottom, top, near, far); } void rlPushMatrix(void) { glPushMatrix(); } void rlPopMatrix(void) { glPopMatrix(); } void rlLoadIdentity(void) { glLoadIdentity(); } void rlTranslatef(float x, float y, float z) { glTranslatef(x, y, z); } void rlRotatef(float angleDeg, float x, float y, float z) { glRotatef(angleDeg, x, y, z); } void rlScalef(float x, float y, float z) { glScalef(x, y, z); } void rlMultMatrixf(float *mat) { glMultMatrixf(mat); } #elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Choose the current matrix to be transformed void rlMatrixMode(int mode) { if (mode == RL_PROJECTION) currentMatrix = &projection; else if (mode == RL_MODELVIEW) currentMatrix = &modelview; //else if (mode == RL_TEXTURE) // Not supported currentMatrixMode = mode; } // Push the current matrix to stack void rlPushMatrix(void) { if (stackCounter == MATRIX_STACK_SIZE - 1) { TraceLog(ERROR, "Stack Buffer Overflow (MAX %i Matrix)", MATRIX_STACK_SIZE); } stack[stackCounter] = *currentMatrix; rlLoadIdentity(); stackCounter++; if (currentMatrixMode == RL_MODELVIEW) useTempBuffer = true; } // Pop lattest inserted matrix from stack void rlPopMatrix(void) { if (stackCounter > 0) { Matrix mat = stack[stackCounter - 1]; *currentMatrix = mat; stackCounter--; } } // Reset current matrix to identity matrix void rlLoadIdentity(void) { *currentMatrix = MatrixIdentity(); } // Multiply the current matrix by a translation matrix void rlTranslatef(float x, float y, float z) { Matrix matTranslation = MatrixTranslate(x, y, z); MatrixTranspose(&matTranslation); *currentMatrix = MatrixMultiply(*currentMatrix, matTranslation); } // Multiply the current matrix by a rotation matrix void rlRotatef(float angleDeg, float x, float y, float z) { Matrix matRotation = MatrixIdentity(); Vector3 axis = (Vector3){ x, y, z }; VectorNormalize(&axis); matRotation = MatrixRotate(axis, angleDeg*DEG2RAD); MatrixTranspose(&matRotation); *currentMatrix = MatrixMultiply(*currentMatrix, matRotation); } // Multiply the current matrix by a scaling matrix void rlScalef(float x, float y, float z) { Matrix matScale = MatrixScale(x, y, z); MatrixTranspose(&matScale); *currentMatrix = MatrixMultiply(*currentMatrix, matScale); } // Multiply the current matrix by another matrix void rlMultMatrixf(float *m) { // Matrix creation from array Matrix mat = { m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8], m[9], m[10], m[11], m[12], m[13], m[14], m[15] }; *currentMatrix = MatrixMultiply(*currentMatrix, mat); } // Multiply the current matrix by a perspective matrix generated by parameters void rlFrustum(double left, double right, double bottom, double top, double near, double far) { Matrix matPerps = MatrixFrustum(left, right, bottom, top, near, far); MatrixTranspose(&matPerps); *currentMatrix = MatrixMultiply(*currentMatrix, matPerps); } // Multiply the current matrix by an orthographic matrix generated by parameters void rlOrtho(double left, double right, double bottom, double top, double near, double far) { Matrix matOrtho = MatrixOrtho(left, right, bottom, top, near, far); MatrixTranspose(&matOrtho); *currentMatrix = MatrixMultiply(*currentMatrix, matOrtho); } #endif // Set the viewport area (transformation from normalized device coordinates to window coordinates) // NOTE: Updates global variables: screenWidth, screenHeight void rlViewport(int x, int y, int width, int height) { glViewport(x, y, width, height); } //---------------------------------------------------------------------------------- // Module Functions Definition - Vertex level operations //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_11) // Fallback to OpenGL 1.1 function calls //--------------------------------------- void rlBegin(int mode) { switch (mode) { case RL_LINES: glBegin(GL_LINES); break; case RL_TRIANGLES: glBegin(GL_TRIANGLES); break; case RL_QUADS: glBegin(GL_QUADS); break; default: break; } } void rlEnd() { glEnd(); } void rlVertex2i(int x, int y) { glVertex2i(x, y); } void rlVertex2f(float x, float y) { glVertex2f(x, y); } void rlVertex3f(float x, float y, float z) { glVertex3f(x, y, z); } void rlTexCoord2f(float x, float y) { glTexCoord2f(x, y); } void rlNormal3f(float x, float y, float z) { glNormal3f(x, y, z); } void rlColor4ub(byte r, byte g, byte b, byte a) { glColor4ub(r, g, b, a); } void rlColor3f(float x, float y, float z) { glColor3f(x, y, z); } void rlColor4f(float x, float y, float z, float w) { glColor4f(x, y, z, w); } #elif defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Initialize drawing mode (how to organize vertex) void rlBegin(int mode) { // Draw mode can only be RL_LINES, RL_TRIANGLES and RL_QUADS currentDrawMode = mode; } // Finish vertex providing void rlEnd(void) { if (useTempBuffer) { // NOTE: In this case, *currentMatrix is already transposed because transposing has been applied // independently to translation-scale-rotation matrices -> t(M1 x M2) = t(M2) x t(M1) // This way, rlTranslatef(), rlRotatef()... behaviour is the same than OpenGL 1.1 // Apply transformation matrix to all temp vertices for (int i = 0; i < tempBufferCount; i++) VectorTransform(&tempBuffer[i], *currentMatrix); // Deactivate tempBuffer usage to allow rlVertex3f do its job useTempBuffer = false; // Copy all transformed vertices to right VAO for (int i = 0; i < tempBufferCount; i++) rlVertex3f(tempBuffer[i].x, tempBuffer[i].y, tempBuffer[i].z); // Reset temp buffer tempBufferCount = 0; } // Make sure vertexCount is the same for vertices-texcoords-normals-colors // NOTE: In OpenGL 1.1, one glColor call can be made for all the subsequent glVertex calls. switch (currentDrawMode) { case RL_LINES: { if (lines.vCounter != lines.cCounter) { int addColors = lines.vCounter - lines.cCounter; for (int i = 0; i < addColors; i++) { lines.colors[4*lines.cCounter] = lines.colors[4*lines.cCounter - 4]; lines.colors[4*lines.cCounter + 1] = lines.colors[4*lines.cCounter - 3]; lines.colors[4*lines.cCounter + 2] = lines.colors[4*lines.cCounter - 2]; lines.colors[4*lines.cCounter + 3] = lines.colors[4*lines.cCounter - 1]; lines.cCounter++; } } } break; case RL_TRIANGLES: { if (triangles.vCounter != triangles.cCounter) { int addColors = triangles.vCounter - triangles.cCounter; for (int i = 0; i < addColors; i++) { triangles.colors[4*triangles.cCounter] = triangles.colors[4*triangles.cCounter - 4]; triangles.colors[4*triangles.cCounter + 1] = triangles.colors[4*triangles.cCounter - 3]; triangles.colors[4*triangles.cCounter + 2] = triangles.colors[4*triangles.cCounter - 2]; triangles.colors[4*triangles.cCounter + 3] = triangles.colors[4*triangles.cCounter - 1]; triangles.cCounter++; } } } break; case RL_QUADS: { // Make sure colors count match vertex count if (quads.vCounter != quads.cCounter) { int addColors = quads.vCounter - quads.cCounter; for (int i = 0; i < addColors; i++) { quads.colors[4*quads.cCounter] = quads.colors[4*quads.cCounter - 4]; quads.colors[4*quads.cCounter + 1] = quads.colors[4*quads.cCounter - 3]; quads.colors[4*quads.cCounter + 2] = quads.colors[4*quads.cCounter - 2]; quads.colors[4*quads.cCounter + 3] = quads.colors[4*quads.cCounter - 1]; quads.cCounter++; } } // Make sure texcoords count match vertex count if (quads.vCounter != quads.tcCounter) { int addTexCoords = quads.vCounter - quads.tcCounter; for (int i = 0; i < addTexCoords; i++) { quads.texcoords[2*quads.tcCounter] = 0.0f; quads.texcoords[2*quads.tcCounter + 1] = 0.0f; quads.tcCounter++; } } // TODO: Make sure normals count match vertex count... if normals support is added in a future... :P } break; default: break; } // NOTE: Depth increment is dependant on rlOrtho(): z-near and z-far values, // as well as depth buffer bit-depth (16bit or 24bit or 32bit) // Correct increment formula would be: depthInc = (zfar - znear)/pow(2, bits) currentDepth += (1.0f/20000.0f); } // Define one vertex (position) void rlVertex3f(float x, float y, float z) { if (useTempBuffer) { tempBuffer[tempBufferCount].x = x; tempBuffer[tempBufferCount].y = y; tempBuffer[tempBufferCount].z = z; tempBufferCount++; } else { switch (currentDrawMode) { case RL_LINES: { // Verify that MAX_LINES_BATCH limit not reached if (lines.vCounter / 2 < MAX_LINES_BATCH) { lines.vertices[3*lines.vCounter] = x; lines.vertices[3*lines.vCounter + 1] = y; lines.vertices[3*lines.vCounter + 2] = z; lines.vCounter++; } else TraceLog(ERROR, "MAX_LINES_BATCH overflow"); } break; case RL_TRIANGLES: { // Verify that MAX_TRIANGLES_BATCH limit not reached if (triangles.vCounter / 3 < MAX_TRIANGLES_BATCH) { triangles.vertices[3*triangles.vCounter] = x; triangles.vertices[3*triangles.vCounter + 1] = y; triangles.vertices[3*triangles.vCounter + 2] = z; triangles.vCounter++; } else TraceLog(ERROR, "MAX_TRIANGLES_BATCH overflow"); } break; case RL_QUADS: { // Verify that MAX_QUADS_BATCH limit not reached if (quads.vCounter / 4 < MAX_QUADS_BATCH) { quads.vertices[3*quads.vCounter] = x; quads.vertices[3*quads.vCounter + 1] = y; quads.vertices[3*quads.vCounter + 2] = z; quads.vCounter++; draws[drawsCounter - 1].vertexCount++; } else TraceLog(ERROR, "MAX_QUADS_BATCH overflow"); } break; default: break; } } } // Define one vertex (position) void rlVertex2f(float x, float y) { rlVertex3f(x, y, currentDepth); } // Define one vertex (position) void rlVertex2i(int x, int y) { rlVertex3f((float)x, (float)y, currentDepth); } // Define one vertex (texture coordinate) // NOTE: Texture coordinates are limited to QUADS only void rlTexCoord2f(float x, float y) { if (currentDrawMode == RL_QUADS) { quads.texcoords[2*quads.tcCounter] = x; quads.texcoords[2*quads.tcCounter + 1] = y; quads.tcCounter++; } } // Define one vertex (normal) // NOTE: Normals limited to TRIANGLES only ? void rlNormal3f(float x, float y, float z) { // TODO: Normals usage... } // Define one vertex (color) void rlColor4ub(byte x, byte y, byte z, byte w) { switch (currentDrawMode) { case RL_LINES: { lines.colors[4*lines.cCounter] = x; lines.colors[4*lines.cCounter + 1] = y; lines.colors[4*lines.cCounter + 2] = z; lines.colors[4*lines.cCounter + 3] = w; lines.cCounter++; } break; case RL_TRIANGLES: { triangles.colors[4*triangles.cCounter] = x; triangles.colors[4*triangles.cCounter + 1] = y; triangles.colors[4*triangles.cCounter + 2] = z; triangles.colors[4*triangles.cCounter + 3] = w; triangles.cCounter++; } break; case RL_QUADS: { quads.colors[4*quads.cCounter] = x; quads.colors[4*quads.cCounter + 1] = y; quads.colors[4*quads.cCounter + 2] = z; quads.colors[4*quads.cCounter + 3] = w; quads.cCounter++; } break; default: break; } } // Define one vertex (color) void rlColor4f(float r, float g, float b, float a) { rlColor4ub((byte)(r*255), (byte)(g*255), (byte)(b*255), (byte)(a*255)); } // Define one vertex (color) void rlColor3f(float x, float y, float z) { rlColor4ub((byte)(x*255), (byte)(y*255), (byte)(z*255), 255); } #endif //---------------------------------------------------------------------------------- // Module Functions Definition - OpenGL equivalent functions (common to 1.1, 3.3+, ES2) //---------------------------------------------------------------------------------- // Enable texture usage void rlEnableTexture(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_11) glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, id); #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (draws[drawsCounter - 1].textureId != id) { if (draws[drawsCounter - 1].vertexCount > 0) drawsCounter++; draws[drawsCounter - 1].textureId = id; draws[drawsCounter - 1].vertexCount = 0; } #endif } // Disable texture usage void rlDisableTexture(void) { #if defined(GRAPHICS_API_OPENGL_11) glDisable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); #endif } // Enable rendering to texture (fbo) void rlEnableRenderTexture(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindFramebuffer(GL_FRAMEBUFFER, id); //glDisable(GL_CULL_FACE); // Allow double side drawing for texture flipping //glCullFace(GL_FRONT); #endif } // Disable rendering to texture void rlDisableRenderTexture(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glBindFramebuffer(GL_FRAMEBUFFER, 0); //glEnable(GL_CULL_FACE); //glCullFace(GL_BACK); #endif } // Enable depth test void rlEnableDepthTest(void) { glEnable(GL_DEPTH_TEST); } // Disable depth test void rlDisableDepthTest(void) { glDisable(GL_DEPTH_TEST); } // Enable wire mode void rlEnableWireMode(void) { #if defined (GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // NOTE: glPolygonMode() not available on OpenGL ES glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); #endif } // Disable wire mode void rlDisableWireMode(void) { #if defined (GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) // NOTE: glPolygonMode() not available on OpenGL ES glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); #endif } // Unload texture from GPU memory void rlDeleteTextures(unsigned int id) { if (id != 0) glDeleteTextures(1, &id); } // Unload render texture from GPU memory void rlDeleteRenderTextures(RenderTexture2D target) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (target.id != 0) glDeleteFramebuffers(1, &target.id); if (target.texture.id != 0) glDeleteTextures(1, &target.texture.id); if (target.depth.id != 0) glDeleteTextures(1, &target.depth.id); TraceLog(INFO, "[FBO ID %i] Unloaded render texture data from VRAM (GPU)", target.id); #endif } // Unload shader from GPU memory void rlDeleteShader(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (id != 0) glDeleteProgram(id); #endif } // Unload vertex data (VAO) from GPU memory void rlDeleteVertexArrays(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (vaoSupported) { if (id != 0) glDeleteVertexArrays(1, &id); TraceLog(INFO, "[VAO ID %i] Unloaded model data from VRAM (GPU)", id); } #endif } // Unload vertex data (VBO) from GPU memory void rlDeleteBuffers(unsigned int id) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (id != 0) { glDeleteBuffers(1, &id); if (!vaoSupported) TraceLog(INFO, "[VBO ID %i] Unloaded model vertex data from VRAM (GPU)", id); } #endif } // Clear color buffer with color void rlClearColor(byte r, byte g, byte b, byte a) { // Color values clamp to 0.0f(0) and 1.0f(255) float cr = (float)r/255; float cg = (float)g/255; float cb = (float)b/255; float ca = (float)a/255; glClearColor(cr, cg, cb, ca); } // Clear used screen buffers (color and depth) void rlClearScreenBuffers(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear used buffers: Color and Depth (Depth is used for 3D) //glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); // Stencil buffer not used... } // Returns current OpenGL version int rlGetVersion(void) { #if defined(GRAPHICS_API_OPENGL_11) return OPENGL_11; #elif defined(GRAPHICS_API_OPENGL_21) return OPENGL_21; #elif defined(GRAPHICS_API_OPENGL_33) return OPENGL_33; #elif defined(GRAPHICS_API_OPENGL_ES2) return OPENGL_ES_20; #endif } //---------------------------------------------------------------------------------- // Module Functions Definition - rlgl Functions //---------------------------------------------------------------------------------- // Initialize rlgl: OpenGL extensions, default buffers/shaders/textures, OpenGL states void rlglInit(int width, int height) { // Check OpenGL information and capabilities //------------------------------------------------------------------------------ // Print current OpenGL and GLSL version TraceLog(INFO, "GPU: Vendor: %s", glGetString(GL_VENDOR)); TraceLog(INFO, "GPU: Renderer: %s", glGetString(GL_RENDERER)); TraceLog(INFO, "GPU: Version: %s", glGetString(GL_VERSION)); TraceLog(INFO, "GPU: GLSL: %s", glGetString(GL_SHADING_LANGUAGE_VERSION)); // NOTE: We can get a bunch of extra information about GPU capabilities (glGet*) //int maxTexSize; //glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTexSize); //TraceLog(INFO, "GL_MAX_TEXTURE_SIZE: %i", maxTexSize); //GL_MAX_TEXTURE_IMAGE_UNITS //GL_MAX_VIEWPORT_DIMS //int numAuxBuffers; //glGetIntegerv(GL_AUX_BUFFERS, &numAuxBuffers); //TraceLog(INFO, "GL_AUX_BUFFERS: %i", numAuxBuffers); //GLint numComp = 0; //GLint format[32] = { 0 }; //glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS, &numComp); //glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS, format); //for (int i = 0; i < numComp; i++) TraceLog(INFO, "Supported compressed format: 0x%x", format[i]); // NOTE: We don't need that much data on screen... right now... #if defined(GRAPHICS_API_OPENGL_11) //TraceLog(INFO, "OpenGL 1.1 (or driver default) profile initialized"); #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Get supported extensions list GLint numExt = 0; #if defined(GRAPHICS_API_OPENGL_33) // NOTE: On OpenGL 3.3 VAO and NPOT are supported by default vaoSupported = true; npotSupported = true; // We get a list of available extensions and we check for some of them (compressed textures) // NOTE: We don't need to check again supported extensions but we do (GLAD already dealt with that) glGetIntegerv(GL_NUM_EXTENSIONS, &numExt); const char *extList[numExt]; for (int i = 0; i < numExt; i++) extList[i] = (char *)glGetStringi(GL_EXTENSIONS, i); #elif defined(GRAPHICS_API_OPENGL_ES2) char *extensions = (char *)glGetString(GL_EXTENSIONS); // One big const string // NOTE: We have to duplicate string because glGetString() returns a const value // If not duplicated, it fails in some systems (Raspberry Pi) // Equivalent to function: char *strdup(const char *str) char *extensionsDup; size_t len = strlen(extensions) + 1; void *newstr = malloc(len); if (newstr == NULL) extensionsDup = NULL; extensionsDup = (char *)memcpy(newstr, extensions, len); // NOTE: String could be splitted using strtok() function (string.h) // NOTE: strtok() modifies the received string, it can not be const char *extList[512]; // Allocate 512 strings pointers (2 KB) extList[numExt] = strtok(extensionsDup, " "); while (extList[numExt] != NULL) { numExt++; extList[numExt] = strtok(NULL, " "); } free(extensionsDup); // Duplicated string must be deallocated numExt -= 1; #endif TraceLog(INFO, "Number of supported extensions: %i", numExt); // Show supported extensions //for (int i = 0; i < numExt; i++) TraceLog(INFO, "Supported extension: %s", extList[i]); // Check required extensions for (int i = 0; i < numExt; i++) { #if defined(GRAPHICS_API_OPENGL_ES2) // Check VAO support // NOTE: Only check on OpenGL ES, OpenGL 3.3 has VAO support as core feature if (strcmp(extList[i], (const char *)"GL_OES_vertex_array_object") == 0) { vaoSupported = true; // The extension is supported by our hardware and driver, try to get related functions pointers // NOTE: emscripten does not support VAOs natively, it uses emulation and it reduces overall performance... glGenVertexArrays = (PFNGLGENVERTEXARRAYSOESPROC)eglGetProcAddress("glGenVertexArraysOES"); glBindVertexArray = (PFNGLBINDVERTEXARRAYOESPROC)eglGetProcAddress("glBindVertexArrayOES"); glDeleteVertexArrays = (PFNGLDELETEVERTEXARRAYSOESPROC)eglGetProcAddress("glDeleteVertexArraysOES"); //glIsVertexArray = (PFNGLISVERTEXARRAYOESPROC)eglGetProcAddress("glIsVertexArrayOES"); // NOTE: Fails in WebGL, omitted } // Check NPOT textures support // NOTE: Only check on OpenGL ES, OpenGL 3.3 has NPOT textures full support as core feature if (strcmp(extList[i], (const char *)"GL_OES_texture_npot") == 0) npotSupported = true; #endif // DDS texture compression support if ((strcmp(extList[i], (const char *)"GL_EXT_texture_compression_s3tc") == 0) || (strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_s3tc") == 0) || (strcmp(extList[i], (const char *)"GL_WEBKIT_WEBGL_compressed_texture_s3tc") == 0)) texCompDXTSupported = true; // ETC1 texture compression support if ((strcmp(extList[i], (const char *)"GL_OES_compressed_ETC1_RGB8_texture") == 0) || (strcmp(extList[i], (const char *)"GL_WEBGL_compressed_texture_etc1") == 0)) texCompETC1Supported = true; // ETC2/EAC texture compression support if (strcmp(extList[i], (const char *)"GL_ARB_ES3_compatibility") == 0) texCompETC2Supported = true; // PVR texture compression support if (strcmp(extList[i], (const char *)"GL_IMG_texture_compression_pvrtc") == 0) texCompPVRTSupported = true; // ASTC texture compression support if (strcmp(extList[i], (const char *)"GL_KHR_texture_compression_astc_hdr") == 0) texCompASTCSupported = true; } #if defined(GRAPHICS_API_OPENGL_ES2) if (vaoSupported) TraceLog(INFO, "[EXTENSION] VAO extension detected, VAO functions initialized successfully"); else TraceLog(WARNING, "[EXTENSION] VAO extension not found, VAO usage not supported"); if (npotSupported) TraceLog(INFO, "[EXTENSION] NPOT textures extension detected, full NPOT textures supported"); else TraceLog(WARNING, "[EXTENSION] NPOT textures extension not found, limited NPOT support (no-mipmaps, no-repeat)"); #endif if (texCompDXTSupported) TraceLog(INFO, "[EXTENSION] DXT compressed textures supported"); if (texCompETC1Supported) TraceLog(INFO, "[EXTENSION] ETC1 compressed textures supported"); if (texCompETC2Supported) TraceLog(INFO, "[EXTENSION] ETC2/EAC compressed textures supported"); if (texCompPVRTSupported) TraceLog(INFO, "[EXTENSION] PVRT compressed textures supported"); if (texCompASTCSupported) TraceLog(INFO, "[EXTENSION] ASTC compressed textures supported"); // Initialize buffers, default shaders and default textures //---------------------------------------------------------- // Init default white texture unsigned char pixels[4] = { 255, 255, 255, 255 }; // 1 pixel RGBA (4 bytes) whiteTexture = rlglLoadTexture(pixels, 1, 1, UNCOMPRESSED_R8G8B8A8, 1); if (whiteTexture != 0) TraceLog(INFO, "[TEX ID %i] Base white texture loaded successfully", whiteTexture); else TraceLog(WARNING, "Base white texture could not be loaded"); // Init default Shader (customized for GL 3.3 and ES2) defaultShader = LoadDefaultShader(); currentShader = defaultShader; // Init default vertex arrays buffers (lines, triangles, quads) LoadDefaultBuffers(); // Init temp vertex buffer, used when transformation required (translate, rotate, scale) tempBuffer = (Vector3 *)malloc(sizeof(Vector3)*TEMP_VERTEX_BUFFER_SIZE); for (int i = 0; i < TEMP_VERTEX_BUFFER_SIZE; i++) tempBuffer[i] = VectorZero(); // Init draw calls tracking system draws = (DrawCall *)malloc(sizeof(DrawCall)*MAX_DRAWS_BY_TEXTURE); for (int i = 0; i < MAX_DRAWS_BY_TEXTURE; i++) { draws[i].textureId = 0; draws[i].vertexCount = 0; } drawsCounter = 1; draws[drawsCounter - 1].textureId = whiteTexture; currentDrawMode = RL_TRIANGLES; // Set default draw mode // Init internal matrix stack (emulating OpenGL 1.1) for (int i = 0; i < MATRIX_STACK_SIZE; i++) stack[i] = MatrixIdentity(); // Init internal projection and modelview matrices projection = MatrixIdentity(); modelview = MatrixIdentity(); currentMatrix = &modelview; #endif // defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Initialize OpenGL default states //---------------------------------------------------------- // Init state: Depth test glDepthFunc(GL_LEQUAL); // Type of depth testing to apply glDisable(GL_DEPTH_TEST); // Disable depth testing for 2D (only used for 3D) // Init state: Blending mode glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Color blending function (how colors are mixed) glEnable(GL_BLEND); // Enable color blending (required to work with transparencies) // Init state: Culling // NOTE: All shapes/models triangles are drawn CCW glCullFace(GL_BACK); // Cull the back face (default) glFrontFace(GL_CCW); // Front face are defined counter clockwise (default) glEnable(GL_CULL_FACE); // Enable backface culling #if defined(GRAPHICS_API_OPENGL_11) // Init state: Color hints (deprecated in OpenGL 3.0+) glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Improve quality of color and texture coordinate interpolation glShadeModel(GL_SMOOTH); // Smooth shading between vertex (vertex colors interpolation) #endif // Init state: Color/Depth buffers clear glClearColor(0.0f, 0.0f, 0.0f, 1.0f); // Set clear color (black) glClearDepth(1.0f); // Set clear depth value (default) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear color and depth buffers (depth buffer required for 3D) // Store screen size into global variables screenWidth = width; screenHeight = height; TraceLog(INFO, "OpenGL default states initialized successfully"); } // Vertex Buffer Object deinitialization (memory free) void rlglClose(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) UnloadDefaultShader(); UnloadStandardShader(); UnloadDefaultBuffers(); // Delete default white texture glDeleteTextures(1, &whiteTexture); TraceLog(INFO, "[TEX ID %i] Unloaded texture data (base white texture) from VRAM", whiteTexture); // Unload lights if (lightsCount > 0) { for (int i = 0; i < lightsCount; i++) free(lights[i]); lightsCount = 0; } free(draws); #endif } // Drawing batches: triangles, quads, lines void rlglDraw(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // NOTE: In a future version, models could be stored in a stack... //for (int i = 0; i < modelsCount; i++) rlglDrawMesh(models[i]->mesh, models[i]->material, models[i]->transform); // NOTE: Default buffers upload and draw UpdateDefaultBuffers(); if (vrEnabled && vrRendering) DrawDefaultBuffers(2); else DrawDefaultBuffers(1); #endif } // Load OpenGL extensions // NOTE: External loader function could be passed as a pointer void rlglLoadExtensions(void *loader) { #if defined(GRAPHICS_API_OPENGL_21) || defined(GRAPHICS_API_OPENGL_33) // NOTE: glad is generated and contains only required OpenGL 3.3 Core extensions (and lower versions) if (!gladLoadGLLoader((GLADloadproc)loader)) TraceLog(WARNING, "GLAD: Cannot load OpenGL extensions"); else TraceLog(INFO, "GLAD: OpenGL extensions loaded successfully"); #if defined(GRAPHICS_API_OPENGL_21) if (GLAD_GL_VERSION_2_1) TraceLog(INFO, "OpenGL 2.1 profile supported"); #elif defined(GRAPHICS_API_OPENGL_33) if(GLAD_GL_VERSION_3_3) TraceLog(INFO, "OpenGL 3.3 Core profile supported"); else TraceLog(ERROR, "OpenGL 3.3 Core profile not supported"); #endif // With GLAD, we can check if an extension is supported using the GLAD_GL_xxx booleans //if (GLAD_GL_ARB_vertex_array_object) // Use GL_ARB_vertex_array_object #endif } // Get world coordinates from screen coordinates Vector3 rlglUnproject(Vector3 source, Matrix proj, Matrix view) { Vector3 result = { 0.0f, 0.0f, 0.0f }; // Calculate unproject matrix (multiply projection matrix and view matrix) and invert it Matrix matProjView = MatrixMultiply(proj, view); MatrixInvert(&matProjView); // Create quaternion from source point Quaternion quat = { source.x, source.y, source.z, 1.0f }; // Multiply quat point by unproject matrix QuaternionTransform(&quat, matProjView); // Normalized world points in vectors result.x = quat.x/quat.w; result.y = quat.y/quat.w; result.z = quat.z/quat.w; return result; } // Convert image data to OpenGL texture (returns OpenGL valid Id) unsigned int rlglLoadTexture(void *data, int width, int height, int textureFormat, int mipmapCount) { glBindTexture(GL_TEXTURE_2D, 0); // Free any old binding GLuint id = 0; // Check texture format support by OpenGL 1.1 (compressed textures not supported) #if defined(GRAPHICS_API_OPENGL_11) if (textureFormat >= 8) { TraceLog(WARNING, "OpenGL 1.1 does not support GPU compressed texture formats"); return id; } #endif if ((!texCompDXTSupported) && ((textureFormat == COMPRESSED_DXT1_RGB) || (textureFormat == COMPRESSED_DXT1_RGBA) || (textureFormat == COMPRESSED_DXT3_RGBA) || (textureFormat == COMPRESSED_DXT5_RGBA))) { TraceLog(WARNING, "DXT compressed texture format not supported"); return id; } #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if ((!texCompETC1Supported) && (textureFormat == COMPRESSED_ETC1_RGB)) { TraceLog(WARNING, "ETC1 compressed texture format not supported"); return id; } if ((!texCompETC2Supported) && ((textureFormat == COMPRESSED_ETC2_RGB) || (textureFormat == COMPRESSED_ETC2_EAC_RGBA))) { TraceLog(WARNING, "ETC2 compressed texture format not supported"); return id; } if ((!texCompPVRTSupported) && ((textureFormat == COMPRESSED_PVRT_RGB) || (textureFormat == COMPRESSED_PVRT_RGBA))) { TraceLog(WARNING, "PVRT compressed texture format not supported"); return id; } if ((!texCompASTCSupported) && ((textureFormat == COMPRESSED_ASTC_4x4_RGBA) || (textureFormat == COMPRESSED_ASTC_8x8_RGBA))) { TraceLog(WARNING, "ASTC compressed texture format not supported"); return id; } #endif glGenTextures(1, &id); // Generate Pointer to the texture #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) //glActiveTexture(GL_TEXTURE0); // If not defined, using GL_TEXTURE0 by default (shader texture) #endif glBindTexture(GL_TEXTURE_2D, id); #if defined(GRAPHICS_API_OPENGL_33) // NOTE: We define internal (GPU) format as GL_RGBA8 (probably BGRA8 in practice, driver takes care) // NOTE: On embedded systems, we let the driver choose the best internal format // Support for multiple color modes (16bit color modes and grayscale) // (sized)internalFormat format type // GL_R GL_RED GL_UNSIGNED_BYTE // GL_RGB565 GL_RGB GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_5_6_5 // GL_RGB5_A1 GL_RGBA GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_5_5_5_1 // GL_RGBA4 GL_RGBA GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT_4_4_4_4 // GL_RGBA8 GL_RGBA GL_UNSIGNED_BYTE // GL_RGB8 GL_RGB GL_UNSIGNED_BYTE switch (textureFormat) { case UNCOMPRESSED_GRAYSCALE: { glTexImage2D(GL_TEXTURE_2D, 0, GL_R8, width, height, 0, GL_RED, GL_UNSIGNED_BYTE, (unsigned char *)data); // With swizzleMask we define how a one channel texture will be mapped to RGBA // Required GL >= 3.3 or EXT_texture_swizzle/ARB_texture_swizzle GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_ONE }; glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); TraceLog(INFO, "[TEX ID %i] Grayscale texture loaded and swizzled", id); } break; case UNCOMPRESSED_GRAY_ALPHA: { glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, width, height, 0, GL_RG, GL_UNSIGNED_BYTE, (unsigned char *)data); GLint swizzleMask[] = { GL_RED, GL_RED, GL_RED, GL_GREEN }; glTexParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzleMask); } break; case UNCOMPRESSED_R5G6B5: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB565, width, height, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, (unsigned short *)data); break; case UNCOMPRESSED_R8G8B8: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_R5G5B5A1: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB5_A1, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, (unsigned short *)data); break; case UNCOMPRESSED_R4G4B4A4: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA4, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, (unsigned short *)data); break; case UNCOMPRESSED_R8G8B8A8: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case COMPRESSED_DXT1_RGB: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB_S3TC_DXT1_EXT); break; case COMPRESSED_DXT1_RGBA: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT); break; case COMPRESSED_DXT3_RGBA: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT); break; case COMPRESSED_DXT5_RGBA: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT); break; case COMPRESSED_ETC1_RGB: if (texCompETC1Supported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_ETC1_RGB8_OES); break; // NOTE: Requires OpenGL ES 2.0 or OpenGL 4.3 case COMPRESSED_ETC2_RGB: if (texCompETC2Supported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB8_ETC2); break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 case COMPRESSED_ETC2_EAC_RGBA: if (texCompETC2Supported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA8_ETC2_EAC); break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 case COMPRESSED_PVRT_RGB: if (texCompPVRTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG); break; // NOTE: Requires PowerVR GPU case COMPRESSED_PVRT_RGBA: if (texCompPVRTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG); break; // NOTE: Requires PowerVR GPU case COMPRESSED_ASTC_4x4_RGBA: if (texCompASTCSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_ASTC_4x4_KHR); break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3 case COMPRESSED_ASTC_8x8_RGBA: if (texCompASTCSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_ASTC_8x8_KHR); break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3 default: TraceLog(WARNING, "Texture format not recognized"); break; } #elif defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_ES2) // NOTE: on OpenGL ES 2.0 (WebGL), internalFormat must match format and options allowed are: GL_LUMINANCE, GL_RGB, GL_RGBA switch (textureFormat) { case UNCOMPRESSED_GRAYSCALE: glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE, width, height, 0, GL_LUMINANCE, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_GRAY_ALPHA: glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE_ALPHA, width, height, 0, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_R5G6B5: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, (unsigned short *)data); break; case UNCOMPRESSED_R8G8B8: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_R5G5B5A1: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, (unsigned short *)data); break; case UNCOMPRESSED_R4G4B4A4: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, (unsigned short *)data); break; case UNCOMPRESSED_R8G8B8A8: glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)data); break; #if defined(GRAPHICS_API_OPENGL_ES2) case COMPRESSED_DXT1_RGB: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB_S3TC_DXT1_EXT); break; case COMPRESSED_DXT1_RGBA: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT1_EXT); break; case COMPRESSED_DXT3_RGBA: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT3_EXT); break; // NOTE: Not supported by WebGL case COMPRESSED_DXT5_RGBA: if (texCompDXTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_S3TC_DXT5_EXT); break; // NOTE: Not supported by WebGL case COMPRESSED_ETC1_RGB: if (texCompETC1Supported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_ETC1_RGB8_OES); break; // NOTE: Requires OpenGL ES 2.0 or OpenGL 4.3 case COMPRESSED_ETC2_RGB: if (texCompETC2Supported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB8_ETC2); break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 case COMPRESSED_ETC2_EAC_RGBA: if (texCompETC2Supported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA8_ETC2_EAC); break; // NOTE: Requires OpenGL ES 3.0 or OpenGL 4.3 case COMPRESSED_PVRT_RGB: if (texCompPVRTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG); break; // NOTE: Requires PowerVR GPU case COMPRESSED_PVRT_RGBA: if (texCompPVRTSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG); break; // NOTE: Requires PowerVR GPU case COMPRESSED_ASTC_4x4_RGBA: if (texCompASTCSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_ASTC_4x4_KHR); break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3 case COMPRESSED_ASTC_8x8_RGBA: if (texCompASTCSupported) LoadCompressedTexture((unsigned char *)data, width, height, mipmapCount, GL_COMPRESSED_RGBA_ASTC_8x8_KHR); break; // NOTE: Requires OpenGL ES 3.1 or OpenGL 4.3 #endif default: TraceLog(WARNING, "Texture format not supported"); break; } #endif // Texture parameters configuration // NOTE: glTexParameteri does NOT affect texture uploading, just the way it's used #if defined(GRAPHICS_API_OPENGL_ES2) // NOTE: OpenGL ES 2.0 with no GL_OES_texture_npot support (i.e. WebGL) has limited NPOT support, so CLAMP_TO_EDGE must be used if (npotSupported) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis } else { // NOTE: If using negative texture coordinates (LoadOBJ()), it does not work! glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // Set texture to clamp on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); // Set texture to clamp on y-axis } #else glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); // Set texture to repeat on x-axis glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); // Set texture to repeat on y-axis #endif // Magnification and minification filters glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // Alternative: GL_LINEAR glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); // Alternative: GL_LINEAR #if defined(GRAPHICS_API_OPENGL_33) if (mipmapCount > 1) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // Activate Trilinear filtering for mipmaps (must be available) } #endif // At this point we have the texture loaded in GPU and texture parameters configured // NOTE: If mipmaps were not in data, they are not generated automatically // Unbind current texture glBindTexture(GL_TEXTURE_2D, 0); if (id > 0) TraceLog(INFO, "[TEX ID %i] Texture created successfully (%ix%i)", id, width, height); else TraceLog(WARNING, "Texture could not be created"); return id; } // Load a texture to be used for rendering (fbo with color and depth attachments) RenderTexture2D rlglLoadRenderTexture(int width, int height) { RenderTexture2D target; target.id = 0; target.texture.id = 0; target.texture.width = width; target.texture.height = height; target.texture.format = UNCOMPRESSED_R8G8B8; target.texture.mipmaps = 1; target.depth.id = 0; target.depth.width = width; target.depth.height = height; target.depth.format = 19; //DEPTH_COMPONENT_24BIT target.depth.mipmaps = 1; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Create the texture that will serve as the color attachment for the framebuffer glGenTextures(1, &target.texture.id); glBindTexture(GL_TEXTURE_2D, target.texture.id); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL); glBindTexture(GL_TEXTURE_2D, 0); #if defined(GRAPHICS_API_OPENGL_33) #define USE_DEPTH_TEXTURE #else #define USE_DEPTH_RENDERBUFFER #endif #if defined(USE_DEPTH_RENDERBUFFER) // Create the renderbuffer that will serve as the depth attachment for the framebuffer. glGenRenderbuffers(1, &target.depth.id); glBindRenderbuffer(GL_RENDERBUFFER, target.depth.id); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, width, height); // GL_DEPTH_COMPONENT24 not supported on Android #elif defined(USE_DEPTH_TEXTURE) // NOTE: We can also use a texture for depth buffer (GL_ARB_depth_texture/GL_OES_depth_texture extension required) // A renderbuffer is simpler than a texture and could offer better performance on embedded devices glGenTextures(1, &target.depth.id); glBindTexture(GL_TEXTURE_2D, target.depth.id); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, width, height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); glBindTexture(GL_TEXTURE_2D, 0); #endif // Create the framebuffer object glGenFramebuffers(1, &target.id); glBindFramebuffer(GL_FRAMEBUFFER, target.id); // Attach color texture and depth renderbuffer to FBO glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, target.texture.id, 0); #if defined(USE_DEPTH_RENDERBUFFER) glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, target.depth.id); #elif defined(USE_DEPTH_TEXTURE) glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, target.depth.id, 0); #endif GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { TraceLog(WARNING, "Framebuffer object could not be created..."); switch (status) { case GL_FRAMEBUFFER_UNSUPPORTED: TraceLog(WARNING, "Framebuffer is unsupported"); break; case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT: TraceLog(WARNING, "Framebuffer incomplete attachment"); break; #if defined(GRAPHICS_API_OPENGL_ES2) case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS: TraceLog(WARNING, "Framebuffer incomplete dimensions"); break; #endif case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT: TraceLog(WARNING, "Framebuffer incomplete missing attachment"); break; default: break; } glDeleteTextures(1, &target.texture.id); glDeleteTextures(1, &target.depth.id); glDeleteFramebuffers(1, &target.id); } else TraceLog(INFO, "[FBO ID %i] Framebuffer object created successfully", target.id); glBindFramebuffer(GL_FRAMEBUFFER, 0); #endif return target; } // Update already loaded texture in GPU with new data void rlglUpdateTexture(unsigned int id, int width, int height, int format, void *data) { glBindTexture(GL_TEXTURE_2D, id); #if defined(GRAPHICS_API_OPENGL_33) switch (format) { case UNCOMPRESSED_GRAYSCALE: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RED, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_GRAY_ALPHA: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RG, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_R5G6B5: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, (unsigned short *)data); break; case UNCOMPRESSED_R8G8B8: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_R5G5B5A1: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, (unsigned short *)data); break; case UNCOMPRESSED_R4G4B4A4: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, (unsigned short *)data); break; case UNCOMPRESSED_R8G8B8A8: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)data); break; default: TraceLog(WARNING, "Texture format updating not supported"); break; } #elif defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_ES2) // NOTE: on OpenGL ES 2.0 (WebGL), internalFormat must match format and options allowed are: GL_LUMINANCE, GL_RGB, GL_RGBA switch (format) { case UNCOMPRESSED_GRAYSCALE: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_LUMINANCE, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_GRAY_ALPHA: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_R5G6B5: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, (unsigned short *)data); break; case UNCOMPRESSED_R8G8B8: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, (unsigned char *)data); break; case UNCOMPRESSED_R5G5B5A1: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1, (unsigned short *)data); break; case UNCOMPRESSED_R4G4B4A4: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, (unsigned short *)data); break; case UNCOMPRESSED_R8G8B8A8: glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, (unsigned char *)data); break; default: TraceLog(WARNING, "Texture format updating not supported"); break; } #endif } // Generate mipmap data for selected texture void rlglGenerateMipmaps(Texture2D texture) { glBindTexture(GL_TEXTURE_2D, texture.id); // Check if texture is power-of-two (POT) bool texIsPOT = false; if (((texture.width > 0) && ((texture.width & (texture.width - 1)) == 0)) && ((texture.height > 0) && ((texture.height & (texture.height - 1)) == 0))) texIsPOT = true; if ((texIsPOT) || (npotSupported)) { #if defined(GRAPHICS_API_OPENGL_11) // Compute required mipmaps void *data = rlglReadTexturePixels(texture); // NOTE: data size is reallocated to fit mipmaps data // NOTE: CPU mipmap generation only supports RGBA 32bit data int mipmapCount = GenerateMipmaps(data, texture.width, texture.height); int size = texture.width*texture.height*4; // RGBA 32bit only int offset = size; int mipWidth = texture.width/2; int mipHeight = texture.height/2; // Load the mipmaps for (int level = 1; level < mipmapCount; level++) { glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA8, mipWidth, mipHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, data + offset); size = mipWidth*mipHeight*4; offset += size; mipWidth /= 2; mipHeight /= 2; } TraceLog(WARNING, "[TEX ID %i] Mipmaps generated manually on CPU side", texture.id); // NOTE: Once mipmaps have been generated and data has been uploaded to GPU VRAM, we can discard RAM data free(data); #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glGenerateMipmap(GL_TEXTURE_2D); // Generate mipmaps automatically TraceLog(INFO, "[TEX ID %i] Mipmaps generated automatically", texture.id); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // Activate Trilinear filtering for mipmaps (must be available) #endif } else TraceLog(WARNING, "[TEX ID %i] Mipmaps can not be generated", texture.id); glBindTexture(GL_TEXTURE_2D, 0); } // Upload vertex data into a VAO (if supported) and VBO void rlglLoadMesh(Mesh *mesh, bool dynamic) { mesh->vaoId = 0; // Vertex Array Object mesh->vboId[0] = 0; // Vertex positions VBO mesh->vboId[1] = 0; // Vertex texcoords VBO mesh->vboId[2] = 0; // Vertex normals VBO mesh->vboId[3] = 0; // Vertex colors VBO mesh->vboId[4] = 0; // Vertex tangents VBO mesh->vboId[5] = 0; // Vertex texcoords2 VBO mesh->vboId[6] = 0; // Vertex indices VBO #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) int drawHint = GL_STATIC_DRAW; if (dynamic) drawHint = GL_DYNAMIC_DRAW; GLuint vaoId = 0; // Vertex Array Objects (VAO) GLuint vboId[7] = { 0 }; // Vertex Buffer Objects (VBOs) if (vaoSupported) { // Initialize Quads VAO (Buffer A) glGenVertexArrays(1, &vaoId); glBindVertexArray(vaoId); } // NOTE: Attributes must be uploaded considering default locations points // Enable vertex attributes: position (shader-location = 0) glGenBuffers(1, &vboId[0]); glBindBuffer(GL_ARRAY_BUFFER, vboId[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh->vertexCount, mesh->vertices, drawHint); glVertexAttribPointer(0, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(0); // Enable vertex attributes: texcoords (shader-location = 1) glGenBuffers(1, &vboId[1]); glBindBuffer(GL_ARRAY_BUFFER, vboId[1]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*mesh->vertexCount, mesh->texcoords, drawHint); glVertexAttribPointer(1, 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(1); // Enable vertex attributes: normals (shader-location = 2) if (mesh->normals != NULL) { glGenBuffers(1, &vboId[2]); glBindBuffer(GL_ARRAY_BUFFER, vboId[2]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh->vertexCount, mesh->normals, drawHint); glVertexAttribPointer(2, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(2); } else { // Default color vertex attribute set to WHITE glVertexAttrib3f(2, 1.0f, 1.0f, 1.0f); glDisableVertexAttribArray(2); } // Default color vertex attribute (shader-location = 3) if (mesh->colors != NULL) { glGenBuffers(1, &vboId[3]); glBindBuffer(GL_ARRAY_BUFFER, vboId[3]); glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*mesh->vertexCount, mesh->colors, drawHint); glVertexAttribPointer(3, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(3); } else { // Default color vertex attribute set to WHITE glVertexAttrib4f(3, 1.0f, 1.0f, 1.0f, 1.0f); glDisableVertexAttribArray(3); } // Default tangent vertex attribute (shader-location = 4) if (mesh->tangents != NULL) { glGenBuffers(1, &vboId[4]); glBindBuffer(GL_ARRAY_BUFFER, vboId[4]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*mesh->vertexCount, mesh->tangents, drawHint); glVertexAttribPointer(4, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(4); } else { // Default tangents vertex attribute glVertexAttrib3f(4, 0.0f, 0.0f, 0.0f); glDisableVertexAttribArray(4); } // Default texcoord2 vertex attribute (shader-location = 5) if (mesh->texcoords2 != NULL) { glGenBuffers(1, &vboId[5]); glBindBuffer(GL_ARRAY_BUFFER, vboId[5]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*mesh->vertexCount, mesh->texcoords2, drawHint); glVertexAttribPointer(5, 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(5); } else { // Default tangents vertex attribute glVertexAttrib2f(5, 0.0f, 0.0f); glDisableVertexAttribArray(5); } if (mesh->indices != NULL) { glGenBuffers(1, &vboId[6]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboId[6]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(unsigned short)*mesh->triangleCount*3, mesh->indices, GL_STATIC_DRAW); } mesh->vboId[0] = vboId[0]; // Vertex position VBO mesh->vboId[1] = vboId[1]; // Texcoords VBO mesh->vboId[2] = vboId[2]; // Normals VBO mesh->vboId[3] = vboId[3]; // Colors VBO mesh->vboId[4] = vboId[4]; // Tangents VBO mesh->vboId[5] = vboId[5]; // Texcoords2 VBO mesh->vboId[6] = vboId[6]; // Indices VBO if (vaoSupported) { if (vaoId > 0) { mesh->vaoId = vaoId; TraceLog(INFO, "[VAO ID %i] Mesh uploaded successfully to VRAM (GPU)", mesh->vaoId); } else TraceLog(WARNING, "Mesh could not be uploaded to VRAM (GPU)"); } else { TraceLog(INFO, "[VBOs] Mesh uploaded successfully to VRAM (GPU)"); } #endif } // Update vertex data on GPU (upload new data to one buffer) void rlglUpdateMesh(Mesh mesh, int buffer, int numVertex) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Activate mesh VAO if (vaoSupported) glBindVertexArray(mesh.vaoId); switch (buffer) { case 0: // Update vertices (vertex position) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[0]); if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*numVertex, mesh.vertices, GL_DYNAMIC_DRAW); else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*numVertex, mesh.vertices); } break; case 1: // Update texcoords (vertex texture coordinates) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[1]); if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*numVertex, mesh.texcoords, GL_DYNAMIC_DRAW); else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*numVertex, mesh.texcoords); } break; case 2: // Update normals (vertex normals) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[0]); if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*numVertex, mesh.normals, GL_DYNAMIC_DRAW); else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*numVertex, mesh.normals); } break; case 3: // Update colors (vertex colors) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[2]); if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*numVertex, mesh.colors, GL_DYNAMIC_DRAW); else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*numVertex, mesh.colors); } break; case 4: // Update tangents (vertex tangents) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[0]); if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*numVertex, mesh.tangents, GL_DYNAMIC_DRAW); else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*numVertex, mesh.tangents); } break; case 5: // Update texcoords2 (vertex second texture coordinates) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[1]); if (numVertex >= mesh.vertexCount) glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*numVertex, mesh.texcoords2, GL_DYNAMIC_DRAW); else glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*numVertex, mesh.texcoords2); } break; default: break; } // Unbind the current VAO if (vaoSupported) glBindVertexArray(0); // Another option would be using buffer mapping... //mesh.vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE); // Now we can modify vertices //glUnmapBuffer(GL_ARRAY_BUFFER); #endif } // Draw a 3d mesh with material and transform void rlglDrawMesh(Mesh mesh, Material material, Matrix transform) { #if defined(GRAPHICS_API_OPENGL_11) glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, material.texDiffuse.id); // NOTE: On OpenGL 1.1 we use Vertex Arrays to draw model glEnableClientState(GL_VERTEX_ARRAY); // Enable vertex array glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Enable texture coords array if (mesh.normals != NULL) glEnableClientState(GL_NORMAL_ARRAY); // Enable normals array if (mesh.colors != NULL) glEnableClientState(GL_COLOR_ARRAY); // Enable colors array glVertexPointer(3, GL_FLOAT, 0, mesh.vertices); // Pointer to vertex coords array glTexCoordPointer(2, GL_FLOAT, 0, mesh.texcoords); // Pointer to texture coords array if (mesh.normals != NULL) glNormalPointer(GL_FLOAT, 0, mesh.normals); // Pointer to normals array if (mesh.colors != NULL) glColorPointer(4, GL_UNSIGNED_BYTE, 0, mesh.colors); // Pointer to colors array // TODO: Support OpenGL 1.1 lighting system rlPushMatrix(); rlMultMatrixf(MatrixToFloat(transform)); rlColor4ub(material.colDiffuse.r, material.colDiffuse.g, material.colDiffuse.b, material.colDiffuse.a); if (mesh.indices != NULL) glDrawElements(GL_TRIANGLES, mesh.triangleCount*3, GL_UNSIGNED_SHORT, mesh.indices); else glDrawArrays(GL_TRIANGLES, 0, mesh.vertexCount); rlPopMatrix(); glDisableClientState(GL_VERTEX_ARRAY); // Disable vertex array glDisableClientState(GL_TEXTURE_COORD_ARRAY); // Disable texture coords array if (mesh.normals != NULL) glDisableClientState(GL_NORMAL_ARRAY); // Disable normals array if (mesh.colors != NULL) glDisableClientState(GL_NORMAL_ARRAY); // Disable colors array glDisable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); #endif #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) int eyesCount = 1; if (vrEnabled) eyesCount = 2; glUseProgram(material.shader.id); // Upload to shader material.colDiffuse float vColorDiffuse[4] = { (float)material.colDiffuse.r/255, (float)material.colDiffuse.g/255, (float)material.colDiffuse.b/255, (float)material.colDiffuse.a/255 }; glUniform4fv(material.shader.tintColorLoc, 1, vColorDiffuse); // At this point the modelview matrix just contains the view matrix (camera) // That's because Begin3dMode() sets it an no model-drawing function modifies it, all use rlPushMatrix() and rlPopMatrix() Matrix matView = modelview; // View matrix (camera) Matrix matProjection = projection; // Projection matrix (perspective) // Calculate model-view matrix combining matModel and matView Matrix matModelView = MatrixMultiply(transform, matView); // Transform to camera-space coordinates // Check if using standard shader to get location points // NOTE: standard shader specific locations are got at render time to keep Shader struct as simple as possible (with just default shader locations) if (material.shader.id == standardShader.id) { // Transpose and inverse model transformations matrix for fragment normal calculations Matrix transInvTransform = transform; MatrixTranspose(&transInvTransform); MatrixInvert(&transInvTransform); // Send model transformations matrix to shader glUniformMatrix4fv(glGetUniformLocation(material.shader.id, "modelMatrix"), 1, false, MatrixToFloat(transInvTransform)); // Send view transformation matrix to shader. View matrix 8, 9 and 10 are view direction vector axis values (target - position) glUniform3f(glGetUniformLocation(material.shader.id, "viewDir"), matView.m8, matView.m9, matView.m10); // Setup shader uniforms for lights SetShaderLights(material.shader); // Upload to shader material.colAmbient glUniform4f(glGetUniformLocation(material.shader.id, "colAmbient"), (float)material.colAmbient.r/255, (float)material.colAmbient.g/255, (float)material.colAmbient.b/255, (float)material.colAmbient.a/255); // Upload to shader material.colSpecular glUniform4f(glGetUniformLocation(material.shader.id, "colSpecular"), (float)material.colSpecular.r/255, (float)material.colSpecular.g/255, (float)material.colSpecular.b/255, (float)material.colSpecular.a/255); // Upload to shader glossiness glUniform1f(glGetUniformLocation(material.shader.id, "glossiness"), material.glossiness); } // Set shader textures (diffuse, normal, specular) glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, material.texDiffuse.id); glUniform1i(material.shader.mapTexture0Loc, 0); // Diffuse texture fits in active texture unit 0 if ((material.texNormal.id != 0) && (material.shader.mapTexture1Loc != -1)) { // Upload to shader specular map flag glUniform1i(glGetUniformLocation(material.shader.id, "useNormal"), 1); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, material.texNormal.id); glUniform1i(material.shader.mapTexture1Loc, 1); // Normal texture fits in active texture unit 1 } if ((material.texSpecular.id != 0) && (material.shader.mapTexture2Loc != -1)) { // Upload to shader specular map flag glUniform1i(glGetUniformLocation(material.shader.id, "useSpecular"), 1); glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, material.texSpecular.id); glUniform1i(material.shader.mapTexture2Loc, 2); // Specular texture fits in active texture unit 2 } if (vaoSupported) { glBindVertexArray(mesh.vaoId); } else { // Bind mesh VBO data: vertex position (shader-location = 0) glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[0]); glVertexAttribPointer(material.shader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(material.shader.vertexLoc); // Bind mesh VBO data: vertex texcoords (shader-location = 1) glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[1]); glVertexAttribPointer(material.shader.texcoordLoc, 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(material.shader.texcoordLoc); // Bind mesh VBO data: vertex normals (shader-location = 2, if available) if (material.shader.normalLoc != -1) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[2]); glVertexAttribPointer(material.shader.normalLoc, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(material.shader.normalLoc); } // Bind mesh VBO data: vertex colors (shader-location = 3, if available) if (material.shader.colorLoc != -1) { if (mesh.vboId[3] != 0) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[3]); glVertexAttribPointer(material.shader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(material.shader.colorLoc); } else { // Set default value for unused attribute // NOTE: Required when using default shader and no VAO support glVertexAttrib4f(material.shader.colorLoc, 1.0f, 1.0f, 1.0f, 1.0f); glDisableVertexAttribArray(material.shader.colorLoc); } } // Bind mesh VBO data: vertex tangents (shader-location = 4, if available) if (material.shader.tangentLoc != -1) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[4]); glVertexAttribPointer(material.shader.tangentLoc, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(material.shader.tangentLoc); } // Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available) if (material.shader.texcoord2Loc != -1) { glBindBuffer(GL_ARRAY_BUFFER, mesh.vboId[5]); glVertexAttribPointer(material.shader.texcoord2Loc, 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(material.shader.texcoord2Loc); } if (mesh.indices != NULL) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quads.vboId[3]); } for (int eye = 0; eye < eyesCount; eye++) { if (eyesCount == 2) SetStereoView(eye, matProjection, matModelView); else modelview = matModelView; // Calculate model-view-projection matrix (MVP) Matrix matMVP = MatrixMultiply(modelview, projection); // Transform to screen-space coordinates // Send combined model-view-projection matrix to shader glUniformMatrix4fv(material.shader.mvpLoc, 1, false, MatrixToFloat(matMVP)); // Draw call! if (mesh.indices != NULL) glDrawElements(GL_TRIANGLES, mesh.triangleCount*3, GL_UNSIGNED_SHORT, 0); // Indexed vertices draw else glDrawArrays(GL_TRIANGLES, 0, mesh.vertexCount); } if (material.texNormal.id != 0) { glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, 0); } if (material.texSpecular.id != 0) { glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, 0); } glActiveTexture(GL_TEXTURE0); // Set shader active texture to default 0 glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures if (vaoSupported) glBindVertexArray(0); // Unbind VAO else { glBindBuffer(GL_ARRAY_BUFFER, 0); // Unbind VBOs if (mesh.indices != NULL) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } glUseProgram(0); // Unbind shader program // Restore projection/modelview matrices projection = matProjection; modelview = matView; #endif } // Unload mesh data from CPU and GPU void rlglUnloadMesh(Mesh *mesh) { if (mesh->vertices != NULL) free(mesh->vertices); if (mesh->texcoords != NULL) free(mesh->texcoords); if (mesh->normals != NULL) free(mesh->normals); if (mesh->colors != NULL) free(mesh->colors); if (mesh->tangents != NULL) free(mesh->tangents); if (mesh->texcoords2 != NULL) free(mesh->texcoords2); if (mesh->indices != NULL) free(mesh->indices); rlDeleteBuffers(mesh->vboId[0]); // vertex rlDeleteBuffers(mesh->vboId[1]); // texcoords rlDeleteBuffers(mesh->vboId[2]); // normals rlDeleteBuffers(mesh->vboId[3]); // colors rlDeleteBuffers(mesh->vboId[4]); // tangents rlDeleteBuffers(mesh->vboId[5]); // texcoords2 rlDeleteBuffers(mesh->vboId[6]); // indices rlDeleteVertexArrays(mesh->vaoId); } // Read screen pixel data (color buffer) unsigned char *rlglReadScreenPixels(int width, int height) { unsigned char *screenData = (unsigned char *)malloc(width*height*sizeof(unsigned char)*4); // NOTE: glReadPixels returns image flipped vertically -> (0,0) is the bottom left corner of the framebuffer glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, screenData); // Flip image vertically! unsigned char *imgData = (unsigned char *)malloc(width*height*sizeof(unsigned char)*4); for (int y = height - 1; y >= 0; y--) { for (int x = 0; x < (width*4); x++) { // Flip line imgData[((height - 1) - y)*width*4 + x] = screenData[(y*width*4) + x]; // Set alpha component value to 255 (no trasparent image retrieval) // NOTE: Alpha value has already been applied to RGB in framebuffer, we don't need it! if (((x + 1)%4) == 0) imgData[((height - 1) - y)*width*4 + x] = 255; } } free(screenData); return imgData; // NOTE: image data should be freed } // Read texture pixel data // NOTE: glGetTexImage() is not available on OpenGL ES 2.0 // Texture2D width and height are required on OpenGL ES 2.0. There is no way to get it from texture id. void *rlglReadTexturePixels(Texture2D texture) { void *pixels = NULL; #if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_33) glBindTexture(GL_TEXTURE_2D, texture.id); // NOTE: Using texture.id, we can retrieve some texture info (but not on OpenGL ES 2.0) /* int width, height, format; glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, &width); glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, &height); glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_INTERNAL_FORMAT, &format); // Other texture info: GL_TEXTURE_RED_SIZE, GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE */ int glFormat = 0, glType = 0; unsigned int size = texture.width*texture.height; // NOTE: GL_LUMINANCE and GL_LUMINANCE_ALPHA are removed since OpenGL 3.1 // Must be replaced by GL_RED and GL_RG on Core OpenGL 3.3 switch (texture.format) { #if defined(GRAPHICS_API_OPENGL_11) case UNCOMPRESSED_GRAYSCALE: pixels = (unsigned char *)malloc(size); glFormat = GL_LUMINANCE; glType = GL_UNSIGNED_BYTE; break; // 8 bit per pixel (no alpha) case UNCOMPRESSED_GRAY_ALPHA: pixels = (unsigned char *)malloc(size*2); glFormat = GL_LUMINANCE_ALPHA; glType = GL_UNSIGNED_BYTE; break; // 16 bpp (2 channels) #elif defined(GRAPHICS_API_OPENGL_33) case UNCOMPRESSED_GRAYSCALE: pixels = (unsigned char *)malloc(size); glFormat = GL_RED; glType = GL_UNSIGNED_BYTE; break; case UNCOMPRESSED_GRAY_ALPHA: pixels = (unsigned char *)malloc(size*2); glFormat = GL_RG; glType = GL_UNSIGNED_BYTE; break; #endif case UNCOMPRESSED_R5G6B5: pixels = (unsigned short *)malloc(size); glFormat = GL_RGB; glType = GL_UNSIGNED_SHORT_5_6_5; break; // 16 bpp case UNCOMPRESSED_R8G8B8: pixels = (unsigned char *)malloc(size*3); glFormat = GL_RGB; glType = GL_UNSIGNED_BYTE; break; // 24 bpp case UNCOMPRESSED_R5G5B5A1: pixels = (unsigned short *)malloc(size); glFormat = GL_RGBA; glType = GL_UNSIGNED_SHORT_5_5_5_1; break; // 16 bpp (1 bit alpha) case UNCOMPRESSED_R4G4B4A4: pixels = (unsigned short *)malloc(size); glFormat = GL_RGBA; glType = GL_UNSIGNED_SHORT_4_4_4_4; break; // 16 bpp (4 bit alpha) case UNCOMPRESSED_R8G8B8A8: pixels = (unsigned char *)malloc(size*4); glFormat = GL_RGBA; glType = GL_UNSIGNED_BYTE; break; // 32 bpp default: TraceLog(WARNING, "Texture data retrieval, format not suported"); break; } // NOTE: Each row written to or read from by OpenGL pixel operations like glGetTexImage are aligned to a 4 byte boundary by default, which may add some padding. // Use glPixelStorei to modify padding with the GL_[UN]PACK_ALIGNMENT setting. // GL_PACK_ALIGNMENT affects operations that read from OpenGL memory (glReadPixels, glGetTexImage, etc.) // GL_UNPACK_ALIGNMENT affects operations that write to OpenGL memory (glTexImage, etc.) glPixelStorei(GL_PACK_ALIGNMENT, 1); glGetTexImage(GL_TEXTURE_2D, 0, glFormat, glType, pixels); glBindTexture(GL_TEXTURE_2D, 0); #endif #if defined(GRAPHICS_API_OPENGL_ES2) RenderTexture2D fbo = rlglLoadRenderTexture(texture.width, texture.height); // NOTE: Two possible Options: // 1 - Bind texture to color fbo attachment and glReadPixels() // 2 - Create an fbo, activate it, render quad with texture, glReadPixels() #define GET_TEXTURE_FBO_OPTION_1 // It works #if defined(GET_TEXTURE_FBO_OPTION_1) glBindFramebuffer(GL_FRAMEBUFFER, fbo.id); glBindTexture(GL_TEXTURE_2D, 0); // Attach our texture to FBO -> Texture must be RGB // NOTE: Previoust attached texture is automatically detached glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture.id, 0); pixels = (unsigned char *)malloc(texture.width*texture.height*4*sizeof(unsigned char)); // NOTE: Despite FBO color texture is RGB, we read data as RGBA... reading as RGB doesn't work... o__O glReadPixels(0, 0, texture.width, texture.height, GL_RGBA, GL_UNSIGNED_BYTE, pixels); // Re-attach internal FBO color texture before deleting it glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, fbo.texture.id, 0); glBindFramebuffer(GL_FRAMEBUFFER, 0); #elif defined(GET_TEXTURE_FBO_OPTION_2) // Render texture to fbo glBindFramebuffer(GL_FRAMEBUFFER, fbo.id); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClearDepthf(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glViewport(0, 0, width, height); //glMatrixMode(GL_PROJECTION); //glLoadIdentity(); rlOrtho(0.0, width, height, 0.0, 0.0, 1.0); //glMatrixMode(GL_MODELVIEW); //glLoadIdentity(); //glDisable(GL_TEXTURE_2D); //glDisable(GL_BLEND); glEnable(GL_DEPTH_TEST); Model quad; //quad.mesh = GenMeshQuad(width, height); quad.transform = MatrixIdentity(); quad.shader = defaultShader; DrawModel(quad, (Vector3){ 0.0f, 0.0f, 0.0f }, 1.0f, WHITE); pixels = (unsigned char *)malloc(texture.width*texture.height*3*sizeof(unsigned char)); glReadPixels(0, 0, texture.width, texture.height, GL_RGB, GL_UNSIGNED_BYTE, pixels); // Bind framebuffer 0, which means render to back buffer glBindFramebuffer(GL_FRAMEBUFFER, 0); UnloadModel(quad); #endif // GET_TEXTURE_FBO_OPTION // Clean up temporal fbo rlDeleteRenderTextures(fbo); #endif return pixels; } /* // TODO: Record draw calls to be processed in batch // NOTE: Global state must be kept void rlglRecordDraw(void) { // TODO: Before adding a new draw, check if anything changed from last stored draw #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) draws[drawsCounter].vaoId = currentState.vaoId; // lines.id, trangles.id, quads.id? draws[drawsCounter].textureId = currentState.textureId; // whiteTexture? draws[drawsCounter].shaderId = currentState.shaderId; // defaultShader.id draws[drawsCounter].projection = projection; draws[drawsCounter].modelview = modelview; draws[drawsCounter].vertexCount = currentState.vertexCount; drawsCounter++; #endif } */ //---------------------------------------------------------------------------------- // Module Functions Definition - Shaders Functions // NOTE: Those functions are exposed directly to the user in raylib.h //---------------------------------------------------------------------------------- // Get default internal texture (white texture) Texture2D GetDefaultTexture(void) { Texture2D texture; texture.id = whiteTexture; texture.width = 1; texture.height = 1; texture.mipmaps = 1; texture.format = UNCOMPRESSED_R8G8B8A8; return texture; } // Load a custom shader and bind default locations Shader LoadShader(char *vsFileName, char *fsFileName) { Shader shader = { 0 }; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Shaders loading from external text file char *vShaderStr = ReadTextFile(vsFileName); char *fShaderStr = ReadTextFile(fsFileName); if ((vShaderStr != NULL) && (fShaderStr != NULL)) { shader.id = LoadShaderProgram(vShaderStr, fShaderStr); // After shader loading, we try to load default location names if (shader.id != 0) LoadDefaultShaderLocations(&shader); // Shader strings must be freed free(vShaderStr); free(fShaderStr); } if (shader.id == 0) { TraceLog(WARNING, "Custom shader could not be loaded"); shader = defaultShader; } #endif return shader; } // Unload a custom shader from memory void UnloadShader(Shader shader) { if (shader.id != 0) { rlDeleteShader(shader.id); TraceLog(INFO, "[SHDR ID %i] Unloaded shader program data", shader.id); } } // Begin custom shader mode void BeginShaderMode(Shader shader) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (currentShader.id != shader.id) { rlglDraw(); currentShader = shader; } #endif } // End custom shader mode (returns to default shader) void EndShaderMode(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) BeginShaderMode(defaultShader); #endif } // Get default shader Shader GetDefaultShader(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) return defaultShader; #else Shader shader = { 0 }; return shader; #endif } // Get default shader // NOTE: Inits global variable standardShader Shader GetStandardShader(void) { Shader shader = { 0 }; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) if (standardShaderLoaded) shader = standardShader; else { // Lazy initialization of standard shader standardShader = LoadStandardShader(); shader = standardShader; } #endif return shader; } // Get shader uniform location int GetShaderLocation(Shader shader, const char *uniformName) { int location = -1; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) location = glGetUniformLocation(shader.id, uniformName); if (location == -1) TraceLog(DEBUG, "[SHDR ID %i] Shader location for %s could not be found", shader.id, uniformName); #endif return location; } // Set shader uniform value (float) void SetShaderValue(Shader shader, int uniformLoc, float *value, int size) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glUseProgram(shader.id); if (size == 1) glUniform1fv(uniformLoc, 1, value); // Shader uniform type: float else if (size == 2) glUniform2fv(uniformLoc, 1, value); // Shader uniform type: vec2 else if (size == 3) glUniform3fv(uniformLoc, 1, value); // Shader uniform type: vec3 else if (size == 4) glUniform4fv(uniformLoc, 1, value); // Shader uniform type: vec4 else TraceLog(WARNING, "Shader value float array size not supported"); glUseProgram(0); #endif } // Set shader uniform value (int) void SetShaderValuei(Shader shader, int uniformLoc, int *value, int size) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glUseProgram(shader.id); if (size == 1) glUniform1iv(uniformLoc, 1, value); // Shader uniform type: int else if (size == 2) glUniform2iv(uniformLoc, 1, value); // Shader uniform type: ivec2 else if (size == 3) glUniform3iv(uniformLoc, 1, value); // Shader uniform type: ivec3 else if (size == 4) glUniform4iv(uniformLoc, 1, value); // Shader uniform type: ivec4 else TraceLog(WARNING, "Shader value int array size not supported"); glUseProgram(0); #endif } // Set shader uniform value (matrix 4x4) void SetShaderValueMatrix(Shader shader, int uniformLoc, Matrix mat) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) glUseProgram(shader.id); glUniformMatrix4fv(uniformLoc, 1, false, MatrixToFloat(mat)); glUseProgram(0); #endif } // Set a custom projection matrix (replaces internal projection matrix) void SetMatrixProjection(Matrix proj) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) projection = proj; #endif } // Set a custom modelview matrix (replaces internal modelview matrix) void SetMatrixModelview(Matrix view) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) modelview = view; #endif } // Begin blending mode (alpha, additive, multiplied) // NOTE: Only 3 blending modes supported, default blend mode is alpha void BeginBlendMode(int mode) { if ((blendMode != mode) && (mode < 3)) { rlglDraw(); switch (mode) { case BLEND_ALPHA: glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); break; case BLEND_ADDITIVE: glBlendFunc(GL_SRC_ALPHA, GL_ONE); break; // Alternative: glBlendFunc(GL_ONE, GL_ONE); case BLEND_MULTIPLIED: glBlendFunc(GL_DST_COLOR, GL_ONE_MINUS_SRC_ALPHA); break; default: break; } blendMode = mode; } } // End blending mode (reset to default: alpha blending) void EndBlendMode(void) { BeginBlendMode(BLEND_ALPHA); } // Create a new light, initialize it and add to pool Light CreateLight(int type, Vector3 position, Color diffuse) { Light light = NULL; if (lightsCount < MAX_LIGHTS) { // Allocate dynamic memory light = (Light)malloc(sizeof(LightData)); // Initialize light values with generic values light->id = lightsCount; light->type = type; light->enabled = true; light->position = position; light->target = (Vector3){ 0.0f, 0.0f, 0.0f }; light->intensity = 1.0f; light->diffuse = diffuse; // Add new light to the array lights[lightsCount] = light; // Increase enabled lights count lightsCount++; } else { TraceLog(WARNING, "Too many lights, only supported up to %i lights", MAX_LIGHTS); // NOTE: Returning latest created light to avoid crashes light = lights[lightsCount]; } #if defined(GRAPHICS_API_OPENGL_11) TraceLog(WARNING, "Lighting currently not supported on OpenGL 1.1"); #endif return light; } // Destroy a light and take it out of the list void DestroyLight(Light light) { if (light != NULL) { // Free dynamic memory allocation free(lights[light->id]); // Remove *obj from the pointers array for (int i = light->id; i < lightsCount; i++) { // Resort all the following pointers of the array if ((i + 1) < lightsCount) { lights[i] = lights[i + 1]; lights[i]->id = lights[i + 1]->id; } else free(lights[i]); } // Decrease enabled physic objects count lightsCount--; } } // Init VR device (or simulator) // NOTE: If device is not available, it fallbacks to default device (simulator) // NOTE: It modifies the global variable: VrDeviceInfo hmd void InitVrDevice(int hmdDevice) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) switch (hmdDevice) { case HMD_DEFAULT_DEVICE: TraceLog(INFO, "Initializing default VR Device (Oculus Rift CV1)"); case HMD_OCULUS_RIFT_DK2: case HMD_OCULUS_RIFT_CV1: { #if defined(RLGL_OCULUS_SUPPORT) vrDeviceReady = InitOculusDevice(); #else TraceLog(WARNING, "Oculus Rift not supported by default, recompile raylib with Oculus support"); #endif } break; case HMD_VALVE_HTC_VIVE: case HMD_SAMSUNG_GEAR_VR: case HMD_GOOGLE_CARDBOARD: case HMD_SONY_PLAYSTATION_VR: case HMD_RAZER_OSVR: case HMD_FOVE_VR: TraceLog(WARNING, "VR Device not supported"); default: break; } if (!vrDeviceReady) { TraceLog(WARNING, "VR Device not found: Initializing VR Simulator (Oculus Rift CV1)"); if (hmdDevice == HMD_OCULUS_RIFT_DK2) { // Oculus Rift DK2 parameters hmd.hResolution = 1280; // HMD horizontal resolution in pixels hmd.vResolution = 800; // HMD vertical resolution in pixels hmd.hScreenSize = 0.14976f; // HMD horizontal size in meters hmd.vScreenSize = 0.09356f; // HMD vertical size in meters hmd.vScreenCenter = 0.04678f; // HMD screen center in meters hmd.eyeToScreenDistance = 0.041f; // HMD distance between eye and display in meters hmd.lensSeparationDistance = 0.0635f; // HMD lens separation distance in meters hmd.interpupillaryDistance = 0.064f; // HMD IPD (distance between pupils) in meters hmd.distortionK[0] = 1.0f; // HMD lens distortion constant parameter 0 hmd.distortionK[1] = 0.22f; // HMD lens distortion constant parameter 1 hmd.distortionK[2] = 0.24f; // HMD lens distortion constant parameter 2 hmd.distortionK[3] = 0.0f; // HMD lens distortion constant parameter 3 hmd.chromaAbCorrection[0] = 0.996f; // HMD chromatic aberration correction parameter 0 hmd.chromaAbCorrection[1] = -0.004f; // HMD chromatic aberration correction parameter 1 hmd.chromaAbCorrection[2] = 1.014f; // HMD chromatic aberration correction parameter 2 hmd.chromaAbCorrection[3] = 0.0f; // HMD chromatic aberration correction parameter 3 } else if ((hmdDevice == HMD_DEFAULT_DEVICE) || (hmdDevice == HMD_OCULUS_RIFT_CV1)) { // Oculus Rift CV1 parameters // NOTE: CV1 represents a complete HMD redesign compared to previous versions, // new Fresnel-hybrid-asymmetric lenses have been added and, consequently, // previous parameters (DK2) and distortion shader (DK2) doesn't work any more. // I just defined a set of parameters for simulator that approximate to CV1 stereo rendering // but result is not the same obtained with Oculus PC SDK. hmd.hResolution = 2160; // HMD horizontal resolution in pixels hmd.vResolution = 1200; // HMD vertical resolution in pixels hmd.hScreenSize = 0.133793f; // HMD horizontal size in meters hmd.vScreenSize = 0.0669; // HMD vertical size in meters hmd.vScreenCenter = 0.04678f; // HMD screen center in meters hmd.eyeToScreenDistance = 0.041f; // HMD distance between eye and display in meters hmd.lensSeparationDistance = 0.07f; // HMD lens separation distance in meters hmd.interpupillaryDistance = 0.07f; // HMD IPD (distance between pupils) in meters hmd.distortionK[0] = 1.0f; // HMD lens distortion constant parameter 0 hmd.distortionK[1] = 0.22f; // HMD lens distortion constant parameter 1 hmd.distortionK[2] = 0.24f; // HMD lens distortion constant parameter 2 hmd.distortionK[3] = 0.0f; // HMD lens distortion constant parameter 3 hmd.chromaAbCorrection[0] = 0.996f; // HMD chromatic aberration correction parameter 0 hmd.chromaAbCorrection[1] = -0.004f; // HMD chromatic aberration correction parameter 1 hmd.chromaAbCorrection[2] = 1.014f; // HMD chromatic aberration correction parameter 2 hmd.chromaAbCorrection[3] = 0.0f; // HMD chromatic aberration correction parameter 3 } // Initialize framebuffer and textures for stereo rendering // NOTE: screen size should match HMD aspect ratio vrConfig.stereoFbo = rlglLoadRenderTexture(screenWidth, screenHeight); // Load distortion shader (initialized by default with Oculus Rift CV1 parameters) vrConfig.distortionShader.id = LoadShaderProgram(vDistortionShaderStr, fDistortionShaderStr); if (vrConfig.distortionShader.id != 0) LoadDefaultShaderLocations(&vrConfig.distortionShader); SetStereoConfig(hmd); vrSimulator = true; vrEnabled = true; } #endif } // Close VR device (or simulator) void CloseVrDevice(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) #if defined(RLGL_OCULUS_SUPPORT) if (vrDeviceReady) CloseOculusDevice(); else #endif { rlDeleteRenderTextures(vrConfig.stereoFbo); // Unload stereo framebuffer and texture UnloadShader(vrConfig.distortionShader); // Unload distortion shader } #endif vrDeviceReady = false; } // Detect if VR device is available bool IsVrDeviceReady(void) { return (vrDeviceReady || vrSimulator) && vrEnabled; } // Enable/Disable VR experience (device or simulator) void ToggleVrMode(void) { vrEnabled = !vrEnabled; } // Update VR tracking (position and orientation) void UpdateVrTracking(void) { #if defined(RLGL_OCULUS_SUPPORT) if (vrDeviceReady) UpdateOculusTracking(); else #endif { // TODO: Use alternative inputs (mouse, keyboard) to simulate tracking data (eyes position/orientation) } } // Begin Oculus drawing configuration void BeginVrDrawing(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) #if defined(RLGL_OCULUS_SUPPORT) if (vrDeviceReady) { BeginOculusDrawing(); } else #endif { // Setup framebuffer for stereo rendering rlEnableRenderTexture(vrConfig.stereoFbo.id); } // NOTE: If your application is configured to treat the texture as a linear format (e.g. GL_RGBA) // and performs linear-to-gamma conversion in GLSL or does not care about gamma-correction, then: // - Require OculusBuffer format to be OVR_FORMAT_R8G8B8A8_UNORM_SRGB // - Do NOT enable GL_FRAMEBUFFER_SRGB //glEnable(GL_FRAMEBUFFER_SRGB); //glViewport(0, 0, buffer.width, buffer.height); // Useful if rendering to separate framebuffers (every eye) rlClearScreenBuffers(); // Clear current framebuffer(s) vrRendering = true; #endif } // End Oculus drawing process (and desktop mirror) void EndVrDrawing(void) { #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) #if defined(RLGL_OCULUS_SUPPORT) if (vrDeviceReady) { EndOculusDrawing(); } else #endif { // Unbind current framebuffer rlDisableRenderTexture(); rlClearScreenBuffers(); // Clear current framebuffer // Set viewport to default framebuffer size (screen size) rlViewport(0, 0, screenWidth, screenHeight); // Let rlgl reconfigure internal matrices rlMatrixMode(RL_PROJECTION); // Enable internal projection matrix rlLoadIdentity(); // Reset internal projection matrix rlOrtho(0.0, screenWidth, screenHeight, 0.0, 0.0, 1.0); // Recalculate internal projection matrix rlMatrixMode(RL_MODELVIEW); // Enable internal modelview matrix rlLoadIdentity(); // Reset internal modelview matrix // Draw RenderTexture (stereoFbo) using distortion shader currentShader = vrConfig.distortionShader; rlEnableTexture(vrConfig.stereoFbo.texture.id); rlPushMatrix(); rlBegin(RL_QUADS); rlColor4ub(255, 255, 255, 255); rlNormal3f(0.0f, 0.0f, 1.0f); // Bottom-left corner for texture and quad rlTexCoord2f(0.0f, 1.0f); rlVertex2f(0.0f, 0.0f); // Bottom-right corner for texture and quad rlTexCoord2f(0.0f, 0.0f); rlVertex2f(0.0f, vrConfig.stereoFbo.texture.height); // Top-right corner for texture and quad rlTexCoord2f(1.0f, 0.0f); rlVertex2f(vrConfig.stereoFbo.texture.width, vrConfig.stereoFbo.texture.height); // Top-left corner for texture and quad rlTexCoord2f(1.0f, 1.0f); rlVertex2f(vrConfig.stereoFbo.texture.width, 0.0f); rlEnd(); rlPopMatrix(); rlDisableTexture(); UpdateDefaultBuffers(); DrawDefaultBuffers(1); currentShader = defaultShader; } rlDisableDepthTest(); vrRendering = false; #endif } //---------------------------------------------------------------------------------- // Module specific Functions Definition //---------------------------------------------------------------------------------- #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) // Convert image data to OpenGL texture (returns OpenGL valid Id) // NOTE: Expected compressed image data and POT image static void LoadCompressedTexture(unsigned char *data, int width, int height, int mipmapCount, int compressedFormat) { glPixelStorei(GL_UNPACK_ALIGNMENT, 1); int blockSize = 0; // Bytes every block int offset = 0; if ((compressedFormat == GL_COMPRESSED_RGB_S3TC_DXT1_EXT) || (compressedFormat == GL_COMPRESSED_RGBA_S3TC_DXT1_EXT) || #if defined(GRAPHICS_API_OPENGL_ES2) (compressedFormat == GL_ETC1_RGB8_OES) || #endif (compressedFormat == GL_COMPRESSED_RGB8_ETC2)) blockSize = 8; else blockSize = 16; // Load the mipmap levels for (int level = 0; level < mipmapCount && (width || height); level++) { unsigned int size = 0; size = ((width + 3)/4)*((height + 3)/4)*blockSize; glCompressedTexImage2D(GL_TEXTURE_2D, level, compressedFormat, width, height, 0, size, data + offset); offset += size; width /= 2; height /= 2; // Security check for NPOT textures if (width < 1) width = 1; if (height < 1) height = 1; } } // Load custom shader strings and return program id static unsigned int LoadShaderProgram(const char *vShaderStr, const char *fShaderStr) { unsigned int program = 0; #if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) GLuint vertexShader; GLuint fragmentShader; vertexShader = glCreateShader(GL_VERTEX_SHADER); fragmentShader = glCreateShader(GL_FRAGMENT_SHADER); const char *pvs = vShaderStr; const char *pfs = fShaderStr; glShaderSource(vertexShader, 1, &pvs, NULL); glShaderSource(fragmentShader, 1, &pfs, NULL); GLint success = 0; glCompileShader(vertexShader); glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success); if (success != GL_TRUE) { TraceLog(WARNING, "[VSHDR ID %i] Failed to compile vertex shader...", vertexShader); int maxLength = 0; int length; glGetShaderiv(vertexShader, GL_INFO_LOG_LENGTH, &maxLength); char log[maxLength]; glGetShaderInfoLog(vertexShader, maxLength, &length, log); TraceLog(INFO, "%s", log); } else TraceLog(INFO, "[VSHDR ID %i] Vertex shader compiled successfully", vertexShader); glCompileShader(fragmentShader); glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success); if (success != GL_TRUE) { TraceLog(WARNING, "[FSHDR ID %i] Failed to compile fragment shader...", fragmentShader); int maxLength = 0; int length; glGetShaderiv(fragmentShader, GL_INFO_LOG_LENGTH, &maxLength); char log[maxLength]; glGetShaderInfoLog(fragmentShader, maxLength, &length, log); TraceLog(INFO, "%s", log); } else TraceLog(INFO, "[FSHDR ID %i] Fragment shader compiled successfully", fragmentShader); program = glCreateProgram(); glAttachShader(program, vertexShader); glAttachShader(program, fragmentShader); // NOTE: Default attribute shader locations must be binded before linking glBindAttribLocation(program, 0, DEFAULT_ATTRIB_POSITION_NAME); glBindAttribLocation(program, 1, DEFAULT_ATTRIB_TEXCOORD_NAME); glBindAttribLocation(program, 2, DEFAULT_ATTRIB_NORMAL_NAME); glBindAttribLocation(program, 3, DEFAULT_ATTRIB_COLOR_NAME); glBindAttribLocation(program, 4, DEFAULT_ATTRIB_TANGENT_NAME); glBindAttribLocation(program, 5, DEFAULT_ATTRIB_TEXCOORD2_NAME); // NOTE: If some attrib name is no found on the shader, it locations becomes -1 glLinkProgram(program); // NOTE: All uniform variables are intitialised to 0 when a program links glGetProgramiv(program, GL_LINK_STATUS, &success); if (success == GL_FALSE) { TraceLog(WARNING, "[SHDR ID %i] Failed to link shader program...", program); int maxLength = 0; int length; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &maxLength); char log[maxLength]; glGetProgramInfoLog(program, maxLength, &length, log); TraceLog(INFO, "%s", log); glDeleteProgram(program); program = 0; } else TraceLog(INFO, "[SHDR ID %i] Shader program loaded successfully", program); glDeleteShader(vertexShader); glDeleteShader(fragmentShader); #endif return program; } // Load default shader (just vertex positioning and texture coloring) // NOTE: This shader program is used for batch buffers (lines, triangles, quads) static Shader LoadDefaultShader(void) { Shader shader; // Vertex shader directly defined, no external file required char vDefaultShaderStr[] = #if defined(GRAPHICS_API_OPENGL_21) "#version 120 \n" #elif defined(GRAPHICS_API_OPENGL_ES2) "#version 100 \n" #endif #if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21) "attribute vec3 vertexPosition; \n" "attribute vec2 vertexTexCoord; \n" "attribute vec4 vertexColor; \n" "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" #elif defined(GRAPHICS_API_OPENGL_33) "#version 330 \n" "in vec3 vertexPosition; \n" "in vec2 vertexTexCoord; \n" "in vec4 vertexColor; \n" "out vec2 fragTexCoord; \n" "out vec4 fragColor; \n" #endif "uniform mat4 mvpMatrix; \n" "void main() \n" "{ \n" " fragTexCoord = vertexTexCoord; \n" " fragColor = vertexColor; \n" " gl_Position = mvpMatrix*vec4(vertexPosition, 1.0); \n" "} \n"; // Fragment shader directly defined, no external file required char fDefaultShaderStr[] = #if defined(GRAPHICS_API_OPENGL_21) "#version 120 \n" #elif defined(GRAPHICS_API_OPENGL_ES2) "#version 100 \n" "precision mediump float; \n" // precision required for OpenGL ES2 (WebGL) #endif #if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21) "varying vec2 fragTexCoord; \n" "varying vec4 fragColor; \n" #elif defined(GRAPHICS_API_OPENGL_33) "#version 330 \n" "in vec2 fragTexCoord; \n" "in vec4 fragColor; \n" "out vec4 finalColor; \n" #endif "uniform sampler2D texture0; \n" "uniform vec4 colDiffuse; \n" "void main() \n" "{ \n" #if defined(GRAPHICS_API_OPENGL_ES2) || defined(GRAPHICS_API_OPENGL_21) " vec4 texelColor = texture2D(texture0, fragTexCoord); \n" // NOTE: texture2D() is deprecated on OpenGL 3.3 and ES 3.0 " gl_FragColor = texelColor*colDiffuse*fragColor; \n" #elif defined(GRAPHICS_API_OPENGL_33) " vec4 texelColor = texture(texture0, fragTexCoord); \n" " finalColor = texelColor*colDiffuse*fragColor; \n" #endif "} \n"; shader.id = LoadShaderProgram(vDefaultShaderStr, fDefaultShaderStr); if (shader.id != 0) TraceLog(INFO, "[SHDR ID %i] Default shader loaded successfully", shader.id); else TraceLog(WARNING, "[SHDR ID %i] Default shader could not be loaded", shader.id); if (shader.id != 0) LoadDefaultShaderLocations(&shader); return shader; } // Load standard shader // NOTE: This shader supports: // - Up to 3 different maps: diffuse, normal, specular // - Material properties: colAmbient, colDiffuse, colSpecular, glossiness // - Up to 8 lights: Point, Directional or Spot static Shader LoadStandardShader(void) { Shader shader; #if !defined(RLGL_NO_STANDARD_SHADER) // Load standard shader (embeded in standard_shader.h) shader.id = LoadShaderProgram(vStandardShaderStr, fStandardShaderStr); if (shader.id != 0) { LoadDefaultShaderLocations(&shader); TraceLog(INFO, "[SHDR ID %i] Standard shader loaded successfully", shader.id); standardShaderLoaded = true; } else { TraceLog(WARNING, "[SHDR ID %i] Standard shader could not be loaded, using default shader", shader.id); shader = GetDefaultShader(); } #else shader = defaultShader; TraceLog(WARNING, "[SHDR ID %i] Standard shader not available, using default shader", shader.id); #endif return shader; } // Get location handlers to for shader attributes and uniforms // NOTE: If any location is not found, loc point becomes -1 static void LoadDefaultShaderLocations(Shader *shader) { // NOTE: Default shader attrib locations have been fixed before linking: // vertex position location = 0 // vertex texcoord location = 1 // vertex normal location = 2 // vertex color location = 3 // vertex tangent location = 4 // vertex texcoord2 location = 5 // Get handles to GLSL input attibute locations shader->vertexLoc = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_POSITION_NAME); shader->texcoordLoc = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_TEXCOORD_NAME); shader->texcoord2Loc = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_TEXCOORD2_NAME); shader->normalLoc = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_NORMAL_NAME); shader->tangentLoc = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_TANGENT_NAME); shader->colorLoc = glGetAttribLocation(shader->id, DEFAULT_ATTRIB_COLOR_NAME); // Get handles to GLSL uniform locations (vertex shader) shader->mvpLoc = glGetUniformLocation(shader->id, "mvpMatrix"); // Get handles to GLSL uniform locations (fragment shader) shader->tintColorLoc = glGetUniformLocation(shader->id, "colDiffuse"); shader->mapTexture0Loc = glGetUniformLocation(shader->id, "texture0"); shader->mapTexture1Loc = glGetUniformLocation(shader->id, "texture1"); shader->mapTexture2Loc = glGetUniformLocation(shader->id, "texture2"); } // Unload default shader static void UnloadDefaultShader(void) { glUseProgram(0); //glDetachShader(defaultShader, vertexShader); //glDetachShader(defaultShader, fragmentShader); //glDeleteShader(vertexShader); // Already deleted on shader compilation //glDeleteShader(fragmentShader); // Already deleted on shader compilation glDeleteProgram(defaultShader.id); } // Unload standard shader static void UnloadStandardShader(void) { glUseProgram(0); #if !defined(RLGL_NO_STANDARD_SHADER) //glDetachShader(defaultShader, vertexShader); //glDetachShader(defaultShader, fragmentShader); //glDeleteShader(vertexShader); // Already deleted on shader compilation //glDeleteShader(fragmentShader); // Already deleted on shader compilation glDeleteProgram(standardShader.id); #endif } // Load default internal buffers (lines, triangles, quads) static void LoadDefaultBuffers(void) { // [CPU] Allocate and initialize float array buffers to store vertex data (lines, triangles, quads) //-------------------------------------------------------------------------------------------- // Lines - Initialize arrays (vertex position and color data) lines.vertices = (float *)malloc(sizeof(float)*3*2*MAX_LINES_BATCH); // 3 float by vertex, 2 vertex by line lines.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*2*MAX_LINES_BATCH); // 4 float by color, 2 colors by line lines.texcoords = NULL; lines.indices = NULL; for (int i = 0; i < (3*2*MAX_LINES_BATCH); i++) lines.vertices[i] = 0.0f; for (int i = 0; i < (4*2*MAX_LINES_BATCH); i++) lines.colors[i] = 0; lines.vCounter = 0; lines.cCounter = 0; lines.tcCounter = 0; // Triangles - Initialize arrays (vertex position and color data) triangles.vertices = (float *)malloc(sizeof(float)*3*3*MAX_TRIANGLES_BATCH); // 3 float by vertex, 3 vertex by triangle triangles.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*3*MAX_TRIANGLES_BATCH); // 4 float by color, 3 colors by triangle triangles.texcoords = NULL; triangles.indices = NULL; for (int i = 0; i < (3*3*MAX_TRIANGLES_BATCH); i++) triangles.vertices[i] = 0.0f; for (int i = 0; i < (4*3*MAX_TRIANGLES_BATCH); i++) triangles.colors[i] = 0; triangles.vCounter = 0; triangles.cCounter = 0; triangles.tcCounter = 0; // Quads - Initialize arrays (vertex position, texcoord, color data and indexes) quads.vertices = (float *)malloc(sizeof(float)*3*4*MAX_QUADS_BATCH); // 3 float by vertex, 4 vertex by quad quads.texcoords = (float *)malloc(sizeof(float)*2*4*MAX_QUADS_BATCH); // 2 float by texcoord, 4 texcoord by quad quads.colors = (unsigned char *)malloc(sizeof(unsigned char)*4*4*MAX_QUADS_BATCH); // 4 float by color, 4 colors by quad #if defined(GRAPHICS_API_OPENGL_33) quads.indices = (unsigned int *)malloc(sizeof(int)*6*MAX_QUADS_BATCH); // 6 int by quad (indices) #elif defined(GRAPHICS_API_OPENGL_ES2) quads.indices = (unsigned short *)malloc(sizeof(short)*6*MAX_QUADS_BATCH); // 6 int by quad (indices) #endif for (int i = 0; i < (3*4*MAX_QUADS_BATCH); i++) quads.vertices[i] = 0.0f; for (int i = 0; i < (2*4*MAX_QUADS_BATCH); i++) quads.texcoords[i] = 0.0f; for (int i = 0; i < (4*4*MAX_QUADS_BATCH); i++) quads.colors[i] = 0; int k = 0; // Indices can be initialized right now for (int i = 0; i < (6*MAX_QUADS_BATCH); i+=6) { quads.indices[i] = 4*k; quads.indices[i+1] = 4*k+1; quads.indices[i+2] = 4*k+2; quads.indices[i+3] = 4*k; quads.indices[i+4] = 4*k+2; quads.indices[i+5] = 4*k+3; k++; } quads.vCounter = 0; quads.tcCounter = 0; quads.cCounter = 0; TraceLog(INFO, "[CPU] Default buffers initialized successfully (lines, triangles, quads)"); //-------------------------------------------------------------------------------------------- // [GPU] Upload vertex data and initialize VAOs/VBOs (lines, triangles, quads) // NOTE: Default buffers are linked to use currentShader (defaultShader) //-------------------------------------------------------------------------------------------- // Upload and link lines vertex buffers if (vaoSupported) { // Initialize Lines VAO glGenVertexArrays(1, &lines.vaoId); glBindVertexArray(lines.vaoId); } // Lines - Vertex buffers binding and attributes enable // Vertex position buffer (shader-location = 0) glGenBuffers(2, &lines.vboId[0]); glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*2*MAX_LINES_BATCH, lines.vertices, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(currentShader.vertexLoc); glVertexAttribPointer(currentShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); // Vertex color buffer (shader-location = 3) glGenBuffers(2, &lines.vboId[1]); glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[1]); glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*2*MAX_LINES_BATCH, lines.colors, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(currentShader.colorLoc); glVertexAttribPointer(currentShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); if (vaoSupported) TraceLog(INFO, "[VAO ID %i] Default buffers VAO initialized successfully (lines)", lines.vaoId); else TraceLog(INFO, "[VBO ID %i][VBO ID %i] Default buffers VBOs initialized successfully (lines)", lines.vboId[0], lines.vboId[1]); // Upload and link triangles vertex buffers if (vaoSupported) { // Initialize Triangles VAO glGenVertexArrays(1, &triangles.vaoId); glBindVertexArray(triangles.vaoId); } // Triangles - Vertex buffers binding and attributes enable // Vertex position buffer (shader-location = 0) glGenBuffers(1, &triangles.vboId[0]); glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*3*MAX_TRIANGLES_BATCH, triangles.vertices, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(currentShader.vertexLoc); glVertexAttribPointer(currentShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); // Vertex color buffer (shader-location = 3) glGenBuffers(1, &triangles.vboId[1]); glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[1]); glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*3*MAX_TRIANGLES_BATCH, triangles.colors, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(currentShader.colorLoc); glVertexAttribPointer(currentShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); if (vaoSupported) TraceLog(INFO, "[VAO ID %i] Default buffers VAO initialized successfully (triangles)", triangles.vaoId); else TraceLog(INFO, "[VBO ID %i][VBO ID %i] Default buffers VBOs initialized successfully (triangles)", triangles.vboId[0], triangles.vboId[1]); // Upload and link quads vertex buffers if (vaoSupported) { // Initialize Quads VAO glGenVertexArrays(1, &quads.vaoId); glBindVertexArray(quads.vaoId); } // Quads - Vertex buffers binding and attributes enable // Vertex position buffer (shader-location = 0) glGenBuffers(1, &quads.vboId[0]); glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[0]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*MAX_QUADS_BATCH, quads.vertices, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(currentShader.vertexLoc); glVertexAttribPointer(currentShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); // Vertex texcoord buffer (shader-location = 1) glGenBuffers(1, &quads.vboId[1]); glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[1]); glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*MAX_QUADS_BATCH, quads.texcoords, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(currentShader.texcoordLoc); glVertexAttribPointer(currentShader.texcoordLoc, 2, GL_FLOAT, 0, 0, 0); // Vertex color buffer (shader-location = 3) glGenBuffers(1, &quads.vboId[2]); glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[2]); glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*4*MAX_QUADS_BATCH, quads.colors, GL_DYNAMIC_DRAW); glEnableVertexAttribArray(currentShader.colorLoc); glVertexAttribPointer(currentShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); // Fill index buffer glGenBuffers(1, &quads.vboId[3]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quads.vboId[3]); #if defined(GRAPHICS_API_OPENGL_33) glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(int)*6*MAX_QUADS_BATCH, quads.indices, GL_STATIC_DRAW); #elif defined(GRAPHICS_API_OPENGL_ES2) glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(short)*6*MAX_QUADS_BATCH, quads.indices, GL_STATIC_DRAW); #endif if (vaoSupported) TraceLog(INFO, "[VAO ID %i] Default buffers VAO initialized successfully (quads)", quads.vaoId); else TraceLog(INFO, "[VBO ID %i][VBO ID %i][VBO ID %i][VBO ID %i] Default buffers VBOs initialized successfully (quads)", quads.vboId[0], quads.vboId[1], quads.vboId[2], quads.vboId[3]); // Unbind the current VAO if (vaoSupported) glBindVertexArray(0); //-------------------------------------------------------------------------------------------- } // Update default internal buffers (VAOs/VBOs) with vertex array data // NOTE: If there is not vertex data, buffers doesn't need to be updated (vertexCount > 0) // TODO: If no data changed on the CPU arrays --> No need to re-update GPU arrays (change flag required) static void UpdateDefaultBuffers(void) { // Update lines vertex buffers if (lines.vCounter > 0) { // Activate Lines VAO if (vaoSupported) glBindVertexArray(lines.vaoId); // Lines - vertex positions buffer glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[0]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*2*MAX_LINES_BATCH, lines.vertices, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*lines.vCounter, lines.vertices); // target - offset (in bytes) - size (in bytes) - data pointer // Lines - colors buffer glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[1]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*2*MAX_LINES_BATCH, lines.colors, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*lines.cCounter, lines.colors); } // Update triangles vertex buffers if (triangles.vCounter > 0) { // Activate Triangles VAO if (vaoSupported) glBindVertexArray(triangles.vaoId); // Triangles - vertex positions buffer glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[0]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*3*MAX_TRIANGLES_BATCH, triangles.vertices, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*triangles.vCounter, triangles.vertices); // Triangles - colors buffer glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[1]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*3*MAX_TRIANGLES_BATCH, triangles.colors, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*triangles.cCounter, triangles.colors); } // Update quads vertex buffers if (quads.vCounter > 0) { // Activate Quads VAO if (vaoSupported) glBindVertexArray(quads.vaoId); // Quads - vertex positions buffer glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[0]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*4*MAX_QUADS_BATCH, quads.vertices, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*quads.vCounter, quads.vertices); // Quads - texture coordinates buffer glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[1]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*4*MAX_QUADS_BATCH, quads.texcoords, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*2*quads.vCounter, quads.texcoords); // Quads - colors buffer glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[2]); //glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*4*MAX_QUADS_BATCH, quads.colors, GL_DYNAMIC_DRAW); glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(unsigned char)*4*quads.vCounter, quads.colors); // Another option would be using buffer mapping... //quads.vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE); // Now we can modify vertices //glUnmapBuffer(GL_ARRAY_BUFFER); } //-------------------------------------------------------------- // Unbind the current VAO if (vaoSupported) glBindVertexArray(0); } // Draw default internal buffers vertex data // NOTE: We draw in this order: lines, triangles, quads static void DrawDefaultBuffers(int eyesCount) { Matrix matProjection = projection; Matrix matModelView = modelview; for (int eye = 0; eye < eyesCount; eye++) { if (eyesCount == 2) SetStereoView(eye, matProjection, matModelView); // Set current shader and upload current MVP matrix if ((lines.vCounter > 0) || (triangles.vCounter > 0) || (quads.vCounter > 0)) { glUseProgram(currentShader.id); // Create modelview-projection matrix Matrix matMVP = MatrixMultiply(modelview, projection); glUniformMatrix4fv(currentShader.mvpLoc, 1, false, MatrixToFloat(matMVP)); glUniform4f(currentShader.tintColorLoc, 1.0f, 1.0f, 1.0f, 1.0f); glUniform1i(currentShader.mapTexture0Loc, 0); // NOTE: Additional map textures not considered for default buffers drawing } // Draw lines buffers if (lines.vCounter > 0) { glBindTexture(GL_TEXTURE_2D, whiteTexture); if (vaoSupported) { glBindVertexArray(lines.vaoId); } else { // Bind vertex attrib: position (shader-location = 0) glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[0]); glVertexAttribPointer(currentShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(currentShader.vertexLoc); // Bind vertex attrib: color (shader-location = 3) glBindBuffer(GL_ARRAY_BUFFER, lines.vboId[1]); glVertexAttribPointer(currentShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(currentShader.colorLoc); } glDrawArrays(GL_LINES, 0, lines.vCounter); if (!vaoSupported) glBindBuffer(GL_ARRAY_BUFFER, 0); glBindTexture(GL_TEXTURE_2D, 0); } // Draw triangles buffers if (triangles.vCounter > 0) { glBindTexture(GL_TEXTURE_2D, whiteTexture); if (vaoSupported) { glBindVertexArray(triangles.vaoId); } else { // Bind vertex attrib: position (shader-location = 0) glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[0]); glVertexAttribPointer(currentShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(currentShader.vertexLoc); // Bind vertex attrib: color (shader-location = 3) glBindBuffer(GL_ARRAY_BUFFER, triangles.vboId[1]); glVertexAttribPointer(currentShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(currentShader.colorLoc); } glDrawArrays(GL_TRIANGLES, 0, triangles.vCounter); if (!vaoSupported) glBindBuffer(GL_ARRAY_BUFFER, 0); glBindTexture(GL_TEXTURE_2D, 0); } // Draw quads buffers if (quads.vCounter > 0) { int quadsCount = 0; int numIndicesToProcess = 0; int indicesOffset = 0; if (vaoSupported) { glBindVertexArray(quads.vaoId); } else { // Bind vertex attrib: position (shader-location = 0) glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[0]); glVertexAttribPointer(currentShader.vertexLoc, 3, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(currentShader.vertexLoc); // Bind vertex attrib: texcoord (shader-location = 1) glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[1]); glVertexAttribPointer(currentShader.texcoordLoc, 2, GL_FLOAT, 0, 0, 0); glEnableVertexAttribArray(currentShader.texcoordLoc); // Bind vertex attrib: color (shader-location = 3) glBindBuffer(GL_ARRAY_BUFFER, quads.vboId[2]); glVertexAttribPointer(currentShader.colorLoc, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0); glEnableVertexAttribArray(currentShader.colorLoc); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, quads.vboId[3]); } //TraceLog(DEBUG, "Draws required per frame: %i", drawsCounter); for (int i = 0; i < drawsCounter; i++) { quadsCount = draws[i].vertexCount/4; numIndicesToProcess = quadsCount*6; // Get number of Quads * 6 index by Quad //TraceLog(DEBUG, "Quads to render: %i - Vertex Count: %i", quadsCount, draws[i].vertexCount); glBindTexture(GL_TEXTURE_2D, draws[i].textureId); // NOTE: The final parameter tells the GPU the offset in bytes from the start of the index buffer to the location of the first index to process #if defined(GRAPHICS_API_OPENGL_33) glDrawElements(GL_TRIANGLES, numIndicesToProcess, GL_UNSIGNED_INT, (GLvoid *)(sizeof(GLuint)*indicesOffset)); #elif defined(GRAPHICS_API_OPENGL_ES2) glDrawElements(GL_TRIANGLES, numIndicesToProcess, GL_UNSIGNED_SHORT, (GLvoid *)(sizeof(GLushort)*indicesOffset)); #endif //GLenum err; //if ((err = glGetError()) != GL_NO_ERROR) TraceLog(INFO, "OpenGL error: %i", (int)err); //GL_INVALID_ENUM! indicesOffset += draws[i].vertexCount/4*6; } if (!vaoSupported) { glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } glBindTexture(GL_TEXTURE_2D, 0); // Unbind textures } if (vaoSupported) glBindVertexArray(0); // Unbind VAO glUseProgram(0); // Unbind shader program } // Reset draws counter drawsCounter = 1; draws[0].textureId = whiteTexture; draws[0].vertexCount = 0; // Reset vertex counters for next frame lines.vCounter = 0; lines.cCounter = 0; triangles.vCounter = 0; triangles.cCounter = 0; quads.vCounter = 0; quads.tcCounter = 0; quads.cCounter = 0; // Reset depth for next draw currentDepth = -1.0f; // Restore projection/modelview matrices projection = matProjection; modelview = matModelView; } // Unload default internal buffers vertex data from CPU and GPU static void UnloadDefaultBuffers(void) { // Unbind everything if (vaoSupported) glBindVertexArray(0); glDisableVertexAttribArray(0); glDisableVertexAttribArray(1); glDisableVertexAttribArray(2); glDisableVertexAttribArray(3); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); // Delete VBOs from GPU (VRAM) glDeleteBuffers(1, &lines.vboId[0]); glDeleteBuffers(1, &lines.vboId[1]); glDeleteBuffers(1, &triangles.vboId[0]); glDeleteBuffers(1, &triangles.vboId[1]); glDeleteBuffers(1, &quads.vboId[0]); glDeleteBuffers(1, &quads.vboId[1]); glDeleteBuffers(1, &quads.vboId[2]); glDeleteBuffers(1, &quads.vboId[3]); if (vaoSupported) { // Delete VAOs from GPU (VRAM) glDeleteVertexArrays(1, &lines.vaoId); glDeleteVertexArrays(1, &triangles.vaoId); glDeleteVertexArrays(1, &quads.vaoId); } // Free vertex arrays memory from CPU (RAM) free(lines.vertices); free(lines.colors); free(triangles.vertices); free(triangles.colors); free(quads.vertices); free(quads.texcoords); free(quads.colors); free(quads.indices); } // Setup shader uniform values for lights array // NOTE: It would be far easier with shader UBOs but are not supported on OpenGL ES 2.0f static void SetShaderLights(Shader shader) { int locPoint = -1; char locName[32] = "lights[x].position\0"; for (int i = 0; i < MAX_LIGHTS; i++) { locName[7] = '0' + i; if (lights[i] != NULL) // Only upload registered lights data { memcpy(&locName[10], "enabled\0", strlen("enabled\0") + 1); locPoint = GetShaderLocation(shader, locName); glUniform1i(locPoint, lights[i]->enabled); memcpy(&locName[10], "type\0", strlen("type\0") + 1); locPoint = GetShaderLocation(shader, locName); glUniform1i(locPoint, lights[i]->type); memcpy(&locName[10], "diffuse\0", strlen("diffuse\0") + 2); locPoint = glGetUniformLocation(shader.id, locName); glUniform4f(locPoint, (float)lights[i]->diffuse.r/255, (float)lights[i]->diffuse.g/255, (float)lights[i]->diffuse.b/255, (float)lights[i]->diffuse.a/255); memcpy(&locName[10], "intensity\0", strlen("intensity\0")); locPoint = glGetUniformLocation(shader.id, locName); glUniform1f(locPoint, lights[i]->intensity); switch (lights[i]->type) { case LIGHT_POINT: { memcpy(&locName[10], "position\0", strlen("position\0") + 1); locPoint = GetShaderLocation(shader, locName); glUniform3f(locPoint, lights[i]->position.x, lights[i]->position.y, lights[i]->position.z); memcpy(&locName[10], "radius\0", strlen("radius\0") + 2); locPoint = GetShaderLocation(shader, locName); glUniform1f(locPoint, lights[i]->radius); } break; case LIGHT_DIRECTIONAL: { memcpy(&locName[10], "direction\0", strlen("direction\0") + 2); locPoint = GetShaderLocation(shader, locName); Vector3 direction = { lights[i]->target.x - lights[i]->position.x, lights[i]->target.y - lights[i]->position.y, lights[i]->target.z - lights[i]->position.z }; VectorNormalize(&direction); glUniform3f(locPoint, direction.x, direction.y, direction.z); } break; case LIGHT_SPOT: { memcpy(&locName[10], "position\0", strlen("position\0") + 1); locPoint = GetShaderLocation(shader, locName); glUniform3f(locPoint, lights[i]->position.x, lights[i]->position.y, lights[i]->position.z); memcpy(&locName[10], "direction\0", strlen("direction\0") + 2); locPoint = GetShaderLocation(shader, locName); Vector3 direction = { lights[i]->target.x - lights[i]->position.x, lights[i]->target.y - lights[i]->position.y, lights[i]->target.z - lights[i]->position.z }; VectorNormalize(&direction); glUniform3f(locPoint, direction.x, direction.y, direction.z); memcpy(&locName[10], "coneAngle\0", strlen("coneAngle\0")); locPoint = GetShaderLocation(shader, locName); glUniform1f(locPoint, lights[i]->coneAngle); } break; default: break; } // TODO: Pass to the shader any other required data from LightData struct } else // Not enabled lights { memcpy(&locName[10], "enabled\0", strlen("enabled\0") + 1); locPoint = GetShaderLocation(shader, locName); glUniform1i(locPoint, 0); } } } // Read text data from file // NOTE: text chars array should be freed manually static char *ReadTextFile(const char *fileName) { FILE *textFile; char *text = NULL; int count = 0; if (fileName != NULL) { textFile = fopen(fileName,"rt"); if (textFile != NULL) { fseek(textFile, 0, SEEK_END); count = ftell(textFile); rewind(textFile); if (count > 0) { text = (char *)malloc(sizeof(char)*(count + 1)); count = fread(text, sizeof(char), count, textFile); text[count] = '\0'; } fclose(textFile); } else TraceLog(WARNING, "[%s] Text file could not be opened", fileName); } return text; } // Configure stereo rendering (including distortion shader) with HMD device parameters static void SetStereoConfig(VrDeviceInfo hmd) { // Compute aspect ratio float aspect = ((float)hmd.hResolution*0.5f)/(float)hmd.vResolution; // Compute lens parameters float lensShift = (hmd.hScreenSize*0.25f - hmd.lensSeparationDistance*0.5f)/hmd.hScreenSize; float leftLensCenter[2] = { 0.25 + lensShift, 0.5f }; float rightLensCenter[2] = { 0.75 - lensShift, 0.5f }; float leftScreenCenter[2] = { 0.25f, 0.5f }; float rightScreenCenter[2] = { 0.75f, 0.5f }; // Compute distortion scale parameters // NOTE: To get lens max radius, lensShift must be normalized to [-1..1] float lensRadius = fabsf(-1.0f - 4.0f*lensShift); float lensRadiusSq = lensRadius*lensRadius; float distortionScale = hmd.distortionK[0] + hmd.distortionK[1]*lensRadiusSq + hmd.distortionK[2]*lensRadiusSq*lensRadiusSq + hmd.distortionK[3]*lensRadiusSq*lensRadiusSq*lensRadiusSq; TraceLog(DEBUG, "VR: Distortion Scale: %f", distortionScale); float normScreenWidth = 0.5f; float normScreenHeight = 1.0f; float scaleIn[2] = { 2/normScreenWidth, 2/normScreenHeight/aspect }; float scale[2] = { normScreenWidth*0.5/distortionScale, normScreenHeight*0.5*aspect/distortionScale }; TraceLog(DEBUG, "VR: Distortion Shader: LeftLensCenter = { %f, %f }", leftLensCenter[0], leftLensCenter[1]); TraceLog(DEBUG, "VR: Distortion Shader: RightLensCenter = { %f, %f }", rightLensCenter[0], rightLensCenter[1]); TraceLog(DEBUG, "VR: Distortion Shader: Scale = { %f, %f }", scale[0], scale[1]); TraceLog(DEBUG, "VR: Distortion Shader: ScaleIn = { %f, %f }", scaleIn[0], scaleIn[1]); // Update distortion shader with lens and distortion-scale parameters SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "leftLensCenter"), leftLensCenter, 2); SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "rightLensCenter"), rightLensCenter, 2); SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "leftScreenCenter"), leftScreenCenter, 2); SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "rightScreenCenter"), rightScreenCenter, 2); SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "scale"), scale, 2); SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "scaleIn"), scaleIn, 2); SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "hmdWarpParam"), hmd.distortionK, 4); SetShaderValue(vrConfig.distortionShader, GetShaderLocation(vrConfig.distortionShader, "chromaAbParam"), hmd.chromaAbCorrection, 4); // Fovy is normally computed with: 2*atan2(hmd.vScreenSize, 2*hmd.eyeToScreenDistance)*RAD2DEG // ...but with lens distortion it is increased (see Oculus SDK Documentation) //float fovy = 2.0f*atan2(hmd.vScreenSize*0.5f*distortionScale, hmd.eyeToScreenDistance)*RAD2DEG; // Really need distortionScale? float fovy = 2.0f*atan2(hmd.vScreenSize*0.5f, hmd.eyeToScreenDistance)*RAD2DEG; // Compute camera projection matrices float projOffset = 4.0f*lensShift; // Scaled to projection space coordinates [-1..1] Matrix proj = MatrixPerspective(fovy, aspect, 0.01, 1000.0); vrConfig.eyesProjection[0] = MatrixMultiply(proj, MatrixTranslate(projOffset, 0.0f, 0.0f)); vrConfig.eyesProjection[1] = MatrixMultiply(proj, MatrixTranslate(-projOffset, 0.0f, 0.0f)); // NOTE: Projection matrices must be transposed due to raymath convention MatrixTranspose(&vrConfig.eyesProjection[0]); MatrixTranspose(&vrConfig.eyesProjection[1]); // Compute camera transformation matrices // NOTE: Camera movement might seem more natural if we model the head. // Our axis of rotation is the base of our head, so we might want to add // some y (base of head to eye level) and -z (center of head to eye protrusion) to the camera positions. vrConfig.eyesViewOffset[0] = MatrixTranslate(-hmd.interpupillaryDistance*0.5f, 0.075f, 0.045f); vrConfig.eyesViewOffset[1] = MatrixTranslate(hmd.interpupillaryDistance*0.5f, 0.075f, 0.045f); // Compute eyes Viewports //vrConfig.eyesViewport[0] = (Rectangle){ 0, 0, hmd.hResolution/2, hmd.vResolution }; //vrConfig.eyesViewport[1] = (Rectangle){ hmd.hResolution/2, 0, hmd.hResolution/2, hmd.vResolution }; } // Set internal projection and modelview matrix depending on eyes tracking data static void SetStereoView(int eye, Matrix matProjection, Matrix matModelView) { if (vrEnabled) { Matrix eyeProjection = matProjection; Matrix eyeModelView = matModelView; #if defined(RLGL_OCULUS_SUPPORT) if (vrDeviceReady) { rlViewport(layer.eyeLayer.Viewport[eye].Pos.x, layer.eyeLayer.Viewport[eye].Pos.y, layer.eyeLayer.Viewport[eye].Size.w, layer.eyeLayer.Viewport[eye].Size.h); Quaternion eyeRenderPose = (Quaternion){ layer.eyeLayer.RenderPose[eye].Orientation.x, layer.eyeLayer.RenderPose[eye].Orientation.y, layer.eyeLayer.RenderPose[eye].Orientation.z, layer.eyeLayer.RenderPose[eye].Orientation.w }; QuaternionInvert(&eyeRenderPose); Matrix eyeOrientation = QuaternionToMatrix(eyeRenderPose); Matrix eyeTranslation = MatrixTranslate(-layer.eyeLayer.RenderPose[eye].Position.x, -layer.eyeLayer.RenderPose[eye].Position.y, -layer.eyeLayer.RenderPose[eye].Position.z); Matrix eyeView = MatrixMultiply(eyeTranslation, eyeOrientation); // Matrix containing eye-head movement eyeModelView = MatrixMultiply(matModelView, eyeView); // Combine internal camera matrix (modelview) wih eye-head movement eyeProjection = layer.eyeProjections[eye]; } else #endif { // Setup viewport and projection/modelview matrices using tracking data rlViewport(eye*screenWidth/2, 0, screenWidth/2, screenHeight); // Apply view offset to modelview matrix eyeModelView = MatrixMultiply(matModelView, vrConfig.eyesViewOffset[eye]); eyeProjection = vrConfig.eyesProjection[eye]; } SetMatrixModelview(eyeModelView); SetMatrixProjection(eyeProjection); } } #endif //defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2) #if defined(GRAPHICS_API_OPENGL_11) // Mipmaps data is generated after image data static int GenerateMipmaps(unsigned char *data, int baseWidth, int baseHeight) { int mipmapCount = 1; // Required mipmap levels count (including base level) int width = baseWidth; int height = baseHeight; int size = baseWidth*baseHeight*4; // Size in bytes (will include mipmaps...), RGBA only // Count mipmap levels required while ((width != 1) && (height != 1)) { if (width != 1) width /= 2; if (height != 1) height /= 2; TraceLog(DEBUG, "Next mipmap size: %i x %i", width, height); mipmapCount++; size += (width*height*4); // Add mipmap size (in bytes) } TraceLog(DEBUG, "Total mipmaps required: %i", mipmapCount); TraceLog(DEBUG, "Total size of data required: %i", size); unsigned char *temp = realloc(data, size); if (temp != NULL) data = temp; else TraceLog(WARNING, "Mipmaps required memory could not be allocated"); width = baseWidth; height = baseHeight; size = (width*height*4); // Generate mipmaps // NOTE: Every mipmap data is stored after data Color *image = (Color *)malloc(width*height*sizeof(Color)); Color *mipmap = NULL; int offset = 0; int j = 0; for (int i = 0; i < size; i += 4) { image[j].r = data[i]; image[j].g = data[i + 1]; image[j].b = data[i + 2]; image[j].a = data[i + 3]; j++; } TraceLog(DEBUG, "Mipmap base (%ix%i)", width, height); for (int mip = 1; mip < mipmapCount; mip++) { mipmap = GenNextMipmap(image, width, height); offset += (width*height*4); // Size of last mipmap j = 0; width /= 2; height /= 2; size = (width*height*4); // Mipmap size to store after offset // Add mipmap to data for (int i = 0; i < size; i += 4) { data[offset + i] = mipmap[j].r; data[offset + i + 1] = mipmap[j].g; data[offset + i + 2] = mipmap[j].b; data[offset + i + 3] = mipmap[j].a; j++; } free(image); image = mipmap; mipmap = NULL; } free(mipmap); // free mipmap data return mipmapCount; } // Manual mipmap generation (basic scaling algorithm) static Color *GenNextMipmap(Color *srcData, int srcWidth, int srcHeight) { int x2, y2; Color prow, pcol; int width = srcWidth/2; int height = srcHeight/2; Color *mipmap = (Color *)malloc(width*height*sizeof(Color)); // Scaling algorithm works perfectly (box-filter) for (int y = 0; y < height; y++) { y2 = 2*y; for (int x = 0; x < width; x++) { x2 = 2*x; prow.r = (srcData[y2*srcWidth + x2].r + srcData[y2*srcWidth + x2 + 1].r)/2; prow.g = (srcData[y2*srcWidth + x2].g + srcData[y2*srcWidth + x2 + 1].g)/2; prow.b = (srcData[y2*srcWidth + x2].b + srcData[y2*srcWidth + x2 + 1].b)/2; prow.a = (srcData[y2*srcWidth + x2].a + srcData[y2*srcWidth + x2 + 1].a)/2; pcol.r = (srcData[(y2+1)*srcWidth + x2].r + srcData[(y2+1)*srcWidth + x2 + 1].r)/2; pcol.g = (srcData[(y2+1)*srcWidth + x2].g + srcData[(y2+1)*srcWidth + x2 + 1].g)/2; pcol.b = (srcData[(y2+1)*srcWidth + x2].b + srcData[(y2+1)*srcWidth + x2 + 1].b)/2; pcol.a = (srcData[(y2+1)*srcWidth + x2].a + srcData[(y2+1)*srcWidth + x2 + 1].a)/2; mipmap[y*width + x].r = (prow.r + pcol.r)/2; mipmap[y*width + x].g = (prow.g + pcol.g)/2; mipmap[y*width + x].b = (prow.b + pcol.b)/2; mipmap[y*width + x].a = (prow.a + pcol.a)/2; } } TraceLog(DEBUG, "Mipmap generated successfully (%ix%i)", width, height); return mipmap; } #endif #if defined(RLGL_OCULUS_SUPPORT) // Initialize Oculus device static bool InitOculusDevice(void) { bool oculusReady = false; ovrResult result = ovr_Initialize(NULL); if (OVR_FAILURE(result)) TraceLog(WARNING, "OVR: Could not initialize Oculus device"); else { result = ovr_Create(&session, &luid); if (OVR_FAILURE(result)) { TraceLog(WARNING, "OVR: Could not create Oculus session"); ovr_Shutdown(); } else { hmdDesc = ovr_GetHmdDesc(session); TraceLog(INFO, "OVR: Product Name: %s", hmdDesc.ProductName); TraceLog(INFO, "OVR: Manufacturer: %s", hmdDesc.Manufacturer); TraceLog(INFO, "OVR: Product ID: %i", hmdDesc.ProductId); TraceLog(INFO, "OVR: Product Type: %i", hmdDesc.Type); //TraceLog(INFO, "OVR: Serial Number: %s", hmdDesc.SerialNumber); TraceLog(INFO, "OVR: Resolution: %ix%i", hmdDesc.Resolution.w, hmdDesc.Resolution.h); // NOTE: Oculus mirror is set to defined screenWidth and screenHeight... // ...ideally, it should be (hmdDesc.Resolution.w/2, hmdDesc.Resolution.h/2) // Initialize Oculus Buffers layer = InitOculusLayer(session); buffer = LoadOculusBuffer(session, layer.width, layer.height); mirror = LoadOculusMirror(session, hmdDesc.Resolution.w/2, hmdDesc.Resolution.h/2); // NOTE: hardcoded... layer.eyeLayer.ColorTexture[0] = buffer.textureChain; //SetOculusLayerTexture(eyeLayer, buffer.textureChain); // Recenter OVR tracking origin ovr_RecenterTrackingOrigin(session); oculusReady = true; vrEnabled = true; } } return oculusReady; } static void CloseOculusDevice(void) { UnloadOculusMirror(session, mirror); // Unload Oculus mirror buffer UnloadOculusBuffer(session, buffer); // Unload Oculus texture buffers ovr_Destroy(session); // Free Oculus session data ovr_Shutdown(); // Close Oculus device connection } static void UpdateOculusTracking(void) { frameIndex++; ovrPosef eyePoses[2]; ovr_GetEyePoses(session, frameIndex, ovrTrue, layer.viewScaleDesc.HmdToEyeOffset, eyePoses, &layer.eyeLayer.SensorSampleTime); layer.eyeLayer.RenderPose[0] = eyePoses[0]; layer.eyeLayer.RenderPose[1] = eyePoses[1]; // Get session status information ovrSessionStatus sessionStatus; ovr_GetSessionStatus(session, &sessionStatus); if (sessionStatus.ShouldQuit) TraceLog(WARNING, "OVR: Session should quit..."); if (sessionStatus.ShouldRecenter) ovr_RecenterTrackingOrigin(session); //if (sessionStatus.HmdPresent) // HMD is present. //if (sessionStatus.DisplayLost) // HMD was unplugged or the display driver was manually disabled or encountered a TDR. //if (sessionStatus.HmdMounted) // HMD is on the user's head. //if (sessionStatus.IsVisible) // the game or experience has VR focus and is visible in the HMD. } static void BeginOculusDrawing(void) { GLuint currentTexId; int currentIndex; ovr_GetTextureSwapChainCurrentIndex(session, buffer.textureChain, ¤tIndex); ovr_GetTextureSwapChainBufferGL(session, buffer.textureChain, currentIndex, ¤tTexId); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, buffer.fboId); glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, currentTexId, 0); //glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, buffer.depthId, 0); // Already binded } static void EndOculusDrawing(void) { // Unbind current framebuffer (Oculus buffer) glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); ovr_CommitTextureSwapChain(session, buffer.textureChain); ovrLayerHeader *layers = &layer.eyeLayer.Header; ovr_SubmitFrame(session, frameIndex, &layer.viewScaleDesc, &layers, 1); // Blit mirror texture to back buffer BlitOculusMirror(session, mirror); } // Load Oculus required buffers: texture-swap-chain, fbo, texture-depth static OculusBuffer LoadOculusBuffer(ovrSession session, int width, int height) { OculusBuffer buffer; buffer.width = width; buffer.height = height; // Create OVR texture chain ovrTextureSwapChainDesc desc = {}; desc.Type = ovrTexture_2D; desc.ArraySize = 1; desc.Width = width; desc.Height = height; desc.MipLevels = 1; desc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB; // Requires glEnable(GL_FRAMEBUFFER_SRGB); desc.SampleCount = 1; desc.StaticImage = ovrFalse; ovrResult result = ovr_CreateTextureSwapChainGL(session, &desc, &buffer.textureChain); if (!OVR_SUCCESS(result)) TraceLog(WARNING, "OVR: Failed to create swap textures buffer"); int textureCount = 0; ovr_GetTextureSwapChainLength(session, buffer.textureChain, &textureCount); if (!OVR_SUCCESS(result) || !textureCount) TraceLog(WARNING, "OVR: Unable to count swap chain textures"); for (int i = 0; i < textureCount; ++i) { GLuint chainTexId; ovr_GetTextureSwapChainBufferGL(session, buffer.textureChain, i, &chainTexId); glBindTexture(GL_TEXTURE_2D, chainTexId); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); } glBindTexture(GL_TEXTURE_2D, 0); /* // Setup framebuffer object (using depth texture) glGenFramebuffers(1, &buffer.fboId); glGenTextures(1, &buffer.depthId); glBindTexture(GL_TEXTURE_2D, buffer.depthId); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, buffer.width, buffer.height, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL); */ // Setup framebuffer object (using depth renderbuffer) glGenFramebuffers(1, &buffer.fboId); glGenRenderbuffers(1, &buffer.depthId); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, buffer.fboId); glBindRenderbuffer(GL_RENDERBUFFER, buffer.depthId); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT16, buffer.width, buffer.height); glBindRenderbuffer(GL_RENDERBUFFER, 0); glFramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, buffer.depthId); glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); return buffer; } // Unload texture required buffers static void UnloadOculusBuffer(ovrSession session, OculusBuffer buffer) { if (buffer.textureChain) { ovr_DestroyTextureSwapChain(session, buffer.textureChain); buffer.textureChain = NULL; } if (buffer.depthId != 0) glDeleteTextures(1, &buffer.depthId); if (buffer.fboId != 0) glDeleteFramebuffers(1, &buffer.fboId); } // Load Oculus mirror buffers static OculusMirror LoadOculusMirror(ovrSession session, int width, int height) { OculusMirror mirror; mirror.width = width; mirror.height = height; ovrMirrorTextureDesc mirrorDesc; memset(&mirrorDesc, 0, sizeof(mirrorDesc)); mirrorDesc.Format = OVR_FORMAT_R8G8B8A8_UNORM_SRGB; mirrorDesc.Width = mirror.width; mirrorDesc.Height = mirror.height; if (!OVR_SUCCESS(ovr_CreateMirrorTextureGL(session, &mirrorDesc, &mirror.texture))) TraceLog(WARNING, "Could not create mirror texture"); glGenFramebuffers(1, &mirror.fboId); return mirror; } // Unload Oculus mirror buffers static void UnloadOculusMirror(ovrSession session, OculusMirror mirror) { if (mirror.fboId != 0) glDeleteFramebuffers(1, &mirror.fboId); if (mirror.texture) ovr_DestroyMirrorTexture(session, mirror.texture); } // Copy Oculus screen buffer to mirror texture static void BlitOculusMirror(ovrSession session, OculusMirror mirror) { GLuint mirrorTextureId; ovr_GetMirrorTextureBufferGL(session, mirror.texture, &mirrorTextureId); glBindFramebuffer(GL_READ_FRAMEBUFFER, mirror.fboId); glFramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, mirrorTextureId, 0); #if defined(GRAPHICS_API_OPENGL_33) // NOTE: glBlitFramebuffer() requires extension: GL_EXT_framebuffer_blit (not available in OpenGL ES 2.0) glBlitFramebuffer(0, 0, mirror.width, mirror.height, 0, mirror.height, mirror.width, 0, GL_COLOR_BUFFER_BIT, GL_NEAREST); #endif glBindFramebuffer(GL_READ_FRAMEBUFFER, 0); } // Init Oculus layer (similar to photoshop) static OculusLayer InitOculusLayer(ovrSession session) { OculusLayer layer = { 0 }; layer.viewScaleDesc.HmdSpaceToWorldScaleInMeters = 1.0f; memset(&layer.eyeLayer, 0, sizeof(ovrLayerEyeFov)); layer.eyeLayer.Header.Type = ovrLayerType_EyeFov; layer.eyeLayer.Header.Flags = ovrLayerFlag_TextureOriginAtBottomLeft; ovrEyeRenderDesc eyeRenderDescs[2]; for (int eye = 0; eye < 2; eye++) { eyeRenderDescs[eye] = ovr_GetRenderDesc(session, eye, hmdDesc.DefaultEyeFov[eye]); ovrMatrix4f ovrPerspectiveProjection = ovrMatrix4f_Projection(eyeRenderDescs[eye].Fov, 0.01f, 10000.0f, ovrProjection_None); //ovrProjection_ClipRangeOpenGL); layer.eyeProjections[eye] = FromOvrMatrix(ovrPerspectiveProjection); // NOTE: struct ovrMatrix4f { float M[4][4] } --> struct Matrix layer.viewScaleDesc.HmdToEyeOffset[eye] = eyeRenderDescs[eye].HmdToEyeOffset; layer.eyeLayer.Fov[eye] = eyeRenderDescs[eye].Fov; ovrSizei eyeSize = ovr_GetFovTextureSize(session, eye, layer.eyeLayer.Fov[eye], 1.0f); layer.eyeLayer.Viewport[eye].Size = eyeSize; layer.eyeLayer.Viewport[eye].Pos.x = layer.width; layer.eyeLayer.Viewport[eye].Pos.y = 0; layer.height = eyeSize.h; //std::max(renderTargetSize.y, (uint32_t)eyeSize.h); layer.width += eyeSize.w; } return layer; } // Convert from Oculus ovrMatrix4f struct to raymath Matrix struct static Matrix FromOvrMatrix(ovrMatrix4f ovrmat) { Matrix rmat; rmat.m0 = ovrmat.M[0][0]; rmat.m1 = ovrmat.M[1][0]; rmat.m2 = ovrmat.M[2][0]; rmat.m3 = ovrmat.M[3][0]; rmat.m4 = ovrmat.M[0][1]; rmat.m5 = ovrmat.M[1][1]; rmat.m6 = ovrmat.M[2][1]; rmat.m7 = ovrmat.M[3][1]; rmat.m8 = ovrmat.M[0][2]; rmat.m9 = ovrmat.M[1][2]; rmat.m10 = ovrmat.M[2][2]; rmat.m11 = ovrmat.M[3][2]; rmat.m12 = ovrmat.M[0][3]; rmat.m13 = ovrmat.M[1][3]; rmat.m14 = ovrmat.M[2][3]; rmat.m15 = ovrmat.M[3][3]; MatrixTranspose(&rmat); return rmat; } #endif #if defined(RLGL_STANDALONE) // Output a trace log message // NOTE: Expected msgType: (0)Info, (1)Error, (2)Warning void TraceLog(int msgType, const char *text, ...) { va_list args; va_start(args, text); switch (msgType) { case INFO: fprintf(stdout, "INFO: "); break; case ERROR: fprintf(stdout, "ERROR: "); break; case WARNING: fprintf(stdout, "WARNING: "); break; case DEBUG: fprintf(stdout, "DEBUG: "); break; default: break; } vfprintf(stdout, text, args); fprintf(stdout, "\n"); va_end(args); if (msgType == ERROR) exit(1); } // Converts Matrix to float array // NOTE: Returned vector is a transposed version of the Matrix struct, // it should be this way because, despite raymath use OpenGL column-major convention, // Matrix struct memory alignment and variables naming are not coherent float *MatrixToFloat(Matrix mat) { static float buffer[16]; buffer[0] = mat.m0; buffer[1] = mat.m4; buffer[2] = mat.m8; buffer[3] = mat.m12; buffer[4] = mat.m1; buffer[5] = mat.m5; buffer[6] = mat.m9; buffer[7] = mat.m13; buffer[8] = mat.m2; buffer[9] = mat.m6; buffer[10] = mat.m10; buffer[11] = mat.m14; buffer[12] = mat.m3; buffer[13] = mat.m7; buffer[14] = mat.m11; buffer[15] = mat.m15; return buffer; } #endif