/********************************************************************************************** * * raylib.audio * * This module provides basic functionality to work with audio: * Manage audio device (init/close) * Load and Unload audio files (WAV, OGG, FLAC, XM, MOD) * Play/Stop/Pause/Resume loaded audio * Manage mixing channels * Manage raw audio context * * External libs: * OpenAL Soft - Audio device management (http://kcat.strangesoft.net/openal.html) * stb_vorbis - OGG audio files loading (http://www.nothings.org/stb_vorbis/) * jar_xm - XM module file loading * jar_mod - MOD audio file loading * dr_flac - FLAC audio file loading * * Module Configuration Flags: * AUDIO_STANDALONE - Use this module as standalone library (independently of raylib) * * Some design decisions: * Support only up to two channels: MONO and STEREO (for additional channels, AL_EXT_MCFORMATS) * Support only the following sample sizes: 8bit PCM, 16bit PCM, 32-bit float PCM (using AL_EXT_FLOAT32) * * Many thanks to Joshua Reisenauer (github: @kd7tck) for the following additions: * XM audio module support (jar_xm) * MOD audio module support (jar_mod) * Mixing channels support * Raw audio context support * * * Copyright (c) 2014-2016 Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ //#define AUDIO_STANDALONE // NOTE: To use the audio module as standalone lib, just uncomment this line #if defined(AUDIO_STANDALONE) #include "audio.h" #include // Required for: va_list, va_start(), vfprintf(), va_end() #else #include "raylib.h" #include "utils.h" // Required for: fopen() Android mapping, TraceLog() #endif #include "AL/al.h" // OpenAL basic header #include "AL/alc.h" // OpenAL context header (like OpenGL, OpenAL requires a context to work) //#include "AL/alext.h" // OpenAL extensions header, required for AL_EXT_FLOAT32 and AL_EXT_MCFORMATS // OpenAL extension: AL_EXT_FLOAT32 - Support for 32bit float samples // OpenAL extension: AL_EXT_MCFORMATS - Support for multi-channel formats (Quad, 5.1, 6.1, 7.1) #include // Required for: malloc(), free() #include // Required for: strcmp(), strncmp() #include // Required for: FILE, fopen(), fclose(), fread() //#define STB_VORBIS_HEADER_ONLY #include "external/stb_vorbis.h" // OGG loading functions #define JAR_XM_IMPLEMENTATION #include "external/jar_xm.h" // XM loading functions #define JAR_MOD_IMPLEMENTATION #include "external/jar_mod.h" // MOD loading functions #define DR_FLAC_IMPLEMENTATION #define DR_FLAC_NO_WIN32_IO #include "external/dr_flac.h" // FLAC loading functions #ifdef _MSC_VER #undef bool #endif //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- #define MAX_STREAM_BUFFERS 2 // Number of buffers for each audio stream // NOTE: Music buffer size is defined by number of samples, independent of sample size and channels number // After some math, considering a sampleRate of 48000, a buffer refill rate of 1/60 seconds // and double-buffering system, I concluded that a 4096 samples buffer should be enough // In case of music-stalls, just increase this number #define AUDIO_BUFFER_SIZE 4096 // PCM data samples (i.e. 16bit, Mono: 8Kb) // Support uncompressed PCM data in 32-bit float IEEE format // NOTE: This definition is included in "AL/alext.h", but some OpenAL implementations // could not provide the extensions header (Android), so its defined here #if !defined(AL_EXT_float32) #define AL_EXT_float32 1 #define AL_FORMAT_MONO_FLOAT32 0x10010 #define AL_FORMAT_STEREO_FLOAT32 0x10011 #endif //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- typedef enum { MUSIC_AUDIO_OGG = 0, MUSIC_AUDIO_FLAC, MUSIC_MODULE_XM, MUSIC_MODULE_MOD } MusicContextType; // Music type (file streaming from memory) typedef struct MusicData { MusicContextType ctxType; // Type of music context (OGG, XM, MOD) stb_vorbis *ctxOgg; // OGG audio context drflac *ctxFlac; // FLAC audio context jar_xm_context_t *ctxXm; // XM chiptune context jar_mod_context_t ctxMod; // MOD chiptune context AudioStream stream; // Audio stream (double buffering) int loopCount; // Loops count (times music repeats), -1 means infinite loop unsigned int totalSamples; // Total number of samples unsigned int samplesLeft; // Number of samples left to end } MusicData; #if defined(AUDIO_STANDALONE) typedef enum { INFO = 0, ERROR, WARNING, DEBUG, OTHER } TraceLogType; #endif //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- // ... //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- static Wave LoadWAV(const char *fileName); // Load WAV file static Wave LoadOGG(const char *fileName); // Load OGG file static Wave LoadFLAC(const char *fileName); // Load FLAC file #if defined(AUDIO_STANDALONE) const char *GetExtension(const char *fileName); // Get the extension for a filename void TraceLog(int msgType, const char *text, ...); // Outputs a trace log message (INFO, ERROR, WARNING) #endif //---------------------------------------------------------------------------------- // Module Functions Definition - Audio Device initialization and Closing //---------------------------------------------------------------------------------- // Initialize audio device void InitAudioDevice(void) { // Open and initialize a device with default settings ALCdevice *device = alcOpenDevice(NULL); if (!device) TraceLog(ERROR, "Audio device could not be opened"); else { ALCcontext *context = alcCreateContext(device, NULL); if ((context == NULL) || (alcMakeContextCurrent(context) == ALC_FALSE)) { if (context != NULL) alcDestroyContext(context); alcCloseDevice(device); TraceLog(ERROR, "Could not initialize audio context"); } else { TraceLog(INFO, "Audio device and context initialized successfully: %s", alcGetString(device, ALC_DEVICE_SPECIFIER)); // Listener definition (just for 2D) alListener3f(AL_POSITION, 0.0f, 0.0f, 0.0f); alListener3f(AL_VELOCITY, 0.0f, 0.0f, 0.0f); alListener3f(AL_ORIENTATION, 0.0f, 0.0f, -1.0f); alListenerf(AL_GAIN, 1.0f); } } } // Close the audio device for all contexts void CloseAudioDevice(void) { ALCdevice *device; ALCcontext *context = alcGetCurrentContext(); if (context == NULL) TraceLog(WARNING, "Could not get current audio context for closing"); device = alcGetContextsDevice(context); alcMakeContextCurrent(NULL); alcDestroyContext(context); alcCloseDevice(device); TraceLog(INFO, "Audio device closed successfully"); } // Check if device has been initialized successfully bool IsAudioDeviceReady(void) { ALCcontext *context = alcGetCurrentContext(); if (context == NULL) return false; else { ALCdevice *device = alcGetContextsDevice(context); if (device == NULL) return false; else return true; } } // Set master volume (listener) void SetMasterVolume(float volume) { if (volume < 0.0f) volume = 0.0f; else if (volume > 1.0f) volume = 1.0f; alListenerf(AL_GAIN, volume); } //---------------------------------------------------------------------------------- // Module Functions Definition - Sounds loading and playing (.WAV) //---------------------------------------------------------------------------------- // Load wave data from file Wave LoadWave(const char *fileName) { Wave wave = { 0 }; if (strcmp(GetExtension(fileName), "wav") == 0) wave = LoadWAV(fileName); else if (strcmp(GetExtension(fileName), "ogg") == 0) wave = LoadOGG(fileName); else if (strcmp(GetExtension(fileName), "flac") == 0) wave = LoadFLAC(fileName); else if (strcmp(GetExtension(fileName),"rres") == 0) { RRESData rres = LoadResource(fileName); // NOTE: Parameters for RRES_WAVE type are: sampleCount, sampleRate, sampleSize, channels if (rres.type == RRES_WAVE) wave = LoadWaveEx(rres.data, rres.param1, rres.param2, rres.param3, rres.param4); else TraceLog(WARNING, "[%s] Resource file does not contain wave data", fileName); UnloadResource(rres); } else TraceLog(WARNING, "[%s] File extension not recognized, it can't be loaded", fileName); return wave; } // Load wave data from raw array data Wave LoadWaveEx(void *data, int sampleCount, int sampleRate, int sampleSize, int channels) { Wave wave; wave.data = data; wave.sampleCount = sampleCount; wave.sampleRate = sampleRate; wave.sampleSize = sampleSize; wave.channels = channels; // NOTE: Copy wave data to work with, user is responsible of input data to free Wave cwave = WaveCopy(wave); WaveFormat(&cwave, sampleRate, sampleSize, channels); return cwave; } // Load sound from file // NOTE: The entire file is loaded to memory to be played (no-streaming) Sound LoadSound(const char *fileName) { Wave wave = LoadWave(fileName); Sound sound = LoadSoundFromWave(wave); UnloadWave(wave); // Sound is loaded, we can unload wave return sound; } // Load sound from wave data // NOTE: Wave data must be unallocated manually Sound LoadSoundFromWave(Wave wave) { Sound sound = { 0 }; if (wave.data != NULL) { ALenum format = 0; // The OpenAL format is worked out by looking at the number of channels and the sample size (bits per sample) if (wave.channels == 1) { switch (wave.sampleSize) { case 8: format = AL_FORMAT_MONO8; break; case 16: format = AL_FORMAT_MONO16; break; case 32: format = AL_FORMAT_MONO_FLOAT32; break; // Requires OpenAL extension: AL_EXT_FLOAT32 default: TraceLog(WARNING, "Wave sample size not supported: %i", wave.sampleSize); break; } } else if (wave.channels == 2) { switch (wave.sampleSize) { case 8: format = AL_FORMAT_STEREO8; break; case 16: format = AL_FORMAT_STEREO16; break; case 32: format = AL_FORMAT_STEREO_FLOAT32; break; // Requires OpenAL extension: AL_EXT_FLOAT32 default: TraceLog(WARNING, "Wave sample size not supported: %i", wave.sampleSize); break; } } else TraceLog(WARNING, "Wave number of channels not supported: %i", wave.channels); // Create an audio source ALuint source; alGenSources(1, &source); // Generate pointer to audio source alSourcef(source, AL_PITCH, 1.0f); alSourcef(source, AL_GAIN, 1.0f); alSource3f(source, AL_POSITION, 0.0f, 0.0f, 0.0f); alSource3f(source, AL_VELOCITY, 0.0f, 0.0f, 0.0f); alSourcei(source, AL_LOOPING, AL_FALSE); // Convert loaded data to OpenAL buffer //---------------------------------------- ALuint buffer; alGenBuffers(1, &buffer); // Generate pointer to buffer unsigned int dataSize = wave.sampleCount*wave.channels*wave.sampleSize/8; // Size in bytes // Upload sound data to buffer alBufferData(buffer, format, wave.data, dataSize, wave.sampleRate); // Attach sound buffer to source alSourcei(source, AL_BUFFER, buffer); TraceLog(INFO, "[SND ID %i][BUFR ID %i] Sound data loaded successfully (%i Hz, %i bit, %s)", source, buffer, wave.sampleRate, wave.sampleSize, (wave.channels == 1) ? "Mono" : "Stereo"); sound.source = source; sound.buffer = buffer; sound.format = format; } return sound; } // Unload wave data void UnloadWave(Wave wave) { if (wave.data != NULL) free(wave.data); TraceLog(INFO, "Unloaded wave data from RAM"); } // Unload sound void UnloadSound(Sound sound) { alSourceStop(sound.source); alDeleteSources(1, &sound.source); alDeleteBuffers(1, &sound.buffer); TraceLog(INFO, "[SND ID %i][BUFR ID %i] Unloaded sound data from RAM", sound.source, sound.buffer); } // Update sound buffer with new data // NOTE: data must match sound.format void UpdateSound(Sound sound, const void *data, int numSamples) { ALint sampleRate, sampleSize, channels; alGetBufferi(sound.buffer, AL_FREQUENCY, &sampleRate); alGetBufferi(sound.buffer, AL_BITS, &sampleSize); // It could also be retrieved from sound.format alGetBufferi(sound.buffer, AL_CHANNELS, &channels); // It could also be retrieved from sound.format TraceLog(DEBUG, "UpdateSound() : AL_FREQUENCY: %i", sampleRate); TraceLog(DEBUG, "UpdateSound() : AL_BITS: %i", sampleSize); TraceLog(DEBUG, "UpdateSound() : AL_CHANNELS: %i", channels); unsigned int dataSize = numSamples*channels*sampleSize/8; // Size of data in bytes alSourceStop(sound.source); // Stop sound alSourcei(sound.source, AL_BUFFER, 0); // Unbind buffer from sound to update //alDeleteBuffers(1, &sound.buffer); // Delete current buffer data //alGenBuffers(1, &sound.buffer); // Generate new buffer // Upload new data to sound buffer alBufferData(sound.buffer, sound.format, data, dataSize, sampleRate); // Attach sound buffer to source again alSourcei(sound.source, AL_BUFFER, sound.buffer); } // Play a sound void PlaySound(Sound sound) { alSourcePlay(sound.source); // Play the sound //TraceLog(INFO, "Playing sound"); // Find the current position of the sound being played // NOTE: Only work when the entire file is in a single buffer //int byteOffset; //alGetSourcei(sound.source, AL_BYTE_OFFSET, &byteOffset); // //int sampleRate; //alGetBufferi(sound.buffer, AL_FREQUENCY, &sampleRate); // AL_CHANNELS, AL_BITS (bps) //float seconds = (float)byteOffset/sampleRate; // Number of seconds since the beginning of the sound //or //float result; //alGetSourcef(sound.source, AL_SEC_OFFSET, &result); // AL_SAMPLE_OFFSET } // Pause a sound void PauseSound(Sound sound) { alSourcePause(sound.source); } // Resume a paused sound void ResumeSound(Sound sound) { ALenum state; alGetSourcei(sound.source, AL_SOURCE_STATE, &state); if (state == AL_PAUSED) alSourcePlay(sound.source); } // Stop reproducing a sound void StopSound(Sound sound) { alSourceStop(sound.source); } // Check if a sound is playing bool IsSoundPlaying(Sound sound) { bool playing = false; ALint state; alGetSourcei(sound.source, AL_SOURCE_STATE, &state); if (state == AL_PLAYING) playing = true; return playing; } // Set volume for a sound void SetSoundVolume(Sound sound, float volume) { alSourcef(sound.source, AL_GAIN, volume); } // Set pitch for a sound void SetSoundPitch(Sound sound, float pitch) { alSourcef(sound.source, AL_PITCH, pitch); } // Convert wave data to desired format void WaveFormat(Wave *wave, int sampleRate, int sampleSize, int channels) { // Format sample rate // NOTE: Only supported 22050 <--> 44100 if (wave->sampleRate != sampleRate) { // TODO: Resample wave data (upsampling or downsampling) // NOTE 1: To downsample, you have to drop samples or average them. // NOTE 2: To upsample, you have to interpolate new samples. wave->sampleRate = sampleRate; } // Format sample size // NOTE: Only supported 8 bit <--> 16 bit <--> 32 bit if (wave->sampleSize != sampleSize) { void *data = malloc(wave->sampleCount*wave->channels*sampleSize/8); for (int i = 0; i < wave->sampleCount; i++) { for (int j = 0; j < wave->channels; j++) { if (sampleSize == 8) { if (wave->sampleSize == 16) ((unsigned char *)data)[wave->channels*i + j] = (unsigned char)(((float)(((short *)wave->data)[wave->channels*i + j])/32767.0f)*256); else if (wave->sampleSize == 32) ((unsigned char *)data)[wave->channels*i + j] = (unsigned char)(((float *)wave->data)[wave->channels*i + j]*127.0f + 127); } else if (sampleSize == 16) { if (wave->sampleSize == 8) ((short *)data)[wave->channels*i + j] = (short)(((float)(((unsigned char *)wave->data)[wave->channels*i + j] - 127)/256.0f)*32767); else if (wave->sampleSize == 32) ((short *)data)[wave->channels*i + j] = (short)((((float *)wave->data)[wave->channels*i + j])*32767); } else if (sampleSize == 32) { if (wave->sampleSize == 8) ((float *)data)[wave->channels*i + j] = (float)(((unsigned char *)wave->data)[wave->channels*i + j] - 127)/256.0f; else if (wave->sampleSize == 16) ((float *)data)[wave->channels*i + j] = (float)(((short *)wave->data)[wave->channels*i + j])/32767.0f; } } } wave->sampleSize = sampleSize; free(wave->data); wave->data = data; } // Format channels (interlaced mode) // NOTE: Only supported mono <--> stereo if (wave->channels != channels) { void *data = malloc(wave->sampleCount*channels*wave->sampleSize/8); if ((wave->channels == 1) && (channels == 2)) // mono ---> stereo (duplicate mono information) { for (int i = 0; i < wave->sampleCount; i++) { for (int j = 0; j < channels; j++) { if (wave->sampleSize == 8) ((unsigned char *)data)[channels*i + j] = ((unsigned char *)wave->data)[i]; else if (wave->sampleSize == 16) ((short *)data)[channels*i + j] = ((short *)wave->data)[i]; else if (wave->sampleSize == 32) ((float *)data)[channels*i + j] = ((float *)wave->data)[i]; } } } else if ((wave->channels == 2) && (channels == 1)) // stereo ---> mono (mix stereo channels) { for (int i = 0, j = 0; i < wave->sampleCount; i++, j += 2) { if (wave->sampleSize == 8) ((unsigned char *)data)[i] = (((unsigned char *)wave->data)[j] + ((unsigned char *)wave->data)[j + 1])/2; else if (wave->sampleSize == 16) ((short *)data)[i] = (((short *)wave->data)[j] + ((short *)wave->data)[j + 1])/2; else if (wave->sampleSize == 32) ((float *)data)[i] = (((float *)wave->data)[j] + ((float *)wave->data)[j + 1])/2.0f; } } // TODO: Add/remove additional interlaced channels wave->channels = channels; free(wave->data); wave->data = data; } } // Copy a wave to a new wave Wave WaveCopy(Wave wave) { Wave newWave = { 0 }; newWave.data = malloc(wave.sampleCount*wave.channels*wave.sampleSize/8); if (newWave.data != NULL) { // NOTE: Size must be provided in bytes memcpy(newWave.data, wave.data, wave.sampleCount*wave.channels*wave.sampleSize/8); newWave.sampleCount = wave.sampleCount; newWave.sampleRate = wave.sampleRate; newWave.sampleSize = wave.sampleSize; newWave.channels = wave.channels; } return newWave; } // Crop a wave to defined samples range // NOTE: Security check in case of out-of-range void WaveCrop(Wave *wave, int initSample, int finalSample) { if ((initSample >= 0) && (initSample < finalSample) && (finalSample > 0) && (finalSample < wave->sampleCount)) { int sampleCount = finalSample - initSample; void *data = malloc(sampleCount*wave->channels*wave->sampleSize/8); memcpy(data, wave->data + (initSample*wave->channels*wave->sampleSize/8), sampleCount*wave->channels*wave->sampleSize/8); free(wave->data); wave->data = data; } else TraceLog(WARNING, "Wave crop range out of bounds"); } // Get samples data from wave as a floats array // NOTE: Returned sample values are normalized to range [-1..1] float *GetWaveData(Wave wave) { float *samples = (float *)malloc(wave.sampleCount*wave.channels*sizeof(float)); for (int i = 0; i < wave.sampleCount; i++) { for (int j = 0; j < wave.channels; j++) { if (wave.sampleSize == 8) samples[wave.channels*i + j] = (float)(((unsigned char *)wave.data)[wave.channels*i + j] - 127)/256.0f; else if (wave.sampleSize == 16) samples[wave.channels*i + j] = (float)((short *)wave.data)[wave.channels*i + j]/32767.0f; else if (wave.sampleSize == 32) samples[wave.channels*i + j] = ((float *)wave.data)[wave.channels*i + j]; } } return samples; } //---------------------------------------------------------------------------------- // Module Functions Definition - Music loading and stream playing (.OGG) //---------------------------------------------------------------------------------- // Load music stream from file Music LoadMusicStream(const char *fileName) { Music music = (MusicData *)malloc(sizeof(MusicData)); if (strcmp(GetExtension(fileName), "ogg") == 0) { // Open ogg audio stream music->ctxOgg = stb_vorbis_open_filename(fileName, NULL, NULL); if (music->ctxOgg == NULL) TraceLog(WARNING, "[%s] OGG audio file could not be opened", fileName); else { stb_vorbis_info info = stb_vorbis_get_info(music->ctxOgg); // Get Ogg file info // OGG bit rate defaults to 16 bit, it's enough for compressed format music->stream = InitAudioStream(info.sample_rate, 16, info.channels); music->totalSamples = (unsigned int)stb_vorbis_stream_length_in_samples(music->ctxOgg); // Independent by channel music->samplesLeft = music->totalSamples; music->ctxType = MUSIC_AUDIO_OGG; music->loopCount = -1; // Infinite loop by default TraceLog(DEBUG, "[%s] FLAC total samples: %i", fileName, music->totalSamples); TraceLog(DEBUG, "[%s] OGG sample rate: %i", fileName, info.sample_rate); TraceLog(DEBUG, "[%s] OGG channels: %i", fileName, info.channels); TraceLog(DEBUG, "[%s] OGG memory required: %i", fileName, info.temp_memory_required); } } else if (strcmp(GetExtension(fileName), "flac") == 0) { music->ctxFlac = drflac_open_file(fileName); if (music->ctxFlac == NULL) TraceLog(WARNING, "[%s] FLAC audio file could not be opened", fileName); else { music->stream = InitAudioStream(music->ctxFlac->sampleRate, music->ctxFlac->bitsPerSample, music->ctxFlac->channels); music->totalSamples = (unsigned int)music->ctxFlac->totalSampleCount/music->ctxFlac->channels; music->samplesLeft = music->totalSamples; music->ctxType = MUSIC_AUDIO_FLAC; music->loopCount = -1; // Infinite loop by default TraceLog(DEBUG, "[%s] FLAC total samples: %i", fileName, music->totalSamples); TraceLog(DEBUG, "[%s] FLAC sample rate: %i", fileName, music->ctxFlac->sampleRate); TraceLog(DEBUG, "[%s] FLAC bits per sample: %i", fileName, music->ctxFlac->bitsPerSample); TraceLog(DEBUG, "[%s] FLAC channels: %i", fileName, music->ctxFlac->channels); } } else if (strcmp(GetExtension(fileName), "xm") == 0) { int result = jar_xm_create_context_from_file(&music->ctxXm, 48000, fileName); if (!result) // XM context created successfully { jar_xm_set_max_loop_count(music->ctxXm, 0); // Set infinite number of loops // NOTE: Only stereo is supported for XM music->stream = InitAudioStream(48000, 16, 2); music->totalSamples = (unsigned int)jar_xm_get_remaining_samples(music->ctxXm); music->samplesLeft = music->totalSamples; music->ctxType = MUSIC_MODULE_XM; music->loopCount = -1; // Infinite loop by default TraceLog(DEBUG, "[%s] XM number of samples: %i", fileName, music->totalSamples); TraceLog(DEBUG, "[%s] XM track length: %11.6f sec", fileName, (float)music->totalSamples/48000.0f); } else TraceLog(WARNING, "[%s] XM file could not be opened", fileName); } else if (strcmp(GetExtension(fileName), "mod") == 0) { jar_mod_init(&music->ctxMod); if (jar_mod_load_file(&music->ctxMod, fileName)) { music->stream = InitAudioStream(48000, 16, 2); music->totalSamples = (unsigned int)jar_mod_max_samples(&music->ctxMod); music->samplesLeft = music->totalSamples; music->ctxType = MUSIC_MODULE_MOD; music->loopCount = -1; // Infinite loop by default TraceLog(DEBUG, "[%s] MOD number of samples: %i", fileName, music->samplesLeft); TraceLog(DEBUG, "[%s] MOD track length: %11.6f sec", fileName, (float)music->totalSamples/48000.0f); } else TraceLog(WARNING, "[%s] MOD file could not be opened", fileName); } else TraceLog(WARNING, "[%s] Music extension not recognized, it can't be loaded", fileName); return music; } // Unload music stream void UnloadMusicStream(Music music) { CloseAudioStream(music->stream); if (music->ctxType == MUSIC_AUDIO_OGG) stb_vorbis_close(music->ctxOgg); else if (music->ctxType == MUSIC_AUDIO_FLAC) drflac_free(music->ctxFlac); else if (music->ctxType == MUSIC_MODULE_XM) jar_xm_free_context(music->ctxXm); else if (music->ctxType == MUSIC_MODULE_MOD) jar_mod_unload(&music->ctxMod); free(music); } // Start music playing (open stream) void PlayMusicStream(Music music) { alSourcePlay(music->stream.source); } // Pause music playing void PauseMusicStream(Music music) { alSourcePause(music->stream.source); } // Resume music playing void ResumeMusicStream(Music music) { ALenum state; alGetSourcei(music->stream.source, AL_SOURCE_STATE, &state); if (state == AL_PAUSED) alSourcePlay(music->stream.source); } // Stop music playing (close stream) void StopMusicStream(Music music) { alSourceStop(music->stream.source); switch (music->ctxType) { case MUSIC_AUDIO_OGG: stb_vorbis_seek_start(music->ctxOgg); break; case MUSIC_MODULE_XM: /* TODO: Restart XM context */ break; case MUSIC_MODULE_MOD: jar_mod_seek_start(&music->ctxMod); break; default: break; } music->samplesLeft = music->totalSamples; } // Update (re-fill) music buffers if data already processed void UpdateMusicStream(Music music) { ALenum state; ALint processed = 0; alGetSourcei(music->stream.source, AL_SOURCE_STATE, &state); // Get music stream state alGetSourcei(music->stream.source, AL_BUFFERS_PROCESSED, &processed); // Get processed buffers if (processed > 0) { bool active = true; // NOTE: Using dynamic allocation because it could require more than 16KB void *pcm = calloc(AUDIO_BUFFER_SIZE*music->stream.channels*music->stream.sampleSize/8, 1); int numBuffersToProcess = processed; int numSamples = 0; // Total size of data steamed in L+R samples for xm floats, // individual L or R for ogg shorts for (int i = 0; i < numBuffersToProcess; i++) { if (music->samplesLeft >= AUDIO_BUFFER_SIZE) numSamples = AUDIO_BUFFER_SIZE; else numSamples = music->samplesLeft; // TODO: Really don't like ctxType thingy... switch (music->ctxType) { case MUSIC_AUDIO_OGG: { // NOTE: Returns the number of samples to process (be careful! we ask for number of shorts!) int numSamplesOgg = stb_vorbis_get_samples_short_interleaved(music->ctxOgg, music->stream.channels, (short *)pcm, numSamples*music->stream.channels); } break; case MUSIC_AUDIO_FLAC: { // NOTE: Returns the number of samples to process unsigned int numSamplesFlac = (unsigned int)drflac_read_s16(music->ctxFlac, numSamples*music->stream.channels, (short *)pcm); } break; case MUSIC_MODULE_XM: jar_xm_generate_samples_16bit(music->ctxXm, pcm, numSamples); break; case MUSIC_MODULE_MOD: jar_mod_fillbuffer(&music->ctxMod, pcm, numSamples, 0); break; default: break; } UpdateAudioStream(music->stream, pcm, numSamples); music->samplesLeft -= numSamples; if (music->samplesLeft <= 0) { active = false; break; } } // This error is registered when UpdateAudioStream() fails if (alGetError() == AL_INVALID_VALUE) TraceLog(WARNING, "OpenAL: Error buffering data..."); // Reset audio stream for looping if (!active) { StopMusicStream(music); // Stop music (and reset) // Decrease loopCount to stop when required if (music->loopCount > 0) { music->loopCount--; // Decrease loop count PlayMusicStream(music); // Play again } } else { // NOTE: In case window is minimized, music stream is stopped, // just make sure to play again on window restore if (state != AL_PLAYING) PlayMusicStream(music); } free(pcm); } } // Check if any music is playing bool IsMusicPlaying(Music music) { bool playing = false; ALint state; alGetSourcei(music->stream.source, AL_SOURCE_STATE, &state); if (state == AL_PLAYING) playing = true; return playing; } // Set volume for music void SetMusicVolume(Music music, float volume) { alSourcef(music->stream.source, AL_GAIN, volume); } // Set pitch for music void SetMusicPitch(Music music, float pitch) { alSourcef(music->stream.source, AL_PITCH, pitch); } // Set music loop count (loop repeats) // NOTE: If set to -1, means infinite loop void SetMusicLoopCount(Music music, float count); { music->loopCount = count; } // Get music time length (in seconds) float GetMusicTimeLength(Music music) { float totalSeconds = (float)music->totalSamples/music->stream.sampleRate; return totalSeconds; } // Get current music time played (in seconds) float GetMusicTimePlayed(Music music) { float secondsPlayed = 0.0f; unsigned int samplesPlayed = music->totalSamples - music->samplesLeft; secondsPlayed = (float)samplesPlayed/music->stream.sampleRate; return secondsPlayed; } // Init audio stream (to stream audio pcm data) AudioStream InitAudioStream(unsigned int sampleRate, unsigned int sampleSize, unsigned int channels) { AudioStream stream = { 0 }; stream.sampleRate = sampleRate; stream.sampleSize = sampleSize; // Only mono and stereo channels are supported, more channels require AL_EXT_MCFORMATS extension if ((channels > 0) && (channels < 3)) stream.channels = channels; else { TraceLog(WARNING, "Init audio stream: Number of channels not supported: %i", channels); stream.channels = 1; // Fallback to mono channel } // Setup OpenAL format if (stream.channels == 1) { switch (sampleSize) { case 8: stream.format = AL_FORMAT_MONO8; break; case 16: stream.format = AL_FORMAT_MONO16; break; case 32: stream.format = AL_FORMAT_MONO_FLOAT32; break; // Requires OpenAL extension: AL_EXT_FLOAT32 default: TraceLog(WARNING, "Init audio stream: Sample size not supported: %i", sampleSize); break; } } else if (stream.channels == 2) { switch (sampleSize) { case 8: stream.format = AL_FORMAT_STEREO8; break; case 16: stream.format = AL_FORMAT_STEREO16; break; case 32: stream.format = AL_FORMAT_STEREO_FLOAT32; break; // Requires OpenAL extension: AL_EXT_FLOAT32 default: TraceLog(WARNING, "Init audio stream: Sample size not supported: %i", sampleSize); break; } } // Create an audio source alGenSources(1, &stream.source); alSourcef(stream.source, AL_PITCH, 1.0f); alSourcef(stream.source, AL_GAIN, 1.0f); alSource3f(stream.source, AL_POSITION, 0.0f, 0.0f, 0.0f); alSource3f(stream.source, AL_VELOCITY, 0.0f, 0.0f, 0.0f); // Create Buffers (double buffering) alGenBuffers(MAX_STREAM_BUFFERS, stream.buffers); // Initialize buffer with zeros by default // NOTE: Using dynamic allocation because it requires more than 16KB void *pcm = calloc(AUDIO_BUFFER_SIZE*stream.sampleSize/8*stream.channels, 1); for (int i = 0; i < MAX_STREAM_BUFFERS; i++) { alBufferData(stream.buffers[i], stream.format, pcm, AUDIO_BUFFER_SIZE*stream.sampleSize/8*stream.channels, stream.sampleRate); } free(pcm); alSourceQueueBuffers(stream.source, MAX_STREAM_BUFFERS, stream.buffers); TraceLog(INFO, "[AUD ID %i] Audio stream loaded successfully (%i Hz, %i bit, %s)", stream.source, stream.sampleRate, stream.sampleSize, (stream.channels == 1) ? "Mono" : "Stereo"); return stream; } // Close audio stream and free memory void CloseAudioStream(AudioStream stream) { // Stop playing channel alSourceStop(stream.source); // Flush out all queued buffers int queued = 0; alGetSourcei(stream.source, AL_BUFFERS_QUEUED, &queued); ALuint buffer = 0; while (queued > 0) { alSourceUnqueueBuffers(stream.source, 1, &buffer); queued--; } // Delete source and buffers alDeleteSources(1, &stream.source); alDeleteBuffers(MAX_STREAM_BUFFERS, stream.buffers); TraceLog(INFO, "[AUD ID %i] Unloaded audio stream data", stream.source); } // Update audio stream buffers with data // NOTE: Only updates one buffer per call void UpdateAudioStream(AudioStream stream, const void *data, int numSamples) { ALuint buffer = 0; alSourceUnqueueBuffers(stream.source, 1, &buffer); // Check if any buffer was available for unqueue if (alGetError() != AL_INVALID_VALUE) { alBufferData(buffer, stream.format, data, numSamples*stream.channels*stream.sampleSize/8, stream.sampleRate); alSourceQueueBuffers(stream.source, 1, &buffer); } } // Check if any audio stream buffers requires refill bool IsAudioBufferProcessed(AudioStream stream) { ALint processed = 0; // Determine if music stream is ready to be written alGetSourcei(stream.source, AL_BUFFERS_PROCESSED, &processed); return (processed > 0); } // Play audio stream void PlayAudioStream(AudioStream stream) { alSourcePlay(stream.source); } // Play audio stream void PauseAudioStream(AudioStream stream) { alSourcePause(stream.source); } // Resume audio stream playing void ResumeAudioStream(AudioStream stream) { ALenum state; alGetSourcei(stream.source, AL_SOURCE_STATE, &state); if (state == AL_PAUSED) alSourcePlay(stream.source); } // Stop audio stream void StopAudioStream(AudioStream stream) { alSourceStop(stream.source); } //---------------------------------------------------------------------------------- // Module specific Functions Definition //---------------------------------------------------------------------------------- // Load WAV file into Wave structure static Wave LoadWAV(const char *fileName) { // Basic WAV headers structs typedef struct { char chunkID[4]; int chunkSize; char format[4]; } WAVRiffHeader; typedef struct { char subChunkID[4]; int subChunkSize; short audioFormat; short numChannels; int sampleRate; int byteRate; short blockAlign; short bitsPerSample; } WAVFormat; typedef struct { char subChunkID[4]; int subChunkSize; } WAVData; WAVRiffHeader wavRiffHeader; WAVFormat wavFormat; WAVData wavData; Wave wave = { 0 }; FILE *wavFile; wavFile = fopen(fileName, "rb"); if (wavFile == NULL) { TraceLog(WARNING, "[%s] WAV file could not be opened", fileName); wave.data = NULL; } else { // Read in the first chunk into the struct fread(&wavRiffHeader, sizeof(WAVRiffHeader), 1, wavFile); // Check for RIFF and WAVE tags if (strncmp(wavRiffHeader.chunkID, "RIFF", 4) || strncmp(wavRiffHeader.format, "WAVE", 4)) { TraceLog(WARNING, "[%s] Invalid RIFF or WAVE Header", fileName); } else { // Read in the 2nd chunk for the wave info fread(&wavFormat, sizeof(WAVFormat), 1, wavFile); // Check for fmt tag if ((wavFormat.subChunkID[0] != 'f') || (wavFormat.subChunkID[1] != 'm') || (wavFormat.subChunkID[2] != 't') || (wavFormat.subChunkID[3] != ' ')) { TraceLog(WARNING, "[%s] Invalid Wave format", fileName); } else { // Check for extra parameters; if (wavFormat.subChunkSize > 16) fseek(wavFile, sizeof(short), SEEK_CUR); // Read in the the last byte of data before the sound file fread(&wavData, sizeof(WAVData), 1, wavFile); // Check for data tag if ((wavData.subChunkID[0] != 'd') || (wavData.subChunkID[1] != 'a') || (wavData.subChunkID[2] != 't') || (wavData.subChunkID[3] != 'a')) { TraceLog(WARNING, "[%s] Invalid data header", fileName); } else { // Allocate memory for data wave.data = malloc(wavData.subChunkSize); // Read in the sound data into the soundData variable fread(wave.data, 1, wavData.subChunkSize, wavFile); // Store wave parameters wave.sampleRate = wavFormat.sampleRate; wave.sampleSize = wavFormat.bitsPerSample; wave.channels = wavFormat.numChannels; // NOTE: Only support 8 bit, 16 bit and 32 bit sample sizes if ((wave.sampleSize != 8) && (wave.sampleSize != 16) && (wave.sampleSize != 32)) { TraceLog(WARNING, "[%s] WAV sample size (%ibit) not supported, converted to 16bit", fileName, wave.sampleSize); WaveFormat(&wave, wave.sampleRate, 16, wave.channels); } // NOTE: Only support up to 2 channels (mono, stereo) if (wave.channels > 2) { WaveFormat(&wave, wave.sampleRate, wave.sampleSize, 2); TraceLog(WARNING, "[%s] WAV channels number (%i) not supported, converted to 2 channels", fileName, wave.channels); } // NOTE: subChunkSize comes in bytes, we need to translate it to number of samples wave.sampleCount = (wavData.subChunkSize/(wave.sampleSize/8))/wave.channels; TraceLog(INFO, "[%s] WAV file loaded successfully (%i Hz, %i bit, %s)", fileName, wave.sampleRate, wave.sampleSize, (wave.channels == 1) ? "Mono" : "Stereo"); } } } fclose(wavFile); } return wave; } // Load OGG file into Wave structure // NOTE: Using stb_vorbis library static Wave LoadOGG(const char *fileName) { Wave wave; stb_vorbis *oggFile = stb_vorbis_open_filename(fileName, NULL, NULL); if (oggFile == NULL) { TraceLog(WARNING, "[%s] OGG file could not be opened", fileName); wave.data = NULL; } else { stb_vorbis_info info = stb_vorbis_get_info(oggFile); wave.sampleRate = info.sample_rate; wave.sampleSize = 16; // 16 bit per sample (short) wave.channels = info.channels; wave.sampleCount = (int)stb_vorbis_stream_length_in_samples(oggFile); float totalSeconds = stb_vorbis_stream_length_in_seconds(oggFile); if (totalSeconds > 10) TraceLog(WARNING, "[%s] Ogg audio lenght is larger than 10 seconds (%f), that's a big file in memory, consider music streaming", fileName, totalSeconds); wave.data = (short *)malloc(wave.sampleCount*wave.channels*sizeof(short)); // NOTE: Returns the number of samples to process (be careful! we ask for number of shorts!) int numSamplesOgg = stb_vorbis_get_samples_short_interleaved(oggFile, info.channels, (short *)wave.data, wave.sampleCount*wave.channels); TraceLog(DEBUG, "[%s] Samples obtained: %i", fileName, numSamplesOgg); TraceLog(INFO, "[%s] OGG file loaded successfully (%i Hz, %i bit, %s)", fileName, wave.sampleRate, wave.sampleSize, (wave.channels == 1) ? "Mono" : "Stereo"); stb_vorbis_close(oggFile); } return wave; } // Load FLAC file into Wave structure // NOTE: Using dr_flac library static Wave LoadFLAC(const char *fileName) { Wave wave; // Decode an entire FLAC file in one go uint64_t totalSampleCount; wave.data = drflac_open_and_decode_file_s16(fileName, &wave.channels, &wave.sampleRate, &totalSampleCount); wave.sampleCount = (int)totalSampleCount/wave.channels; wave.sampleSize = 16; // NOTE: Only support up to 2 channels (mono, stereo) if (wave.channels > 2) TraceLog(WARNING, "[%s] FLAC channels number (%i) not supported", fileName, wave.channels); if (wave.data == NULL) TraceLog(WARNING, "[%s] FLAC data could not be loaded", fileName); else TraceLog(INFO, "[%s] FLAC file loaded successfully (%i Hz, %i bit, %s)", fileName, wave.sampleRate, wave.sampleSize, (wave.channels == 1) ? "Mono" : "Stereo"); return wave; } // Some required functions for audio standalone module version #if defined(AUDIO_STANDALONE) // Get the extension for a filename const char *GetExtension(const char *fileName) { const char *dot = strrchr(fileName, '.'); if (!dot || dot == fileName) return ""; return (dot + 1); } // Outputs a trace log message (INFO, ERROR, WARNING) // NOTE: If a file has been init, output log is written there void TraceLog(int msgType, const char *text, ...) { va_list args; int traceDebugMsgs = 0; #ifdef DO_NOT_TRACE_DEBUG_MSGS traceDebugMsgs = 0; #endif switch (msgType) { case INFO: fprintf(stdout, "INFO: "); break; case ERROR: fprintf(stdout, "ERROR: "); break; case WARNING: fprintf(stdout, "WARNING: "); break; case DEBUG: if (traceDebugMsgs) fprintf(stdout, "DEBUG: "); break; default: break; } if ((msgType != DEBUG) || ((msgType == DEBUG) && (traceDebugMsgs))) { va_start(args, text); vfprintf(stdout, text, args); va_end(args); fprintf(stdout, "\n"); } if (msgType == ERROR) exit(1); // If ERROR message, exit program } #endif