End of July rmem Update (#923)

Object Pool Changes:
-- changed 'size' member name of 'union ObjInfo' to 'index' to better name its purpose.
Memory Pool Changes:
-- Added memory node buckets to store and allocate smaller, more frequent byte sizes.
-- Replaced 'memset' call to deinitialize free list data with NULL and 0 assignments.
-- Removed some no-longer-needed commented-out code.
-- Changed insertion sort code to put the largest size at the tail rather than the head.
-- Made certain pointer variables as constant pointers.
This commit is contained in:
Kevin Yonan 2019-07-31 02:24:33 -07:00 committed by Ray
parent 1da7e1da8c
commit f81cb1a252

View File

@ -77,9 +77,13 @@ typedef struct Stack {
size_t size;
} Stack;
#define MEMPOOL_BUCKET_SIZE 8
#define MEMPOOL_BUCKET_BITS 3
typedef struct MemPool {
AllocList freeList;
Stack stack;
MemNode *buckets[MEMPOOL_BUCKET_SIZE];
} MemPool;
// Object Pool
@ -166,16 +170,16 @@ static inline size_t __AlignSize(const size_t size, const size_t align)
static void __RemoveNode(MemPool *const mempool, MemNode **const node)
{
if ((*node)->next != NULL) (*node)->next->prev = (*node)->prev;
else {
mempool->freeList.tail = (*node)->prev;
if (mempool->freeList.tail != NULL) mempool->freeList.tail->next = NULL;
}
if ((*node)->prev != NULL) (*node)->prev->next = (*node)->next;
else {
mempool->freeList.head = (*node)->next;
mempool->freeList.head->prev = NULL;
}
if ((*node)->next != NULL) (*node)->next->prev = (*node)->prev;
else {
mempool->freeList.tail = (*node)->prev;
mempool->freeList.tail->next = NULL;
if (mempool->freeList.head != NULL) mempool->freeList.head->prev = NULL;
}
}
@ -192,7 +196,7 @@ MemPool CreateMemPool(const size_t size)
{
// Align the mempool size to at least the size of an alloc node.
mempool.stack.size = size;
mempool.stack.mem = malloc(1 + mempool.stack.size*sizeof *mempool.stack.mem);
mempool.stack.mem = malloc(mempool.stack.size*sizeof *mempool.stack.mem);
if (mempool.stack.mem==NULL)
{
@ -238,8 +242,16 @@ void *MemPoolAlloc(MemPool *const mempool, const size_t size)
{
MemNode *new_mem = NULL;
const size_t ALLOC_SIZE = __AlignSize(size + sizeof *new_mem, sizeof(intptr_t));
const size_t BUCKET_INDEX = (ALLOC_SIZE >> MEMPOOL_BUCKET_BITS) - 1;
if (mempool->freeList.head != NULL)
if (BUCKET_INDEX < MEMPOOL_BUCKET_SIZE && mempool->buckets[BUCKET_INDEX] != NULL && mempool->buckets[BUCKET_INDEX]->size >= ALLOC_SIZE)
{
new_mem = mempool->buckets[BUCKET_INDEX];
mempool->buckets[BUCKET_INDEX] = mempool->buckets[BUCKET_INDEX]->next;
if( mempool->buckets[BUCKET_INDEX] != NULL )
mempool->buckets[BUCKET_INDEX]->prev = NULL;
}
else if (mempool->freeList.head != NULL)
{
const size_t MEM_SPLIT_THRESHOLD = 16;
@ -253,7 +265,6 @@ void *MemPoolAlloc(MemPool *const mempool, const size_t size)
new_mem = *inode;
__RemoveNode(mempool, inode);
mempool->freeList.len--;
new_mem->next = new_mem->prev = NULL;
break;
}
else
@ -262,7 +273,6 @@ void *MemPoolAlloc(MemPool *const mempool, const size_t size)
new_mem = (MemNode *)((uint8_t *)*inode + ((*inode)->size - ALLOC_SIZE));
(*inode)->size -= ALLOC_SIZE;
new_mem->size = ALLOC_SIZE;
new_mem->next = new_mem->prev = NULL;
break;
}
}
@ -281,19 +291,20 @@ void *MemPoolAlloc(MemPool *const mempool, const size_t size)
// Use the available mempool space as the new node.
new_mem = (MemNode *)mempool->stack.base;
new_mem->size = ALLOC_SIZE;
new_mem->next = new_mem->prev = NULL;
}
}
// Visual of the allocation block.
// --------------
// | mem size | lowest addr of block
// | next node |
// | next node | 12 byte (32-bit) header
// | prev node | 24 byte (64-bit) header
// --------------
// | alloc'd |
// | memory |
// | space | highest addr of block
// --------------
new_mem->next = new_mem->prev = NULL;
uint8_t *const final_mem = (uint8_t *)new_mem + sizeof *new_mem;
memset(final_mem, 0, new_mem->size - sizeof *new_mem);
return final_mem;
@ -305,17 +316,17 @@ void *MemPoolRealloc(MemPool *const restrict mempool, void *ptr, const size_t si
if ((mempool == NULL) || (size > mempool->stack.size)) return NULL;
// NULL ptr should make this work like regular Allocation.
else if (ptr == NULL) return MemPoolAlloc(mempool, size);
else if ((uintptr_t)ptr <= (uintptr_t)mempool->stack.mem) return NULL;
else if ((uintptr_t)ptr - sizeof(MemNode) < (uintptr_t)mempool->stack.mem) return NULL;
else
{
MemNode *node = (MemNode *)((uint8_t *)ptr - sizeof *node);
MemNode *const node = (MemNode *)((uint8_t *)ptr - sizeof *node);
const size_t NODE_SIZE = sizeof *node;
uint8_t *resized_block = MemPoolAlloc(mempool, size);
uint8_t *const resized_block = MemPoolAlloc(mempool, size);
if (resized_block == NULL) return NULL;
else
{
MemNode *resized = (MemNode *)(resized_block - sizeof *resized);
MemNode *const resized = (MemNode *)(resized_block - sizeof *resized);
memmove(resized_block, ptr, (node->size > resized->size)? (resized->size - NODE_SIZE) : (node->size - NODE_SIZE));
MemPoolFree(mempool, ptr);
return resized_block;
@ -325,11 +336,12 @@ void *MemPoolRealloc(MemPool *const restrict mempool, void *ptr, const size_t si
void MemPoolFree(MemPool *const restrict mempool, void *ptr)
{
if ((mempool == NULL) || (ptr == NULL) || ((uintptr_t)ptr <= (uintptr_t)mempool->stack.mem)) return;
if ((mempool == NULL) || (ptr == NULL) || ((uintptr_t)ptr - sizeof(MemNode) < (uintptr_t)mempool->stack.mem)) return;
else
{
// Behind the actual pointer data is the allocation info.
MemNode *mem_node = (MemNode *)((uint8_t *)ptr - sizeof *mem_node);
MemNode *const mem_node = (MemNode *)((uint8_t *)ptr - sizeof *mem_node);
const size_t BUCKET_INDEX = (mem_node->size >> MEMPOOL_BUCKET_BITS) - 1;
// Make sure the pointer data is valid.
if (((uintptr_t)mem_node < (uintptr_t)mempool->stack.base) ||
@ -341,51 +353,43 @@ void MemPoolFree(MemPool *const restrict mempool, void *ptr)
{
mempool->stack.base += mem_node->size;
}
// attempted stack merge failed, try to place it into the memnode buckets
else if (BUCKET_INDEX < MEMPOOL_BUCKET_SIZE)
{
if (mempool->buckets[index] == NULL) mempool->buckets[index] = node;
else
{
for (MemNode *n = mempool->buckets[index]; n != NULL; n = n->next) if( n==node ) return;
mempool->buckets[index]->prev = node;
node->next = mempool->buckets[index];
mempool->buckets[index] = node;
}
}
// Otherwise, we add it to the free list.
// We also check if the freelist already has the pointer so we can prevent double frees.
else if ((mempool->freeList.len == 0UL) || ((uintptr_t)mempool->freeList.head >= (uintptr_t)mempool->stack.mem && (uintptr_t)mempool->freeList.head - (uintptr_t)mempool->stack.mem < mempool->stack.size))
else /*if ((mempool->freeList.len == 0UL) || ((uintptr_t)mempool->freeList.head >= (uintptr_t)mempool->stack.mem && (uintptr_t)mempool->freeList.head - (uintptr_t)mempool->stack.mem < mempool->stack.size))*/
{
for (MemNode *n = mempool->freeList.head; n != NULL; n = n->next) if (n == mem_node) return;
// This code inserts at head.
/*
( mempool->freeList.head==NULL)? (mempool->freeList.tail = mem_node) : (mempool->freeList.head->prev = mem_node);
mem_node->next = mempool->freeList.head;
mempool->freeList.head = mem_node;
mempool->freeList.len++;
*/
// This code insertion sorts where largest size is first.
// This code insertion sorts where largest size is last.
if (mempool->freeList.head == NULL)
{
mempool->freeList.head = mempool->freeList.tail = mem_node;
mempool->freeList.len++;
}
else if (mempool->freeList.head->size <= mem_node->size)
else if (mempool->freeList.head->size >= mem_node->size)
{
mem_node->next = mempool->freeList.head;
mem_node->next->prev = mem_node;
mempool->freeList.head = mem_node;
mempool->freeList.len++;
}
else if (mempool->freeList.tail->size > mem_node->size)
else //if (mempool->freeList.tail->size <= mem_node->size)
{
mem_node->prev = mempool->freeList.tail;
mempool->freeList.tail->next = mem_node;
mempool->freeList.tail = mem_node;
mempool->freeList.len++;
}
else
{
MemNode *n = mempool->freeList.head;
while ((n->next != NULL) && (n->next->size > mem_node->size)) n = n->next;
mem_node->next = n->next;
if (n->next != NULL) mem_node->next->prev = mem_node;
n->next = mem_node;
mem_node->prev = n;
mempool->freeList.len++;
}
if (mempool->freeList.autoDefrag && (mempool->freeList.maxNodes != 0UL) && (mempool->freeList.len > mempool->freeList.maxNodes)) MemPoolDefrag(mempool);
@ -409,6 +413,8 @@ size_t GetMemPoolFreeMemory(const MemPool mempool)
for (MemNode *n=mempool.freeList.head; n != NULL; n = n->next) total_remaining += n->size;
for (size_t i=0; i<MEMPOOL_BUCKET_SIZE; i++) for (MemNode *n = mempool.buckets[i]; n != NULL; n = n->next) total_remaining += n->size;
return total_remaining;
}
@ -420,12 +426,29 @@ bool MemPoolDefrag(MemPool *const mempool)
// If the memory pool has been entirely released, fully defrag it.
if (mempool->stack.size == GetMemPoolFreeMemory(*mempool))
{
memset(&mempool->freeList, 0, sizeof mempool->freeList);
mempool->freeList.head = mempool->freeList.tail = NULL;
mempool->freeList.len = 0;
for (size_t i = 0; i < MEMPOOL_BUCKET_SIZE; i++) mempool->buckets[i] = NULL;
mempool->stack.base = mempool->stack.mem + mempool->stack.size;
return true;
}
else
{
for (size_t i=0; i<MEMPOOL_BUCKET_SIZE; i++)
{
while (mempool->buckets[i] != NULL)
{
if ((uintptr_t)mempool->buckets[i] == (uintptr_t)mempool->stack.base)
{
mempool->stack.base += mempool->buckets[i]->size;
mempool->buckets[i]->size = 0;
mempool->buckets[i] = mempool->buckets[i]->next;
if (mempool->buckets[i] != NULL) mempool->buckets[i]->prev = NULL;
}
else break;
}
}
const size_t PRE_DEFRAG_LEN = mempool->freeList.len;
MemNode **node = &mempool->freeList.head;
@ -524,7 +547,7 @@ void ToggleMemPoolAutoDefrag(MemPool *const mempool)
//----------------------------------------------------------------------------------
union ObjInfo {
uint8_t *const byte;
size_t *const size;
size_t *const index;
};
ObjPool CreateObjPool(const size_t objsize, const size_t len)
@ -548,7 +571,7 @@ ObjPool CreateObjPool(const size_t objsize, const size_t len)
for (size_t i=0; i<objpool.freeBlocks; i++)
{
union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
*block.size = i + 1;
*block.index = i + 1;
}
objpool.stack.base = objpool.stack.mem;
@ -572,7 +595,7 @@ ObjPool CreateObjPoolFromBuffer(void *const buf, const size_t objsize, const siz
for (size_t i=0; i<objpool.freeBlocks; i++)
{
union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
*block.size = i + 1;
*block.index = i + 1;
}
objpool.stack.base = objpool.stack.mem;
@ -605,7 +628,7 @@ void *ObjPoolAlloc(ObjPool *const objpool)
// after allocating, we set head to the address of the index that *Head holds.
// Head = &pool[*Head * pool.objsize];
objpool->stack.base = (objpool->freeBlocks != 0UL)? objpool->stack.mem + (*ret.size*objpool->objSize) : NULL;
objpool->stack.base = (objpool->freeBlocks != 0UL)? objpool->stack.mem + (*ret.index*objpool->objSize) : NULL;
memset(ret.byte, 0, objpool->objSize);
return ret.byte;
}
@ -622,7 +645,7 @@ void ObjPoolFree(ObjPool *const restrict objpool, void *ptr)
// When we free our pointer, we recycle the pointer space to store the previous index and then we push it as our new head.
// *p = index of Head in relation to the buffer;
// Head = p;
*p.size = (objpool->stack.base != NULL)? (objpool->stack.base - objpool->stack.mem)/objpool->objSize : objpool->stack.size;
*p.index = (objpool->stack.base != NULL)? (objpool->stack.base - objpool->stack.mem)/objpool->objSize : objpool->stack.size;
objpool->stack.base = p.byte;
objpool->freeBlocks++;
}