Added Vector2 math functions
Reviewed some Vector3 functions Added auxiliary Clamp() function
This commit is contained in:
parent
7e65c300b6
commit
f5894278b7
@ -213,8 +213,11 @@ static unsigned int enabledGestures = 0b0000001111111111;
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module specific Functions Declaration
|
||||
//----------------------------------------------------------------------------------
|
||||
#if defined(GESTURES_STANDALONE)
|
||||
// Some required math functions provided by raymath.h
|
||||
static float Vector2Angle(Vector2 initialPosition, Vector2 finalPosition);
|
||||
static float Vector2Distance(Vector2 v1, Vector2 v2);
|
||||
#endif
|
||||
static double GetCurrentTime(void);
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
@ -477,13 +480,11 @@ float GetGesturePinchAngle(void)
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module specific Functions Definition
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
#if defined(GESTURES_STANDALONE)
|
||||
// Returns angle from two-points vector with X-axis
|
||||
static float Vector2Angle(Vector2 initialPosition, Vector2 finalPosition)
|
||||
static float Vector2Angle(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
float angle;
|
||||
|
||||
angle = atan2f(finalPosition.y - initialPosition.y, finalPosition.x - initialPosition.x)*(180.0f/PI);
|
||||
float angle = angle = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI);
|
||||
|
||||
if (angle < 0) angle += 360.0f;
|
||||
|
||||
@ -502,6 +503,7 @@ static float Vector2Distance(Vector2 v1, Vector2 v2)
|
||||
|
||||
return result;
|
||||
}
|
||||
#endif
|
||||
|
||||
// Time measure returned are milliseconds
|
||||
static double GetCurrentTime(void)
|
||||
|
316
src/raymath.h
316
src/raymath.h
@ -112,45 +112,67 @@ typedef struct Quaternion {
|
||||
|
||||
#ifndef RAYMATH_EXTERN_INLINE
|
||||
|
||||
//------------------------------------------------------------------------------------
|
||||
// Functions Declaration - math utils
|
||||
//------------------------------------------------------------------------------------
|
||||
RMDEF float Clamp(float value, float min, float max); // Clamp float value
|
||||
|
||||
//------------------------------------------------------------------------------------
|
||||
// Functions Declaration to work with Vector2
|
||||
//------------------------------------------------------------------------------------
|
||||
RMDEF Vector2 Vector2Zero(void); // Vector with components value 0.0f
|
||||
RMDEF Vector2 Vector2One(void); // Vector with components value 1.0f
|
||||
RMDEF Vector2 Vector2Add(Vector2 v1, Vector2 v2); // Add two vectors (v1 + v2)
|
||||
RMDEF Vector2 Vector2Subtract(Vector2 v1, Vector2 v2); // Subtract two vectors (v1 - v2)
|
||||
RMDEF float Vector2Lenght(Vector2 v); // Calculate vector lenght
|
||||
RMDEF float Vector2DotProduct(Vector2 v1, Vector2 v2); // Calculate two vectors dot product
|
||||
RMDEF float Vector2Distance(Vector2 v1, Vector2 v2); // Calculate distance between two vectors
|
||||
RMDEF float Vector2Angle(Vector2 v1, Vector2 v2); // Calculate angle between two vectors in X-axis
|
||||
RMDEF void Vector2Scale(Vector2 *v, float scale); // Scale vector (multiply by value)
|
||||
RMDEF void Vector2Negate(Vector2 *v); // Negate vector
|
||||
RMDEF void Vector2Divide(Vector2 *v, float div); // Divide vector by a float value
|
||||
RMDEF void Vector2Normalize(Vector2 *v); // Normalize provided vector
|
||||
|
||||
//------------------------------------------------------------------------------------
|
||||
// Functions Declaration to work with Vector3
|
||||
//------------------------------------------------------------------------------------
|
||||
RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2); // Add two vectors
|
||||
RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors
|
||||
RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2); // Calculate two vectors cross product
|
||||
RMDEF Vector3 VectorPerpendicular(Vector3 v); // Calculate one vector perpendicular vector
|
||||
RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2); // Calculate two vectors dot product
|
||||
RMDEF float VectorLength(const Vector3 v); // Calculate vector lenght
|
||||
RMDEF void VectorScale(Vector3 *v, float scale); // Scale provided vector
|
||||
RMDEF void VectorNegate(Vector3 *v); // Negate provided vector (invert direction)
|
||||
RMDEF void VectorNormalize(Vector3 *v); // Normalize provided vector
|
||||
RMDEF float VectorDistance(Vector3 v1, Vector3 v2); // Calculate distance between two points
|
||||
RMDEF Vector3 VectorZero(void); // Vector with components value 0.0f
|
||||
RMDEF Vector3 VectorOne(void); // Vector with components value 1.0f
|
||||
RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2); // Add two vectors
|
||||
RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors
|
||||
RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2); // Calculate two vectors cross product
|
||||
RMDEF Vector3 VectorPerpendicular(Vector3 v); // Calculate one vector perpendicular vector
|
||||
RMDEF float VectorLength(const Vector3 v); // Calculate vector lenght
|
||||
RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2); // Calculate two vectors dot product
|
||||
RMDEF float VectorDistance(Vector3 v1, Vector3 v2); // Calculate distance between two points
|
||||
RMDEF void VectorScale(Vector3 *v, float scale); // Scale provided vector
|
||||
RMDEF void VectorNegate(Vector3 *v); // Negate provided vector (invert direction)
|
||||
RMDEF void VectorNormalize(Vector3 *v); // Normalize provided vector
|
||||
RMDEF void VectorTransform(Vector3 *v, Matrix mat); // Transforms a Vector3 by a given Matrix
|
||||
RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount); // Calculate linear interpolation between two vectors
|
||||
RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal); // Calculate reflected vector to normal
|
||||
RMDEF void VectorTransform(Vector3 *v, Matrix mat); // Transforms a Vector3 by a given Matrix
|
||||
RMDEF Vector3 VectorZero(void); // Return a Vector3 init to zero
|
||||
RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2); // Return min value for each pair of components
|
||||
RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2); // Return max value for each pair of components
|
||||
RMDEF Vector3 Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c); // Barycenter coords for p in triangle abc
|
||||
RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal); // Calculate reflected vector to normal
|
||||
RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2); // Return min value for each pair of components
|
||||
RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2); // Return max value for each pair of components
|
||||
RMDEF Vector3 VectorBarycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c); // Barycenter coords for p in triangle abc
|
||||
|
||||
//------------------------------------------------------------------------------------
|
||||
// Functions Declaration to work with Matrix
|
||||
//------------------------------------------------------------------------------------
|
||||
RMDEF float MatrixDeterminant(Matrix mat); // Compute matrix determinant
|
||||
RMDEF float MatrixTrace(Matrix mat); // Returns the trace of the matrix (sum of the values along the diagonal)
|
||||
RMDEF void MatrixTranspose(Matrix *mat); // Transposes provided matrix
|
||||
RMDEF void MatrixInvert(Matrix *mat); // Invert provided matrix
|
||||
RMDEF void MatrixNormalize(Matrix *mat); // Normalize provided matrix
|
||||
RMDEF Matrix MatrixIdentity(void); // Returns identity matrix
|
||||
RMDEF Matrix MatrixAdd(Matrix left, Matrix right); // Add two matrices
|
||||
RMDEF Matrix MatrixSubstract(Matrix left, Matrix right); // Substract two matrices (left - right)
|
||||
RMDEF Matrix MatrixTranslate(float x, float y, float z); // Returns translation matrix
|
||||
RMDEF Matrix MatrixRotate(Vector3 axis, float angle); // Returns rotation matrix for an angle around an specified axis (angle in radians)
|
||||
RMDEF Matrix MatrixRotateX(float angle); // Returns x-rotation matrix (angle in radians)
|
||||
RMDEF Matrix MatrixRotateY(float angle); // Returns y-rotation matrix (angle in radians)
|
||||
RMDEF Matrix MatrixRotateZ(float angle); // Returns z-rotation matrix (angle in radians)
|
||||
RMDEF Matrix MatrixScale(float x, float y, float z); // Returns scaling matrix
|
||||
RMDEF Matrix MatrixMultiply(Matrix left, Matrix right); // Returns two matrix multiplication
|
||||
RMDEF float MatrixDeterminant(Matrix mat); // Compute matrix determinant
|
||||
RMDEF float MatrixTrace(Matrix mat); // Returns the trace of the matrix (sum of the values along the diagonal)
|
||||
RMDEF void MatrixTranspose(Matrix *mat); // Transposes provided matrix
|
||||
RMDEF void MatrixInvert(Matrix *mat); // Invert provided matrix
|
||||
RMDEF void MatrixNormalize(Matrix *mat); // Normalize provided matrix
|
||||
RMDEF Matrix MatrixIdentity(void); // Returns identity matrix
|
||||
RMDEF Matrix MatrixAdd(Matrix left, Matrix right); // Add two matrices
|
||||
RMDEF Matrix MatrixSubstract(Matrix left, Matrix right); // Substract two matrices (left - right)
|
||||
RMDEF Matrix MatrixTranslate(float x, float y, float z); // Returns translation matrix
|
||||
RMDEF Matrix MatrixRotate(Vector3 axis, float angle); // Returns rotation matrix for an angle around an specified axis (angle in radians)
|
||||
RMDEF Matrix MatrixRotateX(float angle); // Returns x-rotation matrix (angle in radians)
|
||||
RMDEF Matrix MatrixRotateY(float angle); // Returns y-rotation matrix (angle in radians)
|
||||
RMDEF Matrix MatrixRotateZ(float angle); // Returns z-rotation matrix (angle in radians)
|
||||
RMDEF Matrix MatrixScale(float x, float y, float z); // Returns scaling matrix
|
||||
RMDEF Matrix MatrixMultiply(Matrix left, Matrix right); // Returns two matrix multiplication
|
||||
RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far); // Returns perspective projection matrix
|
||||
RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far); // Returns perspective projection matrix
|
||||
RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far); // Returns orthographic projection matrix
|
||||
@ -159,9 +181,9 @@ RMDEF Matrix MatrixLookAt(Vector3 position, Vector3 target, Vector3 up); // Ret
|
||||
//------------------------------------------------------------------------------------
|
||||
// Functions Declaration to work with Quaternions
|
||||
//------------------------------------------------------------------------------------
|
||||
RMDEF float QuaternionLength(Quaternion quat); // Compute the length of a quaternion
|
||||
RMDEF void QuaternionNormalize(Quaternion *q); // Normalize provided quaternion
|
||||
RMDEF void QuaternionInvert(Quaternion *quat); // Invert provided quaternion
|
||||
RMDEF float QuaternionLength(Quaternion quat); // Compute the length of a quaternion
|
||||
RMDEF void QuaternionNormalize(Quaternion *q); // Normalize provided quaternion
|
||||
RMDEF void QuaternionInvert(Quaternion *quat); // Invert provided quaternion
|
||||
RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2); // Calculate two quaternion multiplication
|
||||
RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float slerp); // Calculates spherical linear interpolation between two quaternions
|
||||
RMDEF Quaternion QuaternionFromMatrix(Matrix matrix); // Returns a quaternion for a given rotation matrix
|
||||
@ -179,32 +201,113 @@ RMDEF void QuaternionTransform(Quaternion *q, Matrix mat); // Transfo
|
||||
|
||||
#include <math.h> // Required for: sinf(), cosf(), tan(), fabs()
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition - Utils math
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
// Clamp float value
|
||||
RMDEF float Clamp(float value, float min, float max)
|
||||
{
|
||||
const float res = value < min ? min : value;
|
||||
return res > max ? max : res;
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition - Vector2 math
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
// Vector with components value 0.0f
|
||||
RMDEF Vector2 Vector2Zero(void) { return (Vector2){ 0.0f, 0.0f }; }
|
||||
|
||||
// Vector with components value 1.0f
|
||||
RMDEF Vector2 Vector2One(void) { return (Vector2){ 1.0f, 1.0f }; }
|
||||
|
||||
// Add two vectors (v1 + v2)
|
||||
RMDEF Vector2 Vector2Add(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
return (Vector2){ v1.x + v2.x, v1.y + v2.y };
|
||||
}
|
||||
|
||||
// Subtract two vectors (v1 - v2)
|
||||
RMDEF Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
return (Vector2){ v1.x - v2.x, v1.y - v2.y };
|
||||
}
|
||||
|
||||
// Calculate vector lenght
|
||||
RMDEF float Vector2Lenght(Vector2 v)
|
||||
{
|
||||
return sqrtf((v.x*v.x) + (v.y*v.y));
|
||||
}
|
||||
|
||||
// Calculate two vectors dot product
|
||||
RMDEF float Vector2DotProduct(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
return (v1.x*v2.x + v1.y*v2.y);
|
||||
}
|
||||
|
||||
// Calculate distance between two vectors
|
||||
RMDEF float Vector2Distance(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
return sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
|
||||
}
|
||||
|
||||
// Calculate angle from two vectors in X-axis
|
||||
RMDEF float Vector2Angle(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
float angle = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI);
|
||||
|
||||
if (angle < 0) angle += 360.0f;
|
||||
|
||||
return angle;
|
||||
}
|
||||
|
||||
// Scale vector (multiply by value)
|
||||
RMDEF void Vector2Scale(Vector2 *v, float scale)
|
||||
{
|
||||
v->x *= scale;
|
||||
v->y *= scale;
|
||||
}
|
||||
|
||||
// Negate vector
|
||||
RMDEF void Vector2Negate(Vector2 *v)
|
||||
{
|
||||
v->x = -v->x;
|
||||
v->y = -v->y;
|
||||
}
|
||||
|
||||
// Divide vector by a float value
|
||||
RMDEF void Vector2Divide(Vector2 *v, float div)
|
||||
{
|
||||
*v = (Vector2){v->x/div, v->y/div};
|
||||
}
|
||||
|
||||
// Normalize provided vector
|
||||
RMDEF void Vector2Normalize(Vector2 *v)
|
||||
{
|
||||
Vector2Divide(v, Vector2Lenght(*v));
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition - Vector3 math
|
||||
//----------------------------------------------------------------------------------
|
||||
|
||||
// Vector with components value 0.0f
|
||||
RMDEF Vector3 VectorZero(void) { return (Vector3){ 0.0f, 0.0f, 0.0f }; }
|
||||
|
||||
// Vector with components value 1.0f
|
||||
RMDEF Vector3 VectorOne(void) { return (Vector3){ 1.0f, 1.0f, 1.0f }; }
|
||||
|
||||
// Add two vectors
|
||||
RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result;
|
||||
|
||||
result.x = v1.x + v2.x;
|
||||
result.y = v1.y + v2.y;
|
||||
result.z = v1.z + v2.z;
|
||||
|
||||
return result;
|
||||
return (Vector3){ v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
|
||||
}
|
||||
|
||||
// Substract two vectors
|
||||
RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result;
|
||||
|
||||
result.x = v1.x - v2.x;
|
||||
result.y = v1.y - v2.y;
|
||||
result.z = v1.z - v2.z;
|
||||
|
||||
return result;
|
||||
return (Vector3){ v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
|
||||
}
|
||||
|
||||
// Calculate two vectors cross product
|
||||
@ -233,7 +336,7 @@ RMDEF Vector3 VectorPerpendicular(Vector3 v)
|
||||
cardinalAxis = (Vector3){0.0f, 1.0f, 0.0f};
|
||||
}
|
||||
|
||||
if(fabsf(v.z) < min)
|
||||
if (fabsf(v.z) < min)
|
||||
{
|
||||
cardinalAxis = (Vector3){0.0f, 0.0f, 1.0f};
|
||||
}
|
||||
@ -243,24 +346,26 @@ RMDEF Vector3 VectorPerpendicular(Vector3 v)
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate two vectors dot product
|
||||
RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
float result;
|
||||
|
||||
result = v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate vector lenght
|
||||
RMDEF float VectorLength(const Vector3 v)
|
||||
{
|
||||
float length;
|
||||
return sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
|
||||
}
|
||||
|
||||
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
|
||||
// Calculate two vectors dot product
|
||||
RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
|
||||
}
|
||||
|
||||
return length;
|
||||
// Calculate distance between two vectors
|
||||
RMDEF float VectorDistance(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
float dx = v2.x - v1.x;
|
||||
float dy = v2.y - v1.y;
|
||||
float dz = v2.z - v1.z;
|
||||
|
||||
return sqrtf(dx*dx + dy*dy + dz*dz);
|
||||
}
|
||||
|
||||
// Scale provided vector
|
||||
@ -295,19 +400,18 @@ RMDEF void VectorNormalize(Vector3 *v)
|
||||
v->z *= ilength;
|
||||
}
|
||||
|
||||
// Calculate distance between two points
|
||||
RMDEF float VectorDistance(Vector3 v1, Vector3 v2)
|
||||
// Transforms a Vector3 by a given Matrix
|
||||
// TODO: Review math (matrix transpose required?)
|
||||
RMDEF void VectorTransform(Vector3 *v, Matrix mat)
|
||||
{
|
||||
float result;
|
||||
float x = v->x;
|
||||
float y = v->y;
|
||||
float z = v->z;
|
||||
|
||||
float dx = v2.x - v1.x;
|
||||
float dy = v2.y - v1.y;
|
||||
float dz = v2.z - v1.z;
|
||||
|
||||
result = sqrtf(dx*dx + dy*dy + dz*dz);
|
||||
|
||||
return result;
|
||||
}
|
||||
v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
|
||||
v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
|
||||
v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
|
||||
};
|
||||
|
||||
// Calculate linear interpolation between two vectors
|
||||
RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount)
|
||||
@ -339,27 +443,6 @@ RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal)
|
||||
return result;
|
||||
}
|
||||
|
||||
// Transforms a Vector3 by a given Matrix
|
||||
// TODO: Review math (matrix transpose required?)
|
||||
RMDEF void VectorTransform(Vector3 *v, Matrix mat)
|
||||
{
|
||||
float x = v->x;
|
||||
float y = v->y;
|
||||
float z = v->z;
|
||||
|
||||
v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
|
||||
v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
|
||||
v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
|
||||
};
|
||||
|
||||
// Return a Vector3 init to zero
|
||||
RMDEF Vector3 VectorZero(void)
|
||||
{
|
||||
Vector3 zero = { 0.0f, 0.0f, 0.0f };
|
||||
|
||||
return zero;
|
||||
}
|
||||
|
||||
// Return min value for each pair of components
|
||||
RMDEF Vector3 VectorMin(Vector3 vec1, Vector3 vec2)
|
||||
{
|
||||
@ -386,7 +469,7 @@ RMDEF Vector3 VectorMax(Vector3 vec1, Vector3 vec2)
|
||||
|
||||
// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
|
||||
// NOTE: Assumes P is on the plane of the triangle
|
||||
RMDEF Vector3 Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
|
||||
RMDEF Vector3 VectorBarycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
|
||||
{
|
||||
//Vector v0 = b - a, v1 = c - a, v2 = p - a;
|
||||
|
||||
@ -663,49 +746,6 @@ RMDEF Matrix MatrixRotate(Vector3 axis, float angle)
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
// Another implementation for MatrixRotate...
|
||||
RMDEF Matrix MatrixRotate(float angle, float x, float y, float z)
|
||||
{
|
||||
Matrix result = MatrixIdentity();
|
||||
|
||||
float c = cosf(angle); // cosine
|
||||
float s = sinf(angle); // sine
|
||||
float c1 = 1.0f - c; // 1 - c
|
||||
|
||||
float m0 = result.m0, m4 = result.m4, m8 = result.m8, m12 = result.m12,
|
||||
m1 = result.m1, m5 = result.m5, m9 = result.m9, m13 = result.m13,
|
||||
m2 = result.m2, m6 = result.m6, m10 = result.m10, m14 = result.m14;
|
||||
|
||||
// build rotation matrix
|
||||
float r0 = x*x*c1 + c;
|
||||
float r1 = x*y*c1 + z*s;
|
||||
float r2 = x*z*c1 - y*s;
|
||||
float r4 = x*y*c1 - z*s;
|
||||
float r5 = y*y*c1 + c;
|
||||
float r6 = y*z*c1 + x*s;
|
||||
float r8 = x*z*c1 + y*s;
|
||||
float r9 = y*z*c1 - x*s;
|
||||
float r10= z*z*c1 + c;
|
||||
|
||||
// multiply rotation matrix
|
||||
result.m0 = r0*m0 + r4*m1 + r8*m2;
|
||||
result.m1 = r1*m0 + r5*m1 + r9*m2;
|
||||
result.m2 = r2*m0 + r6*m1 + r10*m2;
|
||||
result.m4 = r0*m4 + r4*m5 + r8*m6;
|
||||
result.m5 = r1*m4 + r5*m5 + r9*m6;
|
||||
result.m6 = r2*m4 + r6*m5 + r10*m6;
|
||||
result.m8 = r0*m8 + r4*m9 + r8*m10;
|
||||
result.m9 = r1*m8 + r5*m9 + r9*m10;
|
||||
result.m10 = r2*m8 + r6*m9 + r10*m10;
|
||||
result.m12 = r0*m12+ r4*m13 + r8*m14;
|
||||
result.m13 = r1*m12+ r5*m13 + r9*m14;
|
||||
result.m14 = r2*m12+ r6*m13 + r10*m14;
|
||||
|
||||
return result;
|
||||
}
|
||||
*/
|
||||
|
||||
// Returns x-rotation matrix (angle in radians)
|
||||
RMDEF Matrix MatrixRotateX(float angle)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user