Review shaders for GLSL 100
This commit is contained in:
parent
84fb2e00df
commit
f1ffb3f573
60
examples/shaders/resources/shaders/glsl100/cubes_panning.fs
Normal file
60
examples/shaders/resources/shaders/glsl100/cubes_panning.fs
Normal file
@ -0,0 +1,60 @@
|
||||
#version 100
|
||||
|
||||
precision mediump float;
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
varying vec2 fragTexCoord;
|
||||
varying vec4 fragColor;
|
||||
|
||||
// Custom variables
|
||||
#define PI 3.14159265358979323846
|
||||
uniform float uTime = 0.0;
|
||||
|
||||
float divisions = 5.0;
|
||||
float angle = 0.0;
|
||||
|
||||
vec2 VectorRotateTime(vec2 v, float speed)
|
||||
{
|
||||
float time = uTime*speed;
|
||||
float localTime = fract(time); // The time domain this works on is 1 sec.
|
||||
|
||||
if ((localTime >= 0.0) && (localTime < 0.25)) angle = 0.0;
|
||||
else if ((localTime >= 0.25) && (localTime < 0.50)) angle = PI/4*sin(2*PI*localTime - PI/2);
|
||||
else if ((localTime >= 0.50) && (localTime < 0.75)) angle = PI*0.25;
|
||||
else if ((localTime >= 0.75) && (localTime < 1.00)) angle = PI/4*sin(2*PI*localTime);
|
||||
|
||||
// Rotate vector by angle
|
||||
v -= 0.5;
|
||||
v = mat2(cos(angle), -sin(angle), sin(angle), cos(angle))*v;
|
||||
v += 0.5;
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
float Rectangle(in vec2 st, in float size, in float fill)
|
||||
{
|
||||
float roundSize = 0.5 - size/2.0;
|
||||
float left = step(roundSize, st.x);
|
||||
float top = step(roundSize, st.y);
|
||||
float bottom = step(roundSize, 1.0 - st.y);
|
||||
float right = step(roundSize, 1.0 - st.x);
|
||||
|
||||
return (left*bottom*right*top)*fill;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
vec2 fragPos = fragTexCoord;
|
||||
fragPos.xy += uTime/9.0;
|
||||
|
||||
fragPos *= divisions;
|
||||
vec2 ipos = floor(fragPos); // Get the integer coords
|
||||
vec2 fpos = fract(fragPos); // Get the fractional coords
|
||||
|
||||
fpos = VectorRotateTime(fpos, 0.2);
|
||||
|
||||
float alpha = Rectangle(fpos, 0.216, 1.0);
|
||||
vec3 color = vec3(0.3, 0.3, 0.3);
|
||||
|
||||
gl_FragColor = vec4(color, alpha);
|
||||
}
|
26
examples/shaders/resources/shaders/glsl100/depth.fs
Normal file
26
examples/shaders/resources/shaders/glsl100/depth.fs
Normal file
@ -0,0 +1,26 @@
|
||||
#version 100
|
||||
|
||||
precision mediump float;
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
varying vec2 fragTexCoord;
|
||||
varying vec4 fragColor;
|
||||
|
||||
// Input uniform values
|
||||
uniform sampler2D texture0; // Depth texture
|
||||
uniform vec4 colDiffuse;
|
||||
|
||||
// NOTE: Add here your custom variables
|
||||
|
||||
void main()
|
||||
{
|
||||
float zNear = 0.01; // camera z near
|
||||
float zFar = 10.0; // camera z far
|
||||
float z = texture2D(texture0, fragTexCoord).x;
|
||||
|
||||
// Linearize depth value
|
||||
float depth = (2.0*zNear)/(zFar + zNear - z*(zFar - zNear));
|
||||
|
||||
// Calculate final fragment color
|
||||
gl_FragColor = vec4(depth, depth, depth, 1.0f);
|
||||
}
|
82
examples/shaders/resources/shaders/glsl100/julia_set.fs
Normal file
82
examples/shaders/resources/shaders/glsl100/julia_set.fs
Normal file
@ -0,0 +1,82 @@
|
||||
#version 100
|
||||
|
||||
precision mediump float;
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
varying vec2 fragTexCoord;
|
||||
varying vec4 fragColor;
|
||||
|
||||
uniform vec2 screenDims; // Dimensions of the screen
|
||||
uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c
|
||||
uniform vec2 offset; // Offset of the scale.
|
||||
uniform float zoom; // Zoom of the scale.
|
||||
|
||||
const int MAX_ITERATIONS = 255; // Max iterations to do.
|
||||
|
||||
// Square a complex number
|
||||
vec2 ComplexSquare(vec2 z)
|
||||
{
|
||||
return vec2(
|
||||
z.x * z.x - z.y * z.y,
|
||||
z.x * z.y * 2.0
|
||||
);
|
||||
}
|
||||
|
||||
// Convert Hue Saturation Value (HSV) color into RGB
|
||||
vec3 Hsv2rgb(vec3 c)
|
||||
{
|
||||
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
|
||||
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
|
||||
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
|
||||
}
|
||||
|
||||
|
||||
void main()
|
||||
{
|
||||
// The pixel coordinates scaled so they are on the mandelbrot scale
|
||||
// y also flipped due to opengl
|
||||
vec2 z = vec2((((gl_FragCoord.x + offset.x)/screenDims.x)*2.5)/zoom,
|
||||
(((screenDims.y - gl_FragCoord.y + offset.y)/screenDims.y)*1.5)/zoom);
|
||||
|
||||
int iterations = 0;
|
||||
|
||||
/**********************************************************************************************
|
||||
Julia sets use a function z^2 + c, where c is a constant.
|
||||
This function is iterated until the nature of the point is determined.
|
||||
|
||||
If the magnitude of the number becomes greater than 2, then from that point onward
|
||||
the number will get bigger and bigger, and will never get smaller (tends towards infinity).
|
||||
2^2 = 4, 4^2 = 8 and so on.
|
||||
So at 2 we stop iterating.
|
||||
|
||||
If the number is below 2, we keep iterating.
|
||||
But when do we stop iterating if the number is always below 2 (it converges)?
|
||||
That is what MAX_ITERATIONS is for.
|
||||
Then we can divide the iterations by the MAX_ITERATIONS value to get a normalized value that we can
|
||||
then map to a color.
|
||||
|
||||
We use dot product (z.x * z.x + z.y * z.y) to determine the magnitude (length) squared.
|
||||
And once the magnitude squared is > 4, then magnitude > 2 is also true (saves computational power).
|
||||
*************************************************************************************************/
|
||||
for (iterations = 0; iterations < MAX_ITERATIONS; iterations++)
|
||||
{
|
||||
z = ComplexSquare(z) + c; // Iterate function
|
||||
|
||||
if (dot(z, z) > 4.0) break;
|
||||
}
|
||||
|
||||
// Another few iterations decreases errors in the smoothing calculation.
|
||||
// See http://linas.org/art-gallery/escape/escape.html for more information.
|
||||
z = ComplexSquare(z) + c;
|
||||
z = ComplexSquare(z) + c;
|
||||
|
||||
// This last part smooths the color (again see link above).
|
||||
float smoothVal = float(iterations) + 1.0 - (log(log(length(z)))/log(2.0));
|
||||
|
||||
// Normalize the value so it is between 0 and 1.
|
||||
float norm = smoothVal/float(MAX_ITERATIONS);
|
||||
|
||||
// If in set, color black. 0.999 allows for some float accuracy error.
|
||||
if (norm > 0.999) gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
|
||||
else gl_FragColor = vec4(Hsv2rgb(vec3(norm, 1.0, 1.0)), 1.0);
|
||||
}
|
@ -15,7 +15,7 @@ uniform ivec3 palette[colors];
|
||||
void main()
|
||||
{
|
||||
// Texel color fetching from texture sampler
|
||||
vec4 texelColor = texture(texture0, fragTexCoord) * fragColor;
|
||||
vec4 texelColor = texture2D(texture0, fragTexCoord) * fragColor;
|
||||
|
||||
// Convert the (normalized) texel color RED component (GB would work, too)
|
||||
// to the palette index by scaling up from [0, 1] to [0, 255].
|
||||
|
431
examples/shaders/resources/shaders/glsl100/raymarching.fs
Normal file
431
examples/shaders/resources/shaders/glsl100/raymarching.fs
Normal file
@ -0,0 +1,431 @@
|
||||
#version 100
|
||||
|
||||
precision mediump float;
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
varying vec2 fragTexCoord;
|
||||
varying vec4 fragColor;
|
||||
|
||||
uniform vec3 viewEye;
|
||||
uniform vec3 viewCenter;
|
||||
uniform vec3 viewUp;
|
||||
uniform float deltaTime;
|
||||
uniform float runTime;
|
||||
uniform vec2 resolution;
|
||||
|
||||
// The MIT License
|
||||
// Copyright © 2013 Inigo Quilez
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to deal
|
||||
// in the Software without restriction, including without limitation the rights
|
||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
|
||||
// The above copyright notice and this permission notice shall be included in all
|
||||
// copies or substantial portions of the Software.
|
||||
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
// SOFTWARE.
|
||||
|
||||
// A list of useful distance function to simple primitives, and an example on how to
|
||||
// do some interesting boolean operations, repetition and displacement.
|
||||
//
|
||||
// More info here: http://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
|
||||
|
||||
#define AA 1 // make this 1 is your machine is too slow
|
||||
|
||||
//------------------------------------------------------------------
|
||||
|
||||
float sdPlane( vec3 p )
|
||||
{
|
||||
return p.y;
|
||||
}
|
||||
|
||||
float sdSphere( vec3 p, float s )
|
||||
{
|
||||
return length(p)-s;
|
||||
}
|
||||
|
||||
float sdBox( vec3 p, vec3 b )
|
||||
{
|
||||
vec3 d = abs(p) - b;
|
||||
return min(max(d.x,max(d.y,d.z)),0.0) + length(max(d,0.0));
|
||||
}
|
||||
|
||||
float sdEllipsoid( in vec3 p, in vec3 r )
|
||||
{
|
||||
return (length( p/r ) - 1.0) * min(min(r.x,r.y),r.z);
|
||||
}
|
||||
|
||||
float udRoundBox( vec3 p, vec3 b, float r )
|
||||
{
|
||||
return length(max(abs(p)-b,0.0))-r;
|
||||
}
|
||||
|
||||
float sdTorus( vec3 p, vec2 t )
|
||||
{
|
||||
return length( vec2(length(p.xz)-t.x,p.y) )-t.y;
|
||||
}
|
||||
|
||||
float sdHexPrism( vec3 p, vec2 h )
|
||||
{
|
||||
vec3 q = abs(p);
|
||||
#if 0
|
||||
return max(q.z-h.y,max((q.x*0.866025+q.y*0.5),q.y)-h.x);
|
||||
#else
|
||||
float d1 = q.z-h.y;
|
||||
float d2 = max((q.x*0.866025+q.y*0.5),q.y)-h.x;
|
||||
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
|
||||
#endif
|
||||
}
|
||||
|
||||
float sdCapsule( vec3 p, vec3 a, vec3 b, float r )
|
||||
{
|
||||
vec3 pa = p-a, ba = b-a;
|
||||
float h = clamp( dot(pa,ba)/dot(ba,ba), 0.0, 1.0 );
|
||||
return length( pa - ba*h ) - r;
|
||||
}
|
||||
|
||||
float sdEquilateralTriangle( in vec2 p )
|
||||
{
|
||||
const float k = sqrt(3.0);
|
||||
p.x = abs(p.x) - 1.0;
|
||||
p.y = p.y + 1.0/k;
|
||||
if( p.x + k*p.y > 0.0 ) p = vec2( p.x - k*p.y, -k*p.x - p.y )/2.0;
|
||||
p.x += 2.0 - 2.0*clamp( (p.x+2.0)/2.0, 0.0, 1.0 );
|
||||
return -length(p)*sign(p.y);
|
||||
}
|
||||
|
||||
float sdTriPrism( vec3 p, vec2 h )
|
||||
{
|
||||
vec3 q = abs(p);
|
||||
float d1 = q.z-h.y;
|
||||
#if 1
|
||||
// distance bound
|
||||
float d2 = max(q.x*0.866025+p.y*0.5,-p.y)-h.x*0.5;
|
||||
#else
|
||||
// correct distance
|
||||
h.x *= 0.866025;
|
||||
float d2 = sdEquilateralTriangle(p.xy/h.x)*h.x;
|
||||
#endif
|
||||
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
|
||||
}
|
||||
|
||||
float sdCylinder( vec3 p, vec2 h )
|
||||
{
|
||||
vec2 d = abs(vec2(length(p.xz),p.y)) - h;
|
||||
return min(max(d.x,d.y),0.0) + length(max(d,0.0));
|
||||
}
|
||||
|
||||
float sdCone( in vec3 p, in vec3 c )
|
||||
{
|
||||
vec2 q = vec2( length(p.xz), p.y );
|
||||
float d1 = -q.y-c.z;
|
||||
float d2 = max( dot(q,c.xy), q.y);
|
||||
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
|
||||
}
|
||||
|
||||
float sdConeSection( in vec3 p, in float h, in float r1, in float r2 )
|
||||
{
|
||||
float d1 = -p.y - h;
|
||||
float q = p.y - h;
|
||||
float si = 0.5*(r1-r2)/h;
|
||||
float d2 = max( sqrt( dot(p.xz,p.xz)*(1.0-si*si)) + q*si - r2, q );
|
||||
return length(max(vec2(d1,d2),0.0)) + min(max(d1,d2), 0.);
|
||||
}
|
||||
|
||||
float sdPryamid4(vec3 p, vec3 h ) // h = { cos a, sin a, height }
|
||||
{
|
||||
// Tetrahedron = Octahedron - Cube
|
||||
float box = sdBox( p - vec3(0,-2.0*h.z,0), vec3(2.0*h.z) );
|
||||
|
||||
float d = 0.0;
|
||||
d = max( d, abs( dot(p, vec3( -h.x, h.y, 0 )) ));
|
||||
d = max( d, abs( dot(p, vec3( h.x, h.y, 0 )) ));
|
||||
d = max( d, abs( dot(p, vec3( 0, h.y, h.x )) ));
|
||||
d = max( d, abs( dot(p, vec3( 0, h.y,-h.x )) ));
|
||||
float octa = d - h.z;
|
||||
return max(-box,octa); // Subtraction
|
||||
}
|
||||
|
||||
float length2( vec2 p )
|
||||
{
|
||||
return sqrt( p.x*p.x + p.y*p.y );
|
||||
}
|
||||
|
||||
float length6( vec2 p )
|
||||
{
|
||||
p = p*p*p; p = p*p;
|
||||
return pow( p.x + p.y, 1.0/6.0 );
|
||||
}
|
||||
|
||||
float length8( vec2 p )
|
||||
{
|
||||
p = p*p; p = p*p; p = p*p;
|
||||
return pow( p.x + p.y, 1.0/8.0 );
|
||||
}
|
||||
|
||||
float sdTorus82( vec3 p, vec2 t )
|
||||
{
|
||||
vec2 q = vec2(length2(p.xz)-t.x,p.y);
|
||||
return length8(q)-t.y;
|
||||
}
|
||||
|
||||
float sdTorus88( vec3 p, vec2 t )
|
||||
{
|
||||
vec2 q = vec2(length8(p.xz)-t.x,p.y);
|
||||
return length8(q)-t.y;
|
||||
}
|
||||
|
||||
float sdCylinder6( vec3 p, vec2 h )
|
||||
{
|
||||
return max( length6(p.xz)-h.x, abs(p.y)-h.y );
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------
|
||||
|
||||
float opS( float d1, float d2 )
|
||||
{
|
||||
return max(-d2,d1);
|
||||
}
|
||||
|
||||
vec2 opU( vec2 d1, vec2 d2 )
|
||||
{
|
||||
return (d1.x<d2.x) ? d1 : d2;
|
||||
}
|
||||
|
||||
vec3 opRep( vec3 p, vec3 c )
|
||||
{
|
||||
return mod(p,c)-0.5*c;
|
||||
}
|
||||
|
||||
vec3 opTwist( vec3 p )
|
||||
{
|
||||
float c = cos(10.0*p.y+10.0);
|
||||
float s = sin(10.0*p.y+10.0);
|
||||
mat2 m = mat2(c,-s,s,c);
|
||||
return vec3(m*p.xz,p.y);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------
|
||||
|
||||
vec2 map( in vec3 pos )
|
||||
{
|
||||
vec2 res = opU( vec2( sdPlane( pos), 1.0 ),
|
||||
vec2( sdSphere( pos-vec3( 0.0,0.25, 0.0), 0.25 ), 46.9 ) );
|
||||
res = opU( res, vec2( sdBox( pos-vec3( 1.0,0.25, 0.0), vec3(0.25) ), 3.0 ) );
|
||||
res = opU( res, vec2( udRoundBox( pos-vec3( 1.0,0.25, 1.0), vec3(0.15), 0.1 ), 41.0 ) );
|
||||
res = opU( res, vec2( sdTorus( pos-vec3( 0.0,0.25, 1.0), vec2(0.20,0.05) ), 25.0 ) );
|
||||
res = opU( res, vec2( sdCapsule( pos,vec3(-1.3,0.10,-0.1), vec3(-0.8,0.50,0.2), 0.1 ), 31.9 ) );
|
||||
res = opU( res, vec2( sdTriPrism( pos-vec3(-1.0,0.25,-1.0), vec2(0.25,0.05) ),43.5 ) );
|
||||
res = opU( res, vec2( sdCylinder( pos-vec3( 1.0,0.30,-1.0), vec2(0.1,0.2) ), 8.0 ) );
|
||||
res = opU( res, vec2( sdCone( pos-vec3( 0.0,0.50,-1.0), vec3(0.8,0.6,0.3) ), 55.0 ) );
|
||||
res = opU( res, vec2( sdTorus82( pos-vec3( 0.0,0.25, 2.0), vec2(0.20,0.05) ),50.0 ) );
|
||||
res = opU( res, vec2( sdTorus88( pos-vec3(-1.0,0.25, 2.0), vec2(0.20,0.05) ),43.0 ) );
|
||||
res = opU( res, vec2( sdCylinder6( pos-vec3( 1.0,0.30, 2.0), vec2(0.1,0.2) ), 12.0 ) );
|
||||
res = opU( res, vec2( sdHexPrism( pos-vec3(-1.0,0.20, 1.0), vec2(0.25,0.05) ),17.0 ) );
|
||||
res = opU( res, vec2( sdPryamid4( pos-vec3(-1.0,0.15,-2.0), vec3(0.8,0.6,0.25) ),37.0 ) );
|
||||
res = opU( res, vec2( opS( udRoundBox( pos-vec3(-2.0,0.2, 1.0), vec3(0.15),0.05),
|
||||
sdSphere( pos-vec3(-2.0,0.2, 1.0), 0.25)), 13.0 ) );
|
||||
res = opU( res, vec2( opS( sdTorus82( pos-vec3(-2.0,0.2, 0.0), vec2(0.20,0.1)),
|
||||
sdCylinder( opRep( vec3(atan(pos.x+2.0,pos.z)/6.2831, pos.y, 0.02+0.5*length(pos-vec3(-2.0,0.2, 0.0))), vec3(0.05,1.0,0.05)), vec2(0.02,0.6))), 51.0 ) );
|
||||
res = opU( res, vec2( 0.5*sdSphere( pos-vec3(-2.0,0.25,-1.0), 0.2 ) + 0.03*sin(50.0*pos.x)*sin(50.0*pos.y)*sin(50.0*pos.z), 65.0 ) );
|
||||
res = opU( res, vec2( 0.5*sdTorus( opTwist(pos-vec3(-2.0,0.25, 2.0)),vec2(0.20,0.05)), 46.7 ) );
|
||||
res = opU( res, vec2( sdConeSection( pos-vec3( 0.0,0.35,-2.0), 0.15, 0.2, 0.1 ), 13.67 ) );
|
||||
res = opU( res, vec2( sdEllipsoid( pos-vec3( 1.0,0.35,-2.0), vec3(0.15, 0.2, 0.05) ), 43.17 ) );
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
vec2 castRay( in vec3 ro, in vec3 rd )
|
||||
{
|
||||
float tmin = 0.2;
|
||||
float tmax = 30.0;
|
||||
|
||||
#if 1
|
||||
// bounding volume
|
||||
float tp1 = (0.0-ro.y)/rd.y; if( tp1>0.0 ) tmax = min( tmax, tp1 );
|
||||
float tp2 = (1.6-ro.y)/rd.y; if( tp2>0.0 ) { if( ro.y>1.6 ) tmin = max( tmin, tp2 );
|
||||
else tmax = min( tmax, tp2 ); }
|
||||
#endif
|
||||
|
||||
float t = tmin;
|
||||
float m = -1.0;
|
||||
for( int i=0; i<64; i++ )
|
||||
{
|
||||
float precis = 0.0005*t;
|
||||
vec2 res = map( ro+rd*t );
|
||||
if( res.x<precis || t>tmax ) break;
|
||||
t += res.x;
|
||||
m = res.y;
|
||||
}
|
||||
|
||||
if( t>tmax ) m=-1.0;
|
||||
return vec2( t, m );
|
||||
}
|
||||
|
||||
|
||||
float calcSoftshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax )
|
||||
{
|
||||
float res = 1.0;
|
||||
float t = mint;
|
||||
for( int i=0; i<16; i++ )
|
||||
{
|
||||
float h = map( ro + rd*t ).x;
|
||||
res = min( res, 8.0*h/t );
|
||||
t += clamp( h, 0.02, 0.10 );
|
||||
if( h<0.001 || t>tmax ) break;
|
||||
}
|
||||
return clamp( res, 0.0, 1.0 );
|
||||
}
|
||||
|
||||
vec3 calcNormal( in vec3 pos )
|
||||
{
|
||||
vec2 e = vec2(1.0,-1.0)*0.5773*0.0005;
|
||||
return normalize( e.xyy*map( pos + e.xyy ).x +
|
||||
e.yyx*map( pos + e.yyx ).x +
|
||||
e.yxy*map( pos + e.yxy ).x +
|
||||
e.xxx*map( pos + e.xxx ).x );
|
||||
/*
|
||||
vec3 eps = vec3( 0.0005, 0.0, 0.0 );
|
||||
vec3 nor = vec3(
|
||||
map(pos+eps.xyy).x - map(pos-eps.xyy).x,
|
||||
map(pos+eps.yxy).x - map(pos-eps.yxy).x,
|
||||
map(pos+eps.yyx).x - map(pos-eps.yyx).x );
|
||||
return normalize(nor);
|
||||
*/
|
||||
}
|
||||
|
||||
float calcAO( in vec3 pos, in vec3 nor )
|
||||
{
|
||||
float occ = 0.0;
|
||||
float sca = 1.0;
|
||||
for( int i=0; i<5; i++ )
|
||||
{
|
||||
float hr = 0.01 + 0.12*float(i)/4.0;
|
||||
vec3 aopos = nor * hr + pos;
|
||||
float dd = map( aopos ).x;
|
||||
occ += -(dd-hr)*sca;
|
||||
sca *= 0.95;
|
||||
}
|
||||
return clamp( 1.0 - 3.0*occ, 0.0, 1.0 );
|
||||
}
|
||||
|
||||
// http://iquilezles.org/www/articles/checkerfiltering/checkerfiltering.htm
|
||||
float checkersGradBox( in vec2 p )
|
||||
{
|
||||
// filter kernel
|
||||
vec2 w = fwidth(p) + 0.001;
|
||||
// analytical integral (box filter)
|
||||
vec2 i = 2.0*(abs(fract((p-0.5*w)*0.5)-0.5)-abs(fract((p+0.5*w)*0.5)-0.5))/w;
|
||||
// xor pattern
|
||||
return 0.5 - 0.5*i.x*i.y;
|
||||
}
|
||||
|
||||
vec3 render( in vec3 ro, in vec3 rd )
|
||||
{
|
||||
vec3 col = vec3(0.7, 0.9, 1.0) +rd.y*0.8;
|
||||
vec2 res = castRay(ro,rd);
|
||||
float t = res.x;
|
||||
float m = res.y;
|
||||
if( m>-0.5 )
|
||||
{
|
||||
vec3 pos = ro + t*rd;
|
||||
vec3 nor = calcNormal( pos );
|
||||
vec3 ref = reflect( rd, nor );
|
||||
|
||||
// material
|
||||
col = 0.45 + 0.35*sin( vec3(0.05,0.08,0.10)*(m-1.0) );
|
||||
if( m<1.5 )
|
||||
{
|
||||
|
||||
float f = checkersGradBox( 5.0*pos.xz );
|
||||
col = 0.3 + f*vec3(0.1);
|
||||
}
|
||||
|
||||
// lighting
|
||||
float occ = calcAO( pos, nor );
|
||||
vec3 lig = normalize( vec3(cos(-0.4 * runTime), sin(0.7 * runTime), -0.6) );
|
||||
vec3 hal = normalize( lig-rd );
|
||||
float amb = clamp( 0.5+0.5*nor.y, 0.0, 1.0 );
|
||||
float dif = clamp( dot( nor, lig ), 0.0, 1.0 );
|
||||
float bac = clamp( dot( nor, normalize(vec3(-lig.x,0.0,-lig.z))), 0.0, 1.0 )*clamp( 1.0-pos.y,0.0,1.0);
|
||||
float dom = smoothstep( -0.1, 0.1, ref.y );
|
||||
float fre = pow( clamp(1.0+dot(nor,rd),0.0,1.0), 2.0 );
|
||||
|
||||
dif *= calcSoftshadow( pos, lig, 0.02, 2.5 );
|
||||
dom *= calcSoftshadow( pos, ref, 0.02, 2.5 );
|
||||
|
||||
float spe = pow( clamp( dot( nor, hal ), 0.0, 1.0 ),16.0)*
|
||||
dif *
|
||||
(0.04 + 0.96*pow( clamp(1.0+dot(hal,rd),0.0,1.0), 5.0 ));
|
||||
|
||||
vec3 lin = vec3(0.0);
|
||||
lin += 1.30*dif*vec3(1.00,0.80,0.55);
|
||||
lin += 0.40*amb*vec3(0.40,0.60,1.00)*occ;
|
||||
lin += 0.50*dom*vec3(0.40,0.60,1.00)*occ;
|
||||
lin += 0.50*bac*vec3(0.25,0.25,0.25)*occ;
|
||||
lin += 0.25*fre*vec3(1.00,1.00,1.00)*occ;
|
||||
col = col*lin;
|
||||
col += 10.00*spe*vec3(1.00,0.90,0.70);
|
||||
|
||||
col = mix( col, vec3(0.8,0.9,1.0), 1.0-exp( -0.0002*t*t*t ) );
|
||||
}
|
||||
|
||||
return vec3( clamp(col,0.0,1.0) );
|
||||
}
|
||||
|
||||
mat3 setCamera( in vec3 ro, in vec3 ta, float cr )
|
||||
{
|
||||
vec3 cw = normalize(ta-ro);
|
||||
vec3 cp = vec3(sin(cr), cos(cr),0.0);
|
||||
vec3 cu = normalize( cross(cw,cp) );
|
||||
vec3 cv = normalize( cross(cu,cw) );
|
||||
return mat3( cu, cv, cw );
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
vec3 tot = vec3(0.0);
|
||||
#if AA>1
|
||||
for( int m=0; m<AA; m++ )
|
||||
for( int n=0; n<AA; n++ )
|
||||
{
|
||||
// pixel coordinates
|
||||
vec2 o = vec2(float(m),float(n)) / float(AA) - 0.5;
|
||||
vec2 p = (-resolution.xy + 2.0*(gl_FragCoord.xy+o))/resolution.y;
|
||||
#else
|
||||
vec2 p = (-resolution.xy + 2.0*gl_FragCoord.xy)/resolution.y;
|
||||
#endif
|
||||
|
||||
// RAY: Camera is provided from raylib
|
||||
//vec3 ro = vec3( -0.5+3.5*cos(0.1*time + 6.0*mo.x), 1.0 + 2.0*mo.y, 0.5 + 4.0*sin(0.1*time + 6.0*mo.x) );
|
||||
|
||||
vec3 ro = viewEye;
|
||||
vec3 ta = viewCenter;
|
||||
|
||||
// camera-to-world transformation
|
||||
mat3 ca = setCamera( ro, ta, 0.0 );
|
||||
// ray direction
|
||||
vec3 rd = ca * normalize( vec3(p.xy,2.0) );
|
||||
|
||||
// render
|
||||
vec3 col = render( ro, rd );
|
||||
|
||||
// gamma
|
||||
col = pow( col, vec3(0.4545) );
|
||||
|
||||
tot += col;
|
||||
#if AA>1
|
||||
}
|
||||
tot /= float(AA*AA);
|
||||
#endif
|
||||
|
||||
gl_FragColor = vec4( tot, 1.0 );
|
||||
}
|
36
examples/shaders/resources/shaders/glsl100/wave.fs
Normal file
36
examples/shaders/resources/shaders/glsl100/wave.fs
Normal file
@ -0,0 +1,36 @@
|
||||
#version 100
|
||||
|
||||
precision mediump float;
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
varying vec2 fragTexCoord;
|
||||
varying vec4 fragColor;
|
||||
|
||||
// Input uniform values
|
||||
uniform sampler2D texture0;
|
||||
uniform vec4 colDiffuse;
|
||||
|
||||
uniform float secondes;
|
||||
|
||||
uniform vec2 size;
|
||||
|
||||
uniform float freqX;
|
||||
uniform float freqY;
|
||||
uniform float ampX;
|
||||
uniform float ampY;
|
||||
uniform float speedX;
|
||||
uniform float speedY;
|
||||
|
||||
void main() {
|
||||
float pixelWidth = 1.0 / size.x;
|
||||
float pixelHeight = 1.0 / size.y;
|
||||
float aspect = pixelHeight / pixelWidth;
|
||||
float boxLeft = 0.0;
|
||||
float boxTop = 0.0;
|
||||
|
||||
vec2 p = fragTexCoord;
|
||||
p.x += cos((fragTexCoord.y - boxTop) * freqX / ( pixelWidth * 750.0) + (secondes * speedX)) * ampX * pixelWidth;
|
||||
p.y += sin((fragTexCoord.x - boxLeft) * freqY * aspect / ( pixelHeight * 750.0) + (secondes * speedY)) * ampY * pixelHeight;
|
||||
|
||||
gl_FragColor = texture2D(texture0, p)*colDiffuse*fragColor;
|
||||
}
|
82
examples/shaders/resources/shaders/glsl330/julia_set.fs
Normal file
82
examples/shaders/resources/shaders/glsl330/julia_set.fs
Normal file
@ -0,0 +1,82 @@
|
||||
#version 330
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
in vec2 fragTexCoord;
|
||||
in vec4 fragColor;
|
||||
|
||||
// Output fragment color
|
||||
out vec4 finalColor;
|
||||
|
||||
uniform vec2 screenDims; // Dimensions of the screen
|
||||
uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c
|
||||
uniform vec2 offset; // Offset of the scale.
|
||||
uniform float zoom; // Zoom of the scale.
|
||||
|
||||
const int MAX_ITERATIONS = 255; // Max iterations to do.
|
||||
|
||||
// Square a complex number
|
||||
vec2 ComplexSquare(vec2 z)
|
||||
{
|
||||
return vec2(
|
||||
z.x * z.x - z.y * z.y,
|
||||
z.x * z.y * 2.0
|
||||
);
|
||||
}
|
||||
|
||||
// Convert Hue Saturation Value (HSV) color into RGB
|
||||
vec3 Hsv2rgb(vec3 c)
|
||||
{
|
||||
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
|
||||
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
|
||||
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
// The pixel coordinates scaled so they are on the mandelbrot scale
|
||||
// y also flipped due to opengl
|
||||
vec2 z = vec2((((gl_FragCoord.x + offset.x)/screenDims.x)*2.5)/zoom,
|
||||
(((screenDims.y - gl_FragCoord.y + offset.y)/screenDims.y)*1.5)/zoom);
|
||||
|
||||
int iterations = 0;
|
||||
|
||||
/**********************************************************************************************
|
||||
Julia sets use a function z^2 + c, where c is a constant.
|
||||
This function is iterated until the nature of the point is determined.
|
||||
|
||||
If the magnitude of the number becomes greater than 2, then from that point onward
|
||||
the number will get bigger and bigger, and will never get smaller (tends towards infinity).
|
||||
2^2 = 4, 4^2 = 8 and so on.
|
||||
So at 2 we stop iterating.
|
||||
|
||||
If the number is below 2, we keep iterating.
|
||||
But when do we stop iterating if the number is always below 2 (it converges)?
|
||||
That is what MAX_ITERATIONS is for.
|
||||
Then we can divide the iterations by the MAX_ITERATIONS value to get a normalized value that we can
|
||||
then map to a color.
|
||||
|
||||
We use dot product (z.x * z.x + z.y * z.y) to determine the magnitude (length) squared.
|
||||
And once the magnitude squared is > 4, then magnitude > 2 is also true (saves computational power).
|
||||
*************************************************************************************************/
|
||||
for (iterations = 0; iterations < MAX_ITERATIONS; iterations++)
|
||||
{
|
||||
z = ComplexSquare(z) + c; // Iterate function
|
||||
|
||||
if (dot(z, z) > 4.0) break;
|
||||
}
|
||||
|
||||
// Another few iterations decreases errors in the smoothing calculation.
|
||||
// See http://linas.org/art-gallery/escape/escape.html for more information.
|
||||
z = ComplexSquare(z) + c;
|
||||
z = ComplexSquare(z) + c;
|
||||
|
||||
// This last part smooths the color (again see link above).
|
||||
float smoothVal = float(iterations) + 1.0 - (log(log(length(z)))/log(2.0));
|
||||
|
||||
// Normalize the value so it is between 0 and 1.
|
||||
float norm = smoothVal/float(MAX_ITERATIONS);
|
||||
|
||||
// If in set, color black. 0.999 allows for some float accuracy error.
|
||||
if (norm > 0.999) finalColor = vec4(0.0, 0.0, 0.0, 1.0);
|
||||
else finalColor = vec4(Hsv2rgb(vec3(norm, 1.0, 1.0)), 1.0);
|
||||
}
|
@ -1,86 +0,0 @@
|
||||
#version 330
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
|
||||
uniform vec2 screenDims; // Dimensions of the screen
|
||||
uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c
|
||||
uniform vec2 offset; // Offset of the scale.
|
||||
uniform float zoom; // Zoom of the scale.
|
||||
|
||||
// Output fragment color
|
||||
out vec4 finalColor;
|
||||
|
||||
const int MAX_ITERATIONS = 255; // Max iterations to do.
|
||||
|
||||
// Square a complex number
|
||||
vec2 complexSquare(vec2 z)
|
||||
{
|
||||
return vec2(
|
||||
z.x * z.x - z.y * z.y,
|
||||
z.x * z.y * 2.0
|
||||
);
|
||||
}
|
||||
|
||||
// Convert Hue Saturation Value color into RGB
|
||||
vec3 hsv2rgb(vec3 c)
|
||||
{
|
||||
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
|
||||
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
|
||||
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
|
||||
}
|
||||
|
||||
|
||||
void main()
|
||||
{
|
||||
// The pixel coordinates scaled so they are on the mandelbrot scale.
|
||||
vec2 z = vec2((((gl_FragCoord.x + offset.x)/screenDims.x) * 2.5)/zoom,
|
||||
(((screenDims.y - gl_FragCoord.y + offset.y)/screenDims.y) * 1.5)/zoom); // y also flipped due to opengl
|
||||
int iterations = 0;
|
||||
|
||||
/*
|
||||
Julia sets use a function z^2 + c, where c is a constant.
|
||||
This function is iterated until the nature of the point is determined.
|
||||
|
||||
If the magnitude of the number becomes greater than 2, then from that point onward
|
||||
the number will get bigger and bigger, and will never get smaller (tends towards infinity).
|
||||
2^2 = 4, 4^2 = 8 and so on.
|
||||
So at 2 we stop iterating.
|
||||
|
||||
If the number is below 2, we keep iterating.
|
||||
But when do we stop iterating if the number is always below 2 (it converges)?
|
||||
That is what MAX_ITERATIONS is for.
|
||||
Then we can divide the iterations by the MAX_ITERATIONS value to get a normalized value that we can
|
||||
then map to a color.
|
||||
|
||||
We use dot product (z.x * z.x + z.y * z.y) to determine the magnitude (length) squared.
|
||||
And once the magnitude squared is > 4, then magnitude > 2 is also true (saves computational power).
|
||||
*/
|
||||
for (iterations = 0; iterations < MAX_ITERATIONS; iterations++)
|
||||
{
|
||||
z = complexSquare(z) + c; // Iterate function
|
||||
if (dot(z, z) > 4.0)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Another few iterations decreases errors in the smoothing calculation.
|
||||
// See http://linas.org/art-gallery/escape/escape.html for more information.
|
||||
z = complexSquare(z) + c;
|
||||
z = complexSquare(z) + c;
|
||||
|
||||
// This last part smooths the color (again see link above).
|
||||
float smoothVal = float(iterations) + 1.0 - (log(log(length(z)))/log(2.0));
|
||||
|
||||
// Normalize the value so it is between 0 and 1.
|
||||
float norm = smoothVal/float(MAX_ITERATIONS);
|
||||
|
||||
// If in set, color black. 0.999 allows for some float accuracy error.
|
||||
if (norm > 0.999)
|
||||
{
|
||||
finalColor = vec4(0.0, 0.0, 0.0, 1.0);
|
||||
} else
|
||||
{
|
||||
finalColor = vec4(hsv2rgb(vec3(norm, 1.0, 1.0)), 1.0);
|
||||
}
|
||||
}
|
@ -1,5 +1,10 @@
|
||||
#version 330
|
||||
|
||||
// Input vertex attributes (from vertex shader)
|
||||
in vec2 fragTexCoord;
|
||||
in vec4 fragColor;
|
||||
|
||||
// Output fragment color
|
||||
out vec4 finalColor;
|
||||
|
||||
uniform vec3 viewEye;
|
||||
@ -11,7 +16,23 @@ uniform vec2 resolution;
|
||||
|
||||
// The MIT License
|
||||
// Copyright © 2013 Inigo Quilez
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to deal
|
||||
// in the Software without restriction, including without limitation the rights
|
||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
|
||||
// The above copyright notice and this permission notice shall be included in all
|
||||
// copies or substantial portions of the Software.
|
||||
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
// SOFTWARE.
|
||||
|
||||
// A list of useful distance function to simple primitives, and an example on how to
|
||||
// do some interesting boolean operations, repetition and displacement.
|
||||
|
@ -18,6 +18,12 @@
|
||||
|
||||
#include "raylib.h"
|
||||
|
||||
#if defined(PLATFORM_DESKTOP)
|
||||
#define GLSL_VERSION 330
|
||||
#else // PLATFORM_RPI, PLATFORM_ANDROID, PLATFORM_WEB
|
||||
#define GLSL_VERSION 100
|
||||
#endif
|
||||
|
||||
// A few good julia sets
|
||||
const float POINTS_OF_INTEREST[6][2] =
|
||||
{
|
||||
@ -40,7 +46,7 @@ int main()
|
||||
|
||||
// Load julia set shader
|
||||
// NOTE: Defining 0 (NULL) for vertex shader forces usage of internal default vertex shader
|
||||
Shader shader = LoadShader(0, "resources/shaders/glsl330/julia_shader.fs");
|
||||
Shader shader = LoadShader(0, FormatText("resources/shaders/glsl%i/julia_set.fs", GLSL_VERSION));
|
||||
|
||||
// c constant to use in z^2 + c
|
||||
float c[2] = { POINTS_OF_INTEREST[0][0], POINTS_OF_INTEREST[0][1] };
|
||||
|
Loading…
Reference in New Issue
Block a user