Adapted raymath as single header library

Added support for single header implementation and also inline functions
support
This commit is contained in:
raysan5 2016-01-20 18:20:05 +01:00
parent c8e8c0a002
commit efa1c96d19
6 changed files with 282 additions and 198 deletions

View File

@ -38,9 +38,12 @@
#include "raylib.h" // raylib main header
#include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 3.3+ or ES2
#include "raymath.h" // Required for data type Matrix and Matrix functions
#include "utils.h" // TraceLog() function
// NOTE: Includes Android fopen map, InitAssetManager()
#define RAYMATH_IMPLEMENTATION // Use raymath as a header-only library (includes implementation)
#define RAYMATH_EXTERN_INLINE // Compile raymath functions as static inline (remember, it's a compiler hint)
#include "raymath.h" // Required for Vector3 and Matrix functions
#include <stdio.h> // Standard input / output lib
#include <stdlib.h> // Declares malloc() and free() for memory management, rand(), atexit()
@ -643,6 +646,46 @@ float *ColorToFloat(Color color)
return buffer;
}
// Converts Vector3 to float array
float *VectorToFloat(Vector3 vec)
{
static float buffer[3];
buffer[0] = vec.x;
buffer[1] = vec.y;
buffer[2] = vec.z;
return buffer;
}
// Converts Matrix to float array
// NOTE: Returned vector is a transposed version of the Matrix struct,
// it should be this way because, despite raymath use OpenGL column-major convention,
// Matrix struct memory alignment and variables naming are not coherent
float *MatrixToFloat(Matrix mat)
{
static float buffer[16];
buffer[0] = mat.m0;
buffer[1] = mat.m4;
buffer[2] = mat.m8;
buffer[3] = mat.m12;
buffer[4] = mat.m1;
buffer[5] = mat.m5;
buffer[6] = mat.m9;
buffer[7] = mat.m13;
buffer[8] = mat.m2;
buffer[9] = mat.m6;
buffer[10] = mat.m10;
buffer[11] = mat.m14;
buffer[12] = mat.m3;
buffer[13] = mat.m7;
buffer[14] = mat.m11;
buffer[15] = mat.m15;
return buffer;
}
// Returns a Color struct from hexadecimal value
Color GetColor(int hexValue)
{

View File

@ -34,8 +34,8 @@
#include <string.h> // Required for strcmp()
#include <math.h> // Used for sin, cos, tan
#include "raymath.h" // Required for data type Matrix and Matrix functions
#include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 3.3+ or ES2
#include "raymath.h" // Required for data type Matrix and Matrix functions
//----------------------------------------------------------------------------------
// Defines and Macros
@ -1373,8 +1373,8 @@ bool CheckCollisionRayBox(Ray ray, Vector3 minBBox, Vector3 maxBBox)
BoundingBox CalculateBoundingBox(Mesh mesh)
{
// Get min and max vertex to construct bounds (AABB)
Vector3 minVertex = mesh.vertices[0];
Vector3 maxVertex = mesh.vertices[0];
Vector3 minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
Vector3 maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
for (int i = 1; i < mesh.vertexCount; i++)
{

View File

@ -547,8 +547,8 @@ float GetFrameTime(void); // Returns time in s
Color GetColor(int hexValue); // Returns a Color struct from hexadecimal value
int GetHexValue(Color color); // Returns hexadecimal value for a Color
float *ColorToFloat(Color color); // Converts Color to float array and normalizes
float *VectorToFloat(Vector3 vec); // Converts Vector3 to float array (defined in raymath module)
float *MatrixToVector(Matrix mat); // Converts Matrix to float array (defined in raymath module)
float *VectorToFloat(Vector3 vec); // Converts Vector3 to float array
float *MatrixToFloat(Matrix mat); // Converts Matrix to float array
int GetRandomValue(int min, int max); // Returns a random value between min and max (both included)
Color Fade(Color color, float alpha); // Color fade-in or fade-out, alpha goes from 0.0f to 1.0f

View File

@ -1,9 +1,23 @@
/**********************************************************************************************
*
* raymath
* raymath (header only file)
*
* Some useful functions to work with Vector3, Matrix and Quaternions
*
* You must:
* #define RAYMATH_IMPLEMENTATION
* before you include this file in *only one* C or C++ file to create the implementation.
*
* Example:
* #define RAYMATH_IMPLEMENTATION
* #include "raymath.h"
*
* You can also use:
* #define RAYMATH_EXTERN_INLINE // Inlines all functions code, so it runs faster.
* // This requires lots of memory on system.
* #define RAYMATH_STANDALONE // Not dependent on raylib.h structs: Vector3, Matrix.
*
*
* Copyright (c) 2015 Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
@ -22,37 +36,21 @@
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
//============================================================================
// YOU MUST
//
// #define RAYMATH_DEFINE
//
// Like:
//
// #define RAYMATH_DEFINE
// #include "raymath.h"
//
// YOU CAN:
// #define RAYMATH_INLINE //inlines all code, so it runs faster. This requires lots of memory on system.
// AND
// #define RAYMATH_STANDALONE //not dependent on outside libs
//
// This needs to be done for every library/source file.
//============================================================================
#ifdef RAYMATH_INLINE
#define RMDEF static inline
#else
#define RMDEF static
#endif
#ifndef RAYMATH_H
#define RAYMATH_H
//#define RAYMATH_STANDALONE // NOTE: To use raymath as standalone lib, just uncomment this line
//#define RAYMATH_STANDALONE // NOTE: To use raymath as standalone lib, just uncomment this line
//#define RAYMATH_EXTERN_INLINE // NOTE: To compile functions as static inline, uncomment this line
#ifndef RAYMATH_STANDALONE
#include "raylib.h" // Required for typedef: Vector3
#include "raylib.h" // Required for structs: Vector3, Matrix
#endif
#if defined(RAYMATH_EXTERN_INLINE)
#define RMDEF extern inline
#else
#define RMDEF extern
#endif
//----------------------------------------------------------------------------------
@ -63,18 +61,18 @@
#endif
#ifndef DEG2RAD
#define DEG2RAD (PI / 180.0f)
#define DEG2RAD (PI/180.0f)
#endif
#ifndef RAD2DEG
#define RAD2DEG (180.0f / PI)
#define RAD2DEG (180.0f/PI)
#endif
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
#ifdef RAYMATH_STANDALONE
#if defined(RAYMATH_STANDALONE)
// Vector2 type
typedef struct Vector2 {
float x;
@ -105,7 +103,77 @@ typedef struct Quaternion {
float w;
} Quaternion;
#ifdef RAYMATH_DEFINE
#ifndef RAYMATH_EXTERN_INLINE
#ifdef __cplusplus
extern "C" {
#endif
//------------------------------------------------------------------------------------
// Functions Declaration to work with Vector3
//------------------------------------------------------------------------------------
RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2); // Add two vectors
RMDEF Vector3 VectorSubtract(Vector3 v1, Vector3 v2); // Substract two vectors
RMDEF Vector3 VectorCrossProduct(Vector3 v1, Vector3 v2); // Calculate two vectors cross product
RMDEF Vector3 VectorPerpendicular(Vector3 v); // Calculate one vector perpendicular vector
RMDEF float VectorDotProduct(Vector3 v1, Vector3 v2); // Calculate two vectors dot product
RMDEF float VectorLength(const Vector3 v); // Calculate vector lenght
RMDEF void VectorScale(Vector3 *v, float scale); // Scale provided vector
RMDEF void VectorNegate(Vector3 *v); // Negate provided vector (invert direction)
RMDEF void VectorNormalize(Vector3 *v); // Normalize provided vector
RMDEF float VectorDistance(Vector3 v1, Vector3 v2); // Calculate distance between two points
RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount); // Calculate linear interpolation between two vectors
RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal); // Calculate reflected vector to normal
RMDEF void VectorTransform(Vector3 *v, Matrix mat); // Transforms a Vector3 by a given Matrix
RMDEF Vector3 VectorZero(void); // Return a Vector3 init to zero
//------------------------------------------------------------------------------------
// Functions Declaration to work with Matrix
//------------------------------------------------------------------------------------
RMDEF float MatrixDeterminant(Matrix mat); // Compute matrix determinant
RMDEF float MatrixTrace(Matrix mat); // Returns the trace of the matrix (sum of the values along the diagonal)
RMDEF void MatrixTranspose(Matrix *mat); // Transposes provided matrix
RMDEF void MatrixInvert(Matrix *mat); // Invert provided matrix
RMDEF void MatrixNormalize(Matrix *mat); // Normalize provided matrix
RMDEF Matrix MatrixIdentity(void); // Returns identity matrix
RMDEF Matrix MatrixAdd(Matrix left, Matrix right); // Add two matrices
RMDEF Matrix MatrixSubstract(Matrix left, Matrix right); // Substract two matrices (left - right)
RMDEF Matrix MatrixTranslate(float x, float y, float z); // Returns translation matrix
RMDEF Matrix MatrixRotate(float angle, Vector3 axis); // Returns rotation matrix for an angle around an specified axis (angle in radians)
RMDEF Matrix MatrixRotateX(float angle); // Returns x-rotation matrix (angle in radians)
RMDEF Matrix MatrixRotateY(float angle); // Returns y-rotation matrix (angle in radians)
RMDEF Matrix MatrixRotateZ(float angle); // Returns z-rotation matrix (angle in radians)
RMDEF Matrix MatrixScale(float x, float y, float z); // Returns scaling matrix
RMDEF Matrix MatrixMultiply(Matrix left, Matrix right); // Returns two matrix multiplication
RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far); // Returns perspective projection matrix
RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far); // Returns perspective projection matrix
RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far); // Returns orthographic projection matrix
RMDEF Matrix MatrixLookAt(Vector3 position, Vector3 target, Vector3 up); // Returns camera look-at matrix (view matrix)
RMDEF void PrintMatrix(Matrix m); // Print matrix utility
//------------------------------------------------------------------------------------
// Functions Declaration to work with Quaternions
//------------------------------------------------------------------------------------
RMDEF float QuaternionLength(Quaternion quat); // Compute the length of a quaternion
RMDEF void QuaternionNormalize(Quaternion *q); // Normalize provided quaternion
RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2); // Calculate two quaternion multiplication
RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float slerp); // Calculates spherical linear interpolation between two quaternions
RMDEF Quaternion QuaternionFromMatrix(Matrix matrix); // Returns a quaternion for a given rotation matrix
RMDEF Matrix QuaternionToMatrix(Quaternion q); // Returns a matrix for a given quaternion
RMDEF Quaternion QuaternionFromAxisAngle(float angle, Vector3 axis); // Returns rotation quaternion for an angle and axis
RMDEF void QuaternionToAxisAngle(Quaternion q, float *outAngle, Vector3 *outAxis); // Returns the rotation angle and axis for a given quaternion
RMDEF void QuaternionTransform(Quaternion *q, Matrix mat); // Transform a quaternion given a transformation matrix
#ifdef __cplusplus
}
#endif
#endif // notdef RAYMATH_EXTERN_INLINE
//////////////////////////////////////////////////////////////////// end of header file
#if defined(RAYMATH_IMPLEMENTATION) || defined(RAYMATH_EXTERN_INLINE)
#include <stdio.h> // Used only on PrintMatrix()
#include <math.h> // Standard math libary: sin(), cos(), tan()...
#include <stdlib.h> // Used for abs()
@ -114,18 +182,6 @@ typedef struct Quaternion {
// Module Functions Definition - Vector3 math
//----------------------------------------------------------------------------------
// Converts Vector3 to float array
RMDEF float *VectorToFloat(Vector3 vec)
{
static float buffer[3];
buffer[0] = vec.x;
buffer[1] = vec.y;
buffer[2] = vec.z;
return buffer;
}
// Add two vectors
RMDEF Vector3 VectorAdd(Vector3 v1, Vector3 v2)
{
@ -229,9 +285,9 @@ RMDEF void VectorNormalize(Vector3 *v)
length = VectorLength(*v);
if (length == 0) length = 1;
if (length == 0) length = 1.0f;
ilength = 1.0/length;
ilength = 1.0f/length;
v->x *= ilength;
v->y *= ilength;
@ -257,9 +313,9 @@ RMDEF Vector3 VectorLerp(Vector3 v1, Vector3 v2, float amount)
{
Vector3 result;
result.x = v1.x + amount * (v2.x - v1.x);
result.y = v1.y + amount * (v2.y - v1.y);
result.z = v1.z + amount * (v2.z - v1.z);
result.x = v1.x + amount*(v2.x - v1.x);
result.y = v1.y + amount*(v2.y - v1.y);
result.z = v1.z + amount*(v2.z - v1.z);
return result;
}
@ -269,15 +325,15 @@ RMDEF Vector3 VectorReflect(Vector3 vector, Vector3 normal)
{
// I is the original vector
// N is the normal of the incident plane
// R = I - (2 * N * ( DotProduct[ I,N] ))
// R = I - (2*N*( DotProduct[ I,N] ))
Vector3 result;
float dotProduct = VectorDotProduct(vector, normal);
result.x = vector.x - (2.0 * normal.x) * dotProduct;
result.y = vector.y - (2.0 * normal.y) * dotProduct;
result.z = vector.z - (2.0 * normal.z) * dotProduct;
result.x = vector.x - (2.0f*normal.x)*dotProduct;
result.y = vector.y - (2.0f*normal.y)*dotProduct;
result.z = vector.z - (2.0f*normal.z)*dotProduct;
return result;
}
@ -308,34 +364,6 @@ RMDEF Vector3 VectorZero(void)
// Module Functions Definition - Matrix math
//----------------------------------------------------------------------------------
// Converts Matrix to float array
// NOTE: Returned vector is a transposed version of the Matrix struct,
// it should be this way because, despite raymath use OpenGL column-major convention,
// Matrix struct memory alignment and variables naming are not coherent
RMDEF float *MatrixToFloat(Matrix mat)
{
static float buffer[16];
buffer[0] = mat.m0;
buffer[1] = mat.m4;
buffer[2] = mat.m8;
buffer[3] = mat.m12;
buffer[4] = mat.m1;
buffer[5] = mat.m5;
buffer[6] = mat.m9;
buffer[7] = mat.m13;
buffer[8] = mat.m2;
buffer[9] = mat.m6;
buffer[10] = mat.m10;
buffer[11] = mat.m14;
buffer[12] = mat.m3;
buffer[13] = mat.m7;
buffer[14] = mat.m11;
buffer[15] = mat.m15;
return buffer;
}
// Compute matrix determinant
RMDEF float MatrixDeterminant(Matrix mat)
{
@ -413,7 +441,7 @@ RMDEF void MatrixInvert(Matrix *mat)
float b11 = a22*a33 - a23*a32;
// Calculate the invert determinant (inlined to avoid double-caching)
float invDet = 1/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
temp.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
temp.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
@ -461,7 +489,10 @@ RMDEF void MatrixNormalize(Matrix *mat)
// Returns identity matrix
RMDEF Matrix MatrixIdentity(void)
{
Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f };
return result;
}
@ -519,7 +550,10 @@ RMDEF Matrix MatrixSubstract(Matrix left, Matrix right)
// Returns translation matrix
RMDEF Matrix MatrixTranslate(float x, float y, float z)
{
Matrix result = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 };
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f,
x, y, z, 1.0f };
return result;
}
@ -536,9 +570,9 @@ RMDEF Matrix MatrixRotate(float angle, Vector3 axis)
float length = sqrt(x*x + y*y + z*z);
if ((length != 1) && (length != 0))
if ((length != 1.0f) && (length != 0.0f))
{
length = 1/length;
length = 1.0f/length;
x *= length;
y *= length;
z *= length;
@ -594,15 +628,15 @@ RMDEF Matrix MatrixRotate(float angle, float x, float y, float z)
m2 = result.m2, m6 = result.m6, m10 = result.m10, m14 = result.m14;
// build rotation matrix
float r0 = x * x * c1 + c;
float r1 = x * y * c1 + z * s;
float r2 = x * z * c1 - y * s;
float r4 = x * y * c1 - z * s;
float r5 = y * y * c1 + c;
float r6 = y * z * c1 + x * s;
float r8 = x * z * c1 + y * s;
float r9 = y * z * c1 - x * s;
float r10= z * z * c1 + c;
float r0 = x*x*c1 + c;
float r1 = x*y*c1 + z*s;
float r2 = x*z*c1 - y*s;
float r4 = x*y*c1 - z*s;
float r5 = y*y*c1 + c;
float r6 = y*z*c1 + x*s;
float r8 = x*z*c1 + y*s;
float r9 = y*z*c1 - x*s;
float r10= z*z*c1 + c;
// multiply rotation matrix
result.m0 = r0*m0 + r4*m1 + r8*m2;
@ -673,7 +707,10 @@ RMDEF Matrix MatrixRotateZ(float angle)
// Returns scaling matrix
RMDEF Matrix MatrixScale(float x, float y, float z)
{
Matrix result = { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 };
Matrix result = { x, 0.0f, 0.0f, 0.0f,
0.0f, y, 0.0f, 0.0f,
0.0f, 0.0f, z, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f };
return result;
}
@ -713,25 +750,25 @@ RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top,
float tb = (top - bottom);
float fn = (far - near);
result.m0 = (near*2.0f) / rl;
result.m1 = 0;
result.m2 = 0;
result.m3 = 0;
result.m0 = (near*2.0f)/rl;
result.m1 = 0.0f;
result.m2 = 0.0f;
result.m3 = 0.0f;
result.m4 = 0;
result.m5 = (near*2.0f) / tb;
result.m6 = 0;
result.m7 = 0;
result.m4 = 0.0f;
result.m5 = (near*2.0f)/tb;
result.m6 = 0.0f;
result.m7 = 0.0f;
result.m8 = (right + left) / rl;
result.m9 = (top + bottom) / tb;
result.m10 = -(far + near) / fn;
result.m8 = (right + left)/rl;
result.m9 = (top + bottom)/tb;
result.m10 = -(far + near)/fn;
result.m11 = -1.0f;
result.m12 = 0;
result.m13 = 0;
result.m14 = -(far*near*2.0f) / fn;
result.m15 = 0;
result.m12 = 0.0f;
result.m13 = 0.0f;
result.m14 = -(far*near*2.0f)/fn;
result.m15 = 0.0f;
return result;
}
@ -739,7 +776,7 @@ RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top,
// Returns perspective projection matrix
RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
{
double top = near*tanf(fovy*PI / 360.0f);
double top = near*tanf(fovy*PI/360.0f);
double right = top*aspect;
return MatrixFrustum(-right, right, -top, top, near, far);
@ -754,22 +791,22 @@ RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, d
float tb = (top - bottom);
float fn = (far - near);
result.m0 = 2 / rl;
result.m1 = 0;
result.m2 = 0;
result.m3 = 0;
result.m4 = 0;
result.m5 = 2 / tb;
result.m6 = 0;
result.m7 = 0;
result.m8 = 0;
result.m9 = 0;
result.m10 = -2 / fn;
result.m11 = 0;
result.m12 = -(left + right) / rl;
result.m13 = -(top + bottom) / tb;
result.m14 = -(far + near) / fn;
result.m15 = 1;
result.m0 = 2.0f/rl;
result.m1 = 0.0f;
result.m2 = 0.0f;
result.m3 = 0.0f;
result.m4 = 0.0f;
result.m5 = 2.0f/tb;
result.m6 = 0.0f;
result.m7 = 0.0f;
result.m8 = 0.0f;
result.m9 = 0.0f;
result.m10 = -2.0f/fn;
result.m11 = 0.0f;
result.m12 = -(left + right)/rl;
result.m13 = -(top + bottom)/tb;
result.m14 = -(far + near)/fn;
result.m15 = 1.0f;
return result;
}
@ -789,19 +826,19 @@ RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
result.m0 = x.x;
result.m1 = x.y;
result.m2 = x.z;
result.m3 = -((x.x * eye.x) + (x.y * eye.y) + (x.z * eye.z));
result.m3 = -((x.x*eye.x) + (x.y*eye.y) + (x.z*eye.z));
result.m4 = y.x;
result.m5 = y.y;
result.m6 = y.z;
result.m7 = -((y.x * eye.x) + (y.y * eye.y) + (y.z * eye.z));
result.m7 = -((y.x*eye.x) + (y.y*eye.y) + (y.z*eye.z));
result.m8 = z.x;
result.m9 = z.y;
result.m10 = z.z;
result.m11 = -((z.x * eye.x) + (z.y * eye.y) + (z.z * eye.z));
result.m12 = 0;
result.m13 = 0;
result.m14 = 0;
result.m15 = 1;
result.m11 = -((z.x*eye.x) + (z.y*eye.y) + (z.z*eye.z));
result.m12 = 0.0f;
result.m13 = 0.0f;
result.m14 = 0.0f;
result.m15 = 1.0f;
return result;
}
@ -834,9 +871,9 @@ RMDEF void QuaternionNormalize(Quaternion *q)
length = QuaternionLength(*q);
if (length == 0) length = 1;
if (length == 0.0f) length = 1.0f;
ilength = 1.0/length;
ilength = 1.0f/length;
q->x *= ilength;
q->y *= ilength;
@ -882,8 +919,8 @@ RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
}
else
{
float ratioA = sin((1 - amount)*halfTheta) / sinHalfTheta;
float ratioB = sin(amount*halfTheta) / sinHalfTheta;
float ratioA = sin((1 - amount)*halfTheta)/sinHalfTheta;
float ratioB = sin(amount*halfTheta)/sinHalfTheta;
result.x = (q1.x*ratioA + q2.x*ratioB);
result.y = (q1.y*ratioA + q2.y*ratioB);
@ -902,15 +939,15 @@ RMDEF Quaternion QuaternionFromMatrix(Matrix matrix)
float trace = MatrixTrace(matrix);
if (trace > 0)
if (trace > 0.0f)
{
float s = (float)sqrt(trace + 1) * 2;
float invS = 1 / s;
float s = (float)sqrt(trace + 1)*2.0f;
float invS = 1.0f/s;
result.w = s * 0.25;
result.x = (matrix.m6 - matrix.m9) * invS;
result.y = (matrix.m8 - matrix.m2) * invS;
result.z = (matrix.m1 - matrix.m4) * invS;
result.w = s*0.25f;
result.x = (matrix.m6 - matrix.m9)*invS;
result.y = (matrix.m8 - matrix.m2)*invS;
result.z = (matrix.m1 - matrix.m4)*invS;
}
else
{
@ -918,33 +955,33 @@ RMDEF Quaternion QuaternionFromMatrix(Matrix matrix)
if (m00 > m11 && m00 > m22)
{
float s = (float)sqrt(1 + m00 - m11 - m22) * 2;
float invS = 1 / s;
float s = (float)sqrt(1.0f + m00 - m11 - m22)*2.0f;
float invS = 1.0f/s;
result.w = (matrix.m6 - matrix.m9) * invS;
result.x = s * 0.25;
result.y = (matrix.m4 + matrix.m1) * invS;
result.z = (matrix.m8 + matrix.m2) * invS;
result.w = (matrix.m6 - matrix.m9)*invS;
result.x = s*0.25f;
result.y = (matrix.m4 + matrix.m1)*invS;
result.z = (matrix.m8 + matrix.m2)*invS;
}
else if (m11 > m22)
{
float s = (float)sqrt(1 + m11 - m00 - m22) * 2;
float invS = 1 / s;
float s = (float)sqrt(1.0f + m11 - m00 - m22)*2.0f;
float invS = 1.0f/s;
result.w = (matrix.m8 - matrix.m2) * invS;
result.x = (matrix.m4 + matrix.m1) * invS;
result.y = s * 0.25;
result.z = (matrix.m9 + matrix.m6) * invS;
result.w = (matrix.m8 - matrix.m2)*invS;
result.x = (matrix.m4 + matrix.m1)*invS;
result.y = s*0.25f;
result.z = (matrix.m9 + matrix.m6)*invS;
}
else
{
float s = (float)sqrt(1 + m22 - m00 - m11) * 2;
float invS = 1 / s;
float s = (float)sqrt(1.0f + m22 - m00 - m11)*2.0f;
float invS = 1.0f/s;
result.w = (matrix.m1 - matrix.m4) * invS;
result.x = (matrix.m8 + matrix.m2) * invS;
result.y = (matrix.m9 + matrix.m6) * invS;
result.z = s * 0.25;
result.w = (matrix.m1 - matrix.m4)*invS;
result.x = (matrix.m8 + matrix.m2)*invS;
result.y = (matrix.m9 + matrix.m6)*invS;
result.z = s*0.25f;
}
}
@ -974,22 +1011,22 @@ RMDEF Matrix QuaternionToMatrix(Quaternion q)
float wy = w*y2;
float wz = w*z2;
result.m0 = 1 - (yy + zz);
result.m0 = 1.0f - (yy + zz);
result.m1 = xy - wz;
result.m2 = xz + wy;
result.m3 = 0;
result.m3 = 0.0f;
result.m4 = xy + wz;
result.m5 = 1 - (xx + zz);
result.m5 = 1.0f - (xx + zz);
result.m6 = yz - wx;
result.m7 = 0;
result.m7 = 0.0f;
result.m8 = xz - wy;
result.m9 = yz + wx;
result.m10 = 1 - (xx + yy);
result.m11 = 0;
result.m12 = 0;
result.m13 = 0;
result.m14 = 0;
result.m15 = 1;
result.m10 = 1.0f - (xx + yy);
result.m11 = 0.0f;
result.m12 = 0.0f;
result.m13 = 0.0f;
result.m14 = 0.0f;
result.m15 = 1.0f;
return result;
}
@ -998,17 +1035,17 @@ RMDEF Matrix QuaternionToMatrix(Quaternion q)
// NOTE: angle must be provided in radians
RMDEF Quaternion QuaternionFromAxisAngle(float angle, Vector3 axis)
{
Quaternion result = { 0, 0, 0, 1 };
Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
if (VectorLength(axis) != 0.0)
if (VectorLength(axis) != 0.0f)
angle *= 0.5;
angle *= 0.5f;
VectorNormalize(&axis);
result.x = axis.x * (float)sin(angle);
result.y = axis.y * (float)sin(angle);
result.z = axis.z * (float)sin(angle);
result.x = axis.x*(float)sin(angle);
result.y = axis.y*(float)sin(angle);
result.z = axis.z*(float)sin(angle);
result.w = (float)cos(angle);
QuaternionNormalize(&result);
@ -1021,23 +1058,23 @@ RMDEF void QuaternionToAxisAngle(Quaternion q, float *outAngle, Vector3 *outAxis
{
if (fabs(q.w) > 1.0f) QuaternionNormalize(&q);
Vector3 resAxis = { 0, 0, 0 };
float resAngle = 0;
Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
float resAngle = 0.0f;
resAngle = 2.0f * (float)acos(q.w);
float den = (float)sqrt(1.0 - q.w * q.w);
resAngle = 2.0f*(float)acos(q.w);
float den = (float)sqrt(1.0f - q.w*q.w);
if (den > 0.0001f)
{
resAxis.x = q.x / den;
resAxis.y = q.y / den;
resAxis.z = q.z / den;
resAxis.x = q.x/den;
resAxis.y = q.y/den;
resAxis.z = q.z/den;
}
else
{
// This occurs when the angle is zero.
// Not a problem: just set an arbitrary normalized axis.
resAxis.x = 1.0;
resAxis.x = 1.0f;
}
*outAxis = resAxis;
@ -1058,5 +1095,6 @@ RMDEF void QuaternionTransform(Quaternion *q, Matrix mat)
q->w = mat.m3*x + mat.m7*y + mat.m11*z + mat.m15*w;
}
#endif // RAYMATH_DEFINE
#endif // RAYMATH_H
#endif // RAYMATH_IMPLEMENTATION
#endif // RAYMATH_H

View File

@ -32,6 +32,8 @@
#include <stdlib.h> // Declares malloc() and free() for memory management, rand()
#include <string.h> // Declares strcmp(), strlen(), strtok()
#include "raymath.h" // Required for Vector3 and Matrix functions
#if defined(GRAPHICS_API_OPENGL_11)
#ifdef __APPLE__ // OpenGL include for OSX
#include <OpenGL/gl.h>

View File

@ -37,11 +37,12 @@
#endif
#if defined(RLGL_STANDALONE)
#define RAYMATH_STANDALONE
#define RAYMATH_IMPLEMENTATION // Use raymath as a header-only library (includes implementation)
#define RAYMATH_EXTERN_INLINE // Compile raymath functions as static inline (remember, it's a compiler hint)
#define RAYMATH_STANDALONE // Not dependent on raylib.h structs: Vector3, Matrix
#include "raymath.h" // Required for Vector3 and Matrix functions
#endif
#include "raymath.h" // Required for data type Matrix and Matrix functions
// Select desired OpenGL version
// NOTE: Those preprocessor defines are only used on rlgl module,
// if OpenGL version is required by any other module, it uses rlGetVersion()
@ -92,7 +93,7 @@ typedef enum { RL_LINES, RL_TRIANGLES, RL_QUADS } DrawMode;
typedef enum { OPENGL_11 = 1, OPENGL_33, OPENGL_ES_20 } GlVersion;
#ifdef RLGL_STANDALONE
#if defined(RLGL_STANDALONE)
#ifndef __cplusplus
// Boolean type
typedef enum { false, true } bool;