Merge pull request #103 from victorfisac/develop

physac module redesign (2/3)
This commit is contained in:
Ray 2016-03-16 17:28:47 +01:00
commit d0e26247f4
5 changed files with 589 additions and 195 deletions

View File

@ -12,7 +12,7 @@
#include "raylib.h" #include "raylib.h"
#define MOVE_VELOCITY 5 #define MOVE_VELOCITY 5
#define JUMP_VELOCITY 35 #define JUMP_VELOCITY 30
int main() int main()
{ {
@ -22,42 +22,34 @@ int main()
int screenHeight = 450; int screenHeight = 450;
InitWindow(screenWidth, screenHeight, "raylib [physac] example - basic rigidbody"); InitWindow(screenWidth, screenHeight, "raylib [physac] example - basic rigidbody");
InitPhysics(); // Initialize physics module InitPhysics((Vector2){ 0.0f, -9.81f/2 }); // Initialize physics module
SetTargetFPS(60); SetTargetFPS(60);
// Debug variables // Debug variables
bool isDebug = false; bool isDebug = false;
// Player physic object // Create rectangle physic object
PhysicObject *player = CreatePhysicObject((Vector2){ screenWidth*0.25f, screenHeight/2 }, 0.0f, (Vector2){ 50, 50 }); PhysicObject *rectangle = CreatePhysicObject((Vector2){ screenWidth*0.25f, screenHeight/2 }, 0.0f, (Vector2){ 75, 50 });
player->rigidbody.enabled = true; // Enable physic object rigidbody behaviour rectangle->rigidbody.enabled = true; // Enable physic object rigidbody behaviour
player->rigidbody.applyGravity = true; rectangle->rigidbody.applyGravity = true;
player->rigidbody.friction = 0.3f; rectangle->rigidbody.friction = 0.1f;
player->collider.enabled = true; // Enable physic object collisions detection rectangle->rigidbody.bounciness = 6.0f;
// Player physic object // Create square physic object
PhysicObject *player2 = CreatePhysicObject((Vector2){ screenWidth*0.75f, screenHeight/2 }, 0.0f, (Vector2){ 50, 50 }); PhysicObject *square = CreatePhysicObject((Vector2){ screenWidth*0.75f, screenHeight/2 }, 0.0f, (Vector2){ 50, 50 });
player2->rigidbody.enabled = true; square->rigidbody.enabled = true; // Enable physic object rigidbody behaviour
player2->rigidbody.applyGravity = true; square->rigidbody.applyGravity = true;
player2->rigidbody.friction = 0.1f; square->rigidbody.friction = 0.1f;
player2->collider.enabled = true;
// Floor physic object // Create walls physic objects
PhysicObject *floor = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.95f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 }); PhysicObject *floor = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.95f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
floor->collider.enabled = true; // Enable just physic object collisions detection
// Left wall physic object
PhysicObject *leftWall = CreatePhysicObject((Vector2){ 0.0f, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight }); PhysicObject *leftWall = CreatePhysicObject((Vector2){ 0.0f, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
leftWall->collider.enabled = true;
// Right wall physic object
PhysicObject *rightWall = CreatePhysicObject((Vector2){ screenWidth, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight }); PhysicObject *rightWall = CreatePhysicObject((Vector2){ screenWidth, screenHeight/2 }, 0.0f, (Vector2){ screenWidth*0.1f, screenHeight });
rightWall->collider.enabled = true; PhysicObject *roof = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.05f }, 0.0f, (Vector2){ screenWidth*0.9f, 100 });
// Platform physic objectdd // Create pplatform physic object
PhysicObject *platform = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.7f }, 0.0f, (Vector2){ screenWidth*0.25f, 20 }); PhysicObject *platform = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight*0.7f }, 0.0f, (Vector2){ screenWidth*0.25f, 20 });
platform->collider.enabled = true;
//-------------------------------------------------------------------------------------- //--------------------------------------------------------------------------------------
@ -68,20 +60,18 @@ int main()
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
UpdatePhysics(); // Update all created physic objects UpdatePhysics(); // Update all created physic objects
// Check debug switch input // Check rectangle movement inputs
if (IsKeyPressed('P')) isDebug = !isDebug; if (IsKeyDown('W') && rectangle->rigidbody.isGrounded) rectangle->rigidbody.velocity.y = JUMP_VELOCITY;
if (IsKeyDown('A')) rectangle->rigidbody.velocity.x = -MOVE_VELOCITY;
// Check player movement inputs else if (IsKeyDown('D')) rectangle->rigidbody.velocity.x = MOVE_VELOCITY;
if (IsKeyDown('W') && player->rigidbody.isGrounded) player->rigidbody.velocity.y = JUMP_VELOCITY;
if (IsKeyDown('A')) player->rigidbody.velocity.x = -MOVE_VELOCITY;
else if (IsKeyDown('D')) player->rigidbody.velocity.x = MOVE_VELOCITY;
// Check player 2 movement inputs // Check player 2 movement inputs
if (IsKeyDown(KEY_UP) && player2->rigidbody.isGrounded) player2->rigidbody.velocity.y = JUMP_VELOCITY; if (IsKeyDown(KEY_UP) && square->rigidbody.isGrounded) square->rigidbody.velocity.y = JUMP_VELOCITY;
if (IsKeyDown(KEY_LEFT)) square->rigidbody.velocity.x = -MOVE_VELOCITY;
else if (IsKeyDown(KEY_RIGHT)) square->rigidbody.velocity.x = MOVE_VELOCITY;
if (IsKeyDown(KEY_LEFT)) player2->rigidbody.velocity.x = -MOVE_VELOCITY; // Check debug switch input
else if (IsKeyDown(KEY_RIGHT)) player2->rigidbody.velocity.x = MOVE_VELOCITY; if (IsKeyPressed('P')) isDebug = !isDebug;
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
// Draw // Draw
@ -89,29 +79,31 @@ int main()
BeginDrawing(); BeginDrawing();
ClearBackground(RAYWHITE); ClearBackground(RAYWHITE);
// Convert transform values to rectangle data type variable
DrawRectangleRec(TransformToRectangle(floor->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(leftWall->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(rightWall->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(roof->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(platform->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(rectangle->transform), RED);
DrawRectangleRec(TransformToRectangle(square->transform), BLUE);
if (isDebug) if (isDebug)
{ {
DrawRectangleLines(floor->collider.bounds.x, floor->collider.bounds.y, floor->collider.bounds.width, floor->collider.bounds.height, GREEN); DrawRectangleLines(floor->collider.bounds.x, floor->collider.bounds.y, floor->collider.bounds.width, floor->collider.bounds.height, GREEN);
DrawRectangleLines(leftWall->collider.bounds.x, leftWall->collider.bounds.y, leftWall->collider.bounds.width, leftWall->collider.bounds.height, GREEN); DrawRectangleLines(leftWall->collider.bounds.x, leftWall->collider.bounds.y, leftWall->collider.bounds.width, leftWall->collider.bounds.height, GREEN);
DrawRectangleLines(rightWall->collider.bounds.x, rightWall->collider.bounds.y, rightWall->collider.bounds.width, rightWall->collider.bounds.height, GREEN); DrawRectangleLines(rightWall->collider.bounds.x, rightWall->collider.bounds.y, rightWall->collider.bounds.width, rightWall->collider.bounds.height, GREEN);
DrawRectangleLines(roof->collider.bounds.x, roof->collider.bounds.y, roof->collider.bounds.width, roof->collider.bounds.height, GREEN);
DrawRectangleLines(platform->collider.bounds.x, platform->collider.bounds.y, platform->collider.bounds.width, platform->collider.bounds.height, GREEN); DrawRectangleLines(platform->collider.bounds.x, platform->collider.bounds.y, platform->collider.bounds.width, platform->collider.bounds.height, GREEN);
DrawRectangleLines(player->collider.bounds.x, player->collider.bounds.y, player->collider.bounds.width, player->collider.bounds.height, GREEN); DrawRectangleLines(rectangle->collider.bounds.x, rectangle->collider.bounds.y, rectangle->collider.bounds.width, rectangle->collider.bounds.height, GREEN);
DrawRectangleLines(player2->collider.bounds.x, player2->collider.bounds.y, player2->collider.bounds.width, player2->collider.bounds.height, GREEN); DrawRectangleLines(square->collider.bounds.x, square->collider.bounds.y, square->collider.bounds.width, square->collider.bounds.height, GREEN);
}
else
{
// Convert transform values to rectangle data type variable
DrawRectangleRec(TransformToRectangle(floor->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(leftWall->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(rightWall->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(platform->transform), DARKGRAY);
DrawRectangleRec(TransformToRectangle(player->transform), RED);
DrawRectangleRec(TransformToRectangle(player2->transform), BLUE);
} }
// Draw all physic object information in specific screen position and font size // Draw help message
// DrawPhysicObjectInfo(player, (Vector2){ 10.0f, 10.0f }, 10); DrawText("Use WASD to move rectangle and ARROWS to move square", screenWidth/2 - MeasureText("Use WASD to move rectangle and ARROWS to move square", 20)/2, screenHeight*0.075f, 20, LIGHTGRAY);
EndDrawing(); EndDrawing();
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------

160
examples/physics_forces.c Normal file
View File

@ -0,0 +1,160 @@
/*******************************************************************************************
*
* raylib [physac] example - Forces
*
* This example has been created using raylib 1.5 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2016 Victor Fisac and Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include "raylib.h"
#include "math.h"
#define FORCE_AMOUNT 5.0f
#define FORCE_RADIUS 150
#define LINE_LENGTH 100
int main()
{
// Initialization
//--------------------------------------------------------------------------------------
int screenWidth = 800;
int screenHeight = 450;
InitWindow(screenWidth, screenHeight, "raylib [physac] example - forces");
InitPhysics((Vector2){ 0.0f, -9.81f/2 }); // Initialize physics module
SetTargetFPS(60);
// Global variables
Vector2 mousePosition;
bool isDebug = false;
// Create rectangle physic objects
PhysicObject *rectangles[3];
for (int i = 0; i < 3; i++)
{
rectangles[i] = CreatePhysicObject((Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/3) : (screenHeight/1.5f)) }, 0.0f, (Vector2){ 50, 50 });
rectangles[i]->rigidbody.enabled = true; // Enable physic object rigidbody behaviour
rectangles[i]->rigidbody.friction = 0.1f;
}
// Create circles physic objects
PhysicObject *circles[3];
for (int i = 0; i < 3; i++)
{
circles[i] = CreatePhysicObject((Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/1.5f) : (screenHeight/4)) }, 0.0f, (Vector2){ 0, 0 });
circles[i]->rigidbody.enabled = true; // Enable physic object rigidbody behaviour
circles[i]->rigidbody.friction = 0.1f;
circles[i]->collider.type = COLLIDER_CIRCLE;
circles[i]->collider.radius = 25;
}
// Create walls physic objects
PhysicObject *leftWall = CreatePhysicObject((Vector2){ -25, screenHeight/2 }, 0.0f, (Vector2){ 50, screenHeight });
PhysicObject *rightWall = CreatePhysicObject((Vector2){ screenWidth + 25, screenHeight/2 }, 0.0f, (Vector2){ 50, screenHeight });
PhysicObject *topWall = CreatePhysicObject((Vector2){ screenWidth/2, -25 }, 0.0f, (Vector2){ screenWidth, 50 });
PhysicObject *bottomWall = CreatePhysicObject((Vector2){ screenWidth/2, screenHeight + 25 }, 0.0f, (Vector2){ screenWidth, 50 });
//--------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
UpdatePhysics(); // Update all created physic objects
// Update mouse position value
mousePosition = GetMousePosition();
// Check force input
if (IsMouseButtonPressed(MOUSE_LEFT_BUTTON)) ApplyForceAtPosition(mousePosition, FORCE_AMOUNT, FORCE_RADIUS);
// Check reset input
if (IsKeyPressed('R'))
{
// Reset rectangle physic objects positions
for (int i = 0; i < 3; i++)
{
rectangles[i]->transform.position = (Vector2){ screenWidth/4*(i+1) - rectangles[i]->transform.scale.x/2, (((i % 2) == 0) ? (screenHeight/3) : (screenHeight/1.5f)) - rectangles[i]->transform.scale.y/2 };
rectangles[i]->rigidbody.velocity =(Vector2){ 0.0f, 0.0f };
}
// Reset circles physic objects positions
for (int i = 0; i < 3; i++)
{
circles[i]->transform.position = (Vector2){ screenWidth/4*(i+1), (((i % 2) == 0) ? (screenHeight/1.5f) : (screenHeight/4)) };
circles[i]->rigidbody.velocity =(Vector2){ 0.0f, 0.0f };
}
}
// Check debug switch input
if (IsKeyPressed('P')) isDebug = !isDebug;
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
// Draw rectangles
for (int i = 0; i < 3; i++)
{
// Convert transform values to rectangle data type variable
DrawRectangleRec(TransformToRectangle(rectangles[i]->transform), RED);
if (isDebug) DrawRectangleLines(rectangles[i]->collider.bounds.x, rectangles[i]->collider.bounds.y, rectangles[i]->collider.bounds.width, rectangles[i]->collider.bounds.height, GREEN);
// Draw force radius
DrawCircleLines(mousePosition.x, mousePosition.y, FORCE_RADIUS, BLACK);
// Draw direction line
if (CheckCollisionPointCircle((Vector2){ rectangles[i]->transform.position.x + rectangles[i]->transform.scale.x/2, rectangles[i]->transform.position.y + rectangles[i]->transform.scale.y/2 }, mousePosition, FORCE_RADIUS))
{
Vector2 direction = { rectangles[i]->transform.position.x + rectangles[i]->transform.scale.x/2 - mousePosition.x, rectangles[i]->transform.position.y + rectangles[i]->transform.scale.y/2 - mousePosition.y };
float angle = atan2l(direction.y, direction.x);
DrawLineV((Vector2){ rectangles[i]->transform.position.x + rectangles[i]->transform.scale.x/2, rectangles[i]->transform.position.y + rectangles[i]->transform.scale.y/2 },
(Vector2){ rectangles[i]->transform.position.x + rectangles[i]->transform.scale.x/2 + (cos(angle)*LINE_LENGTH), rectangles[i]->transform.position.y + rectangles[i]->transform.scale.y/2 + (sin(angle)*LINE_LENGTH) }, BLACK);
}
}
// Draw circles
for (int i = 0; i < 3; i++)
{
DrawCircleV(circles[i]->transform.position, circles[i]->collider.radius, BLUE);
if (isDebug) DrawCircleLines(circles[i]->transform.position.x, circles[i]->transform.position.y, circles[i]->collider.radius, GREEN);
// Draw force radius
DrawCircleLines(mousePosition.x, mousePosition.y, FORCE_RADIUS, BLACK);
// Draw direction line
if (CheckCollisionPointCircle((Vector2){ circles[i]->transform.position.x, circles[i]->transform.position.y }, mousePosition, FORCE_RADIUS))
{
Vector2 direction = { circles[i]->transform.position.x - mousePosition.x, circles[i]->transform.position.y - mousePosition.y };
float angle = atan2l(direction.y, direction.x);
DrawLineV((Vector2){ circles[i]->transform.position.x, circles[i]->transform.position.y },
(Vector2){ circles[i]->transform.position.x + (cos(angle)*LINE_LENGTH), circles[i]->transform.position.y + (sin(angle)*LINE_LENGTH) }, BLACK);
}
}
// Draw help messages
DrawText("Use LEFT MOUSE BUTTON to apply a force", screenWidth/2 - MeasureText("Use LEFT MOUSE BUTTON to apply a force", 20)/2, screenHeight*0.075f, 20, LIGHTGRAY);
DrawText("Use R to reset objects position", screenWidth/2 - MeasureText("Use R to reset objects position", 20)/2, screenHeight*0.875f, 20, GRAY);
EndDrawing();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
ClosePhysics(); // Unitialize physics module
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------
return 0;
}

View File

@ -36,10 +36,9 @@
// Defines and Macros // Defines and Macros
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
#define MAX_PHYSIC_OBJECTS 256 #define MAX_PHYSIC_OBJECTS 256
#define PHYSICS_GRAVITY -9.81f/2
#define PHYSICS_STEPS 450 #define PHYSICS_STEPS 450
#define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction) #define PHYSICS_ACCURACY 0.0001f // Velocity subtract operations round filter (friction)
#define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix #define PHYSICS_ERRORPERCENT 0.001f // Collision resolve position fix
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
// Types and Structures Definition // Types and Structures Definition
@ -52,53 +51,70 @@
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
static PhysicObject *physicObjects[MAX_PHYSIC_OBJECTS]; // Physic objects pool static PhysicObject *physicObjects[MAX_PHYSIC_OBJECTS]; // Physic objects pool
static int physicObjectsCount; // Counts current enabled physic objects static int physicObjectsCount; // Counts current enabled physic objects
static Vector2 gravityForce; // Gravity force
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
// Module specific Functions Declaration // Module specific Functions Declaration
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
static float Vector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two Vector2 static float Vector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two Vector2
static float Vector2Length(Vector2 v); // Returns the length of a Vector2
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
// Module Functions Definition // Module Functions Definition
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
// Initializes pointers array (just pointers, fixed size) // Initializes pointers array (just pointers, fixed size)
void InitPhysics() void InitPhysics(Vector2 gravity)
{ {
// Initialize physics variables // Initialize physics variables
physicObjectsCount = 0; physicObjectsCount = 0;
gravityForce = gravity;
} }
// Update physic objects, calculating physic behaviours and collisions detection // Update physic objects, calculating physic behaviours and collisions detection
void UpdatePhysics() void UpdatePhysics()
{ {
// Reset all physic objects is grounded state // Reset all physic objects is grounded state
for(int i = 0; i < physicObjectsCount; i++) for (int i = 0; i < physicObjectsCount; i++)
{ {
if(physicObjects[i]->rigidbody.enabled) physicObjects[i]->rigidbody.isGrounded = false; if (physicObjects[i]->rigidbody.enabled) physicObjects[i]->rigidbody.isGrounded = false;
} }
for(int steps = 0; steps < PHYSICS_STEPS; steps++) for (int steps = 0; steps < PHYSICS_STEPS; steps++)
{ {
for(int i = 0; i < physicObjectsCount; i++) for (int i = 0; i < physicObjectsCount; i++)
{ {
if(physicObjects[i]->enabled) if (physicObjects[i]->enabled)
{ {
// Update physic behaviour // Update physic behaviour
if(physicObjects[i]->rigidbody.enabled) if (physicObjects[i]->rigidbody.enabled)
{ {
// Apply friction to acceleration in X axis // Apply friction to acceleration in X axis
if (physicObjects[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS; if (physicObjects[i]->rigidbody.acceleration.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS; else if (physicObjects[i]->rigidbody.acceleration.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.acceleration.x = 0.0f; else physicObjects[i]->rigidbody.acceleration.x = 0.0f;
// Apply friction to acceleration in Y axis
if (physicObjects[i]->rigidbody.acceleration.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.acceleration.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.acceleration.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.acceleration.y = 0.0f;
// Apply friction to velocity in X axis // Apply friction to velocity in X axis
if (physicObjects[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS; if (physicObjects[i]->rigidbody.velocity.x > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS; else if (physicObjects[i]->rigidbody.velocity.x < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.velocity.x = 0.0f; else physicObjects[i]->rigidbody.velocity.x = 0.0f;
// Apply friction to velocity in Y axis
if (physicObjects[i]->rigidbody.velocity.y > PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y -= physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else if (physicObjects[i]->rigidbody.velocity.y < PHYSICS_ACCURACY) physicObjects[i]->rigidbody.velocity.y += physicObjects[i]->rigidbody.friction/PHYSICS_STEPS;
else physicObjects[i]->rigidbody.velocity.y = 0.0f;
// Apply gravity to velocity // Apply gravity to velocity
if (physicObjects[i]->rigidbody.applyGravity) physicObjects[i]->rigidbody.velocity.y += PHYSICS_GRAVITY/PHYSICS_STEPS; if (physicObjects[i]->rigidbody.applyGravity)
{
physicObjects[i]->rigidbody.velocity.x += gravityForce.x/PHYSICS_STEPS;
physicObjects[i]->rigidbody.velocity.y += gravityForce.y/PHYSICS_STEPS;
}
// Apply acceleration to velocity // Apply acceleration to velocity
physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.acceleration.x/PHYSICS_STEPS; physicObjects[i]->rigidbody.velocity.x += physicObjects[i]->rigidbody.acceleration.x/PHYSICS_STEPS;
@ -120,142 +136,314 @@ void UpdatePhysics()
{ {
if (physicObjects[k]->collider.enabled && i != k) if (physicObjects[k]->collider.enabled && i != k)
{ {
// Check if colliders are overlapped // Resolve physic collision
if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds)) // NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
{ // and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
// Resolve physic collision
// NOTE: collision resolve is generic for all directions and conditions (no axis separated cases behaviours)
// and it is separated in rigidbody attributes resolve (velocity changes by impulse) and position correction (position overlap)
// 1. Calculate collision normal
// -------------------------------------------------------------------------------------------------------------------------------------
// Define collision ontact normal
Vector2 contactNormal = { 0.0f, 0.0f };
// Calculate direction vector from i to k
Vector2 direction;
direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
// Define overlapping and penetration attributes
Vector2 overlap;
float penetrationDepth = 0.0f;
// Calculate overlap on X axis
overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
// SAT test on X axis
if (overlap.x > 0.0f)
{
// Calculate overlap on Y axis
overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
// SAT test on Y axis
if (overlap.y > 0.0f)
{
// Find out which axis is axis of least penetration
if (overlap.y > overlap.x)
{
// Point towards k knowing that direction points from i to k
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
else contactNormal = (Vector2){ 1.0f, 0.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.x;
}
else
{
// Point towards k knowing that direction points from i to k
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
else contactNormal = (Vector2){ 0.0f, -1.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.y;
}
}
}
// Update rigidbody grounded state
if (physicObjects[i]->rigidbody.enabled)
{
if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
}
// 2. Calculate collision impulse
// -------------------------------------------------------------------------------------------------------------------------------------
// Calculate relative velocity
Vector2 relVelocity = { physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x, physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y };
// Calculate relative velocity in terms of the normal direction
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
// Dot not resolve if velocities are separating // 1. Calculate collision normal
if (velAlongNormal <= 0.0f) // -------------------------------------------------------------------------------------------------------------------------------------
// Define collision contact normal, direction and penetration depth
Vector2 contactNormal = { 0.0f, 0.0f };
Vector2 direction = { 0.0f, 0.0f };
float penetrationDepth = 0.0f;
switch(physicObjects[i]->collider.type)
{
case COLLIDER_RECTANGLE:
{ {
// Calculate minimum bounciness value from both objects switch(physicObjects[k]->collider.type)
float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
// Calculate impulse scalar value
float j = -(1.0f + e) * velAlongNormal;
j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
// Calculate final impulse vector
Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
// Calculate collision mass ration
float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
float ratio = 0.0f;
// Apply impulse to current rigidbodies velocities if they are enabled
if (physicObjects[i]->rigidbody.enabled)
{ {
// Calculate inverted mass ration case COLLIDER_RECTANGLE:
ratio = physicObjects[i]->rigidbody.mass/massSum; {
// Check if colliders are overlapped
// Apply impulse direction to velocity if (CheckCollisionRecs(physicObjects[i]->collider.bounds, physicObjects[k]->collider.bounds))
physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio; {
physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio; // Calculate direction vector from i to k
direction.x = (physicObjects[k]->transform.position.x + physicObjects[k]->transform.scale.x/2) - (physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2);
direction.y = (physicObjects[k]->transform.position.y + physicObjects[k]->transform.scale.y/2) - (physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2);
// Define overlapping and penetration attributes
Vector2 overlap;
// Calculate overlap on X axis
overlap.x = (physicObjects[i]->transform.scale.x + physicObjects[k]->transform.scale.x)/2 - abs(direction.x);
// SAT test on X axis
if (overlap.x > 0.0f)
{
// Calculate overlap on Y axis
overlap.y = (physicObjects[i]->transform.scale.y + physicObjects[k]->transform.scale.y)/2 - abs(direction.y);
// SAT test on Y axis
if (overlap.y > 0.0f)
{
// Find out which axis is axis of least penetration
if (overlap.y > overlap.x)
{
// Point towards k knowing that direction points from i to k
if (direction.x < 0.0f) contactNormal = (Vector2){ -1.0f, 0.0f };
else contactNormal = (Vector2){ 1.0f, 0.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.x;
}
else
{
// Point towards k knowing that direction points from i to k
if (direction.y < 0.0f) contactNormal = (Vector2){ 0.0f, 1.0f };
else contactNormal = (Vector2){ 0.0f, -1.0f };
// Update penetration depth for position correction
penetrationDepth = overlap.y;
}
}
}
}
} break;
case COLLIDER_CIRCLE:
{
if (CheckCollisionCircleRec(physicObjects[k]->transform.position, physicObjects[k]->collider.radius, physicObjects[i]->collider.bounds))
{
// Calculate direction vector between circles
direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x + physicObjects[i]->transform.scale.x/2;
direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y + physicObjects[i]->transform.scale.y/2;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width;
else closestPoint.x = physicObjects[i]->collider.bounds.x;
if (direction.y > 0.0f) closestPoint.y = physicObjects[i]->collider.bounds.y + physicObjects[i]->collider.bounds.height;
else closestPoint.y = physicObjects[i]->collider.bounds.y;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
{
// Recalculate direction based on closest point position
direction.x = physicObjects[k]->transform.position.x - closestPoint.x;
direction.y = physicObjects[k]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Calculate penetration depth
penetrationDepth = physicObjects[k]->collider.radius - distance;
}
else
{
if (abs(direction.y) < abs(direction.x))
{
// Calculate final contact normal
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y - physicObjects[k]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicObjects[i]->collider.bounds.y - physicObjects[k]->transform.position.y + physicObjects[k]->collider.radius);
}
}
else
{
// Calculate final contact normal
if (direction.x > 0.0f)
{
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicObjects[k]->transform.position.x + physicObjects[k]->collider.radius - physicObjects[i]->collider.bounds.x);
}
else
{
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicObjects[i]->collider.bounds.x + physicObjects[i]->collider.bounds.width - physicObjects[k]->transform.position.x - physicObjects[k]->collider.radius);
}
}
}
}
} break;
} }
} break;
if (physicObjects[k]->rigidbody.enabled) case COLLIDER_CIRCLE:
{
switch(physicObjects[k]->collider.type)
{ {
// Calculate inverted mass ration case COLLIDER_RECTANGLE:
ratio = physicObjects[k]->rigidbody.mass/massSum; {
if (CheckCollisionCircleRec(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->collider.bounds))
// Apply impulse direction to velocity {
physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio; // Calculate direction vector between circles
physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio; direction.x = physicObjects[k]->transform.position.x + physicObjects[i]->transform.scale.x/2 - physicObjects[i]->transform.position.x;
direction.y = physicObjects[k]->transform.position.y + physicObjects[i]->transform.scale.y/2 - physicObjects[i]->transform.position.y;
// Calculate closest point on rectangle to circle
Vector2 closestPoint = { 0.0f, 0.0f };
if (direction.x > 0.0f) closestPoint.x = physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width;
else closestPoint.x = physicObjects[k]->collider.bounds.x;
if (direction.y > 0.0f) closestPoint.y = physicObjects[k]->collider.bounds.y + physicObjects[k]->collider.bounds.height;
else closestPoint.y = physicObjects[k]->collider.bounds.y;
// Check if the closest point is inside the circle
if (CheckCollisionPointCircle(closestPoint, physicObjects[i]->transform.position, physicObjects[i]->collider.radius))
{
// Recalculate direction based on closest point position
direction.x = physicObjects[i]->transform.position.x - closestPoint.x;
direction.y = physicObjects[i]->transform.position.y - closestPoint.y;
float distance = Vector2Length(direction);
// Calculate final contact normal
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
// Calculate penetration depth
penetrationDepth = physicObjects[k]->collider.radius - distance;
}
else
{
if (abs(direction.y) < abs(direction.x))
{
// Calculate final contact normal
if (direction.y > 0.0f)
{
contactNormal = (Vector2){ 0.0f, -1.0f };
penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y - physicObjects[i]->collider.radius);
}
else
{
contactNormal = (Vector2){ 0.0f, 1.0f };
penetrationDepth = fabs(physicObjects[k]->collider.bounds.y - physicObjects[i]->transform.position.y + physicObjects[i]->collider.radius);
}
}
else
{
// Calculate final contact normal and penetration depth
if (direction.x > 0.0f)
{
contactNormal = (Vector2){ 1.0f, 0.0f };
penetrationDepth = fabs(physicObjects[i]->transform.position.x + physicObjects[i]->collider.radius - physicObjects[k]->collider.bounds.x);
}
else
{
contactNormal = (Vector2){ -1.0f, 0.0f };
penetrationDepth = fabs(physicObjects[k]->collider.bounds.x + physicObjects[k]->collider.bounds.width - physicObjects[i]->transform.position.x - physicObjects[i]->collider.radius);
}
}
}
}
} break;
case COLLIDER_CIRCLE:
{
// Check if colliders are overlapped
if (CheckCollisionCircles(physicObjects[i]->transform.position, physicObjects[i]->collider.radius, physicObjects[k]->transform.position, physicObjects[k]->collider.radius))
{
// Calculate direction vector between circles
direction.x = physicObjects[k]->transform.position.x - physicObjects[i]->transform.position.x;
direction.y = physicObjects[k]->transform.position.y - physicObjects[i]->transform.position.y;
// Calculate distance between circles
float distance = Vector2Length(direction);
// Check if circles are not completely overlapped
if (distance != 0.0f)
{
// Calculate contact normal direction (Y axis needs to be flipped)
contactNormal.x = direction.x/distance;
contactNormal.y = -direction.y/distance;
}
else contactNormal = (Vector2){ 1.0f, 0.0f }; // Choose random (but consistent) values
}
} break;
default: break;
} }
} break;
default: break;
}
// Update rigidbody grounded state
if (physicObjects[i]->rigidbody.enabled)
{
if (contactNormal.y < 0.0f) physicObjects[i]->rigidbody.isGrounded = true;
}
// 2. Calculate collision impulse
// -------------------------------------------------------------------------------------------------------------------------------------
// Calculate relative velocity
Vector2 relVelocity = { 0.0f, 0.0f };
relVelocity.x = physicObjects[k]->rigidbody.velocity.x - physicObjects[i]->rigidbody.velocity.x;
relVelocity.y = physicObjects[k]->rigidbody.velocity.y - physicObjects[i]->rigidbody.velocity.y;
// Calculate relative velocity in terms of the normal direction
float velAlongNormal = Vector2DotProduct(relVelocity, contactNormal);
// Dot not resolve if velocities are separating
if (velAlongNormal <= 0.0f)
{
// Calculate minimum bounciness value from both objects
float e = fminf(physicObjects[i]->rigidbody.bounciness, physicObjects[k]->rigidbody.bounciness);
// Calculate impulse scalar value
float j = -(1.0f + e)*velAlongNormal;
j /= 1.0f/physicObjects[i]->rigidbody.mass + 1.0f/physicObjects[k]->rigidbody.mass;
// Calculate final impulse vector
Vector2 impulse = { j*contactNormal.x, j*contactNormal.y };
// Calculate collision mass ration
float massSum = physicObjects[i]->rigidbody.mass + physicObjects[k]->rigidbody.mass;
float ratio = 0.0f;
// Apply impulse to current rigidbodies velocities if they are enabled
if (physicObjects[i]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicObjects[i]->rigidbody.mass/massSum;
// 3. Correct colliders overlaping (transform position) // Apply impulse direction to velocity
// --------------------------------------------------------------------------------------------------------------------------------- physicObjects[i]->rigidbody.velocity.x -= impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
physicObjects[i]->rigidbody.velocity.y -= impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
}
if (physicObjects[k]->rigidbody.enabled)
{
// Calculate inverted mass ration
ratio = physicObjects[k]->rigidbody.mass/massSum;
// Calculate transform position penetration correction // Apply impulse direction to velocity
Vector2 posCorrection; physicObjects[k]->rigidbody.velocity.x += impulse.x*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x; physicObjects[k]->rigidbody.velocity.y += impulse.y*ratio*(1.0f+physicObjects[i]->rigidbody.bounciness);
posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y; }
// 3. Correct colliders overlaping (transform position)
// ---------------------------------------------------------------------------------------------------------------------------------
// Calculate transform position penetration correction
Vector2 posCorrection;
posCorrection.x = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.x;
posCorrection.y = penetrationDepth/((1.0f/physicObjects[i]->rigidbody.mass) + (1.0f/physicObjects[k]->rigidbody.mass))*PHYSICS_ERRORPERCENT*contactNormal.y;
// Fix transform positions
if (physicObjects[i]->rigidbody.enabled)
{
// Fix physic objects transform position
physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x;
physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y;
// Fix transform positions // Update collider bounds
if (physicObjects[i]->rigidbody.enabled) physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform);
{
if (physicObjects[k]->rigidbody.enabled)
{
// Fix physic objects transform position // Fix physic objects transform position
physicObjects[i]->transform.position.x -= 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.x; physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
physicObjects[i]->transform.position.y += 1.0f/physicObjects[i]->rigidbody.mass*posCorrection.y; physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
// Update collider bounds // Update collider bounds
physicObjects[i]->collider.bounds = TransformToRectangle(physicObjects[i]->transform); physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
if (physicObjects[k]->rigidbody.enabled)
{
// Fix physic objects transform position
physicObjects[k]->transform.position.x += 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.x;
physicObjects[k]->transform.position.y -= 1.0f/physicObjects[k]->rigidbody.mass*posCorrection.y;
// Update collider bounds
physicObjects[k]->collider.bounds = TransformToRectangle(physicObjects[k]->transform);
}
} }
} }
} }
@ -298,7 +486,7 @@ PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale
obj->rigidbody.friction = 0.0f; obj->rigidbody.friction = 0.0f;
obj->rigidbody.bounciness = 0.0f; obj->rigidbody.bounciness = 0.0f;
obj->collider.enabled = false; obj->collider.enabled = true;
obj->collider.type = COLLIDER_RECTANGLE; obj->collider.type = COLLIDER_RECTANGLE;
obj->collider.bounds = TransformToRectangle(obj->transform); obj->collider.bounds = TransformToRectangle(obj->transform);
obj->collider.radius = 0.0f; obj->collider.radius = 0.0f;
@ -334,6 +522,45 @@ void DestroyPhysicObject(PhysicObject *pObj)
physicObjectsCount--; physicObjectsCount--;
} }
// Apply directional force to a physic object
void ApplyForce(PhysicObject *pObj, Vector2 force)
{
if (pObj->rigidbody.enabled)
{
pObj->rigidbody.velocity.x += force.x/pObj->rigidbody.mass;
pObj->rigidbody.velocity.y += force.y/pObj->rigidbody.mass;
}
}
// Apply radial force to all physic objects in range
void ApplyForceAtPosition(Vector2 position, float force, float radius)
{
for(int i = 0; i < physicObjectsCount; i++)
{
// Calculate direction and distance between force and physic object pposition
Vector2 distance = (Vector2){ physicObjects[i]->transform.position.x - position.x, physicObjects[i]->transform.position.y - position.y };
if(physicObjects[i]->collider.type == COLLIDER_RECTANGLE)
{
distance.x += physicObjects[i]->transform.scale.x/2;
distance.y += physicObjects[i]->transform.scale.y/2;
}
float distanceLength = Vector2Length(distance);
// Check if physic object is in force range
if(distanceLength <= radius)
{
// Normalize force direction
distance.x /= distanceLength;
distance.y /= -distanceLength;
// Apply force to the physic object
ApplyForce(physicObjects[i], (Vector2){ distance.x*force, distance.y*force });
}
}
}
// Convert Transform data type to Rectangle (position and scale) // Convert Transform data type to Rectangle (position and scale)
Rectangle TransformToRectangle(Transform transform) Rectangle TransformToRectangle(Transform transform)
{ {
@ -369,3 +596,12 @@ static float Vector2DotProduct(Vector2 v1, Vector2 v2)
return result; return result;
} }
static float Vector2Length(Vector2 v)
{
float result;
result = sqrt(v.x*v.x + v.y*v.y);
return result;
}

View File

@ -40,7 +40,7 @@ typedef struct Vector2 {
float y; float y;
} Vector2; } Vector2;
typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE, COLLIDER_CAPSULE } ColliderType; typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
typedef struct Transform { typedef struct Transform {
Vector2 position; Vector2 position;
@ -56,14 +56,14 @@ typedef struct Rigidbody {
bool applyGravity; bool applyGravity;
bool isGrounded; bool isGrounded;
float friction; // Normalized value float friction; // Normalized value
float bounciness; // Normalized value float bounciness;
} Rigidbody; } Rigidbody;
typedef struct Collider { typedef struct Collider {
bool enabled; bool enabled;
ColliderType type; ColliderType type;
Rectangle bounds; // Used for COLLIDER_RECTANGLE and COLLIDER_CAPSULE Rectangle bounds; // Used for COLLIDER_RECTANGLE
int radius; // Used for COLLIDER_CIRCLE and COLLIDER_CAPSULE int radius; // Used for COLLIDER_CIRCLE
} Collider; } Collider;
typedef struct PhysicObject { typedef struct PhysicObject {
@ -81,13 +81,16 @@ extern "C" { // Prevents name mangling of functions
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
// Module Functions Declaration // Module Functions Declaration
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
void InitPhysics(); // Initializes pointers array (just pointers, fixed size) void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
void ClosePhysics(); // Unitialize all physic objects and empty the objects pool void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale); // Create a new physic object dinamically, initialize it and add to pool PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale); // Create a new physic object dinamically, initialize it and add to pool
void DestroyPhysicObject(PhysicObject *pObj); // Destroy a specific physic object and take it out of the list void DestroyPhysicObject(PhysicObject *pObj); // Destroy a specific physic object and take it out of the list
void ApplyForce(PhysicObject *pObj, Vector2 force); // Apply directional force to a physic object
void ApplyForceAtPosition(Vector2 position, float force, float radius); // Apply radial force to all physic objects in range
Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale) Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
void DrawPhysicObjectInfo(PhysicObject *pObj, Vector2 position, int fontSize); // Draw physic object information at screen position void DrawPhysicObjectInfo(PhysicObject *pObj, Vector2 position, int fontSize); // Draw physic object information at screen position

View File

@ -466,7 +466,7 @@ typedef struct {
// Camera system modes // Camera system modes
typedef enum { CAMERA_CUSTOM = 0, CAMERA_FREE, CAMERA_ORBITAL, CAMERA_FIRST_PERSON, CAMERA_THIRD_PERSON } CameraMode; typedef enum { CAMERA_CUSTOM = 0, CAMERA_FREE, CAMERA_ORBITAL, CAMERA_FIRST_PERSON, CAMERA_THIRD_PERSON } CameraMode;
typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE, COLLIDER_CAPSULE } ColliderType; typedef enum { COLLIDER_CIRCLE, COLLIDER_RECTANGLE } ColliderType;
typedef struct Transform { typedef struct Transform {
Vector2 position; Vector2 position;
@ -482,14 +482,14 @@ typedef struct Rigidbody {
bool applyGravity; bool applyGravity;
bool isGrounded; bool isGrounded;
float friction; // Normalized value float friction; // Normalized value
float bounciness; // Normalized value float bounciness;
} Rigidbody; } Rigidbody;
typedef struct Collider { typedef struct Collider {
bool enabled; bool enabled;
ColliderType type; ColliderType type;
Rectangle bounds; // Used for COLLIDER_RECTANGLE and COLLIDER_CAPSULE Rectangle bounds; // Used for COLLIDER_RECTANGLE
int radius; // Used for COLLIDER_CIRCLE and COLLIDER_CAPSULE int radius; // Used for COLLIDER_CIRCLE
} Collider; } Collider;
typedef struct PhysicObject { typedef struct PhysicObject {
@ -810,13 +810,16 @@ void SetBlendMode(int mode); // Set blend
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
// Physics System Functions (Module: physac) // Physics System Functions (Module: physac)
//---------------------------------------------------------------------------------- //----------------------------------------------------------------------------------
void InitPhysics(); // Initializes pointers array (just pointers, fixed size) void InitPhysics(Vector2 gravity); // Initializes pointers array (just pointers, fixed size)
void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection void UpdatePhysics(); // Update physic objects, calculating physic behaviours and collisions detection
void ClosePhysics(); // Unitialize all physic objects and empty the objects pool void ClosePhysics(); // Unitialize all physic objects and empty the objects pool
PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale); // Create a new physic object dinamically, initialize it and add to pool PhysicObject *CreatePhysicObject(Vector2 position, float rotation, Vector2 scale); // Create a new physic object dinamically, initialize it and add to pool
void DestroyPhysicObject(PhysicObject *pObj); // Destroy a specific physic object and take it out of the list void DestroyPhysicObject(PhysicObject *pObj); // Destroy a specific physic object and take it out of the list
void ApplyForce(PhysicObject *pObj, Vector2 force); // Apply directional force to a physic object
void ApplyForceAtPosition(Vector2 position, float force, float radius); // Apply radial force to all physic objects in range
Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale) Rectangle TransformToRectangle(Transform transform); // Convert Transform data type to Rectangle (position and scale)
void DrawPhysicObjectInfo(PhysicObject *pObj, Vector2 position, int fontSize); // Draw physic object information at screen position void DrawPhysicObjectInfo(PhysicObject *pObj, Vector2 position, int fontSize); // Draw physic object information at screen position