BIG UPDATE: New models functions for animations!

Multiple functions added and some reviewed to adapt to the new multi-mesh, multi-material and animated models.
This commit is contained in:
Ray 2019-04-05 13:15:56 +02:00
parent 38a13b76d1
commit 92733d6695
8 changed files with 547 additions and 936 deletions

View File

@ -1,19 +1,16 @@
/*******************************************************************************************
*
* raylib [models] example - Load IQM 3d model with animations and play them
* raylib [models] example - Load 3d model with animations and play them
*
* This example has been created using raylib 2.0 (www.raylib.com)
* This example has been created using raylib 2.5 (www.raylib.com)
* raylib is licensed under an unmodified zlib/libpng license (View raylib.h for details)
*
* Copyright (c) 2018 @culacant and @raysan5
* Copyright (c) 2019 Ramon Santamaria (@raysan5) and @culacant
*
********************************************************************************************/
#include "raylib.h"
#define RIQM_IMPLEMENTATION
#include "riqm.h"
int main()
{
// Initialization
@ -21,7 +18,7 @@ int main()
int screenWidth = 800;
int screenHeight = 450;
InitWindow(screenWidth, screenHeight, "raylib [models] example - iqm animation");
InitWindow(screenWidth, screenHeight, "raylib [models] example - model animation");
// Define the camera to look into our 3d world
Camera camera = { 0 };
@ -31,26 +28,25 @@ int main()
camera.fovy = 45.0f; // Camera field-of-view Y
camera.type = CAMERA_PERSPECTIVE; // Camera mode type
// Load the animated model mesh and basic data
AnimatedModel model = LoadAnimatedModel("resources/guy.iqm");
// Load model texture and set material
// NOTE: There is only 1 mesh and 1 material (both at index 0), thats what the 2 0's are
model = AnimatedModelAddTexture(model, "resources/guytex.png"); // REPLACE!
model = SetMeshMaterial(model, 0, 0); // REPLACE!
Model model = LoadModel("resources/guy/guy.iqm"); // Load the animated model mesh and basic data
Texture2D texture = LoadTexture("resources/guy/guytex.png"); // Load model texture and set material
SetMaterialTexture(&model.materials[0], MAP_DIFFUSE, texture); // Set model material map texture
Vector3 position = { 0.0f, 0.0f, 0.0f }; // Set model position
// Load animation data
Animation anim = LoadAnimationFromIQM("resources/guyanim.iqm");
int animsCount = 0;
ModelAnimation *anims = LoadModelAnimations("resources/guy/guyanim.iqm", &animsCount);
int animFrameCounter = 0;
SetCameraMode(camera, CAMERA_FREE); // Set free camera mode
SetCameraMode(camera, CAMERA_FREE); // Set free camera mode
SetTargetFPS(60); // Set our game to run at 60 frames-per-second
SetTargetFPS(60); // Set our game to run at 60 frames-per-second
//--------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
@ -60,7 +56,8 @@ int main()
if (IsKeyDown(KEY_SPACE))
{
animFrameCounter++;
AnimateModel(model, anim, animFrameCounter); // Animate the model with animation data and frame
UpdateModelAnimation(model, anims[0], animFrameCounter);
if (animFrameCounter >= anims[0].frameCount) animFrameCounter = 0;
}
//----------------------------------------------------------------------------------
@ -72,14 +69,18 @@ int main()
BeginMode3D(camera);
DrawAnimatedModel(model, Vector3Zero(), 1.0f, WHITE); // Draw animated model
DrawModelEx(model, position, (Vector3){ 1.0f, 0.0f, 0.0f }, -90.0f, (Vector3){ 1.0f, 1.0f, 1.0f }, WHITE);
for (int i = 0; i < model.boneCount; i++)
{
DrawCube(anims[0].framePoses[animFrameCounter][i].translation, 0.2f, 0.2f, 0.2f, RED);
}
DrawGrid(10, 1.0f); // Draw a grid
EndMode3D();
DrawText("PRESS SPACE to PLAY IQM MODEL ANIMATION", 10, 10, 20, MAROON);
DrawText("PRESS SPACE to PLAY MODEL ANIMATION", 10, 10, 20, MAROON);
DrawText("(c) Guy IQM 3D model by @culacant", screenWidth - 200, screenHeight - 20, 10, GRAY);
EndDrawing();
@ -88,8 +89,10 @@ int main()
// De-Initialization
//--------------------------------------------------------------------------------------
UnloadAnimation(anim); // Unload animation data
UnloadAnimatedModel(model); // Unload animated model
// Unload model animations data
for (int i = 0; i < animsCount; i++) UnloadModelAnimation(anims[i]);
UnloadModel(model); // Unload model
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------

View File

Before

Width:  |  Height:  |  Size: 295 KiB

After

Width:  |  Height:  |  Size: 295 KiB

View File

@ -49,67 +49,13 @@
// Types and Structures Definition
//----------------------------------------------------------------------------------
#define JOINT_NAME_LENGTH 32 // Joint name string length
#define MESH_NAME_LENGTH 32 // Mesh name string length
typedef struct Joint {
char name[JOINT_NAME_LENGTH];
int parent;
} Joint;
typedef struct Pose {
Vector3 translation;
Quaternion rotation;
Vector3 scale;
} Pose;
typedef struct Animation {
int jointCount; // Number of joints (bones)
Joint *joints; // Joints array
// NOTE: Joints in anims do not have names
int frameCount; // Number of animation frames
float framerate; // Frame change speed
Pose **framepose; // Poses array by frame (and one pose by joint)
} Animation;
// Animated Model type
typedef struct AnimatedModel {
Matrix transform; // Local transform matrix
int meshCount; // Number of meshes
Mesh *meshes; // Meshes array
int materialCount; // Number of materials
Material *materials; // Materials array
int *meshMaterialId; // Mesh materials ids
// Animation required data
int jointCount; // Number of joints (and keyposes)
Joint *joints; // Mesh joints (bones)
Pose *basepose; // Mesh base-poses by joint
} AnimatedModel;
#define BONE_NAME_LENGTH 32 // BoneInfo name string length
#define MESH_NAME_LENGTH 32 // Mesh name string length
//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------
// Loading/Unloading functions
RIQMDEF AnimatedModel LoadAnimatedModel(const char *filename);
RIQMDEF void UnloadAnimatedModel(AnimatedModel model);
RIQMDEF Animation LoadAnimation(const char *filename);
RIQMDEF void UnloadAnimation(Animation anim);
RIQMDEF AnimatedModel AnimatedModelAddTexture(AnimatedModel model, const char *filename); // GENERIC!
RIQMDEF AnimatedModel SetMeshMaterial(AnimatedModel model, int meshid, int textureid); // GENERIC!
// Usage functionality
RIQMDEF bool CheckSkeletonsMatch(AnimatedModel model, Animation anim);
RIQMDEF void AnimateModel(AnimatedModel model, Animation anim, int frame);
RIQMDEF void DrawAnimatedModel(AnimatedModel model, Vector3 position, float scale, Color tint);
RIQMDEF void DrawAnimatedModelEx(AnimatedModel model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint);
#endif // RIQM_H
@ -133,90 +79,6 @@ RIQMDEF void DrawAnimatedModelEx(AnimatedModel model, Vector3 position, Vector3
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
#define IQM_VERSION 2 // only IQM version 2 supported
#define ANIMJOINTNAME "ANIMJOINT" // default joint name (used in Animation)
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
// iqm file structs
typedef struct IQMHeader {
char magic[16];
unsigned int version;
unsigned int filesize;
unsigned int flags;
unsigned int num_text, ofs_text;
unsigned int num_meshes, ofs_meshes;
unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
unsigned int num_triangles, ofs_triangles, ofs_adjacency;
unsigned int num_joints, ofs_joints;
unsigned int num_poses, ofs_poses;
unsigned int num_anims, ofs_anims;
unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
unsigned int num_comment, ofs_comment;
unsigned int num_extensions, ofs_extensions;
} IQMHeader;
typedef struct IQMMesh {
unsigned int name;
unsigned int material;
unsigned int first_vertex, num_vertexes;
unsigned int first_triangle, num_triangles;
} IQMMesh;
typedef struct IQMTriangle {
unsigned int vertex[3];
} IQMTriangle;
typedef struct IQMAdjacency { // adjacency unused by default
unsigned int triangle[3];
} IQMAdjacency;
typedef struct IQMJoint {
unsigned int name;
int parent;
float translate[3], rotate[4], scale[3];
} IQMJoint;
typedef struct IQMPose {
int parent;
unsigned int mask;
float channeloffset[10];
float channelscale[10];
} IQMPose;
typedef struct IQMAnim {
unsigned int name;
unsigned int first_frame, num_frames;
float framerate;
unsigned int flags;
} IQMAnim;
typedef struct IQMVertexArray {
unsigned int type;
unsigned int flags;
unsigned int format;
unsigned int size;
unsigned int offset;
} IQMVertexArray;
typedef struct IQMBounds { // bounds unused by default
float bbmin[3], bbmax[3];
float xyradius, radius;
} IQMBounds;
typedef enum {
IQM_POSITION = 0,
IQM_TEXCOORD = 1,
IQM_NORMAL = 2,
IQM_TANGENT = 3, // tangents unused by default
IQM_BLENDINDEXES = 4,
IQM_BLENDWEIGHTS = 5,
IQM_COLOR = 6, // vertex colors unused by default
IQM_CUSTOM = 0x10 // custom vertex values unused by default
} IQMVertexType;
//----------------------------------------------------------------------------------
// Global Variables Definition
@ -225,609 +87,12 @@ typedef enum {
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
static AnimatedModel LoadIQM(const char *filename);
#ifdef __cplusplus
extern "C" { // Prevents name mangling of functions
#endif
// Load .iqm file and initialize animated model
AnimatedModel LoadAnimatedModel(const char *filename)
{
AnimatedModel out = LoadIQM(filename);
for (int i = 0; i < out.meshCount; i++) rlLoadMesh(&out.meshes[i], false);
out.transform = MatrixIdentity();
out.meshMaterialId = malloc(sizeof(int)*out.meshCount);
out.materials = NULL;
out.materialCount = 0;
for (int i = 0; i < out.meshCount; i++) out.meshMaterialId[i] = -1;
return out;
}
// Add a texture to an animated model
AnimatedModel AnimatedModelAddTexture(AnimatedModel model, const char *filename)
{
Texture2D texture = LoadTexture(filename);
model.materials = realloc(model.materials, sizeof(Material)*(model.materialCount + 1));
model.materials[model.materialCount] = LoadMaterialDefault();
model.materials[model.materialCount].maps[MAP_DIFFUSE].texture = texture;
model.materialCount++;
return model;
}
// Set the material for a meshes
AnimatedModel SetMeshMaterial(AnimatedModel model, int meshid, int textureid)
{
if (meshid > model.meshCount)
{
TraceLog(LOG_WARNING, "MeshId greater than meshCount\n");
return model;
}
if (textureid > model.materialCount)
{
TraceLog(LOG_WARNING,"textureid greater than materialCount\n");
return model;
}
model.meshMaterialId[meshid] = textureid;
return model;
}
// Load animations from a .iqm file
Animation LoadAnimationFromIQM(const char *filename)
{
Animation animation = { 0 };
FILE *iqmFile;
IQMHeader iqm;
iqmFile = fopen(filename,"rb");
if (!iqmFile)
{
TraceLog(LOG_ERROR, "[%s] Unable to open file", filename);
return animation;
}
// header
fread(&iqm, sizeof(IQMHeader), 1, iqmFile);
if (strncmp(iqm.magic, IQM_MAGIC, sizeof(IQM_MAGIC)))
{
TraceLog(LOG_ERROR, "Magic Number \"%s\"does not match.", iqm.magic);
fclose(iqmFile);
return animation;
}
if (iqm.version != IQM_VERSION)
{
TraceLog(LOG_ERROR, "IQM version %i is incorrect.", iqm.version);
fclose(iqmFile);
return animation;
}
// header
if (iqm.num_anims > 1) TraceLog(LOG_WARNING, "More than 1 animation in file, only the first one will get loaded");
// joints
IQMPose *poses;
poses = malloc(sizeof(IQMPose)*iqm.num_poses);
fseek(iqmFile, iqm.ofs_poses, SEEK_SET);
fread(poses, sizeof(IQMPose)*iqm.num_poses, 1, iqmFile);
animation.jointCount = iqm.num_poses;
animation.joints = malloc(sizeof(Joint)*iqm.num_poses);
for (int j = 0; j < iqm.num_poses; j++)
{
strcpy(animation.joints[j].name, ANIMJOINTNAME);
animation.joints[j].parent = poses[j].parent;
}
// animations
IQMAnim anim = {0};
fseek(iqmFile, iqm.ofs_anims, SEEK_SET);
fread(&anim, sizeof(IQMAnim), 1, iqmFile);
animation.frameCount = anim.num_frames;
animation.framerate = anim.framerate;
// frameposes
unsigned short *framedata = malloc(sizeof(unsigned short)*iqm.num_frames*iqm.num_framechannels);
fseek(iqmFile, iqm.ofs_frames, SEEK_SET);
fread(framedata, sizeof(unsigned short)*iqm.num_frames*iqm.num_framechannels, 1, iqmFile);
animation.framepose = malloc(sizeof(Pose*)*anim.num_frames);
for (int j = 0; j < anim.num_frames; j++) animation.framepose[j] = malloc(sizeof(Pose)*iqm.num_poses);
int dcounter = anim.first_frame*iqm.num_framechannels;
for (int frame = 0; frame < anim.num_frames; frame++)
{
for (int i = 0; i < iqm.num_poses; i++)
{
animation.framepose[frame][i].translation.x = poses[i].channeloffset[0];
if (poses[i].mask & 0x01)
{
animation.framepose[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0];
dcounter++;
}
animation.framepose[frame][i].translation.y = poses[i].channeloffset[1];
if (poses[i].mask & 0x02)
{
animation.framepose[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1];
dcounter++;
}
animation.framepose[frame][i].translation.z = poses[i].channeloffset[2];
if (poses[i].mask & 0x04)
{
animation.framepose[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2];
dcounter++;
}
animation.framepose[frame][i].rotation.x = poses[i].channeloffset[3];
if (poses[i].mask & 0x08)
{
animation.framepose[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3];
dcounter++;
}
animation.framepose[frame][i].rotation.y = poses[i].channeloffset[4];
if (poses[i].mask & 0x10)
{
animation.framepose[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4];
dcounter++;
}
animation.framepose[frame][i].rotation.z = poses[i].channeloffset[5];
if (poses[i].mask & 0x20)
{
animation.framepose[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5];
dcounter++;
}
animation.framepose[frame][i].rotation.w = poses[i].channeloffset[6];
if (poses[i].mask & 0x40)
{
animation.framepose[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6];
dcounter++;
}
animation.framepose[frame][i].scale.x = poses[i].channeloffset[7];
if (poses[i].mask & 0x80)
{
animation.framepose[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7];
dcounter++;
}
animation.framepose[frame][i].scale.y = poses[i].channeloffset[8];
if (poses[i].mask & 0x100)
{
animation.framepose[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8];
dcounter++;
}
animation.framepose[frame][i].scale.z = poses[i].channeloffset[9];
if (poses[i].mask & 0x200)
{
animation.framepose[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9];
dcounter++;
}
animation.framepose[frame][i].rotation = QuaternionNormalize(animation.framepose[frame][i].rotation);
}
}
// Build frameposes
for (int frame = 0; frame < anim.num_frames; frame++)
{
for (int i = 0; i < animation.jointCount; i++)
{
if (animation.joints[i].parent >= 0)
{
animation.framepose[frame][i].rotation = QuaternionMultiply(animation.framepose[frame][animation.joints[i].parent].rotation, animation.framepose[frame][i].rotation);
animation.framepose[frame][i].translation = Vector3RotateByQuaternion(animation.framepose[frame][i].translation, animation.framepose[frame][animation.joints[i].parent].rotation);
animation.framepose[frame][i].translation = Vector3Add(animation.framepose[frame][i].translation, animation.framepose[frame][animation.joints[i].parent].translation);
animation.framepose[frame][i].scale = Vector3MultiplyV(animation.framepose[frame][i].scale, animation.framepose[frame][animation.joints[i].parent].scale);
}
}
}
free(framedata);
free(poses);
fclose(iqmFile);
return animation;
}
// Unload animated model
void UnloadAnimatedModel(AnimatedModel model)
{
free(model.materials);
free(model.meshMaterialId);
free(model.joints);
free(model.basepose);
for (int i = 0; i < model.meshCount; i++) rlUnloadMesh(&model.meshes[i]);
free(model.meshes);
}
// Unload animation
void UnloadAnimation(Animation anim)
{
free(anim.joints);
free(anim.framepose);
for (int i = 0; i < anim.frameCount; i++) free(anim.framepose[i]);
}
// Check if skeletons match, only parents and jointCount are checked
bool CheckSkeletonsMatch(AnimatedModel model, Animation anim)
{
if (model.jointCount != anim.jointCount) return 0;
for (int i = 0; i < model.jointCount; i++)
{
if (model.joints[i].parent != anim.joints[i].parent) return 0;
}
return 1;
}
// Calculate the animated vertex positions and normals based on an animation at a given frame
void AnimateModel(AnimatedModel model, Animation anim, int frame)
{
if (frame >= anim.frameCount) frame = frame%anim.frameCount;
for (int m = 0; m < model.meshCount; m++)
{
Vector3 outv = {0};
Vector3 outn = {0};
Vector3 baset = {0};
Quaternion baser = {0};
Vector3 bases = {0};
Vector3 outt = {0};
Quaternion outr = {0};
Vector3 outs = {0};
int vcounter = 0;
int wcounter = 0;
int weightId = 0;
for (int i = 0; i < model.meshes[m].vertexCount; i++)
{
weightId = model.meshes[m].weightId[wcounter];
baset = model.basepose[weightId].translation;
baser = model.basepose[weightId].rotation;
bases = model.basepose[weightId].scale;
outt = anim.framepose[frame][weightId].translation;
outr = anim.framepose[frame][weightId].rotation;
outs = anim.framepose[frame][weightId].scale;
// vertices
// NOTE: We use meshes.baseVertices (default position) to calculate meshes.vertices (animated position)
outv = (Vector3){ model.meshes[m].baseVertices[vcounter], model.meshes[m].baseVertices[vcounter + 1], model.meshes[m].baseVertices[vcounter + 2] };
outv = Vector3MultiplyV(outv, outs);
outv = Vector3Subtract(outv, baset);
outv = Vector3RotateByQuaternion(outv, QuaternionMultiply(outr, QuaternionInvert(baser)));
outv = Vector3Add(outv, outt);
model.meshes[m].vertices[vcounter] = outv.x;
model.meshes[m].vertices[vcounter + 1] = outv.y;
model.meshes[m].vertices[vcounter + 2] = outv.z;
// normals
// NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals)
outn = (Vector3){ model.meshes[m].baseNormals[vcounter], model.meshes[m].baseNormals[vcounter + 1], model.meshes[m].baseNormals[vcounter + 2] };
outn = Vector3RotateByQuaternion(outn, QuaternionMultiply(outr, QuaternionInvert(baser)));
model.meshes[m].normals[vcounter] = outn.x;
model.meshes[m].normals[vcounter + 1] = outn.y;
model.meshes[m].normals[vcounter + 2] = outn.z;
vcounter += 3;
wcounter += 4;
}
}
}
// Draw an animated model
void DrawAnimatedModel(AnimatedModel model, Vector3 position, float scale, Color tint)
{
Vector3 vScale = { scale, scale, scale };
Vector3 rotationAxis = { 1.0f, 0.0f,0.0f };
DrawAnimatedModelEx(model, position, rotationAxis, -90.0f, vScale, tint);
}
// Draw an animated model with extended parameters
void DrawAnimatedModelEx(AnimatedModel model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
{
if (model.materialCount == 0)
{
TraceLog(LOG_WARNING,"No materials set, can't draw animated meshes\n");
return;
}
Matrix matScale = MatrixScale(scale.x, scale.y, scale.z);
Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD);
Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z);
Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation);
model.transform = MatrixMultiply(model.transform, matTransform);
for (int i = 0; i < model.meshCount; i++)
{
rlUpdateMesh(model.meshes[i], 0, model.meshes[i].vertexCount); // Update vertex position
rlUpdateMesh(model.meshes[i], 2, model.meshes[i].vertexCount); // Update vertex normals
rlDrawMesh(model.meshes[i], model.materials[model.meshMaterialId[i]], model.transform); // Draw meshes
}
}
// Load animated model meshes from IQM file
static AnimatedModel LoadIQM(const char *filename)
{
AnimatedModel model = { 0 };
FILE *iqmFile;
IQMHeader iqm;
IQMMesh *imesh;
IQMTriangle *tri;
IQMVertexArray *va;
IQMJoint *ijoint;
float *vertex;
float *normal;
float *text;
char *blendi;
unsigned char *blendw;
iqmFile = fopen(filename, "rb");
if (!iqmFile)
{
TraceLog(LOG_ERROR, "[%s] Unable to open file", filename);
return model;
}
// header
fread(&iqm,sizeof(IQMHeader), 1, iqmFile);
if (strncmp(iqm.magic, IQM_MAGIC, sizeof(IQM_MAGIC)))
{
TraceLog(LOG_ERROR, "Magic Number \"%s\"does not match.", iqm.magic);
fclose(iqmFile);
return model;
}
if(iqm.version != IQM_VERSION)
{
TraceLog(LOG_ERROR, "IQM version %i is incorrect.", iqm.version);
fclose(iqmFile);
return model;
}
// meshes
imesh = malloc(sizeof(IQMMesh)*iqm.num_meshes);
fseek(iqmFile, iqm.ofs_meshes, SEEK_SET);
fread(imesh, sizeof(IQMMesh)*iqm.num_meshes, 1, iqmFile);
model.meshCount = iqm.num_meshes;
model.meshes = malloc(sizeof(Mesh)*iqm.num_meshes);
char name[MESH_NAME_LENGTH];
for (int i = 0; i < iqm.num_meshes; i++)
{
fseek(iqmFile,iqm.ofs_text+imesh[i].name,SEEK_SET);
fread(name, sizeof(char)*MESH_NAME_LENGTH, 1, iqmFile); // Mesh name not used...
model.meshes[i].vertexCount = imesh[i].num_vertexes;
model.meshes[i].baseVertices = malloc(sizeof(float)*imesh[i].num_vertexes*3); // Default IQM base position
model.meshes[i].baseNormals = malloc(sizeof(float)*imesh[i].num_vertexes*3); // Default IQM base normal
model.meshes[i].texcoords = malloc(sizeof(float)*imesh[i].num_vertexes*2);
model.meshes[i].weightId = malloc(sizeof(int)*imesh[i].num_vertexes*4);
model.meshes[i].weightBias = malloc(sizeof(float)*imesh[i].num_vertexes*4);
model.meshes[i].triangleCount = imesh[i].num_triangles;
model.meshes[i].indices = malloc(sizeof(unsigned short)*imesh[i].num_triangles*3);
// What we actually process for rendering, should be updated transforming meshes.vertices and meshes.normals
model.meshes[i].vertices = malloc(sizeof(float)*imesh[i].num_vertexes*3);
model.meshes[i].normals = malloc(sizeof(float)*imesh[i].num_vertexes*3);
}
// tris
tri = malloc(sizeof(IQMTriangle)*iqm.num_triangles);
fseek(iqmFile, iqm.ofs_triangles, SEEK_SET);
fread(tri, sizeof(IQMTriangle)*iqm.num_triangles, 1, iqmFile);
for (int m = 0; m < iqm.num_meshes; m++)
{
int tcounter = 0;
for (int i = imesh[m].first_triangle; i < imesh[m].first_triangle+imesh[m].num_triangles; i++)
{
// IQM triangles are stored counter clockwise, but raylib sets opengl to clockwise drawing, so we swap them around
model.meshes[m].indices[tcounter+2] = tri[i].vertex[0] - imesh[m].first_vertex;
model.meshes[m].indices[tcounter+1] = tri[i].vertex[1] - imesh[m].first_vertex;
model.meshes[m].indices[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex;
tcounter += 3;
}
}
// vertarrays
va = malloc(sizeof(IQMVertexArray)*iqm.num_vertexarrays);
fseek(iqmFile, iqm.ofs_vertexarrays, SEEK_SET);
fread(va, sizeof(IQMVertexArray)*iqm.num_vertexarrays, 1, iqmFile);
for (int i = 0; i < iqm.num_vertexarrays; i++)
{
switch (va[i].type)
{
case IQM_POSITION:
{
vertex = malloc(sizeof(float)*iqm.num_vertexes*3);
fseek(iqmFile, va[i].offset, SEEK_SET);
fread(vertex, sizeof(float)*iqm.num_vertexes*3, 1, iqmFile);
for (int m = 0; m < iqm.num_meshes; m++)
{
int vcounter = 0;
for (int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
{
model.meshes[m].vertices[vcounter] = vertex[i];
model.meshes[m].baseVertices[vcounter] = vertex[i];
vcounter++;
}
}
} break;
case IQM_NORMAL:
{
normal = malloc(sizeof(float)*iqm.num_vertexes*3);
fseek(iqmFile, va[i].offset, SEEK_SET);
fread(normal, sizeof(float)*iqm.num_vertexes*3, 1, iqmFile);
for (int m = 0; m < iqm.num_meshes; m++)
{
int vcounter = 0;
for (int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
{
model.meshes[m].normals[vcounter] = normal[i];
model.meshes[m].baseNormals[vcounter] = normal[i];
vcounter++;
}
}
} break;
case IQM_TEXCOORD:
{
text = malloc(sizeof(float)*iqm.num_vertexes*2);
fseek(iqmFile, va[i].offset, SEEK_SET);
fread(text, sizeof(float)*iqm.num_vertexes*2, 1, iqmFile);
for (int m = 0; m < iqm.num_meshes; m++)
{
int vcounter = 0;
for (int i = imesh[m].first_vertex*2; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*2; i++)
{
model.meshes[m].texcoords[vcounter] = text[i];
vcounter++;
}
}
} break;
case IQM_BLENDINDEXES:
{
blendi = malloc(sizeof(char)*iqm.num_vertexes*4);
fseek(iqmFile, va[i].offset, SEEK_SET);
fread(blendi, sizeof(char)*iqm.num_vertexes*4, 1, iqmFile);
for (int m = 0; m < iqm.num_meshes; m++)
{
int vcounter = 0;
for (int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
{
model.meshes[m].weightId[vcounter] = blendi[i];
vcounter++;
}
}
} break;
case IQM_BLENDWEIGHTS:
{
blendw = malloc(sizeof(unsigned char)*iqm.num_vertexes*4);
fseek(iqmFile,va[i].offset,SEEK_SET);
fread(blendw,sizeof(unsigned char)*iqm.num_vertexes*4,1,iqmFile);
for (int m = 0; m < iqm.num_meshes; m++)
{
int vcounter = 0;
for (int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
{
model.meshes[m].weightBias[vcounter] = blendw[i]/255.0f;
vcounter++;
}
}
} break;
}
}
// joints, include base poses
ijoint = malloc(sizeof(IQMJoint)*iqm.num_joints);
fseek(iqmFile, iqm.ofs_joints, SEEK_SET);
fread(ijoint, sizeof(IQMJoint)*iqm.num_joints, 1, iqmFile);
model.jointCount = iqm.num_joints;
model.joints = malloc(sizeof(Joint)*iqm.num_joints);
model.basepose = malloc(sizeof(Pose)*iqm.num_joints);
for (int i = 0; i < iqm.num_joints; i++)
{
// joints
model.joints[i].parent = ijoint[i].parent;
fseek(iqmFile, iqm.ofs_text + ijoint[i].name, SEEK_SET);
fread(model.joints[i].name,sizeof(char)*JOINT_NAME_LENGTH, 1, iqmFile);
// basepose
model.basepose[i].translation.x = ijoint[i].translate[0];
model.basepose[i].translation.y = ijoint[i].translate[1];
model.basepose[i].translation.z = ijoint[i].translate[2];
model.basepose[i].rotation.x = ijoint[i].rotate[0];
model.basepose[i].rotation.y = ijoint[i].rotate[1];
model.basepose[i].rotation.z = ijoint[i].rotate[2];
model.basepose[i].rotation.w = ijoint[i].rotate[3];
model.basepose[i].scale.x = ijoint[i].scale[0];
model.basepose[i].scale.y = ijoint[i].scale[1];
model.basepose[i].scale.z = ijoint[i].scale[2];
}
// build base pose
for (int i = 0; i < model.jointCount; i++)
{
if (model.joints[i].parent >= 0)
{
model.basepose[i].rotation = QuaternionMultiply(model.basepose[model.joints[i].parent].rotation, model.basepose[i].rotation);
model.basepose[i].translation = Vector3RotateByQuaternion(model.basepose[i].translation, model.basepose[model.joints[i].parent].rotation);
model.basepose[i].translation = Vector3Add(model.basepose[i].translation, model.basepose[model.joints[i].parent].translation);
model.basepose[i].scale = Vector3MultiplyV(model.basepose[i].scale, model.basepose[model.joints[i].parent].scale);
}
}
fclose(iqmFile);
free(imesh);
free(tri);
free(va);
free(vertex);
free(normal);
free(text);
free(blendi);
free(blendw);
free(ijoint);
return model;
}
#endif

View File

@ -697,6 +697,18 @@ void UnloadModel(Model model)
TraceLog(LOG_INFO, "Unloaded model data from RAM and VRAM");
}
// Load meshes from model file
Mesh *LoadMeshes(const char *fileName, int *meshCount)
{
Mesh *meshes = NULL;
int count = 0;
// TODO: Load meshes from file (OBJ, IQM, GLTF)
*meshCount = count;
return meshes;
}
// Unload mesh from memory (RAM and/or VRAM)
void UnloadMesh(Mesh *mesh)
{
@ -759,6 +771,386 @@ void ExportMesh(Mesh mesh, const char *fileName)
else TraceLog(LOG_WARNING, "Mesh could not be exported.");
}
// Load materials from model file
Material *LoadMaterials(const char *fileName, int *materialCount)
{
Material *materials = NULL;
unsigned int count = 0;
// TODO: Support IQM and GLTF for materials parsing
#if defined(SUPPORT_FILEFORMAT_MTL)
if (IsFileExtension(fileName, ".mtl"))
{
tinyobj_material_t *mats;
int result = tinyobj_parse_mtl_file(&mats, &count, fileName);
// TODO: Process materials to return
tinyobj_materials_free(mats, count);
}
#else
TraceLog(LOG_WARNING, "[%s] Materials file not supported", fileName);
#endif
// Set materials shader to default (DIFFUSE, SPECULAR, NORMAL)
for (int i = 0; i < count; i++) materials[i].shader = GetShaderDefault();
*materialCount = count;
return materials;
}
// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
Material LoadMaterialDefault(void)
{
Material material = { 0 };
material.shader = GetShaderDefault();
material.maps[MAP_DIFFUSE].texture = GetTextureDefault(); // White texture (1x1 pixel)
//material.maps[MAP_NORMAL].texture; // NOTE: By default, not set
//material.maps[MAP_SPECULAR].texture; // NOTE: By default, not set
material.maps[MAP_DIFFUSE].color = WHITE; // Diffuse color
material.maps[MAP_SPECULAR].color = WHITE; // Specular color
return material;
}
// Unload material from memory
void UnloadMaterial(Material material)
{
// Unload material shader (avoid unloading default shader, managed by raylib)
if (material.shader.id != GetShaderDefault().id) UnloadShader(material.shader);
// Unload loaded texture maps (avoid unloading default texture, managed by raylib)
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
if (material.maps[i].texture.id != GetTextureDefault().id) rlDeleteTextures(material.maps[i].texture.id);
}
}
// Set texture for a material map type (MAP_DIFFUSE, MAP_SPECULAR...)
// NOTE: Previous texture should be manually unloaded
void SetMaterialTexture(Material *material, int mapType, Texture2D texture)
{
material->maps[mapType].texture = texture;
}
// Set the material for a mesh
void SetModelMeshMaterial(Model *model, int meshId, int materialId)
{
if (meshId >= model->meshCount) TraceLog(LOG_WARNING, "Mesh id greater than mesh count");
else if (materialId >= model->materialCount) TraceLog(LOG_WARNING,"Material id greater than material count");
else model->meshMaterial[meshId] = materialId;
}
// Load model animations from file
ModelAnimation *LoadModelAnimations(const char *filename, int *animCount)
{
ModelAnimation *animations = (ModelAnimation *)malloc(1*sizeof(ModelAnimation));
int count = 1;
#define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
#define IQM_VERSION 2 // only IQM version 2 supported
typedef struct IQMHeader {
char magic[16];
unsigned int version;
unsigned int filesize;
unsigned int flags;
unsigned int num_text, ofs_text;
unsigned int num_meshes, ofs_meshes;
unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
unsigned int num_triangles, ofs_triangles, ofs_adjacency;
unsigned int num_joints, ofs_joints;
unsigned int num_poses, ofs_poses;
unsigned int num_anims, ofs_anims;
unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
unsigned int num_comment, ofs_comment;
unsigned int num_extensions, ofs_extensions;
} IQMHeader;
typedef struct IQMPose {
int parent;
unsigned int mask;
float channeloffset[10];
float channelscale[10];
} IQMPose;
typedef struct IQMAnim {
unsigned int name;
unsigned int first_frame, num_frames;
float framerate;
unsigned int flags;
} IQMAnim;
ModelAnimation animation = { 0 };
FILE *iqmFile;
IQMHeader iqm;
iqmFile = fopen(filename,"rb");
if (!iqmFile)
{
TraceLog(LOG_ERROR, "[%s] Unable to open file", filename);
}
// header
fread(&iqm, sizeof(IQMHeader), 1, iqmFile);
if (strncmp(iqm.magic, IQM_MAGIC, sizeof(IQM_MAGIC)))
{
TraceLog(LOG_ERROR, "Magic Number \"%s\"does not match.", iqm.magic);
fclose(iqmFile);
}
if (iqm.version != IQM_VERSION)
{
TraceLog(LOG_ERROR, "IQM version %i is incorrect.", iqm.version);
fclose(iqmFile);
}
// header
if (iqm.num_anims > 1) TraceLog(LOG_WARNING, "More than 1 animation in file, only the first one will be loaded");
// bones
IQMPose *poses;
poses = malloc(sizeof(IQMPose)*iqm.num_poses);
fseek(iqmFile, iqm.ofs_poses, SEEK_SET);
fread(poses, sizeof(IQMPose)*iqm.num_poses, 1, iqmFile);
animation.boneCount = iqm.num_poses;
animation.bones = malloc(sizeof(BoneInfo)*iqm.num_poses);
for (int j = 0; j < iqm.num_poses; j++)
{
strcpy(animation.bones[j].name, "ANIMJOINTNAME");
animation.bones[j].parent = poses[j].parent;
}
// animations
IQMAnim anim = {0};
fseek(iqmFile, iqm.ofs_anims, SEEK_SET);
fread(&anim, sizeof(IQMAnim), 1, iqmFile);
animation.frameCount = anim.num_frames;
//animation.framerate = anim.framerate;
// frameposes
unsigned short *framedata = malloc(sizeof(unsigned short)*iqm.num_frames*iqm.num_framechannels);
fseek(iqmFile, iqm.ofs_frames, SEEK_SET);
fread(framedata, sizeof(unsigned short)*iqm.num_frames*iqm.num_framechannels, 1, iqmFile);
animation.framePoses = malloc(sizeof(Transform*)*anim.num_frames);
for (int j = 0; j < anim.num_frames; j++) animation.framePoses[j] = malloc(sizeof(Transform)*iqm.num_poses);
int dcounter = anim.first_frame*iqm.num_framechannels;
for (int frame = 0; frame < anim.num_frames; frame++)
{
for (int i = 0; i < iqm.num_poses; i++)
{
animation.framePoses[frame][i].translation.x = poses[i].channeloffset[0];
if (poses[i].mask & 0x01)
{
animation.framePoses[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0];
dcounter++;
}
animation.framePoses[frame][i].translation.y = poses[i].channeloffset[1];
if (poses[i].mask & 0x02)
{
animation.framePoses[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1];
dcounter++;
}
animation.framePoses[frame][i].translation.z = poses[i].channeloffset[2];
if (poses[i].mask & 0x04)
{
animation.framePoses[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2];
dcounter++;
}
animation.framePoses[frame][i].rotation.x = poses[i].channeloffset[3];
if (poses[i].mask & 0x08)
{
animation.framePoses[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3];
dcounter++;
}
animation.framePoses[frame][i].rotation.y = poses[i].channeloffset[4];
if (poses[i].mask & 0x10)
{
animation.framePoses[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4];
dcounter++;
}
animation.framePoses[frame][i].rotation.z = poses[i].channeloffset[5];
if (poses[i].mask & 0x20)
{
animation.framePoses[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5];
dcounter++;
}
animation.framePoses[frame][i].rotation.w = poses[i].channeloffset[6];
if (poses[i].mask & 0x40)
{
animation.framePoses[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6];
dcounter++;
}
animation.framePoses[frame][i].scale.x = poses[i].channeloffset[7];
if (poses[i].mask & 0x80)
{
animation.framePoses[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7];
dcounter++;
}
animation.framePoses[frame][i].scale.y = poses[i].channeloffset[8];
if (poses[i].mask & 0x100)
{
animation.framePoses[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8];
dcounter++;
}
animation.framePoses[frame][i].scale.z = poses[i].channeloffset[9];
if (poses[i].mask & 0x200)
{
animation.framePoses[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9];
dcounter++;
}
animation.framePoses[frame][i].rotation = QuaternionNormalize(animation.framePoses[frame][i].rotation);
}
}
// Build frameposes
for (int frame = 0; frame < anim.num_frames; frame++)
{
for (int i = 0; i < animation.boneCount; i++)
{
if (animation.bones[i].parent >= 0)
{
animation.framePoses[frame][i].rotation = QuaternionMultiply(animation.framePoses[frame][animation.bones[i].parent].rotation, animation.framePoses[frame][i].rotation);
animation.framePoses[frame][i].translation = Vector3RotateByQuaternion(animation.framePoses[frame][i].translation, animation.framePoses[frame][animation.bones[i].parent].rotation);
animation.framePoses[frame][i].translation = Vector3Add(animation.framePoses[frame][i].translation, animation.framePoses[frame][animation.bones[i].parent].translation);
animation.framePoses[frame][i].scale = Vector3MultiplyV(animation.framePoses[frame][i].scale, animation.framePoses[frame][animation.bones[i].parent].scale);
}
}
}
free(framedata);
free(poses);
fclose(iqmFile);
animations[0] = animation;
*animCount = count;
return animations;
}
// Update model animated vertex data (positions and normals) for a given frame
// NOTE: Updated data is uploaded to GPU
void UpdateModelAnimation(Model model, ModelAnimation anim, int frame)
{
if (frame >= anim.frameCount) frame = frame%anim.frameCount;
for (int m = 0; m < model.meshCount; m++)
{
Vector3 animVertex = { 0 };
Vector3 animNormal = { 0 };
Vector3 inTranslation = { 0 };
Quaternion inRotation = { 0 };
Vector3 inScale = { 0 };
Vector3 outTranslation = { 0 };
Quaternion outRotation = { 0 };
Vector3 outScale = { 0 };
int vCounter = 0;
int boneCounter = 0;
int boneId = 0;
for (int i = 0; i < model.meshes[m].vertexCount; i++)
{
boneId = model.meshes[m].boneIds[boneCounter];
inTranslation = model.bindPose[boneId].translation;
inRotation = model.bindPose[boneId].rotation;
inScale = model.bindPose[boneId].scale;
outTranslation = anim.framePoses[frame][boneId].translation;
outRotation = anim.framePoses[frame][boneId].rotation;
outScale = anim.framePoses[frame][boneId].scale;
// Vertices processing
// NOTE: We use meshes.vertices (default vertex position) to calculate meshes.animVertices (animated vertex position)
animVertex = (Vector3){ model.meshes[m].vertices[vCounter], model.meshes[m].vertices[vCounter + 1], model.meshes[m].vertices[vCounter + 2] };
animVertex = Vector3MultiplyV(animVertex, outScale);
animVertex = Vector3Subtract(animVertex, inTranslation);
animVertex = Vector3RotateByQuaternion(animVertex, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
animVertex = Vector3Add(animVertex, outTranslation);
model.meshes[m].animVertices[vCounter] = animVertex.x;
model.meshes[m].animVertices[vCounter + 1] = animVertex.y;
model.meshes[m].animVertices[vCounter + 2] = animVertex.z;
// Normals processing
// NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals)
animNormal = (Vector3){ model.meshes[m].normals[vCounter], model.meshes[m].normals[vCounter + 1], model.meshes[m].normals[vCounter + 2] };
animNormal = Vector3RotateByQuaternion(animNormal, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
model.meshes[m].animNormals[vCounter] = animNormal.x;
model.meshes[m].animNormals[vCounter + 1] = animNormal.y;
model.meshes[m].animNormals[vCounter + 2] = animNormal.z;
vCounter += 3;
boneCounter += 4;
}
// Upload new vertex data to GPU for model drawing
rlUpdateBuffer(model.meshes[m].vboId[0], model.meshes[m].animVertices, model.meshes[m].vertexCount*3*sizeof(float)); // Update vertex position
rlUpdateBuffer(model.meshes[m].vboId[2], model.meshes[m].animVertices, model.meshes[m].vertexCount*3*sizeof(float)); // Update vertex normals
}
}
// Unload animation data
void UnloadModelAnimation(ModelAnimation anim)
{
for (int i = 0; i < anim.frameCount; i++) free(anim.framePoses[i]);
free(anim.bones);
free(anim.framePoses);
}
// Check model animation skeleton match
// NOTE: Only number of bones and parent connections are checked
bool IsModelAnimationValid(Model model, ModelAnimation anim)
{
int result = true;
if (model.boneCount != anim.boneCount) result = false;
else
{
for (int i = 0; i < model.boneCount; i++)
{
if (model.bones[i].parent != anim.bones[i].parent) { result = false; break; }
}
}
return result;
}
#if defined(SUPPORT_MESH_GENERATION)
// Generate polygonal mesh
Mesh GenMeshPoly(int sides, float radius)
@ -1807,59 +2199,124 @@ Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize)
}
#endif // SUPPORT_MESH_GENERATION
// Load material data (from file)
Material LoadMaterial(const char *fileName)
// Compute mesh bounding box limits
// NOTE: minVertex and maxVertex should be transformed by model transform matrix
BoundingBox MeshBoundingBox(Mesh mesh)
{
Material material = { 0 };
// Get min and max vertex to construct bounds (AABB)
Vector3 minVertex = { 0 };
Vector3 maxVertex = { 0 };
#if defined(SUPPORT_FILEFORMAT_MTL)
if (IsFileExtension(fileName, ".mtl"))
if (mesh.vertices != NULL)
{
tinyobj_material_t *materials;
unsigned int materialCount = 0;
minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
int result = tinyobj_parse_mtl_file(&materials, &materialCount, fileName);
// TODO: Process materials to return
tinyobj_materials_free(materials, materialCount);
for (int i = 1; i < mesh.vertexCount; i++)
{
minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
}
}
#else
TraceLog(LOG_WARNING, "[%s] Material fileformat not supported, it can't be loaded", fileName);
#endif
// Our material uses the default shader (DIFFUSE, SPECULAR, NORMAL)
material.shader = GetShaderDefault();
// Create the bounding box
BoundingBox box = { 0 };
box.min = minVertex;
box.max = maxVertex;
return material;
return box;
}
// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
Material LoadMaterialDefault(void)
// Compute mesh tangents
// NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates
// Implementation base don: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html
void MeshTangents(Mesh *mesh)
{
Material material = { 0 };
if (mesh->tangents == NULL) mesh->tangents = (float *)malloc(mesh->vertexCount*4*sizeof(float));
else TraceLog(LOG_WARNING, "Mesh tangents already exist");
material.shader = GetShaderDefault();
material.maps[MAP_DIFFUSE].texture = GetTextureDefault(); // White texture (1x1 pixel)
//material.maps[MAP_NORMAL].texture; // NOTE: By default, not set
//material.maps[MAP_SPECULAR].texture; // NOTE: By default, not set
Vector3 *tan1 = (Vector3 *)malloc(mesh->vertexCount*sizeof(Vector3));
Vector3 *tan2 = (Vector3 *)malloc(mesh->vertexCount*sizeof(Vector3));
material.maps[MAP_DIFFUSE].color = WHITE; // Diffuse color
material.maps[MAP_SPECULAR].color = WHITE; // Specular color
return material;
}
// Unload material from memory
void UnloadMaterial(Material material)
{
// Unload material shader (avoid unloading default shader, managed by raylib)
if (material.shader.id != GetShaderDefault().id) UnloadShader(material.shader);
// Unload loaded texture maps (avoid unloading default texture, managed by raylib)
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
for (int i = 0; i < mesh->vertexCount; i += 3)
{
if (material.maps[i].texture.id != GetTextureDefault().id) rlDeleteTextures(material.maps[i].texture.id);
// Get triangle vertices
Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] };
Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] };
Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] };
// Get triangle texcoords
Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] };
Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] };
Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] };
float x1 = v2.x - v1.x;
float y1 = v2.y - v1.y;
float z1 = v2.z - v1.z;
float x2 = v3.x - v1.x;
float y2 = v3.y - v1.y;
float z2 = v3.z - v1.z;
float s1 = uv2.x - uv1.x;
float t1 = uv2.y - uv1.y;
float s2 = uv3.x - uv1.x;
float t2 = uv3.y - uv1.y;
float div = s1*t2 - s2*t1;
float r = (div == 0.0f)? 0.0f : 1.0f/div;
Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r };
Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r };
tan1[i + 0] = sdir;
tan1[i + 1] = sdir;
tan1[i + 2] = sdir;
tan2[i + 0] = tdir;
tan2[i + 1] = tdir;
tan2[i + 2] = tdir;
}
// Compute tangents considering normals
for (int i = 0; i < mesh->vertexCount; ++i)
{
Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
Vector3 tangent = tan1[i];
// TODO: Review, not sure if tangent computation is right, just used reference proposed maths...
#if defined(COMPUTE_TANGENTS_METHOD_01)
Vector3 tmp = Vector3Subtract(tangent, Vector3Multiply(normal, Vector3DotProduct(normal, tangent)));
tmp = Vector3Normalize(tmp);
mesh->tangents[i*4 + 0] = tmp.x;
mesh->tangents[i*4 + 1] = tmp.y;
mesh->tangents[i*4 + 2] = tmp.z;
mesh->tangents[i*4 + 3] = 1.0f;
#else
Vector3OrthoNormalize(&normal, &tangent);
mesh->tangents[i*4 + 0] = tangent.x;
mesh->tangents[i*4 + 1] = tangent.y;
mesh->tangents[i*4 + 2] = tangent.z;
mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f;
#endif
}
free(tan1);
free(tan2);
TraceLog(LOG_INFO, "Tangents computed for mesh");
}
// Compute mesh binormals (aka bitangent)
void MeshBinormals(Mesh *mesh)
{
for (int i = 0; i < mesh->vertexCount; i++)
{
Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
Vector3 tangent = { mesh->tangents[i*4 + 0], mesh->tangents[i*4 + 1], mesh->tangents[i*4 + 2] };
float tangentW = mesh->tangents[i*4 + 3];
// TODO: Register computed binormal in mesh->binormal?
// Vector3 binormal = Vector3Multiply(Vector3CrossProduct(normal, tangent), tangentW);
}
}
@ -2239,129 +2696,6 @@ RayHitInfo GetCollisionRayGround(Ray ray, float groundHeight)
return result;
}
// Compute mesh bounding box limits
// NOTE: minVertex and maxVertex should be transformed by model transform matrix
BoundingBox MeshBoundingBox(Mesh mesh)
{
// Get min and max vertex to construct bounds (AABB)
Vector3 minVertex = { 0 };
Vector3 maxVertex = { 0 };
printf("Mesh vertex count: %i\n", mesh.vertexCount);
if (mesh.vertices != NULL)
{
minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
for (int i = 1; i < mesh.vertexCount; i++)
{
minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
}
}
// Create the bounding box
BoundingBox box = { 0 };
box.min = minVertex;
box.max = maxVertex;
return box;
}
// Compute mesh tangents
// NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates
// Implementation base don: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html
void MeshTangents(Mesh *mesh)
{
if (mesh->tangents == NULL) mesh->tangents = (float *)malloc(mesh->vertexCount*4*sizeof(float));
else TraceLog(LOG_WARNING, "Mesh tangents already exist");
Vector3 *tan1 = (Vector3 *)malloc(mesh->vertexCount*sizeof(Vector3));
Vector3 *tan2 = (Vector3 *)malloc(mesh->vertexCount*sizeof(Vector3));
for (int i = 0; i < mesh->vertexCount; i += 3)
{
// Get triangle vertices
Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] };
Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] };
Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] };
// Get triangle texcoords
Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] };
Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] };
Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] };
float x1 = v2.x - v1.x;
float y1 = v2.y - v1.y;
float z1 = v2.z - v1.z;
float x2 = v3.x - v1.x;
float y2 = v3.y - v1.y;
float z2 = v3.z - v1.z;
float s1 = uv2.x - uv1.x;
float t1 = uv2.y - uv1.y;
float s2 = uv3.x - uv1.x;
float t2 = uv3.y - uv1.y;
float div = s1*t2 - s2*t1;
float r = (div == 0.0f)? 0.0f : 1.0f/div;
Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r };
Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r };
tan1[i + 0] = sdir;
tan1[i + 1] = sdir;
tan1[i + 2] = sdir;
tan2[i + 0] = tdir;
tan2[i + 1] = tdir;
tan2[i + 2] = tdir;
}
// Compute tangents considering normals
for (int i = 0; i < mesh->vertexCount; ++i)
{
Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
Vector3 tangent = tan1[i];
// TODO: Review, not sure if tangent computation is right, just used reference proposed maths...
#if defined(COMPUTE_TANGENTS_METHOD_01)
Vector3 tmp = Vector3Subtract(tangent, Vector3Multiply(normal, Vector3DotProduct(normal, tangent)));
tmp = Vector3Normalize(tmp);
mesh->tangents[i*4 + 0] = tmp.x;
mesh->tangents[i*4 + 1] = tmp.y;
mesh->tangents[i*4 + 2] = tmp.z;
mesh->tangents[i*4 + 3] = 1.0f;
#else
Vector3OrthoNormalize(&normal, &tangent);
mesh->tangents[i*4 + 0] = tangent.x;
mesh->tangents[i*4 + 1] = tangent.y;
mesh->tangents[i*4 + 2] = tangent.z;
mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f;
#endif
}
free(tan1);
free(tan2);
TraceLog(LOG_INFO, "Tangents computed for mesh");
}
// Compute mesh binormals (aka bitangent)
void MeshBinormals(Mesh *mesh)
{
for (int i = 0; i < mesh->vertexCount; i++)
{
Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
Vector3 tangent = { mesh->tangents[i*4 + 0], mesh->tangents[i*4 + 1], mesh->tangents[i*4 + 2] };
float tangentW = mesh->tangents[i*4 + 3];
// TODO: Register computed binormal in mesh->binormal?
// Vector3 binormal = Vector3Multiply(Vector3CrossProduct(normal, tangent), tangentW);
}
}
//----------------------------------------------------------------------------------
// Module specific Functions Definition
//----------------------------------------------------------------------------------

View File

@ -752,7 +752,7 @@ typedef enum {
MAP_IRRADIANCE, // NOTE: Uses GL_TEXTURE_CUBE_MAP
MAP_PREFILTER, // NOTE: Uses GL_TEXTURE_CUBE_MAP
MAP_BRDF
} TexmapIndex;
} MaterialMapType;
#define MAP_DIFFUSE MAP_ALBEDO
#define MAP_SPECULAR MAP_METALNESS
@ -1256,16 +1256,25 @@ RLAPI void DrawGizmo(Vector3 position);
// Model loading/unloading functions
RLAPI Model LoadModel(const char *fileName); // Load model from files (meshes and materials)
RLAPI Model LoadModelFromMesh(Mesh mesh); // Load model from generated mesh
//RLAPI void LoadModelAnimations(const char fileName, ModelAnimation *anims, int *animsCount); // Load model animations from file
//RLAPI void UpdateModelAnimation(Model model, ModelAnimation anim, int frame); // Update model animation pose
RLAPI void UnloadModel(Model model); // Unload model from memory (RAM and/or VRAM)
// Mesh manipulation functions
RLAPI BoundingBox MeshBoundingBox(Mesh mesh); // Compute mesh bounding box limits
RLAPI void MeshTangents(Mesh *mesh); // Compute mesh tangents
RLAPI void MeshBinormals(Mesh *mesh); // Compute mesh binormals
RLAPI void UnloadMesh(Mesh *mesh); // Unload mesh from memory (RAM and/or VRAM)
// Mesh loading/unloading functions
RLAPI Mesh *LoadMeshes(const char *fileName, int *meshCount); // Load meshes from model file
RLAPI void ExportMesh(Mesh mesh, const char *fileName); // Export mesh data to file
RLAPI void UnloadMesh(Mesh *mesh); // Unload mesh from memory (RAM and/or VRAM)
// Material loading/unloading functions
RLAPI Material *LoadMaterials(const char *fileName, int *materialCount); // Load materials from model file
RLAPI Material LoadMaterialDefault(void); // Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
RLAPI void UnloadMaterial(Material material); // Unload material from GPU memory (VRAM)
RLAPI void SetMaterialTexture(Material *material, int mapType, Texture2D texture); // Set texture for a material map type (MAP_DIFFUSE, MAP_SPECULAR...)
RLAPI void SetModelMeshMaterial(Model *model, int meshId, int materialId); // Set material for a mesh
// Model animations loading/unloading functions
RLAPI ModelAnimation *LoadModelAnimations(const char *fileName, int *animsCount); // Load model animations from file
RLAPI void UpdateModelAnimation(Model model, ModelAnimation anim, int frame); // Update model animation pose
RLAPI void UnloadModelAnimation(ModelAnimation anim); // Unload animation data
RLAPI bool IsModelAnimationValid(Model model, ModelAnimation anim); // Check model animation skeleton match
// Mesh generation functions
RLAPI Mesh GenMeshPoly(int sides, float radius); // Generate polygonal mesh
@ -1279,10 +1288,10 @@ RLAPI Mesh GenMeshKnot(float radius, float size, int radSeg, int sides);
RLAPI Mesh GenMeshHeightmap(Image heightmap, Vector3 size); // Generate heightmap mesh from image data
RLAPI Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize); // Generate cubes-based map mesh from image data
// Material loading/unloading functions
RLAPI Material LoadMaterial(const char *fileName); // Load material from file
RLAPI Material LoadMaterialDefault(void); // Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
RLAPI void UnloadMaterial(Material material); // Unload material from GPU memory (VRAM)
// Mesh manipulation functions
RLAPI BoundingBox MeshBoundingBox(Mesh mesh); // Compute mesh bounding box limits
RLAPI void MeshTangents(Mesh *mesh); // Compute mesh tangents
RLAPI void MeshBinormals(Mesh *mesh); // Compute mesh binormals
// Model drawing functions
RLAPI void DrawModel(Model model, Vector3 position, float scale, Color tint); // Draw a model (with texture if set)